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1 Overview

This section shows how to derive the first order conditions for the model presented in the

main text of the paper. This section also shows how to take a log-linear approximation to

the model’s first order conditions, and then manipulate them into a particularly simple form

that is akin to that of the model of Erceg, Henderson, and Levin (2000). Section 2 derives

a quadratic approximation to the welfare function following the approach of Rotemberg and

Woodford (1997).

1.1 Households’ Problem

Recall that there is a continuum of households of measure 1, indexed by h. Each household

supplies a differentiated labor service Nt(h) to a goods-producing sector at a wage rate Wt(h).

It is convenient to assume that a representative labor aggregator combines households’ labor

hours in the same proportions as firms would choose to produce an aggregate Lt. The labor

aggregator solves the following problem:

min
Lt(h)∀h

∫ 1

0

Wt(h)Nt(h)dh + Wt

[
Lt −

(∫ 1

0

Nt(h)
1

1+θw dh

)1+θw
]

. (1)

The first-order conditions from this problem and the zero-profit condition for the aggregator

imply that:

Nt (h) =

[
Wt (h)

Wt

]− 1+θw
θw

Lt, (2)

Lt =

[∫ 1

0

(Nt (h))
1

1+θw dh

]1+θw

, (3)

Wt =

[∫ 1

0

Wt (h)
−1
θw dh

]−θw

. (4)

It is natural to interpret Wt as the aggregate wage index. The utility functional of household

h is:

Et

∞∑
j=0

βjWt+j (h) , (5)
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where the period utility function Wt (h) has the time separable form:

Wt (h) = U(Ct(h))− V(Nt(h)) =
1

1− σ
Ct+j (h)1−σ − χ0

1 + χ
Nt+j (h)1+χ . (6)

Here Ct (h) and Nt (h) denote each household’s total consumption and hours of labor in period

t, respectively. The intertemporal elasticity of consumption, 1
σ
, satisfies 1

σ
> 0, and we assume

that 0 < β < 1, χ > 0, and χ0 > 0.

The households’ utility maximization problem is given by

max
Ct(h),Wt(h),Bt+1(h)∀s,λt(h)

Et

∞∑
j=0

βj

(
1

1− σ
Ct+j (h)1−σ − χ0

1 + χ
Nt+j (h)1+χ

)
(7)

+λt+j(h)

[
−PctCt(h)−

∫

s

ξt,t+1Bt+1(h) + Bt(h) (8)

+(1 + τw)Wt (h) Nt (h) + PotYot + Γt (h) + Tt (h)] , (9)

where Nt(h) is understood to follow the labor demand schedule in equation (2) above. House-

holds’ wage setting is subject to Calvo contracts renewed with probability (1 − ξw). When

wages are not reset, they are updated based on the steady-state wage inflation. The first-order

conditions of this utility maximization problem yield:

Ct(h)−σ = λt(h)Pct, (10)

Et

∞∑
j=0

(ξwβ)j

{
−χ0Nt+j(h)χ ∂Nt+j(h)

∂Wt(h)

+λt+j(h)

[
(1 + τw)Nt+j(h) + (1 + τw)Wt(h)

∂Nt+j(h)

∂Wt(h)

]}
= 0, (11)

1

1 + it
= Etβ

λt+1

λt

, (12)

PctCt(h) +

∫

s

ξt,t+1Bt+1(h)−Bt(h) =

+(1 + τw)Wt (h) Nt (h) + PotYot + Γt (h) + Tt (h) , (13)

where we defined it to be the economy’s risk-free rate, i.e. 1
1+it

=
∫

s
ξt,t+1ds. Invoking our

complete markets assumption, Ct(h) = Ct and λt(h) = λt for all h.

A household’s total consumption in each period depends, in turn, on its purchases both

of a composite nonenergy consumption good Cnt(h), and of energy OCt(h), according to the
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aggregator:

Ct(h) = Cnt(h)1−ωocOct(h)ωoc . (14)

The household’s minimization problem associated with producing Ct(h) is:

min
Cnt(h),Oct(h),Pct

PntCnt(h) + PotOct(h) + Pct

[
Ct(h)− Cnt(h)1−ωocOct(h)ωoc

]
. (15)

The first-order conditions are:

Pnt = Pct(1− ωoc)Cnt(h)−ωocOct(h)ωoc , (16)

Pot = PctωocCnt(h)1−ωocOct(h)ωoc−1, (17)

plus the technology constraint in equation (14). Dividing equation (16) by (17), and aggregating

over households, yields:

Oct =
ωoc

1− ωoc

Pnt

Pot

Cnt, (18)

which we interpret as the oil demand equation for households.

1.2 Wholesalers’ Problem

The wholesale good is produced by a representative firm. This firm minimizes the cost of

producing the wholesale good taking prices as given, subject to its technology of production.

It is convenient to split the budgeting problem into two stages. In the top stage, the wholesaler

purchases a composite capital-labor input Vt at a price PV t and an oil input Opt at a price Pot.

The wholesaler combines these inputs to produce the wholesale good, Ywt, whose price is Pwt.

The minimization problem is the following:

min
Vt,Opt,Pwt

PvtVt + PotOpt (19)

+Pwt

(
Ywt − V

1−ωop

t O
ωop

pt

)
. (20)

The first-order conditions for the minimization problem in (20) are:

Pvt = Pwt(1− ωop)
Ywt

Vt

, (21)

Pot = Pwtωop
Ywt

Opt

, (22)

Ywt = V
1−ωop

t O
ωop

pt . (23)
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Dividing equation (21) by (22) yields:

Pvt

Pot

=
1− ωop

ωop

(
Opt

Vt

)
, (24)

which we interpret as the oil demand for production. From the above equation we can see that

the ratio Opt(f)

Vt(f)
is equalized across wholesalers.

At the first stage of production, the wholesaler also rents capital Kt and labor Lt from

households at factor prices Rkt and Wt, respectively. The wholesaler chooses factor inputs so

as to solve the following cost minimization problem:

min
Kt,Lt,Pvt

RktKt(f) + WtLt + Pvt

[
Vt −Kα

t (ZtLt)
1−α

]
, (25)

where Zt is a technology shock common across wholesalers. The first-order conditions of the

above problem are:

Rkt = PvtαKα−1
t (ZtLt)

1−α, (26)

Wt = Pvt(1− α)Kα
t (ZtLt)

−αZt, (27)

Vt = Kα
t (ZtLt)

1−α . (28)

From equation (27), we get that:

Pvt

Pnt

=
Wt

Pnt

(1− α)
(

Kt

Lt

)α

Z1−α
t

. (29)

1.3 Bundlers and Retailers

The composite good YNt is produced by a representative firm (or “bundler”) according to the

technology:

Cnt = Ynt =

[∫ 1

0

(Ynt (f))
1

1+θp df

]1+θp

, (30)

The representative firm purchases the underlying retail goods at prices Pnt(f), and sells the

composite good to households at a price of Pnt.

The bundler’s problem is the following:

min
Ynt(f)∀f,Pnt

∫ 1

0

Pnt(f)Ynt(f)df + Pnt

[
Ynt −

(∫ 1

0

Ynt(f)
1

1+θp

)1+θp
]

. (31)
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The first-order conditions and the zero-profit conditions from the above minimization problem

can be manipulated to yield:

Ynt(f) =

[
Pnt(f)

Pnt

]− 1+θp
θp

Ynt, (32)

Pnt =

[∫ 1

0

Pnt(f)
− 1

θp

]−θp

, (33)

Ynt =

(∫ 1

0

Ynt(f)
1

1+θp

)1+θp

. (34)

Retail goods are produced by monopolistically competitive firms. Each retailer f pur-

chases a homogenous “wholesale” good Ywt, and transforms it into a particular type of retail

good according to a simple linear production function:

Ynt (f) = Ywt (f) , (35)

where Ywt (f) denotes purchases of the wholesale good by producer f . Retailers set the price

of their respective output goods in Calvo-style staggered contracts with a probability 1− ξp of

receiving a signal to re-optimize its contract price, Pnt(f). Those firms not receiving a signal to

re-optimize adjust their price by the steady state inflation rate. A firm f that receives a signal

to adjust solves the following maximization problem:

max
Pnt(f)

Et

∞∑
j=0

ξj
pψt,t+j

[
(1 + τp)π

jPnt (f) Ynt+j (f)− Pwt+jYnt+j (f)
]
, (36)

taking its demand schedule (32) and the price of wholesale goods Pwt as given. The first-order

condition from this problem is:

Et

∞∑
j=0

ξj
pψt,t+j

[
(1 + τp)π

jYn,t+j(f) + (1 + τp)π
j ∂Ynt+j(f)

∂Pnt(f)
− Pwt+j

∂Ynt+j(f)

∂Pnt(f)

]
= 0. (37)

1.4 Resource Constraints

In addition to the constraint in equation (30) that all output of the nonenergy good is consumed

by households, clearing of the wholesale market requires that the cumulative demand of retailers

equals the available supply, thus:
∫ 1

0

Ywt(f)df = Ywt = Cnt =

∫ 1

0

Cnt(h)dh. (38)
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Moreover, energy market clearing implies that the energy demand of households and wholesale

firms equal the exogenous flow endowment:

∫ 1

0

Oct(h)dh + Opt = Yot. (39)

The factor input markets need to clear; labor and capital demand from the wholesaler

need to equal households’ supply, thus:

Lt =

∫ 1

0

Lt(h)dh, (40)

Kt = K̄. (41)

Finally, the exogenous flow endowment, YOt, is itself the sum of a (nearly) permanent and

temporary component:

Yot = Y P
ot + Y T

ot . (42)

The permanent and temporary components, represented as log-deviations from their steady-

state values, evolve according to:

yP
ot = ρP yP

ot−1 + εP
t , (43)

yT
Ot = ρT yT

ot−1 + εT
t . (44)

1.5 Flexible Wage/Price Economy

When wages are reset every period, the utility maximization problem is modified to yield the

following first-order condition, instead of equation (11) above:

−χ0Nt(h)χ ∂Nt(h)

∂Wt(h)
+ λt(h)

[
(1 + τw)Nt(h) + (1 + τw)Wt(h)

∂Nt(h)

∂Wt(h)

]
= 0. (45)

Dividing by (1 + τw)Nt(h) yields:

χ0Nt(h)χ 1

1 + τw

∂Nt(h)
∂Wt(h)

Nt(h)
= λt(h)

[
1 +

∂Nt(h)
∂Wt(h)

Nt(h)
Wt(h)

]
. (46)
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Invoking our complete markets assumption and from equation (10), λt(h) = Ct

Pct
. Furthermore,

note that, from equation (2):

∂Nt(h)
∂Wt(h)

Nt(h)
Wt(h)

= −1 + θ

θ
.

Using the above elasticity in the previous equation and rearranging:

Wt(h)

Pct

=

(
1 + θw

1 + τw

)
χ0Nt(h)χCσ

t . (47)

Analogously, when intermediate prices are reset every period, the following first-order

condition replaces equation (37) above.

(1 + τp)Ynt(f) + [(1 + τp)Pnt(f)− Pwt]
∂Ynt(f)

∂Pnt(f)
= 0. (48)

Dividing by (1 + τp)Ynt(f):

1 +

[
Pnt −

(
1

1 + τp

Pwt

)] ∂Ynt(f)
∂Pnt(f)

Ynt(f)
= 0. (49)

Multiplying by Pnt and noticing that ∂Ynt(f)
∂Pnt(f)

Pnt(f)
Ynt(f)

= −1+θP

θp
, the above equation becomes:

Pnt(f) +

[
Pnt(f)− 1

1 + τp

Pwt

](
1 + θp

θp

)
= 0. (50)

Invoking symmetry, Pnt(f) = Pnt for all f . Thus, rearranging the above equation yields:

Pnt =
1 + θp

1 + τp

Pwt. (51)

1.6 Steady States

We focus on a steady state in which all prices, Pn, Pv, Po, Pc, are equal to 1 and and the stock

of capital, K̄, is fixed at 1. Note that the omission of the time subscript t denotes a variable’s

steady state value. We show that our choice of prices implies a restriction on the steady-state

value of Z when we take the value of Yo, the supply of oil, as given. Furthermore, we show that

for any L > 0, given our choice of preferences, there is a value of χ that supports that value of

L in steady state.
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We also choose τp and θp so that τp = θp. Thus, from equation (51):

Pw = Pn = 1. (52)

From the wholesalers’ cost minimization problem

V = (1− ωop)Yw, (53)

Op = ωopYw. (54)

Similarly, from the households’ cost minimization problem

Cn = (1− ωoc)C, (55)

Oc = ωocC. (56)

From the market clearing condition for oil Yo = Oc + Op. From equation (38), we know that

Yw = Cn. Thus, combining equations (54), (55), and (56) yields:

Oc

Yo

=
ωoc

ωoc + ωo(1− ωoc)
, (57)

Op

Yo

= 1− Oc

Yo

. (58)

Equivalently, one can also see that
(

ωoc

1− ωoc

)(
Op

Yo

)
= ωop

(
Oc

Yo

)
(59)

.

From equation (27)

W = (1− α)N−αK̄αZ1−α, (60)

and from equation (45)

W = χ0L
χCσ. (61)

From equation (2), in a symmetric steady state, N(h)=N=L. Thus, combining the preceding 2

equations:

(1− α)L−αK̄αZ1−α = χ0L
χCσ. (62)
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Next, we express C in terms of L and Z. From equation (14)

C = C1−ωoc
n Oωoc

c . (63)

Combining the above equation with equation (56) yields:

C = ω
ωoc

1+ωoc
oc Cn. (64)

In turn, from equations (38) and (23), we can express Cn as:

Cn = ω
ωop

1−ωop
op V. (65)

Since V = K̄α(ZL)1−α, then from the above two equations:

C = ω
ωoc

1+ωoc
oc ω

ωop
1−ωop
op K̄α(ZL)1−α. (66)

Thus, combining the equation above with equation (62), it becomes clear that for any choice of

L and Z, there is a unique value of χ0 that supports that choice. Finally, for any choice of L

and given our choice of unitary prices, the oil market clearing condition, equation (42), implies

a restriction on the steady state value of Z given by:

ωoc

[
ω

ωoc
1+ωoc
oc ω

ωop
1−ωop
op K̄α(ZL)1−α

]
+ ωop

[
ω

ωop
1−ωop
op K̄α(ZL)1−α

]
= Yo, (67)

where Yo is an exogenous quantity.

The steady-state relationships given below will prove useful in the derivation of the

second-order approximation to the welfare loss function.

Combining equations (10) and (11) in steady state yields

UC = VN
1

W
. (68)

Noticing that W = (1− α) V
N

and V = (1− ωop)(1− ωoc)C, we obtain

UCC̄(1− ωoc) = VNN̄
1

(1− α)(1− ωop)
. (69)

Note that the first and second derivative of the subutility functional for leisure V(Nt(h)) =

χ0

1+χ
Nt+j (h)1+χ satisfy:

(
VNN̄ + VNN(N̄)2

)
= VNN̄ (1 + χ) , (70)

and(
VNN̄

θw

1 + θw

+ VNN(N̄)2

)
= VNN̄

(
θw

1 + θw

+ χ

)
. (71)
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1.7 Linearized Conditions for an Equilibrium

Below we give a set of log-linear equations that, together with the shock processes, equations

(42) to (44), and a characterization of monetary policy describe the model’s equilibrium.

1. Production of wholesale good

Combining equations (23) and (28), and remembering that aggregate capital is fixed,

yields:

ywt = (1− ωop)(1− α) [zt + lt] + ωop opt. (72)

2. Oil demand by firms From equation (24), we have that

opt = −
(

pot

pvt

)
+ vt. (73)

But from equations (28) and(29),

vt = (1− α) (lt + zt) . (74)

Furthermore, pot

pvt
= pot

pnt
− pvt

pnt
, and from equation (29) we get that:

pvt

pnt

=
wt

pnt

+ αlt − (1− α)zt. (75)

Substituting (74) and (75) into (73) we get:

opt = −pot

pnt

+
wt

pnt

+ α lt − (1− α)zt + (1− α) (lt + zt) , (76)

which simplifies to:

opt = −pot

pnt

+
wt

pnt

+ lt. (77)

Define ψot = pot

pnt
and ηt = wt

pnt
. Then, we rewrite the above equation as:

opt = −ψot + ηt + lt. (78)
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3. Real marginal cost

From equations 21 to 23, we can see that:

pwt

pnt

= (1− ωop)
pvt

pnt

+ ωop
pot

pnt

. (79)

Combining the above equation with (73) we get that:

pwt

pnt

= (1− ωop)

[
wt

pnt

+ α lt − (1− α)zt

]
+ ωop

pot

pnt

. (80)

Define φnt = pwt

pnt
. Then, also using the definition for ψot and ηt, the above equation

becomes:

φnt = (1− ωop) [ηt + α lt − (1− α)zt] + ωop ψot. (81)

4. Production of household consumption good

From equation (14)

ct = (1− ωoc) cnt + ωoc oct. (82)

5. Households’ oil demand

From equation (18) we get that:

oct = −pot

pnt

+ cnt. (83)

6. Relative price for consumer goods From equations (14), (16), and (17), we get that:

pct

pnt

= ωocψot. (84)

7. Resource constraint for nonoil good

From equation (38):

ywt = cnt. (85)
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8. Resource constraint for oil

From equation (39)

yot =
Oc

Yo

oct +

(
1− Oc

Yo

oct

)
opt, (86)

where Oc

Yo
= ωoc

ωoc+ωo(1−ωoc)
, as derived above.

9. Price setting

With Calvo-style contracts, linearizing equation (37) yields:

πnt = β EtπNt+1 + κpφnt, (87)

where πnt = pnt − pnt−1 and κp = (1−βξp)(1−ξp)

ξp
.

With flexible prices, from equation (51)

φnt = 0. (88)

10. Wage setting

With Calvo-style contracts, linearizing equation (11) yields:

ωt = β Etωt+1 + κw

(
pct

pnt

+ σct + χlt − wt

pnt

)
, (89)

where ωt = wt − wt−1 and κw = (1−βξw)(1−ξw)
ξw

.

With flexible wages, from equation 47:

ηt =
pct

pnt

+ χ lt + σ ct. (90)

11. Consumption Euler

Combining equations (10) and (12):

ct = Etct+1 − 1

σ
(it − Etπct+1). (91)
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12. Product real wage identity

ωt − πnt = ηt − ηt−1. (92)

13. Consumer price inflation identity

πct = πnt + ωoc (ψot − ψot−1) . (93)

1.8 Simplifying the linear conditions for an equilibrium

In this section we show how to rewrite the log-linear conditions that characterize the aggregate

supply block of the model into a form that depends only on price inflation (for retail goods),

wage inflation, the product real wage, the real wage gap (the deviation between the real wage

and the real wage that would prevail under price and wage flexibility), and the employment

gap. As noted in the text, this representation is very useful insofar as the second- order

approximation to welfare depends only on these variables. To simplify the notation, in this and

following sections we have at times dropped the expectation operator accompanying variables

dated t + 1.

We begin by using the oil market equilibrium conditions to express the deviation of the

relative price energy from its flexible price value, i.e., ψot−ψ∗ot, solely in terms of the employment

gap lt− l∗t , and the real wage gap ηt−η∗t . Substituting the wholesaler’s energy demand function

into the oil resource constraint yields:

yot = opt +
Oc

Yo

(oct − opt) = lt + ηt − ψot +
Oc

Yo

(oct − opt) . (94)

Thus, oil supply equals demand, where the latter may be expressed as wholesale producers’

demand plus an adjustment factor that depends on the ratio of the energy demand of households

relative to that of wholesale producers.

Solving equation (81) for ηt and substituting into equation (78), then using (72), we

obtain that:

opt = ywt − ψot +
pwt

pnt

. (95)
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From equation (86)

yot = opt +
Oc

Yo

(oct − opt) . (96)

Subtracting equation (95) from (83) yields:

oct − opt = −φnt, (97)

where φnt = log
(

Pwt

Pnt

)
. Intuitively, household energy demand depends on the price of energy

relative to that of retail goods
(

Pot

Pnt

)
, while wholesalers’ demand depends on the price of energy

relative to that of wholesale goods
(

Pot

Pwt

)
. Thus, a fall in the markup of retail over wholesale

goods (i.e., a rise in marginal cost ψnt) should reduce the energy demand of households relative

to that of wholesale producers. Substituting equation (97) into (94), rearranging terms, and

then substituting for real marginal cost using (81) yields:

ψot = −yot + lt + ηt − Oc

Yo

ψnt

= −yot + lt + ηt − Oc

Yo

((1− ωop)(ηt + αlt − (1− α)zt) + ωopψot) . (98)

Solving for the relative price of oil gives:
(

1 + ωop
Oc

Yo

)
ψot = −yot +

(
1− Oc

Yo

(1− ωop)α

)
lt

+

(
1− Oc

Yo

(1− ωop)

)
ηt + (1− α)

Oc

Yo

(1− ωop)zt. (99)

Recalling that Oc

Yo
= ωoc

ωop(1−ωoc)+ωoc
, the coefficients in equation (99) may be rewritten:

(
1 + ωop

Oc

Yo

)
= 1 +

ωopωoc

ωop(1− ωoc) + ωoc

=
ωop + ωoc

ωop(1− ωoc) + ωoc

, (100)

and

1−
(

Oc

Yo

)
(1−ωop) = 1+ωop

(
Oc

Yo

)
−

(
Oc

Yo

)
=

ωop + ωoc − ωoc

ωop(1− ωoc) + ωoc

=
ωop

ωop(1− ωoc) + ωoc

.(101)

Substituting into (99) gives:
(

ωop + ωoc

ωop(1− ωoc) + ωoc

)
ψot = −yot +

(
ωop

ωop(1− ωoc) + ωoc

)
ηt +

(
ωop(1− ωoc) + ωoc − αωoc(1− ωop)

ωop(1− ωoc) + ωoc

)
lt (102)

+(1− α)

(
ωoc(1− ωop)

ωop(1− ωoc) + ωoc

)
zt.
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Solving for the relative price of oil yields:

ψot = −
(

ωop(1− ωoc) + ωoc

ωop + ωoc

)
yot +

(
ωop

ωop + ωoc

)
ηt +

(
ωop(1− ωoc) + ωoc − αωoc(1− ωop)

ωop + ωoc

)
lt (103)

+(1− α)

(
ωoc(1− ωop)

ωop + ωoc

)
zt.

Noting that the numerator of the coefficient on lt can be expressed:

ωop(1− ωoc) + ωoc − αωoc(1− ωop) = ωop + (1− α)ωoc(1− ωop) (104)

= αωop + (1− α) (ωop + ωoc(1− ωop))

= αωop + (1− α) (ωoc + ωop(1− ωoc)) ,

the relative price of oil can be written alternatively as:

ψot = −
(

ωop(1− ωoc) + ωoc

ωop + ωoc

)
yot +

(
ωop

ωop + ωoc

)
ηt

+

(
αωop + (1− α) (ωoc + ωop(1− ωoc))

ωop + ωoc

)
lt (105)

+(1− α)

(
ωoc(1− ωop)

ωop + ωoc

)
zt.

Because this relationship also obtains in the flexible price equilibrium, it is convenient to express

the percentage deviation of the oil price from its flexible price value, or oil price gap, as:

ψot − ψ∗ot =

(
ωop

ωop + ωoc

)
(ηt − η∗t )

+

(
αωop + (1− α) (ωoc + ωop(1− ωoc))

ωop + ωoc

)
(lt − l∗t ). (106)

We can now use this result to reformulate the expression for marginal cost. Using equation

(81) above, recalling that it also holds in the flexible price equilibrium, one gets:

φnt − φ∗nt = (1− ωop) (ηt − η∗t + α(lt − l∗t )) + ωop (ψot − ψ∗ot) . (107)

Substituting for the “oil price gap” yields:

φnt − φ∗nt = (1− ωop) (ηt − η∗t + α(lt − l∗t )) + ωop

(
ωop

ωop + ωoc

)
(ηt − η∗t )

+ωop

(
αωop + (1− α) (ωoc + ωop(1− ωoc))

ωop + ωoc

)
(lt − l∗t ). (108)
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Grouping terms, we have:

φnt − φ∗nt =

(
1− ωop +

ω2
op

ωop + ωoc

)
(ηt − η∗t )

+

[
α

(
1− ωop +

ω2
op

ωop + ωoc

)
+ (1− α)ωop

(
ωop(1− ωoc) + ωoc

ωop + ωoc

)]
(lt − l∗t ).(109)

The coefficient on (ηt − η∗t ) may be rewritten as:

1− ωop +
ω2

op

ωop + ωoc

=
ωop + ωoc − ω2

op − ωopωoc + ω2
op

ωop + ωoc

=
ωop(1− ωoc) + ωoc

ωop + ωoc

, (110)

we can express real marginal cost exclusively in terms of the real wage and employment gaps:

φnt − φ∗nt =

[
ωop(1− ωoc) + ωoc

ωop + ωoc

]
(ηt − η∗t ) + [α + (1− α)ωop] (lt − l∗t ). (111)

Equivalently, defining:

λMPL = α + (1− α)ωop, (112)

real marginal cost may be expressed:

φnt − φ∗nt =

[
ωop(1− ωoc) + ωoc

ωop + ωoc

]
(ηt − η∗t ) + λMPL(lt − l∗t ). (113)

It is also straightforward to use the condition for the relative price of oil to derive an

expression for the “MRS gap” that depends only on employment and real wage gaps. Defining

the MRS as the cost of leisure in terms of the non-oil consumption good, i.e., MRSnt =

ωocψot + σct + χlt. The term MRSnt − ηt can be written as:

MRSnt − ηt = (MRSnt − η∗t )− (ηt − η∗t ). (114)

Thus MRSnt − ηt equals the MRS gap minus the real wage gap. In turn, the latter can be

rewritten as:

(MRSnt − η∗t ) + (η∗t − ηt) = ωoc(ψot − ψ∗ot) + σ(ct − c∗t ) + χ(lt − l∗t ) + η∗t − ηt.

Using equations (82), (83), and (74), one can get:

ct = (1− ωop)(1− α)(lt + zt) + ωopopt − ωocψot. (115)
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Substitute the firms’ oil demand equation (78) in the above expression. The consumption gap,

can then be written as:

ct − c∗t = (1− α) [1− ωoc − ωop(1− ωoc)] (lt − l∗t ), (116)

where we have eliminated the oil price gap using equation (106). Hence,

MRSnt − ηt = (MRSnt − η∗t )− (ηt − η∗t )

= ωoc

(
ωop

ωop + ωoc

)
(ηt − η∗t )

+ωoc

(
αωop + (1− α) (ωoc + ωop(1− ωoc))

ωop + ωoc

)
(lt − l∗t )

+σ(ct − c∗t ) + χ(lt − l∗t )− (ηt − η∗t ). (117)

Grouping terms yields:

MRSnt − ηt =

(
ωocωop

ωop + ωoc

− 1

)
(ηt − η∗t ) + λMRS(lt − l∗t ), (118)

where we have defined:

λMRS = ωoc

[
α

ωop

ωop + ωoc

+ (1− α)

(
ωoc + ωop(1− ωoc)

ωop + ωoc

)]

+ σ(1− α)(1− ωoc − ωop(1− ωoc)) + χ. (119)

Noting that:

ωocωop

ωop + ωoc

− 1 =
ωop(ωoc − 1)− ωoc

ωop + ωoc

, (120)

we may express the MRS gap as:

MRSnt − ηt =

[
ωop(ωoc − 1)− ωoc

ωop + ωoc

]
(ηt − η∗t ) + λMRS(lt − l∗t ). (121)

Accordingly, upon substituting equations (111) and (122) into the price and wage-setting equa-

tions, respectively, the aggregate supply block of the model may be expressed in the simple

form:

1. Price-Setting

πnt = βπn,t+1 + κP

([
ωop(1− ωoc) + ωoc

ωop + ωoc

]
(ηt − η∗t ) + [α + (1− α)ωop] (lt − l∗t )

)
(122)
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2. Wage-Setting

ωt = βωt+1 + κw

([
ωop(1− ωoc) + ωoc

ωop + ωoc

]
(ηt − η∗t ) + λMRS(lt − l∗t )

)
(123)

3. Product Real Wage Evolution

ηt = ηt−1 + ωt − πnt (124)

The demand block closes the model and is given below for completeness:

4. IS Equation

(lt − l∗t ) = (lt+1 − l∗t+1)−
1

σ(1− α)(1− ωoc)(1− ωop)
(it − πct+1 − r∗ct) (125)

5. Relating headline and core inflation

πct = πnt + ωoc

(
ψ∗ot − ψ∗ot−1

)

+ωoc

(
ωop

ωop + ωoc

) [
ηt − η∗t − (ηt−1 − η∗t−1)

]

+ωoc

[
αωop

ωop + ωoc

+ (1− α)

(
ωoc + ωop(1− ωoc)

ωop + ωoc

)] [
(lt − l∗t )− (lt−1 − l∗t−1)

]
(126)

6. Monetary policy rule

it = γiit−1 + (1− γi) [γπnπnt + γπcπct + γπntπnt+1 + γπctπct+1 + γl(lt − l∗t )] (127)

7. The flex price/wage model

r∗ct = σ(1− α)(1− ωop)(1− ωoc)
[
zt+1 − zt + l∗t+1 − l∗t

]

+σ [(1− ωoc)ωop + ωoc] (yot+1 − yot) (128)
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η∗t = (1− α)(1− ωop)zt + ωopyot − λMPLl∗t (129)

l∗t =
1

λf
MRS + λMPL

[ωop (1− σ) + ωoc(1− ωop)(1− σ)] yot

+ [(1− α)(1− ωop)− σ(1− ωop)(1− α)− ωoc(1− ωop)(1− α)(1− σ)] zt, (130)

where

λf
MRS = χ + σ(1− ωop)(1− α) + ωoc(1− ωop)(1− α)(1− σ)

λMPL = α + (1− α)ωop

2 The Welfare Loss Function

In the derivation of the welfare loss function we make recurrent use of two facts given below.

For a variable At,

At − A

A
≈ at +

1

2
a2

t , R1

where at = log At − log A. And furthermore, if At is defined as:

At =

(∫ 1

0

At(z)ρdz

) 1
ρ

,

then

at =

∫ 1

0

(log At(z)− log A) dz +
1

2
ρ varz at(z),

which yields:

at =

∫ 1

0

at(z)dz +
1

2
ρ varz at(z)

= Ezat(z) +
1

2
ρ varz at(z). R2
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From now on, we impose the additional parametric restriction σ = 1.

As discussed in the main text, we measure social welfare as the conditional expectation

of average household lifetime utility:

SW0 = E0

∫ 1

0

[ ∞∑
t=0

βtWt (h)

]
dh = E0

∞∑
t=0

βt

[∫ 1

0

Wt (h) dh

]
= E0

∞∑
t=0

βtWt, (131)

defining period social welfareWt is simply the average period utility level of households
∫ 1

0
Wt (h) dh.

Given the separable form of household period utility, the period (social) welfare function may

be written as:

W = U(C)−
∫ 1

0

V (N(h)) dh = U(C)− EhV (N(h)) , (132)

recalling that complete markets for consumption and separable preferences over consumption

and labor implies that consumption is equalized across households (and hence does not depend

on h).

Following Rotemberg and Woodford (1999), we take a second order approximation to the

social welfare function around the Pareto efficient steady state (the steady state in which both

wage and price inflation are constant (at π), monopolistic distortions are eliminated through

appropriate subsidies, and all exogenous shocks are set equal to their unconditional means).

The challenging part of deriving of the approximation to the conditional welfare function

consists in obtaining the second order approximation to the period welfare function Wt (given

the period loss function and our assumption of Calvo-style contracts, the discounted conditional

loss function follows immediately using results in e.g., Woodford (2003)). Hence, we begin

by deriving an approximation to the period welfare function, and because all variables enter

contemporaneously, find it convenient to omit time subscripts in this part of the derivation.

We approximate the two parts of the period welfare function given in equation (132)

separately and combine the results at the end. First consider a second order arithmetic approx-

imation to EhV (N(h)):

EhV (N(h)) ≈ V+

∫ 1

0

VNN̄
dN(h)

N̄
dh +

1

2

∫ 1

0

VNN(N̄)2(
dN(h)

N̄
)2dh. (133)
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Using result R1, we obtain a second order logarithmic approximation to EhV (N(h)):

EhV (N(h)) ≈ V+ VNN̄(Ehn(h) +
1

2
Ehn(h)2) +

1

2
VNN(N̄)2(Ehn(h)2). (134)

Given that the aggregate labor index L is given by:

L =

[∫ 1

0

(N (h))
1

1+θw dh

]1+θw

, (135)

result R2 implies that a second order logarithmic approximation can be expressed as:

l = ln(L)− ln(L) ≈ Ehn(h) +
1

2

(
1

1 + θw

)
varhn(h). (136)

We now turn to the production side of the economy to solve for effective hours l. Given

our assumption that the production function of the wholesale goods producers is Cobb-Douglas,

it may be expressed in log percentage deviations form as:

yw = (1− ωop)(1− α)(z + l) + ωopop. (137)

Solving for effective labor yields:

l =
1

(1− ωop)(1− α)
(yw − ωopop − (1− ωop)(1− α)z). (138)

Recalling the resource constraint for the uses of the wholesale good from the text:

Yw =

∫ 1

0

Yw(f)df, (139)

result R2 implies the second order approximation:

yw = Efyw(f) +
1

2
varfyw(f) = Efyn(f) +

1

2
varfyn(f), (140)

where the second equality reflects the simple linear production function for retailers yn(f) =

yw(f). Given that the index of aggregate non-oil output Yn is:

Yn =

[∫ 1

0

(Yn (f))
1

1+θp df

]1+θp

, (141)

result R2 implies a second order approximation of the form:

yn ≈ Efyn(f) +
1

2

(
1

1 + θp

)
varfyn(f). (142)
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Substituting for Efyn(f) using (139) yields:

yn ≈ yw − 1

2

(
θp

1 + θp

)
varfyn(f). (143)

We can now use equation (142) to solve for yw, and then substitute the result into (138) to

obtain an expression for effective labor of the form:

l ≈ 1

(1− ωop)(1− α)
[yn − ωopop − (1− ωop)(1− α)z]

+
1

2

1

(1− ωop)(1− α)

(
θp

1 + θp

)
varfyn(f). (144)

Because the production functions for firms and households are Cobb-Douglas, the condi-

tion determining the relative use of oil by firms and households is:

Op

Oc

= ωop

(
1− ωoc

ωoc

)(
Yw

Yn

)
(Φn) = ωm

(
Yw

Yn

)
(Φn) , (145)

where ωm is simply a composite parameter defined as ωm = ωop

(
1−ωoc

ωoc

)
, and where we have

defined Φn = Pw

Pn
(thus, Φn is the real marginal cost of producing retail goods, or the inverse of

the price markup in the retail sector). Using the resource constraint for oil,

Yo

Oc

= 1 +
Op

Oc

= Ψ, (146)

where Ψ is simply a definition. From the identity:

Op

Yo

=
Op

Oc

Oc

Yo

=
Op

Oc

1

Ψ
. (147)

We may take logs to obtain:

op = yo + (op − oc)− ψ = yo + (yw − yn) + ψn − ψ, (148)

where the second equality uses equation (145) to solve for op−oc. Using equation (143), equation

(148) may be written as:

op ≈ yo +
1

2

(
θp

1 + θp

)
varfyn(f) + φn − ψ. (149)

We next must take a second order log approximation of ψ. Noting first from (145) and (146)

that:

ψ = ln
(
1 + ωmeln(Yw)−ln(Yn)eln(Φn)

)− ln (1 + ωm) , (150)
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the second order approximation to ψ is easily seen to be:

ψ ≈
(

ωm

1 + ωm

)
(φn + yw − yn) +

1

2

(
ωm

(1 + ωm)2

)
φn

2. (151)

Since in the steady state Oc

Yo
= 1

1+ωm
and Op

Yo
= ωm

1+ωm
– with the former immediate from equations

(145) and (146), and the latter from the resource constraint – the approximation to ψ may be

expressed equivalently as:

ψ ≈
(

Op

Yo

)(
φn +

1

2

(
θp

1 + θp

)
varfyn(f)

)
+

1

2

(
Op

Yo

)(
Oc

Yo

)
φn

2. (152)

Substituting this into equation (149) gives the desired second order approximation to op:

op ≈ yo +
Oc

Yo

φn +
1

2

(
Oc

Yo

)(
θp

1 + θp

)
varfyn(f)−

(
Oc

Yo

)(
Op

Yo

)
φ2

n. (153)

Substituting for op in equation (144) yields an expression for effective labor of the form:

l ≈ 1

(1− ωop)(1− α)

[
(yn − ωopyo − (1− ωop)(1− α)z)− ωop

(
Oc

Yo

)
φn

]

−1

2

ωop

(1− ωop)(1− α)

(
Oc

Yo

)(
θp

1 + θp

)
varfyn(f)

+
1

2

1

(1− ωop)(1− α)

(
θp

1 + θp

)
varfyn(f)

+
1

2

ωop

(1− ωop)(1− α)

(
Oc

Yo

)(
Op

Yo

)
φ2

n. (154)

Using equations (136) and (154), we may now solve for Ehn(h) as follows:

Ehn(h) ≈ l − 1

2

1

1 + θw

varhn(h)

≈ 1

(1− ωop)(1− α)

[
(yn − ωopyo − (1− ωop)(1− α)z − ωop

(
Oc

Yo

)
φn

]

−1

2

ωop

(1− ωop)(1− α)

(
Oc

Yo

)(
θp

1 + θp

)
varfyn(f)

+
1

2

1

(1− ωop)(1− α)

(
θp

1 + θp

)
varfyn(f)

+
1

2

ωop

(1− ωop)(1− α)

(
Oc

Yo

)(
Op

Yo

)
φ2

n −
1

2

1

1 + θw

varhn(h). (155)
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The approximation to the component of the welfare function (134) also depends on the second

moment Ehn(h)2. Note that:

Ehn(h)2 = varhn(h) + (Ehn(h))2, (156)

and also note that (155) implies a second-order approximation to (Ehn(h))2 given by:

(Ehn(h))2 ≈
[

1

(1− ωop)(1− α)

]2 [
yn − ωopyo − (1− ωop)(1− α)z − ωop

(
Oc

Yo

)
φn

]2

. (157)

It follows that the second moment Ehn(h)2 can be expressed:

Ehn(h)2 ≈ varhn(h) +[
1

(1− ωop)(1− α)

]2 [
yn − ωopyo − (1− ωop)(1− α)z − ωop

(
Oc

Yo

)
φn

]2

. (158)

Using (155) and (158), we now can substitute for Ehn(h) and Ehn(h)2 in (134) to obtain:

EhV (N(h)) ≈ V+ VNN̄Ehn(h) +
1

2

(
VNN̄ + VNN(N̄)2

)
Ehn(h)2

≈ V+ VNN̄
1

(1− ωop)(1− α)

[
(yn − ωopyo − (1− ωop)(1− α)z − ωop

(
Oc

Yo

)
φn

]

+
1

2
VNN̄

1

(1− ωop)(1− α)

[
1− ωop

(
Oc

Yo

)](
θp

1 + θp

)
varfyn(f)

+
1

2
VNN̄

1

(1− ωop)(1− α)
ωop

(
Oc

Yo

) (
Op

Yo

)
φ2

n

+
1

2

(
VNN̄

θw

1 + θw

+ VNN(N̄)2

)
varhn(h)

+
1

2

(
VNN̄ + VNN(N̄)2

) [
1

(1− ωop)(1− α)

]2

[
(yn − ωopyo − (1− ωop)(1− α)z − ωop

(
Oc

Yo

)
φn

]2

. (159)

We next consider approximating the component of the period welfare function associated

with consumption. A second order arithmetic approximation to U (C) yields:

U (C) ≈ U+ UCC̄
dC

C̄
+

1

2
UCC(C̄)2dC

C̄

2

. (160)

Using R2, we obtain a second order logarithmic approximation to U (C):

U (C) ≈ U+ UCC̄c +
1

2
(UCC̄ + UCCC̄)2c2. (161)
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Under the assumption that the technology for producing the final consumption good is Cobb-

Douglas, i.e.,

C = C1−ωoc
n Oωoc

c , (162)

and substituting for Oc using equation (146), it follows that the logarithmic percentage deviation

of aggregate consumption from its steady state value may be expressed:

c = (1− ωoc)cn + ωocyo − ωocψ. (163)

Using the second order approximation for ψ given by equation (152), the second order approx-

imation to c is given by:

c ≈ (1−ωoc)yn+ωocyo−ωoc

(
Op

Yo

)[(
φn +

1

2
ωoc

(
Oc

Yo

)
φn

2 +
1

2

(
θp

1 + θp

)
varfyn(f)

)]
.(164)

Substituting (164) into the component of the welfare function associated with consumption

(161) yields:

U (C) ≈ U+ UCC̄c

≈ U+ UCC̄ [(1− ωoc)yn + ωocyo]

−UCC̄ωoc

(
Op

Yo

)[(
φn +

1

2
ωoc

(
Oc

Yo

)
φn

2 +
1

2

(
θp

1 + θp

)
varfyn(f)

)]
, (165)

where the term 1
2
(UCC̄ + UCCC̄)2c2 drops given our assumption that the subutility function

over consumption is logarithmic.

Using equations (159) and (165), we derive the period welfare loss, which is defined as

the deviation of the period social welfare from the level that would prevail under price and

wage flexibility:

Wloss ≈W−W∗ = U(C)− U(C∗)− [EhV (N(h))− V (N∗)]

= UCC̄(1− ωoc) [yn − y∗n]

− UCC̄(1− ωoc)

(
ωoc

1− ωoc

)(
Op

Yo

)[
φn +

1

2

(
Oc

Yo

)
φ2

n +
1

2

(
θp

1 + θp

)
varfyn(f)

]

− VNN̄
1

(1− α)(1− ωop)
[yn − y∗n]
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+ VNN̄
1

(1− α)(1− ωop)

(
Oc

Yo

)
ωop

[
φn − 1

2

(
Op

Yo

)
φ2

n +
1

2

(
θp

1 + θp

)
varfyn(f)

]

− 1

2

(
VNN̄ + VNN(N̄)2

) [
1

(1− ωop)(1− α)

]2

([
(yn − ωopyo − (1− ωop)(1− α)z − ωop

(
Oc

Yo

)
ψn

]2

− [y∗n − ωopyo − (1− ωop)(1− α)z]2
)

− 1

2
VNN̄

1

(1− ωop)(1− α)

(
θp

1 + θp

)
varfyn(f)

+
1

2

(
VNN̄

θw

1 + θw

+ VNN(N̄)2

)
varhn(h). (166)

In deriving the above, we exploited the fact that φ∗nt = 0. For convenience, we repeat below

equations (69), (59), (70), and (71), derived in Section 1.6:

UCC̄(1− ωoc) = VNN̄
1

(1− α)(1− ωop)
,

(
ωoc

1− ωoc

)(
Op

Yo

)
= ωop

(
Oc

Yo

)
,

(
VNN̄ + VNN(N̄)2

)
= VNN̄ (1 + χ) ,

(
VNN̄

θw

1 + θw

+ VNN(N̄)2

)
= VNN̄

(
θw

1 + θw

+ χ

)
.

Using equations (69) and (59), it is evident that the first four lines of equation (166) can be

reduced to:

1

2
UCC̄ωoc

(
Op

Yo

)(
−

(
Oc

Yo

)
−

(
Op

Yo

))
φ2

n = −1

2
UCC̄ωoc

(
Op

Yo

)
φ2

n. (167)

Thus, all linear terms drop from the period welfare loss function.

Next, from our analysis of the flexible price and wage equilibrium it is apparent that

employment is invariant to oil shocks with log utility in consumption, i.e., l∗ = 0, implying that

the production function of wholesale producers can be written as:

y∗w = (1− ωop)(1− α)z + ωop yo. (168)

Given that y∗w = y∗n under price flexibility, it follows that:

y∗n = (1− ωop)(1− α)z + ωop yo. (169)
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Using the latter, it is apparent that the term in the loss function premultiplied by
(
VNN̄ + VNN(N̄)2

)

(i.e., on lines 5 and 6) can be written as:

1

2

(
VNN̄ + VNN(N̄)2

) [
1

(1− ωop)(1− α)

]2 [
yn − y∗n − ωop

(
Oc

Yo

)
ψn

]2

. (170)

With these reductions, the period welfare loss function may be written in the simple

form:

Wloss

UCC
=
W−W∗

UCC
(171)

= −1

2
ωoc

(
Op

Yo

)
φ2

n −
1

2

(1− ωoc)(1 + χ)

(1− α)(1− ωoc)

[
yn − y∗n − ωop

(
Oc

Yo

)
ψn

]2

−1

2
(1− ωoc)

(
θp

1 + θp

)
varfyn(f)− 1

2
(χ +

θw

1 + θw

)(1− α)(1− ωoc)(1− ωop)varhn(h).

We now use very standard results (Rotemberg and Woodford, 1999) to express cross

sectional dispersion in output and wages in terms of time series variation in prices and wages.

Accordingly, the demand curve facing the monopolistic retailers may be expressed in logarithmic

form as:

yn(f) = −
(

1 + θp

θp

)
(pn(f)− pn) + yn. (172)

Thus, the cross-sectional output dispersion term may be expressed in terms of cross-sectional

price dispersion as:

varfyn(f) =

[
1 + θp

θp

]2

varfpn(f). (173)

Similarly, given that the labor demand curve facing the monopolistically households may be

expressed in logarithmic form as:

n(h) = −
(

1 + θw

θw

)
(w(h)− w) + l, (174)

the cross-sectional employment dispersion term may be expressed in terms of cross-sectional

wage dispersion as:

varhn(h) =

[
1 + θw

θw

]2

varhw(h). (175)
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Substituting (173) and (175) into the period welfare loss function yields:

Wt −W∗
t

UcC
= −1

2

(1 + χ)(1− ωoc)

(1− ωop)(1− α)

[
ynt − y∗nt − ωop

(
Oc

Yo

)
φn

]2

−1

2
ωoc

(
Op

Yo

)
φ2

nt

−1

2
(1− ωoc)

(
1 + θp

θp

)
varfpnt(f)

−1

2
(1− ωoc)(1− ωop)(1− α)

(
1 + θw

θw

)(
1 +

1 + θw

θw

χ

)
varhwt(h), (176)

Under Calvo-style pricing, the time series evolution of varfpnt(f) is given by:

varfpnt(f) =
ξp

1− ξp

π2
nt + ξpvarfpn,t−1(f), (177)

where we must now use time subscripts to indicate the time dimension. Similarly, the time

series evolution of varhwt(h) is given by:

varhw(h) =
ξw

1− ξw

ω2
t + ξwvarhwt−1(h). (178)

Using (177) and (178) and the period welfare function, it follows that the (time zero) conditional

discounted social welfare loss may be expressed:

E0

∞∑
t=0

βt

[
Wt −W∗

t

UcC

]
= −1

2

(1 + χ)(1− ωoc)

(1− ωop)(1− α)

∞∑
t=0

βtE0

[
ynt − y∗nt − ωop

(
Oc

Yo

)
φnt

]2

(179)

−1

2
ωoc

(
Op

Yo

) ∞∑
t=0

βtE0φ
2
nt

−1

2
(1− ωoc)

(
1 + θp

θp

)(
ξp

(1− βξp)(1− ξp)

) ∞∑
t=0

βtE0π
2
nt

−1

2
(1− ωoc)(1− ωop)(1− α)

(
1 + θw

θw

)(
1 +

1 + θw

θw

χ

)(
ξw

(1− βξw)(1− ξw)

) ∞∑
t=0

βtE0ω
2
t ,

where Op

Yo
= 1− ωoc

ωoc+ωo(1−ωoc)
and Oc

Yo
= ωoc

ωoc+ωo(1−ωoc)
. The above equation corresponds to equation

(23) in the main text, and completes our derivation of the welfare function.

Notice that we can rewrite the loss function above in terms of the labor gap, instead

of the output gap by noticing that: 1
(1−ωop)2(1−α)2

[
ynt − y∗nt − ωop

(
Oc

Yo

)
φnt

]2

= (lt − l∗t )
2, from

equation (154).
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3 Optimal Monetary Policy

This section shows how to set up the optimal monetary policy under commitment using our

quadratic approximation of the welfare loss function. For this purpose, we consider the problem

of choosing paths for lt, ηt, πnt, ωt, and φnt to minimize E0 (
∑∞

t=0 βtLt), where

Lt = −1

2

[
λ1φ

2
nt + λ2 (lt − l∗t )

2 + λ3π
2
nt + λ4ω

2
t

]

and

λ1 = ωoc

(
Op

Yo

)
,

λ2 = (1 + χ) (1− ωoc)(1− ωop) (1− α),

λ3 = (1− ωoc)

(
1 + θp

θp

)
ξp

(1− βξp) (1− ξp)
,

λ4 = (1− ωoc) (1− ωop) (1− α)

(
1 + θw

θw

)(
1 +

1 + θw

θw

χ

)
ξw

(1− βξw) (1− ξw)
,

subject to the constraints that the sequences must satisfy equations (82), (83), (84) and

(real marginal cost). Note that we have replaced the output gap by the employment gap.

The Lagrangian of this problem can be written as:

min
lt,ηt,πnt,ωt,φnt

E0

∞∑
t=0

βtLt

+βtµ1,t

[
πnt − βπn,t+1 − κP

([
ωop(1− ωoc) + ωoc

ωop + ωoc

]
(ηt − η∗t ) + [α + (1− α)ωop] (lt − l∗t )

)]

+βtµ2,t

[
ωt − βωt+1 − κw

([
ωop(1− ωoc) + ωoc

ωop + ωoc

]
(ηt − η∗t ) + λMRS(lt − l∗t )

)]

+βtµ3,t [ηt − ηt−1 − ωt + πnt]

+βtµ4,t

[
φnt −

[
ωop(1− ωoc) + ωoc

ωop + ωoc

]
(ηt − η∗t )− [α + (1− α)ωop] (lt − l∗t )

]
.
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