When Simplicity Offers a Benefit, Not a Cost: Closed-Form Estimation of the GARCH(1,1) Model that Enhances the Efficiency of Quasi-Maximum Likelihood

Supplemental Appendix

Todd Prono

A.1.1. Preliminaries

Contained in this Supplemental Appendix are both the statements and proofs of all Lemmas that support the paper's main theorems. Concerning notation, C denotes a generic constant that can assume different values in different places. For matrices \mathbf{A} and $\mathbf{B}, \mathbf{A} \geq \mathbf{B}$ means that every element in $\mathbf{A} \geq$ every corresponding element in \mathbf{B}. For a vector $\mathbf{y}, \delta_{\mathbf{y}}$ denotes the Dirac measure at \mathbf{y}. For a random variable $X>0$ with CDF $F_{X}(x)$, where $\bar{F}_{X}(x)=1-F_{X}(x)$, if

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\bar{F}_{X}(t x)}{\bar{F}_{X}(x)}=t^{-\kappa_{0}}, \quad \forall t>0, \quad \kappa_{0} \geq 0 \tag{1}
\end{equation*}
$$

then X is regularly varying with tail index κ_{0}. Finally, $\mathrm{RV}\left(\kappa_{0}\right)$ is shorthand for regularly varying with tail index κ_{0}.

Proposition 1 For a random variable $X>0$, assume (1) holds. Then for a $p>0, X^{p}$ is regularly varying with tail index κ_{0} / p.

Proof. Let $Y=X^{p}$. Then

$$
\begin{aligned}
\frac{\bar{F}_{Y}(t y)}{\bar{F}_{Y}(y)} & =\frac{P(Y>t y)}{P(Y>y)} \\
& =\frac{P\left(Y^{1 / p}>t^{1 / p} y^{1 / p}\right)}{P\left(Y^{1 / p}>y^{1 / p}\right)} \\
& =\frac{P\left(X>t^{1 / p} x\right)}{P(X>x)} \\
& =\frac{\bar{F}_{X}\left(t^{1 / p} x\right)}{\bar{F}_{X}(x)} \\
& =\frac{\bar{F}_{X}(B x)}{\bar{F}_{X}(x)},
\end{aligned}
$$

in which case, by (1),

$$
\lim _{y \rightarrow \infty} \frac{\bar{F}_{Y}(t y)}{\bar{F}_{Y}(y)}=\lim _{x \rightarrow \infty} \frac{\bar{F}_{X}(B x)}{\bar{F}_{X}(x)}=B^{-\kappa_{0}}=t^{-\kappa_{0} / p}
$$

A.1.2. Regular Variation

Consider the model

$$
\begin{gather*}
Y_{t}=\sigma_{t} \epsilon_{t}, \quad \epsilon_{t} \sim i . i . d . D(0,1) \tag{2}\\
\sigma_{t}^{2}=\omega_{0}+\alpha_{0} Y_{t-1}^{2}+\beta_{0} \sigma_{t-1}^{2}, \tag{3}
\end{gather*}
$$

where D is some unknown distribution. This model is the linear $\operatorname{GARCH}(1,1)$ model of Bollerslev (1986). Also note that from (3),

$$
\begin{align*}
\sigma_{t}^{2} & =\omega_{0}+\sigma_{t-1}^{2} \times\left(\alpha_{0, t-1} \epsilon_{t-1}^{2}+\beta_{0}\right) \tag{4}\\
& =\omega_{0}+\sigma_{t-1}^{2} A_{t} .
\end{align*}
$$

Lemma 2 For the model in (2) and (3), let Assumptions A1-A2 and A4 hold. Then

$$
\begin{equation*}
E\left(A^{\kappa / 2}\right)=1 \tag{5}
\end{equation*}
$$

has a unique and positive solution κ_{0}.
Proof. For a $\kappa>0, E\left(A^{\kappa}\right)$ is a continuous and convex (upwards) function of κ. Since Assumption A4 is sufficient for $E(A)<1$,

CONDITION C1: $E\left(A^{\kappa}\right)<1$ for values of κ in some neighborhood of one.
Also, since $P(A>1)>0$, and since there exists a value $\bar{\kappa}$ of κ such that $E\left(A^{\bar{\kappa} / 2}\right)=\infty$,
CONDITION C2: $E\left(A^{\kappa}\right)>1$ for sufficiently large κ.
Conditions C1 and C2 together complete the proof.

Lemma 3 For the model in (2) and (3), under the same Assumptions as Lemma 2,

$$
\begin{equation*}
P(\sigma>x) \sim C x^{-\kappa_{0}} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
P(|Y|>x)=E\left(|\epsilon|^{\kappa_{0}}\right) \times P(\sigma>x), \quad x \rightarrow \infty . \tag{7}
\end{equation*}
$$

Proof. Assumption A4 is sufficient to establish the sequence $\left\{\sigma_{t}^{2}\right\}$ as strictly stationary (see; e.g., Mikosch, 1999, Corollary 1.4.39). Owing to the method used to establish (5) as having a unique and positive solution, there exists a small $\eta>0$ such that

$$
E\left(A^{\kappa_{0} / 2+\eta}\right)<\infty .
$$

Consider then for (4)

CONDITION C3: $\left\{A_{t}\right\}$ is an i.i.d. sequence.
CONDITION C4: σ_{t-1}^{2} is independent of A_{t} for every t.
C 3 follows because A_{t} is only a function of ϵ_{t-1}. The validity of C 4 depends on σ_{t-1}^{2} being a function of $\epsilon_{t-2}, \epsilon_{t-3}, \ldots, \epsilon_{0}$. Given C3 and C4, (4) is a SRE (see also Mikosch and Stărică, 2000). At this point, all of the conditions in Goldie (1991, Theorem 4.1) are satisfied, in which case,

$$
\begin{equation*}
P\left(\sigma^{2}>x\right) \sim c x^{-\kappa_{0} / 2} \tag{8}
\end{equation*}
$$

The result in (6) then follows from Proposition 1. Lastly, summarizing a result originally from Breiman (1965), which is also stated as Mikosch (1999, Proposition 1.3.9(b)), consider two non-negative random variables X and Z that are also independent. If X is regularly varying with tail index θ, and $E\left(Z^{\theta+\eta}\right)<\infty$ for an η as defined above, then

$$
\begin{equation*}
P(X Z>x) \sim E\left(Z^{\kappa}\right) P(X>x) . \tag{9}
\end{equation*}
$$

Since $|Y|=\sigma|\epsilon|$, (7) immediately follows from (9).

Remark 4 Lemma 3 collects results available in the literature (see; e.g., Mikosch and Stărică, 2000, Theorem 2.1, and Basrak, Davis, and Mikosch, 2002, Theorem 3.1(B)).

Next, for $0 \leq h<\infty$, consider

$$
\mathbf{Y}_{h}^{(i)}=\left(\begin{array}{llll}
\left|Y_{0}\right|^{i}, & \sigma_{0}^{i}, & \ldots, & \left|Y_{h}\right|^{i}, \\
\sigma_{h}^{i}
\end{array}\right), \quad i=1,2,
$$

and

$$
\tilde{\mathbf{Y}}_{m}=\left(\begin{array}{lllll}
Y_{0}, & \sigma_{0}, & \ldots, & Y_{h}, & \sigma_{h}
\end{array}\right) .
$$

Lemma 5 For the model in (2) and (3), under the same Assumptions as Lemma 2, $\mathbf{Y}_{h}^{(2)}$ is RV($\left.\kappa_{0} / 2\right)$, while both $\mathbf{Y}_{h}^{(1)}$ and \mathbf{Y}_{h} are $R V\left(\kappa_{0}\right)$.

Proof. Given (4) and (8), Mikosch and Stāricā (2000, proof of Theorem 2.3(a)) establishes $\mathbf{Y}_{h}^{(2)}$ as $\operatorname{RV}\left(\kappa_{0} / 2\right)$, which, in turn, establishes $\mathbf{Y}_{h}^{(1)}$ as $\operatorname{RV}\left(\kappa_{0}\right)$, given Mikosch (1999, Proposition 1.5.9), the multivariate extension of Proposition 1. Finally, \mathbf{Y}_{h} is $\operatorname{RV}\left(\kappa_{0}\right)$ by Basrak et al. (2002, proof of Corollary 3.5(B)).

Remark 6 Lemma 5 pieces together different results available in the literature. The SRE upon which this lemma depends is (4) (see the proof of Lemma 3 that establishes (4) as a valid SRE). In contrast, the SRE upon which Basrak et al. (2002, Corollary 3.5) is based is more closely related to

$$
\begin{align*}
\mathbf{X}_{t} & =\binom{Y_{t}^{2}}{\sigma_{t}^{2}}=\left(\begin{array}{cc}
\alpha \epsilon_{t}^{2} & \beta \epsilon_{t}^{2} \\
\alpha & \beta
\end{array}\right) \mathbf{X}_{t-1}+\binom{\omega \epsilon_{t}^{2}}{\omega} \tag{10}\\
& =\mathbf{A}_{t} \mathbf{X}_{t-1}+\mathbf{B}_{t}
\end{align*}
$$

which is also a valid SRE, since it, too, satisfies Conditions C3 and C4.

A.1.3. Central Limit Theorem

Lemma 7 For the model in (2) and (3), under the same Assumptions as Lemma 2, let

$$
\mathbf{Y}_{t}=\left(\begin{array}{lllll}
Y_{t}, & \sigma_{t}, & \ldots, & Y_{t+h}, & \sigma_{t+h}
\end{array}\right), \quad h<\infty
$$

and $\left\{a_{n}\right\}$ be a sequence of constants satisfying

$$
n P\left(|\mathbf{Y}|>a_{n}\right) \longrightarrow 1, \quad n \rightarrow \infty
$$

where $|\mathbf{Y}|=\max _{m=0, \ldots, h}\left|Y_{m}\right| ; a_{n}=n^{1 / \kappa_{0}} L(n)$, and $L(\cdot)$ is slowly-varying at ∞. Then

$$
N_{n}:=\sum_{t=1}^{n} \delta_{a_{n}^{-1} \mathbf{Y}_{t}} \xrightarrow{d} N:=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \delta_{P_{i} \mathbf{Q}_{i, j}},
$$

where

1. $\sum_{i=1}^{\infty} \delta_{P_{i}}$ is a Poisson process on \mathbb{R}_{+}
2. $\sum_{j=1}^{\infty} \delta_{\mathbf{Q}_{i, j}}, i \in \mathbb{N}$, is an i.i.d. sequence of point processes on $\mathbb{R}_{+}^{h+1} \backslash\{\mathbf{0}\}$ with common distribution Q
3. $\sum_{i=1}^{\infty} \delta_{P_{i}}$ and $\sum_{j=1}^{\infty} \delta_{\mathbf{Q}_{i, j}}, i \in \mathbb{N}$, are mutually independent
4. $Q_{i, j}=\left(\left(Q_{i j, Y}^{(m)}, Q_{i j, \sigma}^{(m)}\right)_{m=0, \ldots, h}\right)$

Proof. The proof proceeds by verifying the conditions of Davis and Mikosch (1998, Theorem 2.8):
CONDITION C8: (joint) regular variation of all finite-dimmensional distributions of $\left\{\mathbf{Y}_{t}\right\}$
CONDITION C9: weak mixing for $\left\{\mathbf{Y}_{t}\right\}$
CONDITION C10: that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} P\left(\bigvee_{k \leq|t| \leq r_{n}}\left|\mathbf{Y}_{t}\right|>a_{n} y| | \mathbf{Y}_{0} \mid>a_{n} y\right)=0, \quad y>0 \tag{11}
\end{equation*}
$$

where $\vee_{i} b_{i}=\max _{i}\left(b_{i}\right)$, and $r_{n}, m_{n} \rightarrow \infty$ are two integer sequences such that $n \phi_{m_{n}} / r_{n} \rightarrow 0$, $r_{n} m_{n} / n \rightarrow 0$, and ϕ_{n} is the mixing rate of $\left\{\mathbf{Y}_{t}\right\}$.

Lemma 5 establishes Condition C8. $\left\{\mathbf{Y}_{t}\right\}$ is strongly mixing by Carrasco and Chen (2002, Corollary 6). Finally, by the definition of the sequence $\left\{\mathbf{Y}_{t}\right\}$ and as in Mikosch and Stărică (2000, proof of Theorem 3.1), it suffices to switch in (11) to the sequence $\left\{\left(Y_{t}^{2}, \sigma_{t}^{2}\right)\right\}$ and to replace $a_{n} y$ by $a_{n}^{2} y^{2}$. Consequently, consider the SRE in (10). Recursive substitution establishes

$$
\begin{align*}
\mathbf{X}_{t} & =\prod_{i=1}^{t} \mathbf{A}_{i} \mathbf{X}_{0}+\sum_{i=1}^{t} \prod_{j=i+1}^{t} \mathbf{A}_{j} \mathbf{B}_{i} \tag{12}\\
& \equiv \mathbf{I}_{t, 1} \mathbf{X}_{0}+\mathbf{I}_{t, 2}
\end{align*}
$$

Condition C10 is then established following Davis, Mikosch, and Basrak (1999, proof of Theorem 3.3).

Remark 8 Lemma 7 is the (nonstandard) CLT upon which (weak) distributional convergence of the $\operatorname{GARCH}(1,1)$ estimators in Sections 2.1 of the main paper are based and generalizes Mikosch and Stāricā (2000, Theorem 3.1) by covering the case of an asymmetric D. Given Remark 6, Lemma 7 complements Basrak et al. (2002, Theorem 2.10). Finally, given a continuous mapping argument, implied by Lemma 7 for

$$
\mathbf{Y}_{t}^{(l)}=\left(\begin{array}{lllll}
Y_{t}^{l}, & \sigma_{t}^{l}, & \ldots, & Y_{t+h}^{l}, & \sigma_{t+h}^{l}
\end{array}\right), \quad l=2,3
$$

is that

$$
N_{n}^{(l)}:=\sum_{t=1}^{n} \delta_{a_{n}^{-l}} \mathbf{Y}_{t}^{(l)} \xrightarrow{d} N^{(l)}:=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \delta_{P_{i} \mathbf{Q}_{i, j}^{(l)}},
$$

where

$$
\mathbf{Q}_{i, j}^{(l)}=\left(\left(\left(Q_{i j, Y}^{(m)}\right)^{l}, \quad\left(Q_{i j, \sigma}^{(m)}\right)^{l}\right)_{m=0, \ldots, h}\right) .
$$

A.1.4. GARCH(1,1) Convergence Results

From the model in (2) and (3) when $\alpha_{1,0}=\alpha_{2,0}=\alpha_{0}$,

$$
\begin{equation*}
X_{t}=\phi_{0} X_{t-1}+V_{t}, \quad V_{t}=W_{t}-\beta_{0} W_{t-1} \tag{13}
\end{equation*}
$$

where $X_{t} \equiv Y_{t}^{2}-\gamma_{0}$, and $\gamma_{0} \equiv E\left(Y_{t}^{2}\right)=\frac{\omega_{0}}{1-\phi_{0}}$.

Lemma 9 For the model in (2) and (3), under the same Assumptions as Lemma 2,

$$
a_{n}^{-3} \sum_{t} \sigma_{t}^{3}-E\left(\sigma^{3}\right) \xrightarrow{d} V_{0, \sigma},
$$

where " \xrightarrow{d} " is weak, and $V_{0, \sigma}$ is $\left(\kappa_{0} / 3\right)-$ stable.

Proof. For an $\varepsilon>0$,

$$
\begin{aligned}
a_{n}^{-3} \sum_{t} \sigma_{t}^{3}-E\left(\sigma^{3}\right) & =a_{n}^{-3} \sum_{t}\left(\sigma_{t}^{3}-E\left(\sigma^{3}\right)\right) \times I_{\left\{\sigma_{t}>a_{n} \varepsilon\right\}}+a_{n}^{-3} \sum_{t}\left(\sigma_{t}^{3}-E\left(\sigma^{3}\right)\right) \times I_{\left\{\sigma_{t} \leq a_{n} \varepsilon\right\}} \\
& =I a+I I a,
\end{aligned}
$$

where $E\left(\sigma^{3}\right)<\infty$ by Prono (2018, Lemma 1). Then,

$$
\begin{align*}
a_{n}^{-3} \sum_{t} E\left(\sigma^{3}\right) \times I_{\left\{\sigma_{t}>a_{n} \varepsilon\right\}}= & a_{n}^{-3} E\left(\sigma^{3}\right) n\left(n^{-1} \sum_{t} I_{\left\{\sigma_{t}>a_{n} \varepsilon\right\}}\right) \tag{14}\\
\sim & a_{n}^{-3} E\left(\sigma^{3}\right) n P\left(\sigma_{t}>a_{n} \varepsilon\right) \\
& \longrightarrow 0,
\end{align*}
$$

where " \sim " holds for sufficiently large n, and " \longrightarrow " as $n \rightarrow \infty$ follows since

$$
\begin{equation*}
n P\left(\sigma_{t}>a_{n} \varepsilon\right) \longrightarrow \varepsilon^{-\kappa_{0}}, \quad n \rightarrow \infty \tag{15}
\end{equation*}
$$

so that

$$
I a=a_{n}^{-3} \sum_{t} \sigma_{t}^{3} \times I_{\left\{\sigma_{t}>a_{n} \varepsilon\right\}}+o_{p}(1) .
$$

Next,

$$
\begin{aligned}
a_{n}^{-3} \sum_{t} E\left(\sigma^{3}\right) \times I_{\left\{\sigma_{t} \leq a_{n} \varepsilon\right\}} & =n^{\frac{\kappa_{0}-6}{2 \kappa_{0}}} E\left(\sigma^{3}\right) n^{-1 / 2} \sum_{t} I_{\left\{\sigma_{t} \leq a_{n} \varepsilon\right\}} \\
& \longrightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$ by the CLT of Ibragimov and Linnik (1971, Theorem 18.5.3) applied to $n^{-1 / 2} \sum_{t} I_{\left\{\sigma_{t} \leq a_{n} \varepsilon\right\}}$ if $\kappa_{0}<6$, so that

$$
I I a=a_{n}^{-3} \sum_{t} \sigma_{t}^{3} \times I_{\left\{\sigma_{t} \leq a_{n} \varepsilon\right\}}+o_{p}(1) .
$$

Then, by Markov's Inequality for a $\zeta>0$,

$$
\begin{equation*}
P\left(a_{n}^{-3} \sum_{t} \sigma_{t}^{3} \times I_{\left\{\sigma_{t} \leq a_{n} \varepsilon\right\}}>\zeta\right) \leq n\left(\zeta^{-1} a_{n}^{-3}\right) E\left(\sigma^{3} \times I_{\left\{\sigma \leq a_{n} \varepsilon\right\}}\right) . \tag{16}
\end{equation*}
$$

In addition, for $\kappa \equiv \kappa_{0} / 3$, and $r \in(\kappa, 2)$, there exists a constant $C \in(0, \infty)$ such that

$$
\begin{aligned}
n\left(\zeta^{-1} a_{n}^{-3}\right) E\left(\sigma^{3} \times I_{\left\{\sigma \leq a_{n} \varepsilon\right\}}\right) & \leq n C\left(\zeta^{-1} a_{n}^{-3}\right)^{r} E\left(\sigma^{3 r} \times I_{\left\{\sigma \leq a_{n} \varepsilon\right\}}\right) \\
& \leq n C\left(\zeta^{-1} a_{n}^{-3}\right)^{r} \int_{0}^{a_{n} \varepsilon} \sigma^{3 r} f(\sigma) d \sigma \\
& \leq n C\left(\zeta^{-1} a_{n}^{-3}\right)^{r}\left(-\kappa_{0}\right) \int_{0}^{a_{n} \varepsilon} \sigma^{3 r-\kappa_{0}-1} L(\sigma) d \sigma
\end{aligned}
$$

where the last inequality follows from Mikosch (1999, Theorem 1.2.9). Since, by Karamata's Theorem,

$$
\left.\int_{0}^{a_{n} \varepsilon} \sigma^{3 r-\kappa_{0}-1} L(\sigma) d \sigma \sim \frac{\sigma^{3 r-\kappa_{0}}}{-\left(3 r-\kappa_{0}\right)} L(\sigma)\right|_{0} ^{a_{n} \varepsilon},
$$

then

$$
\begin{align*}
n\left(\zeta^{-1} a_{n}^{-3}\right) E\left(\sigma^{3} \times I_{\left\{\sigma \leq a_{n} \varepsilon\right\}}\right) & \leq C\left(\zeta^{-1} a_{n}^{-3}\right)^{r}\left(\frac{\kappa_{0}}{3 r-\kappa_{0}}\right)\left(a_{n} \varepsilon\right)^{3 r} n P\left(\sigma>a_{n} \varepsilon\right) \tag{17}\\
& \longrightarrow C \zeta^{-r}\left(\frac{\kappa_{0}}{3 r-\kappa_{0}}\right) \varepsilon^{3 r-\kappa_{0}}, \\
& \longrightarrow 0,
\end{align*}
$$

where the first " \longrightarrow " is as $n \rightarrow \infty$ and follows from (15), while the second " \longrightarrow " is as $\varepsilon \rightarrow 0$. As a consequence, $\lim _{n \rightarrow \infty} \lim _{\infty \rightarrow 0} \sup P\left(a_{n}^{-3} \sum_{t} \sigma_{t}^{3} \times I_{\left\{\sigma_{t} \leq a_{n} \varepsilon\right\}}>\zeta\right)=0$, and

$$
a_{n}^{-3} \sum_{t} \sigma_{t}^{3}-E\left(\sigma^{3}\right)=a_{n}^{-3} \sum_{t} \sigma_{t}^{3} \times I_{\left\{\sigma_{t}>a_{n} \varepsilon\right\}}+o_{p}(1) .
$$

Finally, let

$$
\mathbf{y}_{t}=\left(\begin{array}{ccccc}
y_{t, Y}^{(0)}, & y_{t, \sigma}^{(0)}, \ldots, y_{t, Y}^{(h)}, \quad y_{t, \sigma}^{(h)} \tag{18}
\end{array}\right) \in \mathbb{R}^{h+1} \backslash\{\mathbf{0}\}
$$

and define

$$
T_{0, \varepsilon, \sigma}\left(\sum_{i=1}^{\infty} n_{i} \delta_{\mathbf{y}_{i}}\right)=\sum_{i=1}^{\infty} n_{i}\left(y_{i, \sigma}^{(0)}\right)^{3} \times I_{\left\{y_{i, \sigma}^{(0)}>a_{n} \varepsilon\right\}} .
$$

Since the set $\left\{\mathbf{y} \in \mathbb{R}^{h+1} \backslash\{\mathbf{0}\}:\left|y^{(m)}\right|>\varepsilon\right\}$ for any $m \geq 0$ is bounded away from the origin, and given Vaynman and Beare (2014, Lemma A.2), then

$$
\begin{align*}
a_{n}^{-3} \sum_{t} \sigma_{t}^{3}-E\left(\sigma^{3}\right)= & T_{0, \varepsilon, \sigma}\left(N_{n}\right)+o_{p}(1) \tag{19}\\
& \xrightarrow{d} T_{0, \varepsilon, \sigma}(N) \\
& \xrightarrow{d} V_{0, \sigma},
\end{align*}
$$

where the first " \xrightarrow{d} " is as $n \rightarrow \infty$ and follows from Lemma 7 and the continuous mapping theorem, while the second " \xrightarrow{d} " is as $\varepsilon \rightarrow 0$ and follows from Davis and Hsing (1995, Proof of Theorem 3.1, pp 897-898).

Lemma 10 For the model in (2) and (3), under the same Assumptions as Lemma 2,

$$
\begin{equation*}
a_{n}^{-3} \sum_{t} Y_{t} \sigma_{t+m}^{2}-E\left(Y_{t} \sigma_{t+m}^{2}\right) \xrightarrow{d}\left(V_{m, \mathbf{y}}\right)_{m=1, \ldots, h}, \tag{20}
\end{equation*}
$$

where $" \xrightarrow{d} "$ continues to be weak, and $V_{m, \mathrm{y}}$ is $\left(\kappa_{0} / 3\right)-$ stable.

Proof. The (weak) convergence result in (20) is established for $m=1,2$. Generalizing to cases where $m>2$ is an extension of the arguments given below. Given (4),

$$
\begin{aligned}
& a_{n}^{-3} \sum_{t} Y_{t} \sigma_{t+1}^{2}-E\left(Y_{t} \sigma_{t+1}^{2}\right) \\
= & a_{n}^{-3} \sum_{t} \sigma_{t}^{3}\left(\epsilon_{t} A_{t+1}-\alpha_{0} c_{3}^{*}\right) \times I_{\left\{\sigma_{t}>a_{n} \varepsilon\right\}} \\
& +a_{n}^{-3} \sum_{t} \sigma_{t}^{3}\left(\epsilon_{t} A_{t+1}-\alpha_{0} c_{3}^{*}\right) \times I_{\left\{\sigma_{t} \leq a_{n} \varepsilon\right\}} \\
& +\alpha_{0} c_{3}^{*} a_{n}^{-3} \sum_{t} \sigma_{t}^{3}-E\left(\sigma^{3}\right)+o_{p}(1) \\
= & a_{n}^{-3} \sum_{t} \sigma_{t}^{3} \epsilon_{t} A_{t+1} \times I_{\left\{\sigma_{t}>a_{n} \varepsilon\right\}} \\
& +a_{n}^{-3} \sum_{t} \sigma_{t}^{3}\left(\epsilon_{t} A_{t+1}-\alpha_{0} c_{3}^{*}\right) \times I_{\left\{\sigma_{t} \leq a_{n} \varepsilon\right\}}+o_{p}(1),
\end{aligned}
$$

where the first equality relies on

$$
\begin{equation*}
a_{n}^{-1} \sum_{t} Y_{t} \xrightarrow{d} V_{0} \tag{21}
\end{equation*}
$$

which follows given Lemma 7 and Davis and Hsing (1995, Theorem 3.1) and under which V_{0} is κ_{0}-stable, while the second equality follows from (19). Then for the same $r \in(1,2)$ in the proof of Lemma 9 and a $\zeta>0$,

$$
\begin{aligned}
P\left(a_{n}^{-3}\left|\sum_{t} \sigma_{t}^{3} \times I_{\left\{\sigma_{t} \leq a_{n} \varepsilon\right\}} \times\left(\epsilon_{t} A_{t+1}-\alpha_{0} c_{3}^{*}\right)\right|>\zeta\right) \leq & \left(\zeta^{-1} a_{n}^{-3}\right)^{r} E\left|\sum_{t} \sigma_{t}^{3} \times I_{\left\{\sigma_{t} \leq a_{n} \varepsilon\right\}} \times\left(\epsilon_{t} A_{t+1}-\alpha_{0} c_{3}^{*}\right)\right|^{r} \\
\leq & 2\left(\zeta^{-1} a_{n}^{-3}\right)^{r} n E\left(\sigma_{t}^{3 r} \times I_{\left\{\sigma_{t} \leq a_{n} \varepsilon\right\}}\right) \\
& \times E\left|\alpha_{0}\left(\epsilon_{t}^{3}-c_{3}^{*}\right)+\beta_{0} \epsilon_{t}\right|^{r}
\end{aligned}
$$

where the first inequality follows from Markov's Inequality, and the second inequality follows from von Bahr and Esseen (1965, Theorem 2), since for

$$
M_{n} \equiv \sum_{t} \sigma_{t}^{3} \times I_{\left\{\sigma_{t} \leq a_{n} \varepsilon\right\}} \times\left(\epsilon_{t} A_{t+1}-\alpha_{0} c_{3}^{*}\right),
$$

$E\left(M_{n+1} \mid M_{n}\right)=M_{n}$ a.s. ${ }^{1}$ Given (17),

$$
\lim _{n \rightarrow \infty \in 0} \lim _{\varepsilon \rightarrow 0} \sup P\left(a_{n}^{-3}\left|\sum_{t} \sigma_{t}^{3} \times I_{\left\{\sigma_{t} \leq a_{n} \varepsilon\right\}} \times\left(\epsilon_{t} A_{t+1}-\alpha_{0} c_{3}^{*}\right)\right|>\zeta\right)=0 .
$$

Next, given (18), define

$$
\begin{equation*}
T_{m, \varepsilon, \mathbf{y}}\left(\sum_{i=1}^{\infty} n_{i} \delta_{\mathbf{y}_{i}}\right)=\sum_{i=1}^{\infty} n_{i}\left(y_{i, Y}^{(0)}\right)\left(y_{i, \sigma}^{(m)}\right)^{2} \times I_{\left\{y_{i, \sigma}^{(0)}>a_{n} \varepsilon\right\}}, \quad m \geq 1 . \tag{22}
\end{equation*}
$$

[^0]Then

$$
\begin{align*}
a_{n}^{-3} \sum_{t} Y_{t} \sigma_{t+1}^{2}-E\left(Y_{t} \sigma_{t+1}^{2}\right)= & T_{1, \varepsilon, \mathbf{y}}\left(N_{n}\right)+o_{p}(1) \tag{23}\\
& \xrightarrow{d} T_{1, \varepsilon, \mathbf{y}}(N) \\
& \xrightarrow{d} V_{1, \mathbf{y}},
\end{align*}
$$

where the first " \xrightarrow{d} " is as $n \rightarrow \infty$, the second " \xrightarrow{d} " as $\varepsilon \rightarrow 0$, and each convergence result follows from the same arguments that support (19). Next, consider

$$
\begin{aligned}
& a_{n}^{-3} \sum_{t} Y_{t} \sigma_{t+2}^{2}-E\left(Y_{t} \sigma_{t+2}^{2}\right) \\
= & a_{n}^{-3} \sum_{t} Y_{t} \sigma_{t+1}^{2}\left(A_{t+2}-E(A)\right) \times I_{\left\{\sigma_{t}>a_{n} \varepsilon\right\}} \\
& +a_{n}^{-3} \sum_{t} Y_{t} \sigma_{t+1}^{2}\left(A_{t+2}-E(A)\right) \times I_{\left\{\sigma_{t} \leq a_{n} \varepsilon\right\}} \\
& +E(A) a_{n}^{-3} \sum_{t} Y_{t} \sigma_{t+1}^{2}-E\left(Y_{t} \sigma_{t+1}^{2}\right)+o_{p}(1) \\
= & a_{n}^{-3} \sum_{t} Y_{t} \sigma_{t+2}^{2} \times I_{\left\{\sigma_{t}>a_{n} \varepsilon\right\}} \\
& +a_{n}^{-3} \sum_{t} Y_{t} \sigma_{t+1}^{2}\left(A_{t+2}-E(A)\right) \times I_{\left\{\sigma_{t} \leq a_{n} \varepsilon\right\}}+o_{p}(1) \\
= & I b+I I b+o_{p}(1),
\end{aligned}
$$

where the first equality, again, relies on (4) and (21), while the second equality follows from (23). For

$$
\begin{aligned}
I I b & =\alpha_{0} \omega_{0} a_{n}^{-3} \sum_{t} Y_{t}\left(\epsilon_{t+1}^{2}-1\right) \times I_{\left\{\sigma_{t} \leq a_{n} \varepsilon\right\}}+\alpha_{0} a_{n}^{-3} \sum_{t} \sigma_{t}^{3} \epsilon_{t} A_{t+1} \times\left(\epsilon_{t+1}^{2}-1\right) \times I_{\left\{\sigma_{t} \leq a_{n} \varepsilon\right\}} \\
& =\alpha_{0} a_{n}^{-3} \sum_{t} \sigma_{t}^{3} \epsilon_{t} A_{t+1} \times\left(\epsilon_{t+1}^{2}-1\right) \times I_{\left\{\sigma_{t} \leq a_{n} \varepsilon\right\}}+o_{p}(1),
\end{aligned}
$$

where the second equality relies on the CLT of Ibragimov and Linnik (1971, Theorem 18.5.3). Next, for a $\zeta>0$,

$$
\begin{aligned}
P\left(a_{n}^{-3}\left|\sum_{t} \sigma_{t}^{3} \times I_{\left\{\sigma_{t} \leq a_{n} \varepsilon\right\}} \times\left(\alpha_{0} \epsilon_{t}^{3}+\beta_{0} \epsilon_{t}\right) \times\left(\epsilon_{t+1}^{2}-1\right)\right|>\zeta\right) \leq & 2\left(\zeta^{-1} a_{n}^{-3}\right)^{r} n E\left(\sigma_{t}^{3 r} \times I_{\left\{\sigma_{t} \leq a_{n} \varepsilon\right\}}\right) \\
& \times E\left|\alpha_{0} \epsilon_{t}^{3}+\beta_{0} \epsilon_{t}\right|^{r} \times E\left|\epsilon_{t+1}^{2}-1\right|^{r}
\end{aligned}
$$

by Markov's Inequality and von Bahr and Esseen (1965, Theorem 2), so that

$$
\lim _{n \rightarrow \infty} \lim _{n \rightarrow 0} \sup P\left(a_{n}^{-3}\left|\sum_{t} \sigma_{t}^{3} \times I_{\left\{\sigma_{t} \leq a_{n} \varepsilon\right\}} \times\left(\alpha_{0} \epsilon_{t}^{3}+\beta_{0} \epsilon_{t}\right) \times\left(\epsilon_{t+1}^{2}-1\right)\right|>\zeta\right)=0
$$

in which case,

$$
\begin{aligned}
a_{n}^{-3} \sum_{t} Y_{t} \sigma_{t+2}^{2}-E\left(Y_{t} \sigma_{t+2}^{2}\right)= & a_{n}^{-3} \sum_{t} Y_{t} \sigma_{t+2}^{2} \times I_{\left\{\sigma_{t}>a_{n} \varepsilon\right\}}+o_{p}(1) \\
= & T_{2, \varepsilon, \mathbf{y}}\left(N_{n}\right)+o_{p}(1) \\
& \xrightarrow{d} T_{2, \varepsilon, \mathbf{y}}(N) \\
& \xrightarrow{d} V_{2, \mathbf{y}}
\end{aligned}
$$

where, as is true elsewhere, the first " \xrightarrow{d} " is as $n \rightarrow \infty$, and the second " \xrightarrow{d} " is as $\varepsilon \rightarrow 0$.

Lemma 11 For the model in (2) and (3), under the same Assumptions as Lemma 2,

$$
\begin{equation*}
a_{n}^{-3} \sum_{t} Y_{t} Y_{t+m}^{2}-E\left(Y_{t} Y_{t+m}^{2}\right) \stackrel{d}{\longrightarrow} \alpha_{0}^{-1}\left(V_{m+1, \mathbf{y}}-\beta_{0} V_{m, \mathbf{y}}\right)_{m=1, \ldots, h} \tag{24}
\end{equation*}
$$

where, as is the case elsewhere, $" \xrightarrow{d} "$ is weak, and the limits are $\left(\kappa_{0} / 3\right)$-stable.

Proof. The (weak) convergence result in (24) is established for $m=1,2$. Generalizing to $m>2$ is an extension of the results stated below. From (4),

$$
\begin{equation*}
\epsilon_{t}^{2}=\alpha_{0}^{-1}\left(A_{t+1}-\beta_{0}\right) \tag{25}
\end{equation*}
$$

in which case,

$$
\begin{aligned}
& a_{n}^{-3} \sum_{t} Y_{t} Y_{t+1}^{2}-E\left(Y_{t} Y_{t+1}^{2}\right) \\
= & \alpha_{0}^{-1}\left(a_{n}^{-3} \sum_{t} Y_{t} \sigma_{t+1}^{2} A_{t+2}-E\left(Y_{t} \sigma_{t+1}^{2} A_{t+2}\right)-\beta_{0} a_{n}^{-3} \sum_{t} Y_{t} \sigma_{t+1}^{2}-E\left(Y_{t} \sigma_{t+1}^{2}\right)\right) \\
= & \alpha_{0}^{-1}\left(a_{n}^{-3} \sum_{t} Y_{t} \sigma_{t+2}^{2}-E\left(Y_{t} \sigma_{t+2}^{2}\right)-\beta_{0} a_{n}^{-3} \sum_{t} Y_{t} \sigma_{t+1}^{2}-E\left(Y_{t} \sigma_{t+1}^{2}\right)-\omega_{0} a_{n}^{-3} \sum_{t} Y_{t}\right) \\
= & \alpha_{0}^{-1}\left(a_{n}^{-3} \sum_{t} Y_{t} \sigma_{t+2}^{2}-E\left(Y_{t} \sigma_{t+2}^{2}\right)-\beta_{0} a_{n}^{-3} \sum_{t} Y_{t} \sigma_{t+1}^{2}-E\left(Y_{t} \sigma_{t+1}^{2}\right)+o_{p}(1)\right) \\
& \xrightarrow{d} \alpha_{0}^{-1}\left(V_{2, \mathbf{y}}-\beta_{0} V_{1, \mathbf{y}}\right),
\end{aligned}
$$

where the second equality relies on (4), the third equality (21), and " $\xrightarrow{d} "$ follows from Lemma 10 . The
same arguments then support

$$
\begin{aligned}
& a_{n}^{-3} \sum_{t} Y_{t} Y_{t+2}^{2}-E\left(Y_{t} Y_{t+2}^{2}\right) \\
= & \alpha_{0}^{-1}\left(a_{n}^{-3} \sum_{t} Y_{t} \sigma_{t+2}^{2} A_{t+3}-E\left(Y_{t} \sigma_{t+2}^{2} A_{t+3}\right)-\beta_{0} a_{n}^{-3} \sum_{t} Y_{t} \sigma_{t+2}^{2}-E\left(Y_{t} \sigma_{t+2}^{2}\right)\right) \\
= & \alpha_{0}^{-1}\left(a_{n}^{-3} \sum_{t} Y_{t} \sigma_{t+3}^{2}-E\left(Y_{t} \sigma_{t+3}^{2}\right)-\beta_{0} a_{n}^{-3} \sum_{t} Y_{t} \sigma_{t+2}^{2}-E\left(Y_{t} \sigma_{t+2}^{2}\right)+o_{p}(1)\right) \\
& \xrightarrow{d} \alpha_{0}^{-1}\left(V_{3, \mathbf{y}}-\beta_{0} V_{2, \mathbf{y}}\right),
\end{aligned}
$$

which completes the proof.

Lemma 12 For the model in (2) and (3), under the same Assumptions as Lemma 2,

$$
a_{n}^{-3} \sum_{t} Y_{t}^{3}-E\left(Y_{t}^{3}\right) \xrightarrow{d} V_{0, \mathbf{y}},
$$

where $" \xrightarrow{d}$ " is weak, and $V_{0, Y}$ is $\left(\kappa_{0} / 3\right)-$ stable.

Proof.

$$
\begin{aligned}
a_{n}^{-3} \sum_{t} Y_{t}^{3}-E\left(Y_{t}^{3}\right)= & a_{n}^{-3} \sum_{t} \sigma_{t}^{3}\left(\epsilon_{t}^{3}-c_{3}^{*}\right) \times I_{\left\{\sigma_{t} \leq a_{n} \varepsilon\right\}} \\
& +a_{n}^{-3} \sum_{t} \sigma_{t}^{3}\left(\epsilon_{t}^{3}-c_{3}^{*}\right) \times I_{\left\{\sigma_{t}>a_{n} \varepsilon\right\}} \\
& +a_{n}^{-3} \sum_{t} \sigma_{t}^{3}-E\left(\sigma^{3}\right) \\
= & I c+\text { IIc } c \text { IIIc. } .
\end{aligned}
$$

As relied upon elsewhere, given Markov's Inequality and von Bahr and Esseen (1965, Theorem 2), for a $\zeta>0$ and a $r \in(\kappa, 2)$ defined in the proof of Lemma 9,

$$
\begin{aligned}
P(|I c|>\zeta) & \leq\left(\zeta^{-1} a_{n}^{-3}\right)^{r} E\left|\sum_{t} \sigma_{t}^{3}\left(\epsilon_{t}^{3}-c_{3}^{*}\right) \times I_{\left\{\sigma_{t} \leq a_{n} \varepsilon\right\}}\right|^{r} \\
& \leq 2\left(\zeta^{-1} a_{n}^{-3}\right)^{r} n E\left(\sigma_{t}^{3 r} \times I_{\left\{\sigma_{t} \leq a_{n} \varepsilon\right\}}\right) \times E\left|\epsilon_{t}^{3}-c_{3}^{*}\right|^{r}
\end{aligned}
$$

so that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \lim _{\varepsilon \rightarrow 0} \sup P(|I c|>\zeta)=0 \tag{26}
\end{equation*}
$$

by the arguments that support (17). Next, given (18),define

$$
T_{0, \varepsilon, \mathbf{y}}\left(\sum_{i=1}^{\infty} n_{i} \delta_{\mathbf{y}_{i}}\right)=\sum_{i=1}^{\infty} n_{i}\left(y_{i, Y}^{(0)}\right)^{3} \times I_{\left\{y_{i, \sigma}^{(0)}>a_{n} \varepsilon\right\}} .
$$

Then, given Lemma 7,

$$
\begin{aligned}
a_{n}^{-3} \sum_{t} Y_{t}^{3}-E\left(Y_{t}^{3}\right)= & a_{n}^{-3} \sum_{t} Y_{t}^{3} \times I_{\left\{\sigma_{t}>a_{n} \varepsilon\right\}}-c_{3}^{*} a_{n}^{-3} \sum_{t} \sigma_{t}^{3} \times I_{\left\{\sigma_{t}>a_{n} \varepsilon\right\}}+\text { IIIc }+o_{p}(1) \\
= & T_{0, \varepsilon, \mathbf{y}}\left(N_{n}\right)-c_{3}^{*} T_{0, \varepsilon, \sigma}\left(N_{n}\right)+\text { IIIc } \\
& \xrightarrow{d} T_{0, \varepsilon, \mathbf{y}}(N) \\
& \xrightarrow{d} V_{0, \mathbf{y}}
\end{aligned}
$$

where $T_{0, \varepsilon, \sigma}\left(N_{n}\right)$ is defined in the proof of Lemma 9 and the sequential limiting results (first as $n \rightarrow \infty$ and then as $\varepsilon \rightarrow 0$) follow from the arguments given in that same proof.

Consider

$$
\mathbf{Z}_{t-2}=\left(\begin{array}{ccc}
Y_{t-2}, & \ldots, & Y_{t-h}
\end{array}\right)^{\prime}
$$

as a vector of (proper) instruments for X_{t-1} in (13). Then

$$
\begin{equation*}
\widehat{\phi}_{I V}=\widehat{\mathbf{F}}\left(n^{-1} \sum_{t} \widehat{X}_{t} \mathbf{Z}_{t-2}\right), \quad \widehat{\mathbf{F}}=\frac{\left(n^{-1} \sum_{t} \widehat{X}_{t-1} \mathbf{Z}_{t-2}\right)^{\prime} \widehat{\boldsymbol{\Lambda}}}{\left(n^{-1} \sum_{t} \widehat{X}_{t-1} \mathbf{Z}_{t-2}\right)^{\prime} \widehat{\boldsymbol{\Lambda}}\left(n^{-1} \sum_{t} \widehat{X}_{t-1} \mathbf{Z}_{t-2}\right)} \tag{27}
\end{equation*}
$$

Theorem 13 Let

$$
\mathbf{F}_{0}=B_{0}^{-1} \mathbf{A}_{0}^{\prime}
$$

where

$$
\mathbf{A}_{0}=\mathbf{\Lambda}_{0} E\left(X_{t-1} \mathbf{Z}_{t-2}\right), \quad B_{0}=E\left(X_{t-1} \mathbf{Z}_{t-2}\right)^{\prime} \mathbf{A}_{0}
$$

In addition, let Assumptions A1-A5 from the main paper hold. Then

$$
\widehat{\phi}_{I V} \xrightarrow{\text { a.s. }} \phi_{0}
$$

and

$$
\begin{equation*}
n a_{n}^{-3}\left(\widehat{\phi}_{I V}-\phi_{0}\right) \xrightarrow{d} \alpha_{0}^{-1} \mathbf{F}_{0} \mathbf{S}, \tag{28}
\end{equation*}
$$

where $\kappa_{0} \in(3,6), " \xrightarrow{d}$ is weak,

$$
\mathbf{S}=\left(\left(V_{m+1, \mathbf{y}}-\beta_{0} V_{m, \mathbf{y}}\right)_{m=2, \ldots, h}\right)
$$

each $\left(V_{m, \mathbf{y}}\right)_{m=2, \ldots, h+1}$ is defined in Lemma 16, and S is jointly $\left(\kappa_{0} / 3\right)-$ stable. If $\kappa_{0} \in(6, \infty)$ such that $E\left(Y_{t}^{6}\right)<\infty$, then

$$
\sqrt{n}\left(\widehat{\phi}_{I V}-\phi_{0}\right) \xrightarrow{d} N\left(0, \frac{\mathbf{A}_{0}^{\prime} \boldsymbol{\Sigma}_{V \mathbf{Z}_{-2}} \mathbf{A}_{0}}{B_{0}^{2}}\right)
$$

where

$$
\boldsymbol{\Sigma}_{V \mathbf{Z}_{-2}}=E\left(V_{t}^{2} \mathbf{Z}_{t-2} \mathbf{Z}_{t-2}^{\prime}\right)+2 E\left(V_{t} V_{t-1} \mathbf{Z}_{t-2} \mathbf{Z}_{t-3}^{\prime}\right)
$$

and V_{t} is defined in Theorem 1 of the main paper.

Proof. Since

$$
\begin{gather*}
\widehat{X}_{t}=X_{t}-\left(\widehat{\gamma}-\gamma_{0}\right) \tag{29}\\
\widehat{X}_{t}=c_{0}+\phi_{0} \widehat{X}_{t-1}-\beta_{0} W_{t-1}+W_{t}, \quad c_{0}=\left(\widehat{\gamma}-\gamma_{0}\right) \times\left(\phi_{0}-1\right) \tag{30}
\end{gather*}
$$

given (13). Also, since $\left\{Y_{t}\right\}$ is strongly mixing (see the proof of Theorem 1 in the Appendix of the main paper), then given (29),

$$
\begin{aligned}
n^{-1} \sum_{t} \widehat{X}_{t-1} \mathbf{Z}_{t-2}= & n^{-1} \sum_{t} X_{t-1} \mathbf{Z}_{t-2}-\left(\widehat{\gamma}-\gamma_{0}\right) n^{-1} \sum_{t} \mathbf{Z}_{t-2} \\
& \xrightarrow{\text { a.s. }} E\left(X_{t-1} \mathbf{Z}_{t-2}\right)
\end{aligned}
$$

by the Ergodic Theorem so that $\widehat{\mathbf{F}} \xrightarrow{\text { a.s. }} \mathbf{F}_{0}$. Also, given (30),

$$
\begin{aligned}
n^{-1} \sum_{t} \widehat{X}_{t} \mathbf{Z}_{t-2}= & c_{0} n^{-1} \sum_{t} \mathbf{Z}_{t-2}+\phi_{0} n^{-1} \sum_{t} \widehat{X}_{t-1} \mathbf{Z}_{t-2}-\beta_{0} n^{-1} \sum_{t} W_{t-1} \mathbf{Z}_{t-2}+n^{-1} \sum_{t} W_{t} \mathbf{Z}_{t-2} \\
& \xrightarrow{a . s .} \phi_{0} E\left(X_{t-1} \mathbf{Z}_{t-2}\right)
\end{aligned}
$$

Next,

$$
\begin{aligned}
n a_{n}^{-3}\left(\widehat{\phi}_{I V}-\phi_{0}\right)= & \mathbf{F}_{0}\left(a_{n}^{-3} \sum_{t} X_{t} \mathbf{Z}_{t-2}-E\left(X_{t} \mathbf{Z}_{t-2}\right)\right)+o_{p}(1) \\
= & \mathbf{F}_{0}\left(a_{n}^{-3} \sum_{t} Y_{t}^{2} \mathbf{Z}_{t-2}-E\left(Y_{t}^{2} \mathbf{Z}_{t-2}\right)\right)+o_{p}(1) \\
& \xrightarrow{d} \alpha_{0}^{-1} \mathbf{F}_{0} \mathbf{S}
\end{aligned}
$$

where the second equality follows from the arguments that support ($\mathbf{X X}$) in the proof of Theorem 1 in the Appendix of the main paper, and \mathbf{S} is jointly $\left(\kappa_{0} / 3\right)$ - stable by Lemma 17 and Samorodnitsky and Taqqu
(1994, Theorem 2.1.5(c)). If $\kappa_{0} \in(6, \infty)$ so that $E\left(Y_{t}^{6}\right)<\infty$, then

$$
\begin{aligned}
\sqrt{n}\left(\widehat{\phi}-\phi_{0}\right)= & \sqrt{n}\left(\frac{\phi_{0}\left(n^{-1} \sum_{t} X_{t} \mathbf{Z}_{t-2}\right)^{\prime} \widehat{\mathbf{A}}}{\widehat{B}}-\phi_{0}+\frac{\left(n^{-1} \sum_{t} V_{t} \mathbf{Z}_{t-2}\right)^{\prime} \widehat{\mathbf{A}}}{\widehat{B}}+o_{p}(1)\right) \\
= & \sqrt{n}\left(\frac{\left(n^{-1} \sum_{t} V_{t} \mathbf{Z}_{t-2}\right)^{\prime} \widehat{\mathbf{A}}}{\widehat{B}}+o_{p}(1)\right) \\
& \xrightarrow{d} N\left(0, \frac{\mathbf{A}_{0}^{\prime} \boldsymbol{\Sigma}_{V \mathbf{Z}_{-2}} \mathbf{A}_{0}}{B_{0}^{2}}\right)
\end{aligned}
$$

where the limiting result uses the same CLT from the proof of Theorem 1.
Consistency of $\widehat{\phi}_{I V}$ does not depend on consistency of $\widehat{\gamma}$, and $\widehat{\gamma}$ does not impact the limiting distribution of $\widehat{\phi}_{I V}$. Necessary for $B_{0} \neq 0$ is $E\left(Y_{t}^{3}\right) \neq 0$, which illustrates the lack of identification that results if in A1, D is a symmetric distribution. (28) depends on $j \in(3,6)$ in A1, which is consistent with empirical findings. Lastly, the rate of convergence that applies in (28) is $n^{\frac{\kappa_{0}-3}{3}}$.

References

[1] Basrak, B., R.A Davis \& T. Mikosch (2002) Regular variation of GARCH processes. Stochastic Processes and Their Applications 99, 95-115.
[2] Bollerslev, T. (1986) Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31, 307-327.
[3] Breiman, L. (1965) On some limit theorems similar to the arc sin law. Theory Probab. Appl. 10, 323331.
[4] Carrasco, M. \& X. Chen (2002) Mixing and moment properties of various GARCH and stochastic volatility models. Econometric Theory 18, 17-39.
[5] Davis, R.A. \& T. Hsing (1995) Point process and partial sum convergence for weakly dependent random variables with infinite variance. The Annals of Probability 23, 879-917.
[6] Davis, R.A. \& T. Mikosch (1998) The sample autocorrelations of heavy-tailed processes with applications to ARCH. The Annals of Statistics 26, 2049-2080.
[7] Davis, R.A., T. Mikosch and B. Basrak (1999) Sample ACF of multivariate stochastic recurrence equations with application to GARCH. Unpublished manuscript.
[8] Goldie, C.M. (1991) Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1, 126-166.
[9] Ibragimov, I.A. and Y.V. Linnik (1971) Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff: Groningen.
[10] Mikosch, T. (1999) Regular Variation, Subexponentiality and their applications in probability theory. Lecture notes for the workshop "Heavy Tails and Queques," EURANDOM, Eindhoven, Netherlands.
[11] Mikosch, T. \& C. Stărică (2000) Limit theory for the sample autocorrelations and extremes of a GARCH(1,1) process. The Annals of Statistics 28, 1427-1451.
[12] Prono, T. (2018) Closed-form estimators for finite-order arch models as simple and competitive alternatives to qmle: supplemental appendix. Forthcoming in Studies in Nonlinear Dynamics and Econometrics.
[13] Resnick, S.I. (2007) Probabilistic and Statistical Modeling of Heavy Tailed Phenomena. New York: Springer-Verlag.
[14] Samorodnitsky, G. \& M.S. Taqqu (1994) Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Stochastic Modeling. New York: Chapmand and Hall.
[15] Vaynman, I. \& B.K. Beare (2014) Stable limit theory for the variance targeting estimator, in Y. Chang, T.B. Fomby \& J.Y. Park (eds), Essays in Honor of Peter C.B. Phillips, vol. 33 of Advances in Econometrics: Emerald Group Publishing Limited, chapter 24, 639-672.
[16] von Bahr, B., \& C.G. Esseen (1965) Inequalities for the r th absolute moment of a sum of random variables, $1 \leq r \leq 2$. Annals of Mathematical Statistics 36, 299-303.

[^0]: ${ }^{1}$ The applicability of von Bahr and Esseen (1965, Theorem 2) in this general context is first recognized in Vaynman and Beare (2014, proof of Lemma A.1).

