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Abstract

Covariances between contemporaneous squared values and lagged levels form the basis for
closed-form instrumental variables estimators of ARCH processes. These simple estimators
rely on asymmetry for identification (either in the model’s rescaled errors or the conditional
variance function) and apply to threshold ARCH(1) and ARCH(p) with p <∞ processes. Limit
theory for these estimators is established in the case where the ARCH processes are regularly
varying with a well-defined third and sixth moment of the raw returns and rescaled errors,
respectively. The resulting limits are highly non-normal in empirically relevant cases, with slow
rates of convergence relative to the thin-tailed

√
n-case. Nevertheless, Monte Carlo studies of

a heavy-tailed ARCH(1) process show the simple IV estimator to outperform standard QMLE
in (relatively) small samples when the data are (heavily) skewed. Methods for determining
confidence intervals for the ARCH estimates are also discussed.

Keywords: ARCH, closed form estimation, heavy tails, instrumental variables, regular vari-
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1.1 Introduction

This paper considers estimation of the finite-order ARCH models originated in Engle (1982). A

class of simple, instrumental variables (IV) estimators for threshold ARCH(1) and ARCH(p) with

p <∞ models is established on the basis that the (high frequency) financial returns to which these

models are often applied tend to be skewed. This well-known but (up until this point) under-used

stylized fact of financial returns is shown to support simple estimators that are (almost surely)

consistent with stable limiting distributions regardless of whether kurtosis in the returns is well-

defined. Identification of these estimators sources to the covariances between squared returns and

past level returns (hereafter referred to as cross-order covariances). For ARCH(p) models, this

sourcing requires the model’s rescaled errors to be skewed, while in the threshold ARCH(1) case,

the requirement is for the conditional variance function to be truly asymmetric (in which case, the

model’s rescaled errors may or may not be skewed).

In demonstrating the large-sample properties of these simple estimators, it is useful to consider

the ARCH(1) and threshold ARCH(1) models first, before moving to the general ARCH(p) case.

The reason for this approach is that simple estimators of the former models have assumptions that

are straightforward to verify and limiting results that only involve directly observable variables,

while simple estimators in the latter case involve more complicated assumptions and limiting results,

owing, in turn, to the more complex structure of the cross-order covariances when p > 1. However,

the limiting results for simple estimators of ARCH(p) models remain (at least) qualitatively similar

to the ARCH(1) case with the same rate of convergence.3

Before proceeding further, it is necessary to define what is meant by a simple estimator. That

definition, initially given in Lewbel (2004) and later applied in Dong and Lewbel (2015), requires a

simple estimator to (1) "closely resemble (or consist of steps that each resemble) estimators that are

already in common use," and (2) involve "few or no numerical searches or numerical maximizations."

Consistent with this definition, this paper considers ordinary least squares (OLS) and linear two-

stage least squares (TSLS) estimators of ARCH processes, each of which is available in closed form.

Simple estimators for the more popular class of GARCH models (introduced in Bollerslev, 1986)

are not considered; however, what is learned from studying the ARCH cases both in terms of the

conditions that support identification and the discovered distributional limits also apply in the

GARCH context as discussed in Prono (2014) and introduced in this paper’s conclusion.

3 It is also the case that the results for ARCH(p) estimators nest the ARCH(1) case.
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Almost by definition, a simple estimator is (likely) not an effi cient estimator. Yet, simple

estimators deserve attention because they (1) facilitate application of the bootstrap (and other

resampling techniques) for determining standard errors and confidence intervals, (2) avoid numerical

pitfalls like flat objective functions and multiple local maxima, (3) provide consistent starting

values for (more) effi cient estimators (see; e.g., Francq, Lepage and Zakoïan, 2011 and Fan, Qi

and Xiu, 2014, in a (G)ARCH context), (4) provide insights into the formulation of more effi cient

estimators (e.g., in the present context, by revealing a set of over-identifiying restrictions that

can be used in Hill’s and Prokhorov’s (2016) generalized empirical likelihood estimator), and (5)

enjoy faster computation times. This last criterion is relevant for applications requiring (many)

forecasts quickly; for example, high frequency trading algorithms involving intra-day returns or

(very) high dimensional conditional Value-at-Risk (VaR) estimates used to determine initial margin

requirements for cleared derivatives.

1.2 Background and Motivation

For the ARCH(p) model

Yt = σtεt, σ2t = ω +
p∑
i=1
αiY

2
t−i, εt ∼ i.i.d. D (0, 1) , p <∞, (1)

where D is some zero mean, unit variance distribution, consider the simplest case where p = 1. In

this case, it is well-known that

Y 2t = ω + αY 2t−1 +Wt, (2)

where {Wt} is a martingale difference sequence (MDS), which is to say that the ARCH(1) model

is an AR(1) model of the second-order sequence. A simple estimator for this model, then, is OLS.

Weiss (1986) is among the first to consider this case. Guo and Phillips (2001) consider IV estimation

of (2) based on results from Kuersteiner (2002), where the instrument for Y 2t−1 is an infinite, weighted

sum ofWt−1−i for i ≥ 0. Giratis and Robinson (2001) and Mikosch and Straumann (2002) consider

Whittle estimation for ARCH processes, which is asymptotically equivalent to constrained least

squares and available in closed form when the spectral density of Y 2t exists.

Let γ ≡ E
(
Y 2t
)
. From (2) follows that

E
((
Y 2t − γ

) (
Y 2t−m − γ

))
= αmE

((
Y 2t − γ

)2)
, m ≥ 1, (3)
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provided E
(
Y 4t
)
< ∞. Estimation of (2) using either Y 2t−1 as the instrument (i.e., OLS) or a

weighted sum of past Y 2t−1−i then selects α̂ (the finite sample estimator of α) as the one which

best accommodates the sample autocovariances of Y 2t . Baillie and Chung (1999) argue in favor of

such estimation techniques over QMLE precisely because the former produces the best fit to the

sample (second-order) autocovariances, while the latter is known to under-represent those same,

sample autocovariances in instances where the model’s rescaled errors exhibit heavy tails (see; e.g.,

Jacquier, Polson, and Rossi, 1994). It seems sensible, then, to craft simple ARCH estimators

based on (3), where these simple estimators might very-well outperform the QMLE (as noted by;

e.g., Bollerslev and Wooldridge, 1992, and evidenced in Baillie and Chung) in instances where the

first-order sequence displays excess kurtosis. However, there is also (certainly) a limit to just how

heavy-tailed a sequence these simple estimators can accommodate, since E
(
Y 4t
)
< ∞ is required

for consistency. Empirical evidence from financial returns leaves the prospect of this limit not being

exceeded far from certain.

Figure 1 plots the Hill (1975) tail index estimator together with 95% confidence bands from

Hill (2010, Theorem 4) for three major currency returns (all measured relative the USD) sampled

at 20-minute intervals. Recalling that a tail index κ > 0 for a regularly varying random variable

is a moment supremum; i.e., if Yt is regularly varying, then E |Yt|
p < ∞ if and only if p < κ (see;

e.g., Resnick, 1987, for an introduction to regular variation), evidence does not (strongly) support

a well-defined fourth moment for these currency returns. To the contrary, for substantial sections

of all three plots, the confidence bands do not include 4. Moreover, currency returns sampled at

this (very) high frequency are known to display relatively less volatility persistence (and, hence,

relatively thinner tails), then returns measured at lower frequencies, like hourly or daily (see; e.g.,

Anderson and Bollerslev, 1997). For daily equity and FX returns, tail index estimates tend to

be even less (see; e.g., Hill and Renault, 2012, Embrechts, Klüppelberg, and Mikosch, 1997, and

Loretan and Phillips, 1994), causing these authors to conclude that the fourth moments of these

returns are not well-defined. Jondeau and Rockinger (2003) offer a (somewhat) softer view by

identifying shorter intervals of time over which fourth moments of financial returns do appear

finite; however, these same authors still discover numerous intervals over which the tails of financial

time series appear heavier than can accommodate well-defined fourth moments. Overall then,

it is clear that the
√
n asymptotics (developed first by Weiss, 1986) for OLS applied to (2) are

inconsistent with empirical findings, since those asymptotics require E
(
Y 8t
)
< ∞. Moreover, it is
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(at least) questionable whether the OLS estimator is even consistent.

While not offering much to support well-defined fourth moments, Figure 1 does tend to support

well-defined third moments. Notice that the tail index estimates for all three returns stay close

to 3, and the confidence bands always include 3. Loretan and Phillips (1994) and Jondeau and

Rockinger (2003) present comparable findings for daily FX and equity returns. Cont and Kan

(2011, Property 3) report κ ∈ (3, 6) for daily, credit default swap spread returns. Bouchaud and

Potters (2003, p. 102) state that "there is now good evidence that on short time scales, and using

long time series, the tail index for stocks is around 3 on several markets (U.S., Japan, Germany)."

These same authors also report evidence supporting a comparable conclusion for major FX returns.

For the three currency returns in Figure 1 (JPY, EUR, and CHF), skewness is −0.32, 0.20,

and 0.42, respectively, each of which is highly significant against a null of normality given the,

respective, sample sizes. As a consequence, all three return sequences also exhibit nonzero third

moments, a characteristic prevalent enough in (high frequency) financial returns to be considered a

stylized fact (along with heavy tails). This stylized fact permits a second set of covariances based

on (2) from which simple ARCH estimators can be constructed. These cross-order covariances are

E
((
Y 2t − γ

)
Yt−m

)
= αmE

(
Y 3t
)
. (4)

Let Zt−1 =
(
Yt−1, . . . , Yt−h

)′ for h <∞. Given (4), Zt−1 is a valid set of instruments for Y 2t−1 in (2)
provided that E

(
Y 3t
)
6= 0 (see Lewbel, 1997, where skewness is also used to define valid instruments

in a measurement error context). The appeal of a simple estimator based on Zt−1 is analogous to

the appeal of the (second-order) autocovariance estimator of Baillie and Chung: by being fit to a

particular empirical feature of the data (in this instance, a set of cross-order covariances that map

to skewness in the underlying returns), this estimator, too, might perform well against the QMLE

in instances where this feature strays from what is predicted under normality. In support of this

assertion, Monte Carlo results in Section 3 evidence a TSLS estimator based on Zt−1 to outperform

the QMLE in instances where the data are (heavily) skewed. Another obvious advantage of this

TSLS estimator over OLS (and alternative estimators based on (3), generally) is that the former

only requires E
(
Y 3t
)
<∞ for consistency.

The distributional limit of the simple IV estimator is based on asymptotic theory developed

for the sample cross-order covariances from (4) in the case where Yt is regularly varying. This

asymptotic theory extends results from Davis and Mikosch (1998) and Mikosch and Stărică (2000),
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who study the large sample properties of the sample, second-order autocovariances from (3). A

unifying feature of the limit theory for both sample, cross-order covariances and sample, second-

order autocovariances is reliance upon a non-standard central limit theorem (CLT) developed in

Davis and Mikosch (1998) for regularly varying and dependent sequences.4 Necessary for the

applicability of this CLT in the present context is a demonstration that Yt is regularly varying

when E
(
Y 3t
)
6= 0, which is provided in this paper’s Supplemental Appendix (proof of Lemma 3)

and complements results in Basrak, Davis, and Mikosch (2002). For completeness, the distributional

limit of the OLS estimator applied to (2) is also established, where symmetry in the rescaled ARCH

errors is also not required.

In the case of the model in (2), skewness in {Yt} renders Zt−1 a valid set of instruments. In the

case of a threshold ARCH(1) model, a slightly different story emerges. Consider

σ2t = ω + α1Y
2
t−1 × I{Yt≥0} + α2Y

2
t−1 × I{Yt<0}, (5)

which is the threshold ARCH(1) model of Glosten, Jagannathan, and Runkle (1993). For this

model, a valid set of instruments is

Zt−1 =
((
Z1,t−1, Z2,t−1

)
, . . . ,

(
Z1,t−h, Z2,t−h

))′
, (6)

where

Z1,t−m = Yt−m × I{Yt−m≥0} − E
(
Yt × I{Yt≥0}

)
,

Z2,t−m = Yt−m × I{Yt−m<0} − E
(
Yt × I{Yt<0}

)
,

for m = 1, . . . , h. Validity of these instruments, which relates to a generalization of (4), chiefly

depends on asymmetry in the conditional variance and not skewness in the underlying returns.

For instance, if α1 6= α2, then identification of the IV estimator based on the instruments in (6)

follows even if E
(
Y 3t
)

= 0. In the special case where α1 = α2 (i.e., there is no conditional variance

asymmetry), validity of Zt−1 as defined in (6) defaults back to requiring E
(
Y 3t
)
6= 0.

4Other works that rely upon this CLT for establishing the large sample properties of ARCH estimators include
Mikosch and Straumann (2002), Hall and Yao (2003), and Vaynman and Beare (2014).
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2.1. The ARCH(1) Case

For the sequence {Yt}t∈Z, let zt be the associated σ-algebra where zt−1 ⊆ zt ⊆ · · · ⊆ z.

Consider the model

Yt = σtεt, σ2t = ω0 + α0Y
2
t−1, (7)

where ω0 denotes the true value, ω any one of a set of possible values, ω̂ an estimate, and parallel

definitions hold for all other parameter values. From (7), note that

σ2t = ω0 + σ2t−1At, At = α0ε
2
t−1, (8)

which characterizes σ2t as a stochastic recurrence equation (SRE). From Basrak, Davis, and Mikosch

(2002), most GARCH processes can be characterized as SREs and, as such, shown to be regularly

varying.

ASSUMPTION A1: (i) The sequence {εt}t∈Z is i.i.d. D (0, 1) for some distribution D with

unbounded support. (ii) E |εt|
j = cj <∞ for 3 ≤ j ≤ k.

Given A1(i), (7) reflects the strong ARCH model of Drost and Nijman (1993). Having i.i.d.

rescaled errors is necessary for establishing the distributional limits and rates of convergence of the

simple estimators under study. Consistency of these estimators would, however, continue to follow

under the semi-strong definition of ARCH, where (weak) dependence in the higher moments of the

rescaled errors is permitted.

Under A1(ii), up to the kth moment of the model’s rescaled errors is well-defined. For distri-

butional convergence, k ≥ 6 is imposed for the IV estimator, and k ≥ 8 for the OLS estimator,

both of which are strong relative to the literature on QML estimation of ARCH processes (see; e.g.,

Kristensen and Rahbek, 2005, where k = 4). In support of A1(ii), Hansen (1994, Table 9) reports

results for daily FX returns that imply well-defined moments for the rescaled errors (postulated to

follow a skewed-t distribution) up to the 8th, based on an implied point estimate for the parameter

governing tail-thickness of 8.8 and an associated 95% confidence band of [3.4, 20.9]. In addition,

Cont and Kan (2011, Property 6) report κ ∈ (3, 6) for rescaled GARCH errors from daily, credit

default swap spread returns. Nevertheless, the effects of A1(ii) are investigated in Section 3, where

Monte Carlo experiments consider the case where k = 4.
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ASSUMPTION A2: For a d×1 vector α of ARCH coeffi cients, Θ =
{
θ = (ω,α) ∈ Rd+1 | ω ≥ ω, αi > 0

}
for some ω > 0.

A2 heralds from Kristensen and Rahbek (2005). For the current discussion, d = 1. Notice that

Θ is noncompact and ω is bounded below by a nonzero value, ω.

ASSUMPTION A3: E
(
ε3t
)

= c∗3 6= 0.

Under A3, D is an asymmetric distribution, where the direction of skewness is unconstrained.

Skewness in (high frequency) returns is considered a stylized fact. That fact is exogenous to the

model under consideration and yet (as will be shown) can be harnessed to identify the model.

Other examples where a skewed D is used to account for this stylized fact include Hansen (1994)

and Harvey and Siddique (1999).

ASSUMPTION A4: E
(
A3/2

)
< 1.

A4 is suffi cient for {Yt} to have a strictly stationary solution (see; e.g., Mikosch, 1999, Corollary

1.4.38, and Remark 1.4.39). Throughout this and the remaining sections, assume that the (strictly)

stationary solution is the one being observed.

From (7) follows that

Y 2t = σ2t +Wt, Wt = σ2t
(
ε2t − 1

)
, (9)

where {Wt} is a MDS. Let Xt ≡ Y 2t − γ0, where γ0 ≡ E
(
Y 2t
)

=
ω0
1−α0

. Then

Xt = α0Xt−1 +Wt, (10)

so the centered second-order sequence {Xt} follows an AR(1) process. Given E
(
Y 3t
)

= E
(
σ3t
)
c∗3,

A4 is also suffi cient for
{
Y 3t
}
to have a well-defined mean (see Lemma 1 in the Appendix). As a

consequence, multiplying both sides of (10) by Yt−m for m ≥ 1 and taking expectations yields

E
(
XtYt−m

)
= αm0 E

(
Y 3t
)
. (11)

Letting Zt−1 =
(
Yt−1, . . . , Yt−h

)′ for h < ∞, then E (WtZt−1
)

= 0 by iterative expectations and,

owing to (11),

E
(
Xt−1Zt−1

)
= E

(
Y 3t
)
×
(

1, α0, . . . , αh−10

)′
, (12)
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so that Zt−1 is a valid set of instruments for Xt−1. As a result, for the observed sequence {Yt}
n
t=1,

consider

α̂IV =

(∑
t
X̂t−1Zt−1

)′
Λ̂

(∑
t
X̂tZt−1

)
(∑

t
X̂t−1Zt−1

)′
Λ̂

(∑
t
X̂t−1Zt−1

) , (13)

ω̂IV = γ̂
(

1− α̂IV
)
, (14)

where

X̂t = Y 2t − γ̂, γ̂ = n−1
∑
t
Y 2t .

Also note that both α̂IV and ω̂IV are variance-targeted estimators (VTEs).5

ASSUMPTION A5: Λ̂
a.s.−→ Λ0, a positive definite matrix .

Suppose Λ̂ =

(
n−1

∑
t

Zt−1Z
′
t−1

)−1
. Then α̂IV is a TSLS estimator, where Xt−1 is first re-

gressed on Zt−1 and then Xt is regressed on the predicted value from the first stage regression.

Alternatively, owing to the available overidentifying restrictions, α̂IV is the solution to a linear,

two-step GMM estimator if Λ̂ =

(
n−1

∑
t

(
Xt − α̃Xt−1

)2
Zt−1Z

′
t−1

)−1
, where α̃ is a preliminary

estimator.

ASSUMPTION A6: E
(
Al
)
< 1 for l = 2, 3, 4.

A6 governs the existence of higher moments for {Yt}. If l = 2, then A6 is necessary and suffi cient

for E
(
Y 4t
)
< ∞ (see; e.g., Bollerslev, 1986, Theorem 1). The cases where l = 3, 4 correspond to

thin-tailed cases where E
(
Y 6t
)
<∞ and E

(
Y 8t
)
<∞, respectively.

While the two-step GMM version of (13) is certainly preferable on effi ciency grounds, it requires

A6 with l = 3 in order for A5 to hold, which is inconsistent with Figure 1. In the TSLS case, on

the other hand, since {Yt} is strongly mixing by Carrasco and Chen (2002, Corollary 6), Λ̂ =(∑
t

Zt−1Z
′
t−1

)−1
a.s.−→ γ−10 Ih by the Ergodic Theorem, where Ih is the (h× h) identity matrix,

given only slightly stronger than E
(
Y 2t
)
<∞.

α̂IV is related to the IV estimator proposed by Guo and Phillips (2001). There are, however,

two key differences. The first difference involves instrument choice. In Guo and Phillips, the

instruments are second-order lags as opposed to first-order lags, as is the case here. Second, the

5 In a QMLE context, VTE for (G)ARCH models is first introduced by Engle and Mezrich (1996), while the
asymptotic theory is studied by Francq, Horváth, and Zakoïan (2011) and Vaynman and Beare (2014).
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instruments in (13) are not effi cient in the sense of Kuersteiner (2002). Making them so requires

A6 with l = 3 and, therefore, is limited to the thin-tailed case.

Let Yt =
(
Yt, . . . , Yt+h

)
, where, for short hand, Y = Y0 =

(
Y0, . . . , Yh

)
. Then, Y

is regularly varying in Rh+1 with tail index κ0 (see Lemmas 2 and 3 in the Appendix), or, using

more short hand notation, Y is RV(κ0), so there exists a sequence of constants {an} such that

nP (|Y| > an) −→ 1, n→∞,

where |Y| = max
m=0,...,h

|Ym|; an = n1/κ0L (n), and L (·) is slowly-varying at ∞. That Y is regularly

varying is demonstrated in Davis and Mikosch (1998, Lemma A.1) and Mikosch and Stărică (2000,

Theorem 2.3) in instances where D is symmetric (see Remark R2 in the Appendix). Regular

variation of Y here follows minus any need for symmetry in D (see Lemma 3 in the Appendix) and

applies to both the ARCH(1) case in (7) as well as the threshold ARCH(1) case of (32) of the next

section, making the result compatible with A3 and complementary to Basrak, Davis and Mikosch

(2002, Corollary 3.5 (B)).

THEOREM 1. Consider the estimators in (13) and (14) for the model in (7). Let A0 =

E
(
Xt−1Zt−1

)′
Λ0 and B0 = E

(
Xt−1Zt−1

)′
Λ0E

(
Xt−1Zt−1

)
. Let Assumptions A1 with

k > 3 and A2—A5 hold. Then α̂IV
a.s.−→ α0, and ω̂IV

a.s.−→ ω0. If, under these same As-

sumptions, k = 6 in A1 and κ0 ∈ (3, 6), then

na−3n

(
α̂IV − α0

)
d−→ B−10 A0Vh, (15)

where the vector Vh =
(
V1, . . . , Vh

)′
is jointly (κ0/3)−stable, and

na−3n

(
ω̂IV − ω0

)
= −γ0na−3n

(
α̂IV − α0

)
+ op (1) . (16)

Alternatively, if Assumption A6 with l = 3 holds so that κ0 ∈ (6, ∞), then

√
n
(
α̂IV − α0

)
d−→ N

(
0, Σα0

)
(17)

and
√
n
(
ω̂IV − ω0

)
d−→ N

(
0, Σω0

)
, (18)
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where

Σα0
= B−20 A0E

(
W 2
t Zt−1Z

′
t−1

)
A
′
0, Σγ0

= E
(
X2
t

)
+ 2

∞∑
s=1

E (XtXs)

and

Σω0
= Σγ0

+ γ20Σα0
− 2γ0B

−1
0 A0

(∑
t≤s
E
(
WtZt−1Y

2
s

))
. (19)

Proof. All proofs are contained in the Appendix.

The IV estimator in (13) depends on the sample cross-order covariances from (11) that are all

nonzero owing to A3. The (weak) distributional limits of these cross-order covariances are estab-

lished using a CLT from Davis and Mikosch (1998, Theorem 2.8) for point processes of regularly

varying and dependent sequences (see Vaynman and Beare, 2014, for a concise review of this CLT)

and the continuous mapping theorem (see Lemma 5 in the Appendix for the demonstration of these

distributional limits). The method of proof extends results from Davis and Mikosch (1998) and

Mikosch and Stărică (2000) to cross-order covariances. This extension requires dual consideration

of (normalized) sums of Y 3t , |Yt|
3, and Y 2t Yt−m (as opposed to, normalized, sums of Y

4
t and Y

2
t Y

2
t−m,

as in the case of second-order autocovariances), and also relies on a first-order Taylor Expansion of

σ3t around ω; in which case, the limiting results are most appropriate for a small ω0.
6. The (weak)

distributional limit in (15), then, is simply a linear combination of the distributional limits of the

relevant cross-order covariances. Individual components of Vh are dependent (see Lemma 5 in the

Appendix). That k = 6 in A1 goes to demonstrating distributional convergence, not consistency.

The rate of convergence of α̂IV (and, by extension, ω̂IV ) is n
κ0−3
κ0 , which is (quite a bit) slower than

the
√
n case, especially for values of κ0 near the lower-bound of its required support, which, as

evidenced in Figure 1, are the most empirically relevant. Lastly, Theorem 1 omits the borderline

case of κ0 = 6 for the same significant and additional technical challenges cited in Vaynman and

Beare (2014, Section 3.2).

Consider

τ̂2n = n−1
∑
t
Y 6t , (20)

and suppose that, as is the case for (15), κ0 ∈ (3, 6). Then, following the same method of proof

for Davis and Hsing (1995, Theorem 3.1(i)),

na−6n τ̂2n
d−→ S0, (21)

6Given the values of ω̂ typically encountered in practice, this limitation doesn’t appear to pose much of a constraint.
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where S0 is (κ0/6)−stable. Given thatVh and S0 are each characterized by stable laws,
(

V
′
h, S0

)
will be multivariate stable (see; e.g., Hall and Yao, 2003, and Vaynman and Beare, 2014, Theorem

4), in which case,
√
n

(
α̂IV − α0

τ̂n

)
d−→ B−10 A0Vh

S
1/2
0

, (22)

by the continuous mapping theorem.

(22) enjoys the advantage relative to (15) of removing the unknown scaling factor a−3n . Given

(22), confidence intervals for α̂IV can be constructed by applying the subsampling method in Vayn-

man and Beare (2014, Section 4.1)to the left-hand-side of (22).7 Moreover, confidence intervals can,

alternatively, be obtained by bootstrapping this same normalized quantity as demonstrated in Hall

and Yao (2003, Corollary to Theorem 3.2). These bootstrap methods display better finite sample

performance relative to the subsampling method while maintaining tractability, owing (precisely)

to α̂IV being a simple estimator.

In the thin-tailed case where A6 with l = 3 holds, the distributional limit of α̂IV becomes

Gaussian, with the usual rate of convergence. (22) is helpful in illustrating this case; since, when

E
(
Y 6t
)
<∞, τ̂n has a degenerate limit, and the variance of the joint distribution behind Vh is well

defined. Interestingly, in this case, the asymptotic variance of γ̂ does not impact Σα0
. Moreover,

owing to (12), as c∗3 → 0 (i.e., as D becomes increasingly symmetric), Σα0
increases without bound.

In the limit where c∗3 = 0, Σα0
is ill-defined, rendering α̂IV unidentified. Finally, as is well known,

Λ0 = E
(
W 2
t Zt−1Z

′
t−1

)−1
produces the minimum-variance estimator. In the thin-tailed case, then,

α̂IV should be a two-step GMM estimator.

Given A6 with l = 2, the fourth moment analog to (11) for m ≥ 1 is

E
(
XtXt−m

)
= αm0 E

(
X2
t

)
, (23)

so that OLS estimators for α0 and ω0 are

α̂OLS =

∑
t
X̂tX̂t−1∑
t
X̂2
t−1

, (24)

7This method displays (very) poor finite sample performance for n ≤ 2, 500 (see Vaynman and Beare, 2004,
Section 4.2). However, given the sample sizes in Table 1 and the statement from these same authors that results for
their method are improved at sample sizes of n = 50, 000, subsampling might prove to be, generally, more feasible
(empirically) for applications involving intraday returns.
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ω̂OLS = γ̂
(

1− α̂OLS
)

(25)

Versions of (24) were first studied by Weiss (1986) and more recently by Guo and Phillips (2001).

THEOREM 2. Consider the estimators in (24) and (25) for the model of (7). Let Assumptions

A1 with k > 4, A2, and A6 with l = 2 hold. Then α̂OLS a.s.−→ α0, and ω̂
OLS a.s.−→ ω0. If, under

the same Assumptions, k = 8 in A1 and κ0 ∈ (4, 8), then

na−4n

(
α̂OLS − α0

)
d−→ E

(
X2
t−1
)−1

U1, (26)

where U1 is (κ0/4)−stable, and

na−4n

(
ω̂OLS − ω0

)
= −γ0na−4n

(
α̂OLS − α0

)
+ op (1) . (27)

Alternatively, if Assumption A6 with l = 4 holds so that κ0 ∈ (8, ∞), then

√
n
(
α̂OLS − α0

)
d−→ N

(
0, E

(
X2
t−1
)−2

E
(
W 2
t X

2
t−1
))
, (28)

and
√
n
(
ω̂OLS − ω0

)
d−→ N

(
0, Σω0

)
, (29)

where

Σω0
= Σγ0

+ E
(
X2
t−1
)−1(

γ20E
(
X2
t−1
)−1

E
(
W 2
t X

2
t−1
)
−
∑
t≤s
E
(
WtXt−1Y

2
s

))
. (30)

The OLS estimator in (24) depends on the first, sample second-order autocovariance from

(23). The resulting (weak) distributional limit in (26) follows immediately from Davis and Mikosch

(1998) if c∗3 = 0. Under Theorem 1, in contrast, the asymptotic properties of α̂OLS are unaffected

by whether or not A3 holds. The distribution of U1 is similar to that of V1 in Theorem 1 but,

nonetheless, is distinct because the former is based on fourth-order mixtures of Poisson and i.i.d.

point processes (see Lemma 4 and Remark R3 in the Appendix, as well as Davis and Hsing, 1995,

Theorem 3.1), while the latter depends on third-order mixtures of these same processes. The general

method of proof behind Theorems 1 and 2 is analogous. Asymptotic normality under Theorem 2

mirrors Weiss (1986, Theorem 4.4). The heavy-tailed case of (26), where the rate of convergence

13



is n
κ0−4
κ0 , is closely related to Kristensen and Linton (2006, Theorem 2); the latter of which, based

on results from Mikosch and Stărică (2000), also requires k = 8. It is important to note that if

κ0 ∈ (4, 8) and A3 holds, then α̂IV converges at a faster rate than does α̂OLS . Also, if κ0 ∈ (4, 8),

then for

τ̂2n = n−1
∑
t
Y 8t , na−8n τ̂2n

d−→ S̃0, (31)

where S̃0 is (κ0/8)−stable (see Davis and Mikosch, 1998, Section 4B(1), for a closely-related result).

As a consequence, normalizing the left-hand-side of (26) by τ̂n enables inference on α̂
OLS to be

conducted using the subsampling and bootstrapping methods discussed above in the context of

Theorem 1. Lastly, the borderline case of κ0 = 8 is not considered for the same reason that κ0 = 6

is excluded from consideration in Theorem 1.

In light of Figure 1, the heavy-tailed case of (26), potentially, isn’t heavy-tailed enough. Herein,

then, lies the principal advantage of the IV estimator considered in Theorem 1 over the OLS

alternative. Namely, so long as A3 holds, α̂IV requires less in the way of higher-moment existence

criteria than does α̂OLS .

2.2. The Threshold ARCH(1) Case

Consider next the model of

Yt = σtεt, σ2t = ω0 + α1,0Y
2
t−1 × I{Yt−1≥0} + α2,0Y

2
t−1 × I{Yt−1<0}, (32)

for which the following SRE applies:

σ2t = ω0 + σ2t−1At, At = α0,t−1ε
2
t−1, α0,t−1 = α1,0 × I{Yt−1≥0} + α2,0 × I{Yt−1<0}.

{Yt} then continues to have a strictly stationary solution given A4. Also, since (9) continues to

hold,

E
(
Y 2t
)

=
ω0 + α1,0Cov

(
Y 2t , I{Yt≥0}

)
+ α2,0Cov

(
Y 2t , I{Yt<0}

)
1−

(
α1,0 × P (Yt ≥ 0) + α2,0 × P (Yt < 0)

) , (33)
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so that

Xt = α1,0X1,t−1 + α2,0X1,t−1 +Wt (34)

= X
′
t−1α0 +Wt,

where

X1,t−1 = Y 2t−1 × I{Yt−1≥0} − E
(
Y 2t × I{Yt≥0}

)
,

X2,t−1 = Y 2t−1 × I{Yt−1<0} − E
(
Y 2t × I{Yt<0}

)
,

For the second-order equation in (34), consider as instruments

Z1,t−m = Yt−m × I{Yt−m≥0} − E
(
Yt × I{Yt≥0}

)
,

Z2,t−m = Yt−m × I{Yt−m<0} − E
(
Yt × I{Yt<0}

)
,

where m ≥ 1. Because E
(
Y 3t
)
remains well-defined given Lemma 1, multiplying both sides of (34)

by Zi,t−m for i = 1, 2 and taking expectations produces

E (XtZi,t−1) = αi,0E
(
Xi,tZi,t

)
, (35)

E (XtZi,t−m) = α1,0E (XtZi,t−m+1)−
(
α1,0 − α2,0

)
E
(
X2,tZi,t−m+1

)
, m ≥ 2, (36)

where

E
(
X1,tZ1,t

)
= E

(
Y 3t × I{Yt≥0}

)
− Cov

(
Yt, I{Yt≥0}

)
E
(
Y 2t × I{Yt≥0}

)
,

E
(
X2,tZ2,t

)
= E

(
Y 3t × I{Yt<0}

)
− Cov

(
Yt, I{Yt<0}

)
E
(
Y 2t × I{Yt<0}

)
.

By noting that Xt = X1,t +X2,t and Yt = Z1,t + Z2,t, from (35) follows that

2∑
i=1
E (XtZi,t−1) = E

(
XtYt−1

)
(37)

= α1,0E
(
X1,tZ1,t

)
+ α2,0E

(
X2,tZ2,t

)
,
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and from (36) follows

2∑
i=1
E (XtZi,t−m) = E

(
XtYt−m

)
(38)

= α1,0E
(
X1,tYt−m+1

)
−
(
α1,0 − α2,0

) [
E
(
X2,tZ1,t−m+1

)
+ E

(
X2,tZ2,t−m+1

)]
,

in which case, if α1,0 = α2,0, then (37) simplifies to (11) when m = 1, and (38) also simplifies to

(11), but for m ≥ 2.

ASSUMPTION A7: E
(
Xi,tZi,t

)
6= 0 for i = 1, 2.

Let

Zt−1 =
((
Z1,t−1, Z2,t−1

)
, . . . ,

(
Z1,t−h, Z2,t−h

))′
, h <∞.

Given A7, Zt−1 is a valid set of instruments for Xt−1 in (34), which is to say that the usual rank

condition required for IV estimators is satisfied. Notice that so long as α1,0 6= α2,0 (i.e., there

is a threshold effect in the conditional variance), A7 does not require A3, meaning that skewness

in Yt is not necessary for identifying a simple IV estimator for (34). Thus, it is asymmetry in

the conditional variance that renders Zt−1 valid for identifying α0. In the absence of this second-

moment asymmetry, A7 reduces to A3; since, in this case, E
(
X1,tZ1,t

)
= E

(
Y 3t
)
×P (Y ≥ 0), with

an analogous result holding for E
(
X2,tZ2,t

)
.

Based on the instrument vector Zt−1, the threshold ARCH(1) analog to (13) is

α̂IV = F̂

(
n−1

∑
t
X̂tẐt−1

)
, (39)

where

F̂ =

[(
n−1

∑
t

X̂t−1Ẑ
′
t−1

)
Λ̂

(
n−1

∑
t

X̂t−1Ẑ
′
t−1

)′]−1(
n−1

∑
t

X̂t−1Ẑ
′
t−1

)
Λ̂, (40)

a 2 × 2h matrix. When Λ̂ =

(
n−1

∑
t

Ẑt−1Ẑ
′
t−1

)−1
, (39) is a TSLS estimator for (32), with the

same discussion regarding selection of Λ̂ in Section 2 remaining applicable.

THEOREM 3. Consider the estimator in (39) for the model in (32), and let

F0 =

[
E
(
Xt−1Z

′

t−1

)
Λ0E

(
Xt−1Z

′
t−1

)′]−1
E
(
Xt−1Z

′
t−1

)
Λ0.

In addition, let Assumptions A1 with k > 3, A2, A4—A5 and A7 hold. Then, α̂IV a.s.−→ α0.

16



If, under the same Assumptions, k = 6 in A1 so that κ0 ∈ (3, 6), then

na−3n

(
α̂IV −α0

)
d−→ F0W

(+,−)
h , (41)

where

W
(+,−)
h =

(
W+
1 , W−1 , . . . , W+

h , W−h

)′
is jointly (κ0/3)−stable. Alternatively, if A6 with l = 3 holds so that κ0 ∈ (6, ∞), then

√
n
(
α̂IV −α0

)
d−→ N

(
0, F0E

(
W 2
t Zt−1Z

′
t−1

)
F
′
0

)
. (42)

The main result in (41) follows from the (weak) distributional convergence of n−1
∑
t
XtZt−1

(see Lemma 6 in the Appendix), which involves cross-order sums constructed from positive and

negative realizations of Yt, respectively. As a consequence, the distributional limit of α̂
IV is a linear

combination of the limits to sample cross-order covariances taken from the right-hand- and left-

hand-side of the distribution of Yt. Individual components of W
(+,−)
h are dependent (see Lemma 6

in the Appendix), andW+
1 andW

−
1 jointly depend on V1, which connects the limiting result in (41)

to that in (15) of Theorem 1. Normalizing the left-hand-side of (41) by τ̂n as it is defined in (20)

enables construction of either subsample or bootstrap confidence intervals for α̂IV as described

following Theorem 1. Lastly, in the case where A6 with l = 3 holds, Λ0 = E
(
W 2
t Zt−1Z

′
t−1

)
produces the minimum variance estimator so that α̂IV should be a two-step GMM estimator.

Given A6 with l = 2, from (34) follows that

E
(
XtXi,t−1

)
= αi,0E

(
X2
i,t−1

)
, (43)

E
(
XtXi,t−m

)
= α1,0E

(
XtXi,t−m+1

)
−
(
α1,0 − α2,0

)
E
(
X2,tXi,t−m+1

)
, m ≥ 2,

which reduces to (23) when α1,0 = α2,0. Based on these results,

α̂OLS = K̂

(
n−1

∑
t
X̂tX̂t−1

)
, K̂ =

(
n−1

∑
t

X̂t−1X̂
′
t−1

)−1
, (44)

the large sample properties of which are determined in the following Corollary.

COROLLARY. Consider the estimator in (44) for the model in (32), and let K0 = E
(
Xt−1X

′
t−1

)−1
.
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In addition, let Assumptions A1 with k > 4, A2, and A6 with l = 2 hold. Then, α̂OLS a.s.−→ α0.

If, under the same Assumptions, k = 8 in A1 so that κ0 ∈ (4, 8), then

na−4n

(
α̂OLS −α0

)
d−→ K0Q

(+,−)
1 , (45)

where

Q
(+,−)
1 =

(
Q+1 , Q−1

)′
and is jointly (κ0/4)−stable. Alternatively, if A6 with l = 4 holds so that κ0 ∈ (8, ∞), then

√
n
(
α̂OLS −α0

)
d−→ N

(
0, K0E

(
W 2
t Xt−1X

′
t−1

)
K
′
0

)
. (46)

The Corollary extends results from Davis and Mikosch (1998) to the threshold ARCH(1)

model. Necessary for the proof of the Corollary is establishing the (weak) distributional limit

of n−1
∑
t
XtXt−1, (see Lemma 7 in the Appendix). Given (31), normalizing the left-hand-side of

(45) by τ̂n produces
√
n

(
α̂OLS −α0

τ̂n

)
d−→ K0Q

(+,−)
1

S̃
1/2
0

,

in which case, subsample and bootstrap confidence intervals for α̂OLS can also result as in the

discussion that follows Theorem 2. The Corollary, like Theorem 2, also does not require D in A1

to be symmetric. As a result, the Corollary can also apply to the same processes towards which

Theorem 3 is directed; provided (of course) that the requisite higher moments are well defined.

However, in cases where κ0 ∈ (4, 6), α̂IV converges at a faster rate (although, to a different and

stable distribution) than does α̂OLS , and when κ0 ∈ [6, 8), α̂IV is
√
n asymptotically normal.

Moreover, and in contrast to the convergence rate differentials discovered between α̂IV and α̂OLS

in the ARCH(1) case, improvements in the rate of convergence enjoyed by α̂IV over α̂OLS do not

depend on A3.

Finally, let

Γ0 =
(
Cov

(
Y 2t , I{Yt≥0}

)
, Cov

(
Y 2t , I{Yt<0}

) )′
, P0 =

(
P (Yt ≥ 0) , P (Yt < 0)

)′
.

Then, given (33),

ω̂ = γ̂
(

1− P̂′α̂
)
− Γ̂′α̂
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so that

ω̂ − ω0 = (γ̂ − γ0)− (γ0P0 + Γ0)
′ (α̂−α0) ,

and from which comparable versions of (16) and (27) then follow. Lastly, given A6 with either

l = 3 or l = 4, comparable versions of (18) and (29) follow from Theorem 3 and the Corollary,

respectively.

2.3. The ARCH(p) Case

Consider finally the model of

Yt = σtεt, σ2t = ω0 +
p∑
i=1
αi,0Y

2
t−i, 1 ≤ p <∞. (47)

ASSUMPTION A8: c3
p∑
i=1

p∑
j=1

αi,0α
1/2
j,0 < 1.

A8 is the generalization of A3 to ARCH(p) processes and, as such, is suffi cient for E
(
Y 3t
)
<∞

(see Lemma 8 in the Appendix).

ASSUMPTION A9: Define ρp (εt) as the largest root of 1−
p∑
i=1
λiαi,0ε

2
t .

E
(
ρp (εt)

2s
)
< 1

for s = 2, 3, 4.

Suppose k = 2s in A1. Then A9 establishes E
(
Y 2st

)
< ∞ (see Carrasco and Chen, 2002,

Proposition 13).

From Basrak, Davis, and Mikosch (2002), (47) can be recast in terms of the following SRE:

Ỹt = AtỸt−1 + Bt, (48)

where

Ỹt =
(
σ2t , Y 2t−1, Y 2t−2, . . . , Y 2t−p+1

)
,
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At =



α1,0ε
2
t−1 α2,0 α2,0 · · · αp,0

ε2t−1 0 0 . . . 0

0 1 0 . . . 0
...

. . .
...

0 0 . . . 1 0


Bt =

(
ω0, 0, 0, . . . , 0

)′
.

Given A8, (48), Basrak, Davis, and Mikosch (2002, Theorem 3.1(A)), and Mikosch (1999, Remark

1.4.39), {Yt} has a strictly stationary solution. Given Basrak, Davis, and Mikosch (2002, Theorem

3.1 (B)),
{

Ỹt

}
is RV(κ0), and given Basrak, Davis, and Mikosch (2002, Corollary 3.5 (B)), {Yt} is

RV(κ0), where κ0 = 2κ0.

Given the definition of Xt used in Sections 2 and 3, let

Xt−1 =
(
Xt−1, . . . , Xt−p

)′
. (49)

Then the generalization of (10) is

Xt = X
′
t−1α0 +Wt, (50)

where α0 =
(
α1,0, . . . , αp,0

)′
. Consider

Zt−1 =
(
Yt−1, . . . , Yt−h

)′
, p ≤ h <∞, (51)

as a vector of instruments for Xt−1. Given A3, Zt−1 identifies α0 in (50) (see Lemma 9 in the

Appendix). Consider then the estimator

α̂IV = F̂

(
n−1

∑
t
X̂tZt−1

)
, (52)

where F̂ is defined as in (40), but with Zt−1 everywhere replacing Ẑt−1, and X̂t−1 defined as the

finite sample version of (49).

THEOREM 4. Consider the estimator in (52) for the model in (47). Let Assumptions A1 with

k ≥ 3, A2—A3, A5 and A8 hold. Then, α̂IV a.s.−→ α0. If, under these same Assumptions,
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k = 6 in A1 so that κ0 ∈ (3, 6), then

na−3n

(
α̂IV −α0

)
d−→ F0Vp,h, (53)

where the vector Vp,h =
(
Vp,1, . . . , Vp,h

)′
is jointly (κ0/3)−stable. Alternatively, if

Assumption A9 with s = 3 holds so that κ0 ∈ (6, ∞), then (42) results with F0 being the

population limit of F̂ in (52) and Zt−1 being defined in (51).

Under Theorem 4, (53) reduces to (15) when p = 1. As a consequence, A3 is necessary for

establishing the large sample properties of the IV estimator (see Lemma 9 in the Appendix). That

is, in the absence of skewness, the proposed estimator neither is identified nor does it possess a

stable limiting distribution. Given (20), normalization of the left-hand-side of (53) enables the

application of subsampling (see Vaynman and Beare, 2014, Theorem 6) or bootstrapping (see

Hall and Yao, 2003, Corollary to Theorem 3.1) techniques to
√
n
(
α̂IV −α0

τ̂n

)
for the purpose of

determining confidence intervals for α̂IV .

The distributional limit in (53) generally differs from the special case presented in (15) in that

the former is derived, in part, from (normalized) sums of {σt} (see Lemmas 10 and 12 in the

Appendix), while the latter is derived only from (normalized) sums of {Yt} ( see Lemma 5). The

complexities that arise in the cross-order covariances generated by (47) when p > 1 (see; e.g., Guo

and Phillips, 2001, Lemma 1) necessitate this differential approach. The limit in (53), nonetheless,

reduces to the limit in (15) when p = 1 and establishes both a stable limit and rate of convergence

for a simple IV estimator applicable to the ARCH(p) model under a method of proof that is

comparable to Basrak, Davis, and Mikosch (2002, Theorem 3.6).

The differential approach in establishing (53) relative to (15) is an example of the diminished

ability to easily verify the large sample properties of general ARCH(p) versus ARCH(1) processes

and (by extension) the estimators that apply to each. That A4 is suffi cient for establishing {Yt}

as strictly stationary in the ARCH(1) case, while a strictly negative Lyapunov exponent for the

sequence {At} in (48) is necessary for establishing the same result in the ARCH(p) case (see; e.g.,

Basrak, Davis, and Mikosch, 2002, Theorem 2.1) is another example.

If A9 with s = 2 holds, a simple estimator for (50) is (44) with Xt−1 defined by (49). Following

the same method of proof from Lemmas 9—12 in the Appendix, it can be established that

na−4n

(
α̂OLS −α0

)
d−→ K0Up,p,
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where the vector Up,p =
(
Up,1, . . . , Up,p

)′
is jointly (κ0/4)−stable, reduces to U1 from (26) in

the special case where p = 1, but generally is not solely an expression of the observable sequence

{Yt}. If A9 with s = 4 holds, then (46) is established following the same method of proof as for the

Corollary and echoes the result of Weiss (1986, Theorem 4.4). Confidence intervals for α̂OLS can

be constructed from
√
n
(
α̂OLS−α0

τ̂n

)
using (31), given either the subsample or bootstrap method

discussed above in the context of Theorem 4.

Lastly, since

ω̂ − ω0 = (γ̂ − γ0)− γ0ι′ (α̂−α0) ,

and given Theorem 4 and the large sample properties of α̂OLS discussed immediately above, the

large sample properties of ω̂ can be established analogously to results presented in Theorems 1 and

2, respectively.

3. Monte Carlo

This section considers the ARCH(1) model from Section 2, where {εt} is drawn from the skewed

student’s t density of Hansen (1994). This density has two parameters, λ and η, with the former

governing skewness, the latter governing the tails, and up to the ηth moment of being well defined.

For the simulations, λ =
(
−0.10, −0.20, −0.40, −0.80

)
and η =

(
4.1 6.1 8.1

)
. Skew-

ness parameters for each (λ, η) pair are reported in Tables 2 and 3. Those skewness parameters

range from a low of −0.27 for the pair (−0.10, 8.1) to a high of −3.48 for the pair (−0.80, 4.1). To

provide some context, Table 1 details skewness estimates for Japanese Yen returns (measured rela-

tive to the USD) and S&P 500 Index returns measured at different sampling frequencies. Apparent

from the Table, high frequency financial returns tend to display significant skewness that can be

quite large in magnitude (see also Cont and Kan, 2011, Table 3, for comparably-sized skewness

estimates for daily, 5-year credit default swap spread returns). As a consequence, even the highest

level of skewness considered in the simulations is not without empirical support. The values of

η = 6.1 and η = 8.1 conform with the requirements of A1 under Theorems 1 and 2, respectively.

The value of η = 4.1 is both consistent with Kristensen and Rahbek (2005) and the empirical find-

ings of Hill and Renault (2012). That value also implies a heavier tail for the rescaled errors than is

accommodated by either Theorem 2 or Theorem 1. Lastly, the heaviest tail case where λ = −0.80

and η = 4.1 only supports a well-defined second-moment for {Yt}, owing to its tail index.
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Across all simulations, ω0 = 0.005 and α0 = 0.25. Each of these values reflects the median

estimate from Euro, Swiss Franc, and Japanese Yen returns (all measured relative the USD) sampled

at the daily, hourly, 5-min, and 1-min frequencies obtained using the QMLE. The estimators under

study are OLS, TSLS, and the QMLE. Sample sizes for the simulations are 1, 000, 10, 000, and

100, 000, chosen to examine the convergence rates of the different estimators, noting that those

rates in the TSLS and OLS cases are anticipated to be quite a bit slower than in the QMLE case.

All simulations involve 10, 000 trials. Additional details on the simulations are contained in the

notes to Table 2.

Table 2 summarizes the simulation results for T = 1, 000. Tables 4 and 5 in the Supplemental

Appendix summarize simulation results for T = 10, 000 and T = 100, 000, respectively. In all cases,

TSLS is less biased than OLS but more biased than the QMLE. In addition, the TSLS bias tends

to decrease as the number of instruments decrease. However, this bias difference in TSLS by the

number of instruments tends to disappear as skewness in the time series increases. Across the

different sample sizes, the bias in both TSLS and OLS decreases as T increases but slowly relative

to the QMLE, evidencing the slower rates of convergence predicted by Theorems 1 and 2. Notice

that this tendency remains evident even in the heaviest-tail case of λ = −0.80 and η = 4.1. In this

case, TSLS is not consistent. However,

na−3n
∑
t
XtZt−1

d−→ Vh (54)

when κ0 ∈ (0, 3) following the same argument that supports (21); in which case, TSLS maintains

a stable distributional limit with the same rate of convergence as in (15).

For TSLS, the case where m = 100 tends to be the more effi cient than the cases where m = 50

and m = 25.8 This finding indicates that there isn’t much finite sample cost to using more instru-

ments. At high levels of skewness, though, differences in effi ciency by the number of instruments

appear muted. As skewness increases, TSLS effi ciency improves, which stands in contrast to both

OLS and the QMLE, where effi ciency degrades as skewness increases. TSLS, then, records its best

performance against the QMLE in cases of high skewness. What’s more, TSLS bests the QMLE

in these cases (in terms of rmse, as evidenced by its effi ciency ratio) when η = 4.1 and η = 6.1 for

T = 1, 000.9 This finding is especially surprising in the case where λ = −0.80 and η = 4.1, since, in

8Here effi ciency is measured by either rmse, mae, or mdae (see the Notes to Table 2 for the, respective, definition
of each) or the, respective, effi ciency ratios.

9An effi ciency ratio < 1 indicates less dispersion around the true parameter value than in the QMLE case.
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this case, only a well-defined second moment for {Yt} is supported. Moreover, both TSLS and OLS

best the QMLE by their widest, respective, margin in this heaviest-tailed case.10 As the sample size

increases, however, the QMLE eclipses both TSLS and OLS regardless of skewness level, owing to

the faster rate of convergence, by (very) wide margins. Lastly, across all cases (including those not

supported by Theorem 2), OLS outperforms TSLS at low skewness levels. This result reverses as

skewness increases, however, even in cases where η = 8.1, so that all of the Assumptions supporting

Theorem 2 are satisfied.

Table 3 details results on the rates of convergence of TSLS and OLS, benchmarking those

rates against the QMLE. Specifically, this investigation examines rates of reduction in standard

deviation and decile range (see the notes to Table 2 for a definition) between simulations based on

T = 1, 000 and T = 10, 000 (MC I), T = 10, 000 and T = 100, 000 (MC II), and T = 1, 000 and

T = 100, 000 (MC III) across the different (λ, η) pairs. These MC rates of reduction are compared

to the predicted rates from Theorem 1 for TSLS, Theorem 2 for OLS, and the usual
√
T -prediction

for the QMLE.

The first observation from Table 5 is that all MC rates of reduction are less for TSLS and OLS

than they are for the QMLE. For the QMLE, across all simulation designs, the
√
T -implied rates

of reduction tend to closely track the MC rates. In cases where η = 4.1, however, the
√
T -rates

tend to exceed the MC rates, where the amount of the exceedance increases as skewness increases.

For TSLS, in cases where η = 6.1, at the lowest skewness level, the predicted rate is much greater

than the MC rate under MC I and MC III, while it is modestly greater than the MC rate under MC

II. Notice that the rate of reduction under MC I << the rate under MC II; suggesting that at low

levels of skewness, the rate of convergence under Theorem 1 only kicks-in at large samples. Also at

the lowest skewness level, TSLS with the smallest number of instruments under MC I evidences a

noticeably faster rate of reduction than TSLS with the largest number of instruments. Differences

in these rates between TSLS with m = 25 and TSLS with m = 100 disappear, however, as the level

of skewness increases. At high levels of skewness, the rates of reduction are (essentially) the same

by number of instruments.

10The analog to (54) for OLS is

na−4n
∑
t

XtXt−1
d−→ U1

when κ0 ∈ (0, 4) (see Davis and Mikosch, 1998, Section 4B(1)). As a consequence, both TSLS and OLS have
stable distributional limits in this heaviest-tail case; although, neither estimator is consistent. The simulation results
indicate that the size of the resulting bias is small relative to the reduction in dispersion achieved by estimators based
on (normalized) products of cross-order and purely second-order sums, respectively, as opposed to the Gaussian
likelihood.
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As skewness increases, the rates of reduction under MC I and MC II themselves converge to a

common rate. That common rate tends to be well approximated by the prediction from Theorem

1. At the highest level of skewness, however, that theoretical prediction tends to under-represent

the MC rate (see the cases where λ = −0.80). Moreover, as skewness increases, the associated MC

rates tend to increase, while the opposite is true for the predicted rates, since the latter depend on

the tail index, which decreases as skewness increases. When comparing the case where λ = −0.40

to the case where λ = −0.80 (i.e., when comparing between two high skewness regimes), however,

there is a slight tendency for the MC rates to decrease as well.

Qualitatively, the same observations noted for TSLS when η = 6.1 also apply when η = 8.1.

Any differences in rates, however, tend to be more muted in the latter case. Moreover, these same

qualitative observations remain valid when η = 4.1. In the heaviest-tailed case where only the

second moment of {Yt} is well defined, MC rates remain quite comparable to the relatively less

severe case where λ = −0.40 (a case where the third moment of {Yt} is well-defined), a finding that

is consistent with (54). In addition, when making comparisons between cases of λ = −0.40 and

λ = −0.80, the results for η = 4.1 are (qualitatively) very comparable to the results for η = 6.1 and

η = 8.1, where in these latter two cases, all of the Assumptions underlying Theorem 1 are satisfied.

For OLS, in the case where η = 8.1, the predicted rates never track particularly closely with

the MC rates. This statement remains true (and to a much more noticeable degree) in cases where

η = 6.1, but the tail index (at least) supports a well-defined fourth moment for {Yt}. In general,

the predicted rates for OLS are systematically lower than the MC rates. Moreover, as the tail

indices approach the allowable lower bound of 4, the predicted rates diminish (much) more rapidly

than their MC counterparts.

4. Conclusion

High frequency financial returns are well-known to display both skewness and leptokurtosis.

Leptokurtosis has motivated the investigation of simple estimators for ARCH processes as potential

alternatives to the QMLE. No attention is paid to skewness as a motivator for simple ARCH

estimators. This paper fills that void. Specifically, this paper develops closed-form IV estimators

for ARCH processes that are applicable when either the raw returns being modeled are skewed, or

the conditional variance function is asymmetric.
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As an extension of this paper’s results, consider

σ2t = ω0 + α0Y
2
t−1 + β0σ

2
t−1,

which is the popular GARCH(1, 1) model introduced by Bollerslev (1986). For this model, the

analog to (10) is

Xt = φ0Xt−1 − β0Wt−1 +Wt, φ0 = α0 + β0.

Following from results in Section 2.1, Zt−2 =
(
Yt−2, . . . , Yt−h

)′ is a valid set of instruments for
Xt−1 when {Yt} is skewed and, thus, identifies φ0. From Prono (2014), skewness in {Yt} can

be used to separately identify α0 and β0. An interesting investigation, therefore, is whether the

simple estimators introduced in this paper can be extended to the empirically better performing

GARCH(p, q) class of models. This investigation is the subject of ongoing research.

Appendix

PRELIMINARIES. Contained in this Appendix are proofs to the Theorems and the Corollary

as well as statements of the supporting Lemmas. Detailed proofs of the Lemmas are contained

in the Supplemental Appendix. In what follows, for a vector y, δy denotes the Dirac measure

at y.

LEMMA 1. For ARCH processes that can be cast in terms of the SRE

σ2t = ω0 + σ2t−1At, (55)

let Assumptions A1 with k > 3 and A2 hold. Then Assumption A4 is suffi cient for E
(
σ3t
)
<

∞.

LEMMA 2. For ARCH processes consistent with (55), let Assumptions A1 with k > 3, A2 and

A4 hold. Consider the following lagged vectors for h ≥ 0:

Y
(i)
h =

(
|Y0|

i , . . . , |Yh|
i
)
, i = 1, 2,
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E
(2)
h =

(
ε20, A1ε

2
1,

2∏
j=1

Ajε
2
2, . . . ,

h∏
j=1

Ajε
2
h

)
.

If σ is RV (κ0), then Y
(2)
h is RV (κ0/2), and Y

(1)
h is RV (κ0).

REMARK R1: Lemma 2 summarizes a collection of results for (G)ARCH processes proved else-

where in the literature (see; e.g., Davis and Mikosch, 1998, and Mikosch and Stărică, 2000).

Note that A3 is not influential in determining Y
(i)
h to be regularly varying.

LEMMA 3. For the threshold ARCH (1) model, let Assumptions A1 with k > 3, A2 and A4 hold.

Consider the following lagged vectors for h ≥ 0,

Yi
h =

(
Y i
0 , . . . , Y i

h

)
, i = 1, 3,

E
(1)
h =

(
ε0, |ε0| ε1, |ε0| |ε1| ε2, . . . ,

h−1∏
i=0
|εi| εh

)
.

Then for all y1h ∈ Rh+1 \ {0}, Y1
h is RV (κ0), and Y3

h is RV (κ0/3).

REMARK R2: Lemma 3 also applies to the special case where α1,0 = α2,0 = α0 (i.e., the sym-

metric ARCH(1) model). Moreover, under Lemma 3, regular variation of {Yt} follows minus

any need for symmetry in the distribution of rescaled errors and so is consistent with A3 and

complementary to Basrak, Davis, and Mikosch (2002, Corollary 3.5(B)). If the rescaled errors

are, in fact, symmetrically distributed, then regular variation of {Yt} can also follow from

regular variation of {|Yt|} as given by Lemma 2 and independence of {|Yt|} and {sign (εt)}

so that Basrak, Davis, and Mikosch (2002, Corollary A.2) applies. Both Davis and Mikosch

(1998, Lemma A.1) and Mikosch and Stărică (2000, Theorem 2.3) rely on this latter argument.

LEMMA 4. Under the same Assumptions as Lemma 3 and for a sequence of constants {an},

Nn :=
n∑
t=1
δa−1n Yt

d−→ N :=
∞∑
i=1

∞∑
j=1

δPiQi,j , (56)
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where: (i)
∞∑
i=1
δPi is a Poisson process on (0, ∞); (ii) For Qi,j =

(
Q
(0)
ij , . . . , Q

(h)
ij

)
,

∞∑
j=1

δQi,j , i ∈ N, is an i.i.d. sequence of point processes on R
h+1
+ \ {0} with common distrib-

ution Q; (iii)
∞∑
i=1
δPi and

∞∑
j=1

δQi,j , i ∈ N, are mutually independent.

REMARK R3: Lemma 4 is the nonstandard CLT upon which (weak) distributional convergence

of the IV and OLS estimators discussed in the paper are based. A generalization of this

Lemma applies to the ARCH(p) case (see Basrak, Davis, and Mikosch, 2002, Theorem 2.10).

Specification of the distribution Q is found in Davis and Mikosch (1998, Theorem 2.8). Also,

following from Lemma 4 for Yl
t =

(
|Yt|

l , . . . ,
∣∣Yt+h∣∣l ) is

Nn :=
n∑
t=1
δa−ln Ylt

d−→ N :=
∞∑
i=1

∞∑
j=1

δ
P liQ

(l)
i,j

, (57)

where Q
(l)
i,j =

(∣∣∣Q(m)ij

∣∣∣l , m = 0, . . . , h

)
by a continuous mapping argument.

LEMMA 5. For the ARCH (1) model, let Assumptions A1 with k = 6, A2 and A4 hold. For

m = 0, . . . , h, define

γ̂(Y, Y 2) (m) = n−1
n−m∑
t=1

YtY
2
t+m, γ(Y, Y 2) (m) = E

(
Y0Y

2
m

)
.

Then for a κ0 ∈ (3, 6),

na−3n

(
γ̂(Y, Y 2) (m)− γ(Y, Y 2) (m)

)
d−→ (Vm)m=0,...,h , h ≥ 1, (58)

where V0 := V ∗0 −c∗3α
3/2
0

(
1− c3α

3/2
0

)−1
V ∗∗0 , Vm := V ∗m+α0Vm−1, and Vh =

(
V0, . . . , Vh

)′
is jointly (κ0/3)−stable.

LEMMA 6. For the threshold ARCH(1) model, let Assumptions A1 with k = 6, A2 and A4 hold.

For m = 0, . . . , h, define

γ̂+(Y, Y 2) (m) = n−1
n−m∑
t=1

Y 2t+mYt × I{Yt≥0}, γ+
(Y, Y 2)

(m) = E
(
Y 2mY0 × I{Y0≥0}

)
,

28



with γ̂−(Y, Y 2) (m) and γ−
(Y, Y 2)

(m) defined analogously using I{Yt<0}. Then for a κ0 ∈ (3, 6)

and h > 1,

na−3n

(
γ̂+(Y, Y 2) (m)− γ+

(Y, Y 2)
(m)

)
d−→
(
W+
m

)
m=0,...,h

, (59)

and

na−3n

(
γ̂−(Y, Y 2) (m)− γ−

(Y, Y 2)
(m)

)
d−→
(
W−m

)
m=0,...,h

, (60)

where

W+
m = V +m + α1,0W

+
m−1, W−m = V −m + α2,0W

−
m−1,

both W+
0 and W−0 jointly depend on V ∗∗0 from the proof of Lemma 5, and

W
(+,−)
h =

(
W+
0 , W−0 , . . . , W+

h , W−h

)′
,

which is jointly (κ0/3)−stable.

LEMMA 7. Let Assumptions A1 with k = 8, A2 and A6 with l = 2 hold. For m = 0, 1 define

γ̂+Y 2 (m) = n−1
n−m∑
t=1

Y 2t+mY
2
t × I{Yt≥0}, γ+

Y 2
(m) = E

(
Y 2mY

2
0 × I{Y0≥0}

)
,

with γ̂−Y 2 (m) and γ−
Y 2

(m) defined analogously using I{Yt<0}. Then for a κ0 ∈ (4, 8),

na−4n
(
γ̂+Y 2 (m)− γ+

Y 2
(m)

) d−→
(
Q+m
)
m=0,1

,

and

na−4n
(
γ̂−Y 2 (m)− γ−

Y 2
(m)

) d−→
(
Q−m
)
m=0,1

,

where

Q+1 = U+1 + α1,0Q
+
0 , Q−1 = U−1 + α2,0Q

−
0 ,

jointly depend on U1 from Theorem 2, and

Q
(+,−)
1 =

(
Q+1 , Q−1

)′
is jointly (κ0/4)−stable.
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LEMMA 8. For the ARCH (p) model, let Assumptions A1 with k > 3 and A2 hold. Then As-

sumption A8 is suffi cient for E
(
σ3t
)
<∞.

LEMMA 9. For the ARCH (p) model let Assumptions A1 with k > 3, A2 and A8 hold. Consider

Xt = X
′
t−1α0 +Wt (61)

as it is defined in Section 2.3 of the main text and the set of instruments

Zt−1 =
(
Yt−1, . . . , Yt−h

)′
,

where, in this case, h = p. Given Assumption A3, Zt−1 identifies α0.

LEMMA 10. For the ARCH (p) model, let Assumptions A1 with k = 6, A2 and A8 hold. Then

a−3n
∑
t
σ3t+1 − E

(
σ3t+1

) d−→ V0,σ

when κ0 ∈ (3, 6), where V0,σ is (κ0/3)−stable.

LEMMA 11. For the ARCH (p) model, let Assumptions A1 with k = 6, A2 and A8 hold. Then

a−3n
∑
t
Y 2t Yt+m

d−→
(
Rp,m

)
m=1,...,p

,

when κ0 ∈ (3, 6), where each Rp,m is (κ0/3)−stable.

LEMMA 12. For the ARCH (p) model, let Assumptions A1 with k = 6, A2 and A8 hold. Then,

given the definitions of γ̂(Y, Y 2) (m) and γ(Y, Y 2) (m) in Lemma 5,

na−3n

(
γ̂(Y, Y 2) (m)− γ(Y, Y 2) (m)

)
d−→
(
Vp,m

)
m=0,...,h

(62)
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for a κ0 ∈ (3, 6), where Vp,m := V ∗p,m − α1,0Vp.m−1, Vp,0 := V ∗p,0 + c∗3V0,σ, and the vector

Vp,h =
(
Vp,0, . . . , Vp,h

)′
is jointly (κ0/3)−stable.

PROOF OF THEOREM 1. To begin, note that

X̂t = Xt − (γ̂ − γ0) , (63)

and

X̂t = c+ α0X̂t−1 +Wt, (64)

where c = (α0 − 1) (γ̂ − γ0). Then given (64),

α̂IV = α0 +

c

(∑
t
X̂t−1Zt−1

)′
Λ̂

(∑
t

Zt−1

)
(∑

t
X̂t−1Zt−1

)′
Λ̂

(∑
t
X̂t−1Zt−1

) (65)

+

(∑
t
X̂t−1Zt−1

)′
Λ̂

(∑
t
WtZt−1

)
(∑

t
X̂t−1Zt−1

)′
Λ̂

(∑
t
X̂t−1Zt−1

)

By Carrasco and Chen (2002, Corollary 6), {Yt} is strong mixing. As a consequence, given

(11) and A3, α̂IV a.s.→ α0, and ω̂
IV a.s.→ ω0 by the Ergodic Theorem. Next, given (63) and

noting that the population analog to α̂IV in (13) is α0,

na−3n

(
α̂IV − α0

)
=

A0

(
a−3n

∑
t
XtZt−1 − E

(
XtZt−1

))
B0

+ oP (1)

d−→ B−10 A0Vh,
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by Lemma 5, noting that

a−3n
∑
t
XtZt−1 − E

(
XtZt−1

)
= a−3n

∑
t
Y 2t Zt−1 − E

(
Y 2t Zt−1

)
(66)

−γ0n
κ0−6
2κ0

(
n−1/2

∑
t

Zt−1

)
= a−3n

∑
t
Y 2t Zt−1 − E

(
Y 2t Zt−1

)
+ oP (1)

by Ibragimov and Linnik (1971, Theorem 18.5.3). Next, since ω̂IV = γ̂
(

1− α̂IV
)
,

na−3n

(
ω̂IV − ω0

)
= −γ0na−3n

(
α̂IV − α0

)
+ na−3n (γ̂ − γ0) (67)

= −γ0na−3n
(
α̂IV − α0

)
+ oP (1) ,

where the second equality relies on

a−2n
∑
t
Y 2t

d−→ V 0,

for κ0 ∈ (3, 4] by Davis and Mikosch (1998), where V 0 is (κ0/2)-stable, and

n−1/2
∑
t
Y 2t

d−→ N
(
0, Σγ0

)
,

for κ0 ∈ (4, 6) by Ibragimov and Linnik, where Σγ0
is defined in Theorem 1. Finally, if

κ0 ∈ (6, ∞), then from (65),

√
n
(
α̂IV − α0

)
= B−10 A0

(
n−1/2

∑
t
WtZt−1

)
+ oP (1)

d−→ N

0,
A0E

(
W 2
t Zt−1Z

′
t−1

)
A
′
0

B2
0

 ,

and

√
n
(
ω̂IV − ω0

)
=
√
n (γ̂ − γ0)− γ0

√
n
(
α̂IV − α0

)
d−→ N

(
0, Σω0

)
,

with Σω0
also defined in Theorem 1. Both of these standard convergence results rely on

Ibragimov and Linnik, with the first result also depending on the Slutsky Theorem.�
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PROOF OF THEOREM 2. Given (63) and (64),

α̂OLS = α0 +

(∑
t
X̂2
t−1

)−1(
c
∑
t
X̂t−1− (γ̂ − γ0)

∑
t
Wt+

∑
t
WtXt−1

)
. (68)

Then α̂OLS a.s.→ α0, and ω̂
OLS a.s.→ ω0 given the same arguments that establish consistency in

the proof of Theorem 1. Next, given (63),

na−4n

(
α̂OLS − α0

)
= E

(
X2
t−1
)−1(

a−4n
∑
t
XtXt−1 − E

(
XtXt−1

))
+ oP (1) (69)

d−→ E
(
X2
t−1
)−1

U1,

given Lemmas 2 and 3 and Davis and Mikosch (1998). Comparable to Theorem 1, this (weak)

distributional convergence results relies on

a−4n
∑
t
XtXt−1 − E

(
XtXt−1

)
= a−4n

∑
t
Y 2t Y

2
t−1 − E

(
Y 2t Y

2
t−1
)

+ oP (1)

since

a−4n
∑
t
Y 2t − γ0 = n

κ0−8
2κ0

(
n−1/2

∑
t
Y 2t − γ0

)
d−→ 0 (70)

by Ibragimov and Linnik (1971, Theorem 18.5.3). Also given (70),

na−4n

(
ω̂OLS − ω0

)
= −γ0na−4n

(
α̂OLS − α0

)
+ oP (1) .

Finally, if κ0 ∈ (8, ∞), then given (68),

√
n
(
α̂OLS − α0

)
= E

(
X2
t−1
)−1(

n−1/2
∑
t
WtXt−1

)
+ oP (1)

d−→ N
(

0, E
(
X2
t−1
)−2

E
(
W 2
t X

2
t−1
))

by Ibragimov and Linnik and the Slutsky Theorem, and

√
n
(
ω̂OLS − ω0

)
=
√
n (γ̂ − γ0)− γ0

√
n
(
α̂OLS − α0

)
d−→ N

(
0, Σω0

)
where Σω0

is defined in Theorem 2.�
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PROOF OF THEOREM 3. Given (63), also note that

X̂t−1 = Xt−1 −
(
Ĝ−G0

)
, G0 =

(
E
(
Y 2t × I{Yt≥0}

)
, E

(
Y 2t × I{Yt<0}

))′
and

Ẑt−1 = Zt−1 −
(
Ĥ−H0

)
,

H0 =
(
E
(
Y 2t × I{Yt≥0}

)
, E

(
Y 2t × I{Yt<0}

)
, E

(
Y 2t × I{Yt≥0}

)
, E

(
Y 2t × I{Yt<0}

)
, . . .

)′
so that, comparable to (64),

X̂t = c+ X̂
′
t−1α0 +Wt,

where c =
(
Ĝ−G0

)′
α0 − (γ̂ − γ0). Then

α̂IV −α0 = F̂

[
c

(
n−1

∑
t

Z
′
t−1

)
−
(
Ĥ−H0

)(
n−1

∑
t

Wt

)]
+ F̂

(
n−1

∑
t

WtZt−1

)
, (71)

from which α̂IV a.s.→ α0, where identification follows from A9 and (almost sure) convergence

in the sample moments follows from the Ergodic Theorem, since {Yt} is strong mixing by

Carrasco and Chen (2002, Corollary 10). Next, from (39),

α̂IV −α0 = F̂

(
n−1

∑
t
XtZt−1 − E

(
XtZt−1

))
−F̂

[(
n−1

∑
t

Zt−1

)((
Ĥ−H0

)
+ (γ̂ − γ0)− (γ̂ − γ0)

(
Ĥ−H0

))]
−
(
F̂− F0

)
E
(
XtZt−1

)
such that

na−3n

(
α̂IV −α0

)
= F0

(
a−3n

∑
t
XtZt−1 − E

(
XtZt−1

))
+ oP (1) .

Let Zt−1 = Z
(1)
t−1 −H0. Given the arguments that support the second equalities in both (66)
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and (67),

a−3n
∑
t
XtZt−1 − E

(
XtZt−1

)
= a−3n

∑
t
Y 2t Z

(1)
t−1 − E

(
Y 2t Z

(1)
t−1

)
−
(

H0a
−3
n

∑
t
Y 2t − E

(
Y 2t
)

+ γ0a
−3
n

∑
t

Zt−1

)
= a−3n

∑
t
Y 2t Z

(1)
t−1 − E

(
Y 2t Z

(1)
t−1

)
+ oP (1)

such that

na−3n

(
α̂IV −α0

)
d−→ F0W

(+,−)
h ,

by Lemma 6. Finally, from (71),

√
n
(
α̂IV −α0

)
d−→ N

(
0, F0E

(
W 2
t Zt−1Z

′
t−1

)
F
′
0

)
,

by Ibragimov and Linnik (1971, Theorem 18.5.3) and the Slutsky Theorem.�

PROOF OF THE COROLLARY. From (44), using the expressions for X̂t−1 and X̂t as they

relate to Xt−1 and Wt, respectively, in the proof to Theorem 3,

α̂OLS −α0 = K̂

[
c

(
n−1

∑
t

Xt−1

)
+
(
Ĝ−G0

)(
n−1

∑
t
Wt − 1

)
+ n−1

∑
t

Xt−1Wt

]
. (72)

Then, since

E
(
Xt−1X

′
t−1

)
=

 E
(
X2
1,t−1

)
0

0 E
(
X2
2,t−1

)
 ,

α0 is identified so that α̂
OLS a.s.−→ α0 follows from the same argument that establishes (almost

sure) consistency in the proof of Theorem 3. Next, let X̂t−1 = Z
(2)
t−1 −G0. In the case where
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κ0 ∈ (4, 8), consider

na−4n

(
α̂OLS −α0

)
= K0

[
a−4n

∑
t

Xt−1Xt − E
(
Xt−1Xt

)]
+ op (1)

= K0

[
a−4n

∑
t

Z
(2)
t−1Y

2
t − E

(
Z
(2)
t−1Y

2
t

)]
−n

κ0−8
2κ0

[
G0n

−1∑
t
Y 2t − E

(
Y 2t
)

+ γ0n
−1∑

t
Xt−1

]
+ op (1)

= K0

[
a−4n

∑
t

Z
(2)
t−1Y

2
t − E

(
Z
(2)
t−1Y

2
t

)]
+ op (1)

d−→ K0Q
(+,−)
1 ,

where Q
(+,−)
1 =

(
Q+1 , Q−1

)
; the third equality follows from the standard CLT used else-

where in this Appendix, and (weak) convergence in distribution follows from Lemma 7. Fi-

nally, if κ0 ∈ (8, ∞), then given (72), (46) follows along the same lines as given in the proof

to Theorem 3.�

PROOF OF THEOREM 4. Let ι be a p× 1 vector of ones. Given (49),

X̂t−1 = Xt−1 − (γ̂ − γ0) ι

Then given (63),

α̂IV −α0 = F̂

(
c

(
n−1

∑
t

Zt−1

)
+ n−1

∑
t
WtZt−1

)
, (73)

where c = (ι′α0 − 1) (γ̂ − γ0). By Lemma 9, E
(
Xt−1Z

′
t−1

)
has full row rank. By Carrasco

and Chen (2002, Proposition 12), {Yt} is strong mixing. Then by the Ergodic Theorem,

α̂IV
a.s.−→ α0. Next, given (63),

α̂IV−α0 = F̂

(
n−1

∑
t
XtZt−1 − E

(
XtZt−1

))
−(γ̂ − γ0) F̂

(
n−1

∑
t

Zt−1

)
+
(
F̂− F0

)
E
(
XtZt−1

)
so that

na−3n

(
α̂IV −α0

)
= F0

(
a−3n

∑
t
Y 2t Zt−1 − E

(
Y 2t Zt−1

))
+ op (1) , (74)
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since

a−3n
∑
t
XtZt−1 − E

(
XtZt−1

)
= a−3n

∑
t
Y 2t Zt−1 − E

(
Y 2t Zt−1

)
+ op (1) ,

following the same argument that supports (66). Then by Lemma 12,

na−3n

(
α̂IV −α0

)
d−→ F0Vp,h.

Finally, from (73),

√
n
(
α̂IV −α0

)
d−→ N

(
0, F0E

(
W 2
t Zt−1Z

′
t−1

)
F
′
0

)
,

if κ0 ∈ (6, ∞) by Ibragimov and Linnik (1971, Theorem 18.5.3) and the Slutsky Theorem.
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TABLE 1

JPY Returns SPX Returns
freq. obs. skew. freq. obs. skew.

1-min 194,997 -2.68 1-min 42,502 -1.73
(0.01) (0.01)

5-min 35,028 -1.94 5-min 8,503 -3.12
(0.01) (0.03)

10-min 17,523 -1.51
(0.02)

15-min 11,685 -3.10
(0.02)

Notes to Tables 1. The data source is Bloomberg. The date range for all return series is 7/19/2015—

12/31/2015. Skew is an estimate of the standardized third moment. Standard errors for the skewness estimates

are in parentheses and are measured under the null of normality.
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TABLE 2

mean med. dec. Effi ciency Ratio
λ skew. κ est. m bias bias sd rge. rmse mae mdae rmse mae mdae

η = 4.1
-0.10 -0.65 3.44 TSLS 100 -0.056 -0.076 0.123 0.314 0.135 0.114 0.107 1.17 1.31 1.51

50 -0.041 -0.059 0.134 0.349 0.140 0.117 0.108 1.22 1.35 1.53
25 -0.022 -0.044 0.149 0.391 0.151 0.126 0.116 1.31 1.45 1.64

OLS -0.068 -0.088 0.106 0.257 0.126 0.108 0.104 1.10 1.24 1.46
QMLE -0.005 -0.022 0.115 0.269 0.115 0.087 0.071 1.00 1.00 1.00

-0.20 -1.27 3.35 TSLS 100 -0.057 -0.076 0.122 0.310 0.135 0.113 0.107 1.12 1.25 1.45
50 -0.046 -0.063 0.130 0.335 0.138 0.115 0.107 1.15 1.27 1.45
25 -0.034 -0.054 0.140 0.363 0.144 0.119 0.110 1.20 1.32 1.49

OLS -0.071 -0.092 0.107 0.256 0.128 0.110 0.107 1.06 1.21 1.45
QMLE -0.004 -0.024 0.120 0.279 0.120 0.091 0.074 1.00 1.00 1.00

-0.40 -2.32 3.15 TSLS 100 -0.064 -0.083 0.114 0.288 0.130 0.110 0.104 0.95 1.08 1.26
50 -0.059 -0.077 0.116 0.293 0.131 0.110 0.103 0.95 1.07 1.24
25 -0.056 -0.075 0.119 0.299 0.132 0.110 0.103 0.96 1.08 1.24

OLS -0.080 -0.101 0.106 0.254 0.132 0.115 0.115 0.97 1.12 1.38
QMLE -0.004 -0.031 0.137 0.315 0.137 0.103 0.083 1.00 1.00 1.00

-0.80 -3.48 2.95 TSLS 100 -0.078 -0.095 0.100 0.246 0.127 0.109 0.106 0.78 0.89 1.04
50 -0.076 -0.093 0.101 0.250 0.127 0.108 0.106 0.78 0.88 1.03
25 -0.075 -0.091 0.102 0.251 0.126 0.108 0.104 0.78 0.88 1.01

OLS -0.096 -0.117 0.099 0.232 0.138 0.122 0.124 0.85 0.99 1.21
QMLE -0.005 -0.045 0.162 0.375 0.162 0.123 0.103 1.00 1.00 1.00

η = 6.1
-0.10 -0.34 4.29 TSLS 100 -0.038 -0.050 0.119 0.305 0.124 0.102 0.090 1.58 1.66 1.77

50 -0.024 -0.036 0.134 0.349 0.136 0.112 0.101 1.72 1.82 1.98
25 -0.005 -0.022 0.151 0.398 0.151 0.124 0.112 1.92 2.02 2.19

OLS -0.042 -0.056 0.094 0.227 0.103 0.085 0.077 1.31 1.38 1.51
QMLE -0.003 -0.010 0.079 0.196 0.079 0.061 0.051 1.00 1.00 1.00

-0.20 -0.67 4.16 TSLS 100 -0.038 -0.049 0.118 0.303 0.124 0.102 0.090 1.52 1.59 1.70
50 -0.026 -0.038 0.129 0.336 0.132 0.108 0.097 1.61 1.69 1.82
25 -0.014 -0.029 0.139 0.362 0.140 0.114 0.102 1.71 1.79 1.91

OLS -0.044 -0.060 0.096 0.230 0.106 0.087 0.079 1.29 1.37 1.50
QMLE -0.003 -0.010 0.082 0.201 0.082 0.064 0.053 1.00 1.00 1.00

-0.40 -1.23 3.85 TSLS 100 -0.041 -0.055 0.111 0.279 0.118 0.097 0.087 1.27 1.35 1.46
50 -0.038 -0.049 0.115 0.292 0.121 0.099 0.087 1.30 1.37 1.46
25 -0.034 -0.046 0.118 0.297 0.123 0.100 0.089 1.32 1.39 1.49

OLS -0.052 -0.068 0.098 0.237 0.111 0.093 0.087 1.19 1.29 1.47
QMLE -0.003 -0.014 0.093 0.226 0.093 0.072 0.059 1.00 1.00 1.00

-0.80 -1.88 3.58 TSLS 100 -0.051 -0.063 0.098 0.242 0.110 0.092 0.083 0.97 1.05 1.14
50 -0.049 -0.061 0.099 0.247 0.111 0.092 0.083 0.97 1.05 1.14
25 -0.047 -0.059 0.100 0.248 0.111 0.091 0.082 0.98 1.05 1.13

OLS -0.066 -0.082 0.096 0.229 0.117 0.099 0.096 1.02 1.14 1.31
QMLE -0.002 -0.020 0.114 0.274 0.114 0.087 0.073 1.00 1.00 1.00

η = 8.1
-0.10 -0.27 4.82 TSLS 100 -0.030 -0.040 0.115 0.298 0.119 0.097 0.085 1.76 1.82 1.88

50 -0.017 -0.027 0.132 0.346 0.133 0.109 0.097 1.96 2.04 2.16
25 0.002 -0.011 0.150 0.401 0.150 0.123 0.112 2.22 2.30 2.48

OLS 0.068 0.055 0.087 0.209 0.111 0.082 0.061 1.63 1.53 1.36
QMLE -0.003 -0.007 0.068 0.171 0.068 0.054 0.045 1.00 1.00 1.00

-0.20 -0.53 4.66 TSLS 100 -0.030 -0.039 0.115 0.297 0.119 0.097 0.085 1.70 1.75 1.82
50 -0.020 -0.029 0.129 0.336 0.130 0.106 0.094 1.86 1.92 2.01
25 -0.007 -0.019 0.139 0.363 0.139 0.113 0.100 1.99 2.05 2.13

OLS 0.066 0.053 0.089 0.215 0.111 0.082 0.060 1.58 1.47 1.28
QMLE -0.003 -0.007 0.070 0.176 0.070 0.055 0.047 1.00 1.00 1.00

-0.40 -0.98 4.29 TSLS 100 -0.033 -0.043 0.108 0.272 0.113 0.092 0.080 1.45 1.50 1.57
50 -0.029 -0.039 0.114 0.289 0.117 0.095 0.082 1.50 1.54 1.60
25 -0.026 -0.036 0.117 0.295 0.120 0.097 0.084 1.53 1.57 1.64

OLS 0.060 0.046 0.092 0.224 0.110 0.080 0.057 1.41 1.30 1.12
QMLE -0.003 -0.009 0.078 0.195 0.078 0.061 0.051 1.00 1.00 1.00

-0.80 -1.52 3.97 TSLS 100 -0.041 -0.051 0.096 0.238 0.104 0.085 0.076 1.11 1.16 1.22
50 -0.039 -0.048 0.098 0.242 0.105 0.085 0.075 1.12 1.16 1.21
25 -0.037 -0.047 0.099 0.244 0.105 0.085 0.075 1.12 1.16 1.21

OLS -0.053 -0.068 0.093 0.222 0.107 0.090 0.084 1.14 1.22 1.36
QMLE -0.002 -0.013 0.094 0.234 0.094 0.074 0.062 1.00 1.00 1.00
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TABLE 3

MC I MC II MC II
λ skew. κ est. m SD DR SD DR Predict. SD DR Predict.

η = 4.1
-0.10 -0.65 3.44 TSLS 100 0.14% 1.40% -9.57% -12.32% -25.35% -9.44% -11.09% -44.27%

TSLS 50 -1.13% -0.76% -13.97% -17.92% -25.35% -14.94% -18.54% -44.27%
TSLS 25 -6.07% -6.06% -16.52% -21.30% -25.35% -21.59% -26.07% -44.27%
OLS -16.73% -20.09% -11.08% -15.92% NA -25.96% -32.81% NA
QMLE -59.96% -62.17% -64.69% -64.25% -68.38% -85.86% -86.47% -90.00%

-0.20 -1.27 3.35 TSLS 100 -12.98% -15.91% -23.34% -31.39% -21.48% -33.29% -42.31% -38.34%
TSLS 50 -15.53% -19.16% -25.63% -33.38% -21.48% -37.18% -46.14% -38.34%
TSLS 25 -19.79% -23.77% -26.78% -35.54% -21.48% -41.27% -50.86% -38.34%
OLS -16.59% -17.95% -10.30% -16.53% NA -25.19% -31.51% NA
QMLE -59.61% -61.82% -63.11% -63.43% -68.38% -85.10% -86.04% -90.00%

-0.40 -2.32 3.15 TSLS 100 -26.49% -33.07% -26.68% -35.23% -10.15% -46.10% -56.65% -19.27%
TSLS 50 -27.35% -33.70% -27.62% -36.36% -10.15% -47.41% -57.80% -19.27%
TSLS 25 -28.95% -35.21% -28.05% -36.15% -10.15% -48.88% -58.63% -19.27%
OLS -15.81% -17.90% -28.05% -36.15% NA -23.22% -29.90% NA
QMLE -57.71% -60.31% -61.06% -62.50% -68.38% -83.53% -85.12% -90.00%

-0.80 -3.48 2.95 TSLS 100 -27.39% -33.29% -24.06% -31.39% NA -44.86% -54.23% NA
TSLS 50 -27.64% -34.03% -25.03% -31.94% NA -45.75% -55.10% NA
TSLS 25 -28.82% -34.51% -24.20% -32.19% NA -46.05% -55.59% NA
OLS -6.30% -3.47% -14.77% -23.39% NA -20.14% -26.04% NA
QMLE -54.11% -56.88% -60.29% -62.09% -68.38% -81.78% -83.65% -90.00%

η = 6.1
-0.10 -0.27 4.82 TSLS 100 -6.35% -6.64% -30.53% -37.15% -50.00% -34.95% -41.32% -75.00%

TSLS 50 -8.24% -8.52% -35.62% -42.48% -50.00% -40.93% -47.39% -75.00%
TSLS 25 -13.18% -14.44% -38.61% -45.06% -50.00% -46.70% -53.00% -75.00%
OLS -32.16% -38.29% -28.60% -38.27% -14.50% -51.57% -61.91% -26.89%
QMLE -67.83% -67.52% -67.30% -67.49% -68.38% -89.48% -89.44% -90.00%

-0.20 -0.67 4.16 TSLS 100 -23.68% -27.14% -44.49% -52.57% -47.31% -57.64% -65.44% -72.24%
TSLS 50 -27.53% -31.96% -46.58% -53.72% -47.31% -61.28% -68.51% -72.24%
TSLS 25 -30.91% -35.98% -47.46% -54.06% -47.31% -63.70% -70.59% -72.24%
OLS -30.92% -36.26% -26.65% -36.46% -8.31% -49.33% -59.50% -15.94%
QMLE -67.48% -67.03% -67.32% -67.28% -68.38% -89.37% -89.21% -90.00%

-0.40 -1.23 3.85 TSLS 100 -38.70% -45.61% -44.65% -50.68% -39.96% -66.07% -73.18% -63.95%
TSLS 50 -40.12% -46.87% -45.37% -51.89% -39.96% -67.28% -74.44% -63.95%
TSLS 25 -41.42% -47.59% -45.42% -52.14% -39.96% -68.03% -74.92% -63.95%
OLS -28.06% -33.97% -23.33% -31.01% NA -44.84% -54.45% NA
QMLE -67.13% -66.44% -67.29% -67.03% -68.38% -89.25% -88.94% -90.00%

-0.80 -1.88 3.58 TSLS 100 -39.43% -45.28% -39.07% -46.37% -31.11% -63.09% -70.65% -52.54%
TSLS 50 -39.75% -45.59% -40.02% -47.12% -31.11% -63.86% -71.23% -52.54%
TSLS 25 -40.71% -46.64% -39.70% -46.02% -31.11% -64.25% -71.20% -52.54%
OLS -24.40% -30.05% -19.43% -25.95% NA -39.09% -48.20% NA
QMLE -66.11% -65.21% -67.58% -66.93% -68.38% -89.01% -88.49% -90.00%

η = 8.1
-0.10 -0.27 4.82 TSLS 100 -9.19% -9.19% -40.66% -45.48% -58.04% -46.11% -50.49% -82.39%

TSLS 50 -11.07% -11.33% -45.71% -51.10% -58.04% -51.72% -56.64% -82.39%
TSLS 25 -16.11% -18.43% -48.68% -53.14% -58.04% -56.95% -61.78% -82.39%
OLS -40.72% -46.20% -39.48% -47.75% -32.32% -64.13% -71.89% -54.19%
QMLE -68.63% -68.18% -67.17% -67.81% -68.38% -89.70% -89.75% -90.00%

-0.20 -0.53 4.66 TSLS 100 -28.36% -32.54% -53.75% -57.79% -55.91% -66.86% -71.52% -80.56%
TSLS 50 -32.92% -37.13% -55.34% -59.63% -55.91% -70.05% -74.62% -80.56%
TSLS 25 -36.27% -40.95% -56.25% -59.83% -55.91% -72.12% -76.28% -80.56%
OLS -39.03% -45.39% -37.21% -45.44% -27.69% -61.72% -70.20% -47.72%
QMLE -68.48% -68.12% -67.27% -67.73% -68.38% -89.68% -89.71% -90.00%

-0.40 -0.98 4.29 TSLS 100 -44.45% -49.44% -52.76% -56.84% -49.92% -73.76% -78.18% -74.92%
TSLS 50 -46.67% -51.57% -53.09% -57.91% -49.92% -74.98% -79.62% -74.92%
TSLS 25 -47.87% -52.34% -53.27% -57.70% -49.92% -75.64% -79.84% -74.92%
OLS -35.33% -42.18% -32.96% -40.87% -14.33% -56.64% -65.81% -26.60%
QMLE -68.34% -67.82% -67.42% -67.53% -68.38% -89.69% -89.55% -90.00%

-0.80 -1.52 3.97 TSLS 100 -45.10% -50.17% -46.86% -52.79% -43.09% -70.82% -76.47% -67.61%
TSLS 50 -45.56% -50.69% -47.61% -53.53% -43.09% -71.48% -77.08% -67.61%
TSLS 25 -46.46% -51.22% -47.43% -53.12% -43.09% -71.86% -77.13% -67.61%
OLS -30.80% -36.36% -27.57% -35.52% NA -49.88% -58.97% NA
QMLE -67.90% -66.93% -67.78% -67.98% -68.38% -89.66% -89.41% -90.00%
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Notes to Tables 2. All simulations are conducted for the ARCH(1) model with ω0 = 0.005 and α0 =

0.25, each selected to match the empirical features of high frequency financial returns. All simulations are

also conducted on a sample of 1, 000 observations across 10, 000 trials where, within each trial, the first 200

observations are dropped to avoid initialization effects. The estimators under study are TSLS, OLS, and QMLE.

For TSLS, instrument vectors of 100, 50, and 25 lags are considered. Summary statistics are the mean bias

and median bias, each measured relative to the true parameter value, the standard deviation, decile range (the

difference between the 90th and 10th percentiles), and the root mean squared error, mean absolute error, and

median absolute error, also each measured with respect to the true parameter value. The Effi ciency Ratio is

the root mean squared error, mean absolute error, and median absolute error of the given estimator divided

by the corresponding measure for the QMLE. {εt} is drawn from the student’s t density of Hansen (1994) for

λ = −
(
0.10, 0.20, 0.40, 0.80

)
and η =

(
4.1, 6.1, 8.1

)
, noting that moments up to the ηth are

well defined. Skew is the skewness in {εt} and, hence, {Yt}. Values of κ for {Yt} are obtained from separate

simulations of 10, 000 trials on sample sizes of 10, 000 observations.

Notes to Table 3. This Table shows % reductions in standard deviations (SD) and decile ranges (DR) of

the parameter estimates when moving from the case of T = 1, 000 to the case of T = 10, 000 (MC I), the case

of T = 10, 000 to the case of T = 100, 000 (MC II), and the case of T = 1, 000 to the case of T = 100, 000 (MC

III). Simulation results for T = 10, 000 and T = 100, 000 are reported in Tables 4 and 5 of the Supplemental

Appendix. Predict. is the % reduction predicted by either Theorem 1 or 2 for TSLS and OLS, respectively, or

standard asymptotic theory for the QMLE, noting that, in all cases, the predictions are the same for both MC I

and MCII.
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FIGURE 1
Hill Plots for Select FX (Absolute) 20-Min Log-Returns

Date Range: Jan 1, 2015--May 31, 2015
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Notes to Figure 1:

This Figure depicts Hill (1975) tail index estimates for Japanese Yen, Euro, and Swiss Franc exchange rates (all measured against the US Dollar) at decreasing 
thresholds. The salient features of this Figure are summarized in the Introduction of the paper. 


