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ABSTRACT
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to match key features of customer–supplier networks in the United States, the model generates
long-run risks, high and volatile risk premia, and a low and stable risk-free rate. Consistent with
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Inter-firm relationships, such as strategic alliances, joint ventures, research and development (R&D)

partnerships, and customer–supplier relationships, are ubiquitous in modern economies. A growing

body of empirical work emphasizes the importance of inter-firm relationships in the case of firms’

distress and shows that they may serve as propagation mechanisms of negative shocks to individual

firms.1 As firm-level shocks may spread to a non-negligible fraction of firms in the economy, such

a shock propagation can, in principle, generate aggregate fluctuations, altering equilibrium asset

prices and aggregate risk premia.2 Despite the importance of this shock propagation, its equilibrium

asset pricing implications have been overlooked in the literature.3 This paper fills this gap by

developing a model that links equilibrium asset prices and aggregate risk premia to the propagation

of cash-flow shocks across firms in a network economy.

When calibrated to match key characteristics of customer–supplier networks in the United

States, I show that a dynamic network economy model in which cash-flow shocks propagate via

inter-firm relationships and investors have Epstein-Zin-Weil preferences generates long-run risks

and quantitatively replicates prime characteristics of asset market data. In particular, the model

generates high and volatile risk premia, as well as a low and stable risk-free rate. Moreover, the

model predicts that central firms in the network command lower risk premiums than peripheral

firms, and that firm-level return volatilities exhibit a high degree of co-movement. These predictions

are consistent with data from firms in manufacturing and service industries but cannot be accounted

for by standard asset pricing models.

The model has two main features. First, firms’ cash-flow growth prospects are determined via

an exogenous network of long-term inter-firm relationships, as firm-level cash-flow shocks propagate

via such relationships.4 In the model, the propensity of inter-firm relationships to transmit shocks

varies over time to capture changes in relationship-specific characteristics that make connected

firms more vulnerable to negative spillovers. Changes in relationship-specific characteristics may

1See Hertzel et al. (2008), Jorion and Zhang (2009), Boone and Ivanov (2012), Carvalho, Nirei, and Saito (2014),
Boyarchenko and Costello (2015), Todo, Nakajima, and Matous (2015), Boehm, Flaaen, and Pandalai-Nayar (2015)
and Barrot and Sauvagnat (2016) among others.

2Using French firm-level data from 1990 to 2007, Di Giovanni, Levchenko, and Mejean (2014) provide empirical
evidence of the importance of firm-specific shocks in generating aggregate fluctuations.

3The contemporaneous work of Herskovic (2015) is an exception.
4Long-term inter-firm relationships may allow connected firms to circumvent difficulties in contracting due to

unforeseen contingencies, asymmetries of information, and specificity on firms’ investments, e.g., Williamson (1979,
1983). The network is assumed to be exogenous because the focus of this paper is on the effect of shock propagation
on equilibrium asset prices rather than on strategic network formation. For endogenous formation of production
networks, see Oberfield (2013), Chaney (2014, 2016), and Lim (2016).
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arise from variation in restrictions on firms’ use of alternative inputs, e.g. Barrot and Sauvagnat

(2016). Variation in such restrictions may emerge from changes—driven by innovation or indus-

try regulation—in production technologies, complementarities among firms’ activities, or market

competition. As the propensity of inter-firm relationships to transmit shocks varies over time, the

mechanism by which shocks propagate across firms also varies over time, introducing an endogenous

time-varying correlation structure among firms’ cash-flows. Second, investors have Epstein-Zin-Weil

preferences—as in standard asset pricing models—and, thus, care about uncertainty regarding firms’

long-term growth prospects.

In the calibrated model, low-frequency changes in the shock propagation mechanism endoge-

nously generate persistence in firms’ growth prospects due to the long-term nature of inter-firm

relationships. In equilibrium, the persistence in firms’ growth prospects drives a small and per-

sistent component in expected aggregate consumption growth. Because investors have recursive

preferences, the model accounts for sizeable risk premiums and a small and stable risk-free rate, as

low-frequency movements in consumption growth induce large movements in marginal utility and

stock prices. Intuitively, sizeable risk premiums arise because investors fear that extended periods

of low economic growth coincide with low asset prices. Likewise, a small risk-free rate is driven by

investors saving for long periods of low economic growth.

In the cross section, the calibrated model predicts that central firms in the network command

lower risk premiums than peripheral firms. Central firms tend to benefit from the diversification

of their customers and suppliers and, thus, mitigate contagion risk better than less central firms,

commanding lower risk premiums. Consistent with data from firms in manufacturing and service

industries, the model generates a realistic annual return spread of 3.8% between firms in the lowest

tercile of centrality and firms in the highest tercile of centrality.5 This return spread, which cannot

be accounted for by standard asset pricing models, arises naturally in equilibrium as compensation

for contagion risk.

In the time series, the calibrated model predicts high co-movement in firm-level return volatilities

as changes in the shock propagation mechanism drive fluctuations in growth opportunities and

uncertainty across firms. These cross-sectional fluctuations translate into simultaneous changes in

5Wu and Birge (2014) provide complementary evidence that manufacturing firms that are more central in the
network earn lower returns.
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stock returns, which generate a factor structure in the time series of firm-level returns and returns’

volatilities.6

The small and persistent component in expected consumption growth generated by low-frequency

movements in the shock propagation mechanism provides an equilibrium foundation for long-run

risk models in the spirit of Bansal and Yaron (2004). Moreover, the model helps explain the cross

section of expected returns as it provides a mapping between firms’ importance in the network and

their contagion risk. The model suggests that extending standard asset pricing models to take into

account the way that shocks propagate within production networks can make significant progress

toward generating a unifying framework that simultaneously captures dynamics of the aggregate

and the cross section of stock returns.

This paper contributes to three strands of the literature. First, the paper develops a new

theoretical framework that adds to a growing body of work focused on understanding the effects

of economic linkages in asset pricing properties, e.g., Buraschi and Porchia (2012), Ahern (2013),

and Herskovic (2015).7 Unlike these papers, my model emphasizes relationships at the firm level

to explore the asset pricing properties that stem from the propagation of shocks within production

networks.

Second, this paper adds to a body of work that explores how granular shocks may lead to

aggregate fluctuations in the presence of linkages among different sectors of the economy, e.g.,

Carvalho (2010), Gabaix (2011), Acemoglu et al. (2012); Acemoglu, Ozdaglar, and Tahbaz-Salehi

(2015), Oberfield (2013), Carvalho and Gabaix (2013), Blume et al. (2013), Elliott, Golub, and

Jackson (2014), Chaney (2014, 2016), and Lim (2016). This paper contributes to this literature by

exploring the asset pricing implications of linkages at the firm level and studying how changes in

the propagation of shocks within a network economy affect not only aggregate variables but also

equilibrium asset prices and aggregate risk premia.

Third, this paper adds to recent research that examines the potential sources of long-run risks,

6The factor structure in returns’ volatilities is aligned with recent empirical evidence documented by Duarte et al.
(2014).

7Buraschi and Porchia (2012) show that more central firms in a market-based network have lower price dividend
ratios and higher expected returns. Using the network of intersectoral trade, Ahern (2013) provides evidence that
firms in more central industries have greater exposure to systematic risk. Herskovic (2015) focuses on efficiency gains
that come from changes in the input-output network and how those changes are priced in equilibrium. My paper, on
the other hand, focuses on how changes in the propagation of shocks within a fixed network alter equilibrium asset
prices and risk premia.
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e.g., Kaltenbrunner and Lochstoer (2010), Kung and Schmid (2015), Bidder and Dew-Becker

(2016).8 This paper contributes to this literature by showing that long-run risks may also arise

from changes in the way that shocks propagate within sticky production networks.

The rest of the paper is organized as follows. Section I introduces the baseline model. Section

II describes aggregate consumption growth in the baseline model. Section III derives expressions

for the market return, the risk-free rate, the price of risk, and firms’ equilibrium asset prices and

expected returns. Section IV uses data on customer–supplier networks in the United States to

calibrate the model. Section V shows that changes in the propagation mechanism of shocks in

customer–supplier networks are quantitatively important to understand variations in stock returns

in both the aggregate and the cross section. Section VI concludes.

I. Baseline Model

The baseline model embeds a single-good dynamic endowment economy, in the spirit of Lucas

(1978), into a standard asset pricing model with investors with Epstein-Zin-Weil preferences. In an

otherwise standard dynamic endowment economy, the outputs of the economy’s productive units,

henceforth firms, are determined by a network of long-term inter-firm relationships. The single-

good endowment economy framework is assumed to facilitate exposition and can be extended to a

production network setting in which every firm produces a different good and each good is necessary

to produce other goods in the economy.9

A. The environment

Consider an economy with one perishable good and an infinite time horizon. Time is discrete

and indexed by t ∈ {0, 1, 2, · · · }. In each period, the single good is produced by n infinitely lived

firms, with n being potentially large. The economy is populated by a large number of identical,

infinitely lived individuals who are aggregated into a representative investor with Epstein-Zin-Weil

8Kaltenbrunner and Lochstoer (2010) shows that long-run risks endogenously arise in a standard production
economy model, even when technology growth is i.i.d., because of consumption smoothing. Kung and Schmid (2015)
shows that a model of endogenous innovation and R&D is able to generates long-run risks, while Bidder and Dew-
Becker (2016) shows that long-run risks arise in an economy in which investors are pessimistic and not sure about
the true model driving the economy.

9In such an environment, equilibrium asset prices are similar to the ones obtained here if the representative
investor has preferences over a particular basket of goods, e.g., Herskovic (2015).
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preferences who owns all assets in the economy. Firms’ outputs, henceforth cash flows, are related

via a network of inter-firm relationships. The production network is described by a graph consisting

of a set of nodes, which represent firms, together with edges joining certain pairs of nodes, which

represent inter-firm relationships. To fix notation, let Gn denote the production network among n

firms. Because I focus on the effect of Gn on asset prices rather than on the strategic formation

of inter-firm relationships, these relationships are assumed to be exogenously determined and fixed

before t = 0.10

B. The network of inter-firm relationships and firms’ cash flows

Firms’ cash flows vary stochastically over time and depend not only on the production network

Gn but also on the way that cash-flow shocks propagate within Gn. In particular, relationships

generate benefits—such as information and resource sharing, access to new markets, and easing

of financial constraints via trade credit—which increase a firm’s cash-flow growth rate. However,

relationships also increase a firm’s exposure to negative cash-flow shocks that affect other firms, as

negative cash-flow shocks spread through probabilistic contagion via relationships. Such a trade

off is captured by the following reduced-form equation:

log

(
yi,t
Yt−1

)
≡ α0 + α1di − α2

√
nε̃i,t , i ∈ {1, · · · , n} , (1)

where yi,t denotes firm i’s cash flow at period t, and Yt−1 denotes the aggregate output of the

economy at t− 1. Parameters α0, α1, and α2 are non-negative and equal across firms. Parameter

di represents the number of direct relationships of firm i—which may differ across firms. The

term
√
n is included in equation (1) as a normalization factor to help characterize the equilibrium

distribution of aggregate consumption growth later on. Uncertainty in yi,t is introduced by a

Bernoulli random variable ε̃i,t, which equals one if firm i faces a negative cash-flow shock at period

t and zero otherwise. Because

log

(
yi,t
Yt−1

)
= log

(
yi,t
yi,t−1

)
+ log

(
yi,t−1

Yt−1

)
,

10See Demange and Wooders (2005), Goyal (2007), and Jackson (2008) for a detailed description of network
formation models. For models of endogenous formation of production networks, see Oberfield (2013), Chaney (2014,
2016), and Lim (2016), among others.
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parameter α2 in equation (1) measures the decrease in a firm’s cash-flow growth if a firm faces a

negative cash-flow shock. Thus, transitory negative cash-flow shocks have an enduring effect as they

depress not only firms’ cash-flows today but also firms’ growth prospects. Parameter α1 captures

the increase in a firm’s cash-flow growth due to each direct relationship, whereas α0 captures the

part of firms’ cash-flow growth that is unrelated to benefits or costs associated with inter-firm

relationships.11

The distribution of ε̃i,t is determined by the following stochastic process—which simplifies the

modeling and abstracts from the temporal propagation of shocks. At the beginning of period

t, each firm may face a negative cash-flow shock, independently of other firms, with probability

0 < q < 1—which is equal across firms and time invariant. Firms affected by idiosyncratic cash-

flow shocks have a probability of causing their direct partners to face a negative cash-flow shock as

well, allowing negative shocks to potentially continue to spread from the newly affected firms.12 In

particular, a negative cash-flow shock to firm i at period t also affects firm j at period t, and, thus,

ε̃i,t = ε̃j,t = 1 if two things happen: (1) there exists a sequence of relationships that connects firms

i and j in Gn and (2) each relationship in that sequence is active in transmitting shocks at period

t. For simplicity, in each period each relationship is either active in transmitting cash-flow shocks

or not—independently of all other relationships. The relationship between firms i and j is active

in transmitting shocks at period t with probability p̃ijt. The production network Gn is assumed to

be undirected, and, thus, p̃ijt = p̃jit, ∀(i, j) ∈ Gn, ∀ t.13

11In the absence of relationships, α0 equals the growth rate of the economy if Yt ≡
∏n

i=1 y
1/n
i,t .

12Within the baseline model, only negative shocks are allowed to propagate in a probabilistic manner to focus on
the effect on asset prices of the propagation of shocks in case of firms’ distress. However, the baseline model can be
easily extended to allow positive and negative cash-flow shocks to propagate through the network. To do so, define
ψ̃i,t ≡ ε̃i,t − 1/2 so that cash-flow shocks can be positive and negative. Then, redefine equation (1) as

log

(
yi,t
Yt−1

)
= α0 + α1di − α2

√
nψ̃i,t

= α0 + α2

√
n/2︸ ︷︷ ︸+α1di − α2

√
nε̃i,t

= α̂0 + α1di − α2

√
nε̃i,t ,

which is analogous to equation (1). The cross-sectional results in this paper continue to hold as long as the decrease
in firms’ cash-flow growth due to negative shocks is larger than the increase in firms’ cash-flow growth due to positive
shocks.

13This stochastic process can be thought of as a variation of either a reliability network or a bond percolation
model in each period. In a typical reliability network model, the edges of a given network are independently removed
with some probability. The remaining edges are assumed to transmit a message. A message from node i to j is
transmitted as long as there is at least one path from i to j after edge removal—see Colbourn (1987) for more details.
Similarly, in a bond percolation model, edges of a given network are removed at random with some probability. Edges
that are not removed are assumed to percolate a liquid. The question in percolation is whether the liquid percolates
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The value of p̃ijt measures the propensity of the relation (i, j) to transmit cash-flow shocks from

firm i (j) to j (i) at period t. At a fundamental level, the value of p̃ijt captures relationship-specific

characteristics that make firm i (j) more vulnerable to negative spillovers coming from firm j (i),

which cannot be mitigated through contractual protections at period t. Intuitively, the higher the

value of p̃ijt, the higher the likelihood that problems affecting firm i (j) also affect firm j (i) at

period t. In the context of supply chains, p̃ijt may capture restrictions on firm i’s and j’s use of

alternative inputs at period t. The higher the value of p̃ijt, the higher the switching costs firms i or

j may face at period t, and, thus, the higher the likelihood that a negative cash-flow shock to firm

i (j) also affects firm j (i), provided that firm j (i) may not be able to restructure its production

sufficiently fast to overcome firm i (j)’s negative cash-flow shock.

Probabilities {p̃ijt}(i,j)∈Gn
are drawn from a Beta distribution with parameters ζ1t > 0 and

ζ2t > 0 at the beginning of period t. Parameters ζit > 0, i = {1, 2}, which are drawn at the very

beginning of period t, determine the shape of the distribution of propensities across relationships

at period t. The model timeline at period t is depicted in figure 1.

ζ1t and ζ2t
are drawn

{p̃ijt}(i,j) ∈ Gn

are drawn from β (ζ1t, ζ2t)

Relationships that
transmit shocks
are determined

Firm-specific shocks
are realized

Shocks
propagate

Period t

Figure 1. Model timeline in period t.

To sum up, equation (1) captures some of the potential consequences of long-term inter-firm

relationships in a simple manner. While inter-firm relationships may increase firms’ growth op-

portunities via efficiency gains, these relationships may also have additional consequences as they

from one node to another in the network—which is similar to the problem of transmitting a message in a reliability
context. For more details see Grimmett (1989), Stauffer and Aharony (1994), and Newman (2010, Chapter 16.1).
Blume et al. (2013) analyze a propagation mechanism similar to the one analyzed here. They focus, however, on
strategic network formation issues in a static environment. They provide asymptotic bounds on the welfare of both
optimal and stable networks and show that small amounts of “over-linking” may impose large losses in welfare to
networks’ participants.
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increase a firm’s exposure to negative cash-flow shocks that affect a broader set of firms in the

economy. Although equation (1) is a reduced-form formulation, it can be recast so it is generated

within an equilibrium context. For instance, Goyal and Moraga-González (2001) obtain similar

dynamics for firms’ profits in strategic environments where firms collaborate in an R&D network

to decrease their production costs, but they also compete with their collaborators within the same

homogeneous good market.

C. Shock propagation and the cross-sectional distribution of ε̃i,t

Given how shocks propagate, the joint distribution of the cross-sectional sequence {ε̃i,t}ni=1 is

determined by Gn, q, and the process driving the stochastic propensity matrix p̃t ≡ [p̃ijt](i,j) ∈ Gn
.

Moreover, the marginal distribution of ε̃i,t, conditional on p̃t, depends on q, the network Gn, and

the location of firm i in Gn. In other words,

P
(
ε̃i,t = 1

∣∣p̃t
)

= f (q,Gn, location of firm i in Gn) , (2)

where P
(
ε̃i,t = 0

∣∣p̃t
)
= 1 − P

(
ε̃i,t = 1

∣∣p̃t
)
, and f(·) is a mapping characterized by the stochastic

process described in section I.B—which endogenously generates a time-varying correlation structure

among firms’ cash flows as p̃t varies over time.

Despite the fact that the mapping f(·) is hard to characterize for large n, its properties are

easy to describe given the formulation of the stochastic process that generates it. First, in the

absence of relationships, P
(
ε̃i,t = 1

∣∣p̃t
)
= P (ε̃i,t = 1) = q , ∀ i and ∀ t, so cash-flow growth rates

are independent and identically distributed across firms over time. Second, if only one sequence of

relationships exists between two firms, the longer the sequence, the smaller the correlation between

their cash-flow growth rates. Thus, in network economies in which there is at most one sequence

of relationships between any two firms, the more distant the two firms are, the less related their

cash flows.14

14Having this feature—which is sometimes called correlation decay, e.g., Gamarnik (2013)—helps a great deal to
obtain numerical solutions of the model relatively fast when n is large.
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D. Temporal changes in shock propagation within the network economy

To capture temporal changes in relationship-specific characteristics, the shape parameters ζit,

i = {1, 2}, are allowed to vary over time. Variation in the shape parameters may arise from

changes in firms’ production technologies, complementarities among firms’ activities, or market

competition. For simplicity, ζit can take two values, ζiL or ζiH , with ζiL < ζiH , i = {1, 2}, and the

shape parameter vector ζt ≡ [ζ1t ζ2t] follows a four-state ergodic Markov process with transition

matrix Ω and states ζLL ≡ [ζ1L ζ2L], ζLH ≡ [ζ1L ζ2H ], ζHL ≡ [ζ1H ζ2L], and ζHH ≡ [ζ1H ζ2H ].

II. Distribution of Consumption Growth

Two features of the model are important to understand aggregate consumption growth: (a)

the topology of the production network Gn and (b) how shocks propagate across firms, captured

by the propensity matrix p̃t and its dynamics. In this section, I study how changes in these two

features affect the distribution of aggregate consumption growth and, thus, alter the distribution

of the pricing kernel. Let ∆c̃t+1 ≡ log
(
C̃t+1

Ct

)
and x̃t+1 ≡ log

(
Yt+1

Yt

)
denote the log consumption

and output growth at t+ 1, respectively. In equilibrium, ∆c̃t+1 = x̃t+1. For tractability, consider

Yt ≡
∏n

i=1 y
1/n
i,t . Then, it follows from equation (1) that

∆c̃t+1 = x̃t+1 = log

(
n∏

i=1

(
yi,t+1

Yt

)1/n
)

=

n∑

i=1

1

n
log

(
yi,t+1

Yt

)

= α0 + α1

(
1

n

n∑

i=1

di

)

︸ ︷︷ ︸
−α2

√
n

(
1

n

n∑

i=1

ε̃i,t+1

)

︸ ︷︷ ︸

= α0 + α1 d̄ − α2

√
n W̃n,t+1 , (3)

where d̄ denotes the average number of relationships per firm in the economy, whereas W̃n,t+1

denotes the average number of firms affected by negative cash-flow shocks at period t+1. It follows

from equation (3) that the distribution of ∆c̃t+1 is determined by the distribution of
√
nW̃n,t+1.

Because the distribution of
√
nW̃n,t+1 is affected by p̃t+1 and the topology of Gn, these two features
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also affect the distribution of ∆c̃t+1.
15

To appreciate the importance of p̃t+1 and the topology of Gn in determining the distribution

of ∆c̃t+1, consider two cases. First, suppose there are no relationships. In this case, {ε̃i,t+1}ni=1 is

a sequence of i.i.d. Bernoulli random variables and nW̃n,t+1 follows a Binomial distribution. By

the Central Limit Theorem (CLT),
√
nW̃n,t+1 is normally distributed as n grows large. Provided

the absence of relationships, the realization of the matrix p̃t+1 is irrelevant to determining the

distribution of ∆c̃t+1, as the unconditional mean and variance of W̃n,t+1 are q and q(1−q)
n , respec-

tively. Second, suppose that all firms have two relationships and that the propensity to transmit

shocks of each relationship is p, which does not vary over time. Then, {ε̃i,t+1}ni=1 is a sequence of

dependent Bernoulli random variables and nW̃n,t+1 follows approximately a Binomial distribution

if p is sufficiently small. In this case, the propensity of relationships to transmit shocks, p, affects

the distribution of consumption growth, as the unconditional mean and variance of W̃n,t+1 are

approximately π and π(1−π)
n , respectively; where π ∈ [0, 1] solves the following equation:

π = q + (1− q)πp (πp+ 2 [p(1− π) + π(1− p)]) .

Thus, in the presence of relationships, p̃t+1 and the topology of Gn affect the distribution of

consumption growth, as {ε̃i,t+1}ni=1 is a sequence of dependent Bernoulli random variables. In this

case, the conditions under which a CLT holds may not be satisfied as n grows large.16 Relationships

may generate convoluted interdependencies among firms’ cash flows, which makes it difficult to

characterize the distribution of ∆c̃t+1. Figure 2 illustrates the previous point. Figure 2(a) depicts

a star network in an economy with n = 5 firms, whereas figure 2(b) depicts the empirical probability

density function of
√
nW̃n,t+1 for the star network depicted in figure 2(a). As figure 2(b) shows,

15The definition of Yt implies that positive aggregate production requires positive production by each firm. To
assume that Yt ≡

∏n
i=1 y

1/n
i,t is similar to assuming that Yt is proportional to

∑n
i=1 yi,t if n is sufficiently large and all

yi,t 6= 0. The argument follows from applying a first order Taylor series expansion to log (Yt) in which aggregate output,

Yt ≡
∑n

i=1 yi,t. A different way of justifying that Yt ≡
∏n

i=1 y
1/n
i,t is to consider that every firm produces a different

perishable good and each good is necessary to produce other goods in the economy. In such an environment, one
obtains asset pricing properties similar to the ones obtained in this paper if the representative investor has preferences
over a Cobb-Douglas consumption aggregator of the form Ct ≡

∏n
i=1 c

1/n
i,t , where ci,t represents consumption of the

good produced by firm i at time t.
16For a large variety of network topologies, simulation shows that the distribution of ∆c̃t+1 may differ from

a normal distribution. In particular, if some elements of the matrix p̃t+1 are sufficiently close to one and Gn is
locally connected—i.e., there is at least one sequence of relationships between any two firms in an arbitrarily large
neighborhood around any given firm—then a non-negligible fraction of firms in the economy are almost surely affected
by negative cash-flow shocks. Therefore, the distribution of ∆c̃t+1 may exhibit thicker tails than a normal distribution
would.
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the distribution of
√
nW̃n,t+1 may differ from a normal distribution if the elements of the matrix

p̃t+1 are sufficiently close to 1. In particular, as some components in p̃t+1 tend toward one, the

distribution of
√
nW̃n,t+1 tends to be bimodal.

Despite the existence of relationships and the convoluted dependencies they may generate among

firms’ cash flows, the topology of Gn and values in the matrix p̃t+1 can be restricted so that ∆c̃t+1 is

normally distributed as n grows large (see Appendix A). In such a case, keeping track of temporal

changes of the distribution of ∆c̃t+1 is equivalent to keeping track of temporal changes in averages

and standard deviations. In particular, if shocks tend to remain locally confined—i.e., no shock

propagates over a large fraction of firms in the economy—{ε̃i,t+1}ni=1 becomes a sequence of weakly

dependent random variables to which a CLT can be applied. Then, the dynamics of consumption

growth can be recast as a version of Hamilton (1989)’s Markov-switching model.

III. Equilibrium Asset Prices

To see what the production network Gn and the dynamic of ζt imply for equilibrium asset prices,

I embed the cash-flows correlation structure that is endogenously generated by the baseline model

in a standard asset pricing framework. The representative investor has Epstein-Zin-Weil recursive

preferences to account for asset pricing phenomena that are challenging to address with power

utility preferences. The asset pricing restrictions on the gross return of firm i, R̃i,t+1, are

Et

(
M̃t+1R̃i,t+1

)
= 1 , (4)

where M̃t+1 ≡
[
β
(
e∆c̃t+1

)−ρ
] 1−γ

1−ρ
[
R̃a,t+1

] 1−γ
1−ρ

−1
represents the pricing kernel at t + 1 and R̃a,t+1

denotes the gross return on aggregate wealth—an asset that delivers aggregate consumption as its

dividend each period. Parameter ρ > 0, ρ 6= 1, represents the inverse of the inter-temporal elasticity

of substitution (IES), γ > 0 is the coefficient of relative risk aversion for static gambles, and β > 0

measures the subjective discount factor under certainty.17

To solve the model, I look for equilibrium asset prices so that price–dividend ratios are stationary,

17If γ = ρ, these recursive preferences collapse to the standard case of Von Neumann-Morgenstern (VNM) time-
additive expected utility. The functional form of the pricing kernel when ρ = 1 is different from the one shown above.
See Weil (1989, Appendix A) for details. I use the standard terminology to describe γ and ρ. However, Garcia,
Renault, and Semenov (2006) and Hansen et al. (2007) indicate that this interpretation may not be correct if ρ 6= γ.
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as in Mehra and Prescott (1985), Weil (1989), and Kandel and Stambaugh (1991), among many

others. Because equilibrium values are time-invariant functions of the state of the economy—which

is determined by the state of the parameter vector ζt—the index t can be eliminated. Hereinafter, c

denotes the current level of aggregate consumption, y denotes the current level of aggregate output,

and s ∈ {LL,LH,HL,HH} denotes the current state of parameter vector ζ.

I first solve for the price of aggregate wealth and the risk-free rate. These expressions are then

used to solve for equilibrium asset prices and expected excess returns in the cross section.

PROPOSITION 1 (Price of Aggregate Wealth): Let Pa(c, s) denote the current price of aggregate

wealth. Pa(c, s) = wa
sc, where wa

s is the solution of the following nonlinear system of equations,

wa
s = β


 ∑

s′∈{LL,LH,HL,HH}

ωs,s′E

(
e(1−γ)∆c̃t+1

∣∣s′
)
(wa

s′ + 1)
1−γ
1−ρ




1−ρ
1−γ

, (5)

where E
(
·
∣∣s′
)
denotes the conditional expectation operator if the state of ζ is s′ and ωs,s′ represents

the (s, s′) element of Ω.

I restrict my analysis to the set of model primitives in which the existence of a non-negative

solution of the system of equations (5) is ensured.18 The expected period gross return of aggregate

wealth in the current state is then

E (Ra|s) =
∑

s′∈{LL,LH,HL,HH}

ωs,s′
wa
s′ + 1

wa
s

E

(
e∆c̃t+1

∣∣s′
)
. (6)

It follows from equations (5) and (6) that the price and expected period return of aggregate wealth

are driven by: (a) the topology of the production network Gn, and (b) the dynamics of ζ. As

noticed in section II, the topology of Gn and p̃t+1 drive the distribution of ∆c̃t+1. Given a network

Gn, ζ shapes the distribution of aggregate consumption growth, as ζ determines p̃t+1. In particular,

18Provided that e∆c̃t is positive for all t, parameters ρ and γ need to be restricted so that the function h(·) defined
as

h (wa
i ) ≡ β


 ∑

j∈{LL,LH,HL,HH}
ωi,jE

(
e(1−γ)∆c̃t+1

∣∣j
)
(wa

j + 1)
1−γ
1−ρ




1−ρ
1−γ

is continuous. If h(·) is continuous, the system of equations (5) has a solution by Brouwer’s Fixed Point Theorem.
Further restrictions in the set of parameter values can be imposed such that the solution of the system of equations
is unique.
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changes in ζ convey changes in the cross-sectional distribution of {p̃ij}(i,j) ∈ Gn
which determines

how shock propagate across firms. The dynamics of ζ—parameterized by Ω—affect the price and

the expected period return of aggregate wealth, as Ω determines (a) how frequently the economy is

in a state in which relationships are more prone, on average, to transmit negative cash-flow shocks

and (b) how persistent are changes in the shock propagation mechanism.

I next consider the risk-free asset, which pays one unit of the consumption good during the next

period with certainty.

PROPOSITION 2 (Risk-free Rate): Let Rf (s) denote the period gross return of the risk-free asset

in the current state. Rf (s) solves

1

Rf (s)
= β

1−γ
1−ρ


 ∑

s′∈{LL,LH,HL,HH}

ωs,s′E

(
e−γ∆c̃t+1

∣∣s′
)(wa

s′ + 1

wa
s

) ρ−γ
1−ρ


 , (7)

where wa
s are the solutions of the system of equations (5).

It follows from equation (7) that the equilibrium risk-free rate is also driven by the topology of

Gn and the dynamics of ζ, as these two features affect the distribution of aggregate consumption

growth and prices of aggregate wealth.

Using the previous expressions, I now study what the production network Gn and dynamics of ζ

imply for the cross section of asset prices and risk premiums. The following proposition determines

the ex-dividend stock price of firm i and its expected period return.

PROPOSITION 3 (Firms’ Stock Prices and Expected Period Returns): Let Pi(y, s) denote the

current ex-dividend stock price of an asset that delivers firm i’s cash flows as its dividend each

period. For large n, Pi(y, s) ≈ vi(s)y, where vi(s) is the solution of the following linear system of

equations

vi(s) = β
1−γ
1−ρ


 ∑

s′∈{LL,LH,HL,HH}

ωs,s′

(
wa
s′ + 1

wa
s

) ρ−γ
1−ρ

E

(
ex̃t+1−γ∆c̃t+1

∣∣s′
)
vi(s

′)


 (8)

+ β
1−γ
1−ρ eα0+α1di


 ∑

s′∈{LL,LH,HL,HH}

ωs,s′

(
wa
s′ + 1

wa
s

) ρ−γ
1−ρ

E

(
e−γ∆c̃t+1

∣∣s′
) [

1− πi(s
′)
]

 ,

where πi(s
′) ≡ E

(
ε̃i,t+1

∣∣s′
)
= P

(
ε̃i,t+1 = 1

∣∣s′
)
. Moreover, the expected one period gross return of
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firm i is given by

E

(
R̃i,t+1

∣∣s
)

=
1

vi(s)


 ∑

s′∈{LL,LH,HL,HH}

ωs,s′

{
vi(s

′)E
(
ex̃t+1

∣∣s′
)
+ eα0+α1di

(
1− πi(s

′)
)}

 . (9)

To appreciate the importance of the location of firm i in Gn on equilibrium asset prices and

expected returns, suppose all firms have the same number of direct relationships. Then, di = d̄

and πi = π̄ ≥ q for all i. It follows from the second term in the right hand side of (8) that all firms

have the same ex-dividend stock price. As equation (8) shows, differences in prices across firms

arise solely from differences in the location of firms in Gn. In particular, differences in prices across

firms are driven not only by the number of direct relationships of a firm, captured by di, but also

by the set of firms to which a firm is connected, captured by πi. The same applies for the cross

section of expected returns. Differences in expected returns across firms arise solely from differences

across firms’ locations. To understand the cross section of firms’ risk premiums, equation (4) can

be rewritten as a beta pricing model,

E

(
R̃i,t+1

∣∣s
)
−Rf (s) =



Cov

(
R̃i,t+1, M̃t+1

∣∣s
)

Var
(
M̃t+1

∣∣s
)




︸ ︷︷ ︸



−Var

(
M̃t+1

∣∣s
)

E

(
M̃t+1

∣∣s
)




︸ ︷︷ ︸

, (10)

β
i,M̃

(s) λ
M̃
(s)

where β
i,M̃

(s) and λ
M̃
(s) denote firm i’s quantity of risk and the conditional price of risk in state

s, respectively. The following proposition determines the conditional price of risk, λ
M̃
(s).

PROPOSITION 4 (Conditional Price of Risk: λ
M̃
(s)): The conditional price of risk in state s,

λ
M̃
(s), equals

λ
M̃
(s) =

1

Rf (s)
−Rf (s)


β

2
(

1−γ
1−ρ

) ∑

s′∈{LL,LH,HL,HH}

ωs,s′

(
wa
s′ + 1

wa
s

)2
(

ρ−γ
1−ρ

)

E

(
e−2γ∆c̃t+1

∣∣s′
)

 , (11)

where Rf (s) denotes the period gross return of the risk-free asset in state s.

As equation (11) shows, the price of risk is time varying. Changes in ζ introduce changes in

the cross-sectional distribution of {p̃ij}(i,j)∈Gn
, which, in turn, generate changes in the distribution
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of aggregate consumption growth, in the price of aggregate wealth, and in the risk-free rate, all of

which manifest in changes of the price of risk. To compute firms’ quantities of risk, equation (10)

can be rearranged as

β
i,M̃

(s) =
E

(
R̃i,t+1

∣∣s
)
−Rf (s)

λ
M̃
(s)

(12)

so that β
i,M̃

(s) can be computed from equations (7), (9), and (11).

IV. Calibration

So far, the model illustrates how changes in the propagation mechanism of shocks within a

production network alters equilibrium asset prices and expected returns. I now calibrate the model

to match several features of customer–supplier networks in the United States and explore its ability

to replicate characteristics of asset returns. Section IV.A describes the data and the strategy

employed to calibrate the network Gn as well as the dynamics of ζ. Section IV.B describes the

selection of the rest of the parameters in the model.

A. Description of Data, Customer–Supplier Networks, and Dynamics of ζt

I use annual data on customer–supplier relationships among public U.S. firms to pin down the

topology of Gn. The Statement of Financial Accounting Standards (SFAS) No.131 requires firms

to report the existence of customers who represent more than 10% of their annual sales. This

information is available on the COMPUSTAT Segment files. However, these files tend to list only

abbreviations of customers’ names. I then use the Cohen and Frazzini (2008) database on customer–

supplier relationships—a subset of the COMPUSTAT Segment database—in which firms’ principal

customers are uniquely identified. Their dataset consists of 6,425 different public firms, considers

common stocks, and represents 26,781 unique annual customer–supplier relationships from 1980

to 2005. Customer–supplier relationships last about three years on average. The distribution

of firms’ sizes resembles the size distribution of the CRSP universe over the sample period, but

the size distribution of firms’ principal customers is tilted toward large companies, as firms are

only required to report customers that represent more than 10% of their annual sales. Table II
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reports the distribution of firms across major industry groups for which monthly return data are

available from 1980 to 2004. As table II shows, almost 70% of companies in the dataset are either

manufacturing or service firms.19

Using the Cohen and Frazzini (2008) database, I construct networks at an annual frequency over

the sample period. For the network of year t, nodes represent public firms that report customer–

supplier agreements at year t and links represent customer–supplier relationships during that year.

The idea is to select a topology for the benchmark economy that matches several features of the

time series of U.S. customer–supplier networks. For illustration, figures 4, 5, and 6 depict the

U.S. customer–supplier networks from 1980 to 1997. As these figures show, U.S. customer–supplier

networks are highly asymmetric in the sense that only a few firms are connected to many others,

while most firms have either one or at most two connections. In fact, the degree distributions of

these networks, which measure the frequency of firms with a given number of direct relationships,

are highly right-skewed and their upper tails can be approximated via power law distributions.

Table III shows averages and standard deviations for key characteristics of the time series of U.S.

customer–supplier networks. As Table III shows, the high asymmetry of U.S. customer–supplier

networks is fairly persistent over the sample period, as measured by the ratio

SD(exponent of power law distribution fitted to degree distribution)

Mean(exponent of power law distribution fitted to degree distribution)
= 0.07.

I select the topology of the benchmark economy by manually constructing a network whose

topology simultaneously matches several of the averages reported in Table III. In particular, the

topology of the benchmark economy matches the average number of firms, and the average empirical

degree distribution of the time series of U.S. customer–supplier networks. The selected topology

also captures the clustering pattern exhibited by these networks. Using two consecutive depth-first

searches, I compute the size of the five largest connected components in each customer–supplier

network. A connected component is a subset of the network in which any two firms are connected

to each other by sequences of relationships, and which is connected to no additional firms in the

network. The selected topology matches the average size of each of the five largest connected

19This data is available at http://www.econ.yale.edu/∼ af227/. According to the U.S. Department of Labor,
manufacturing firms (division D) include companies engaged in mechanical or chemical transformation of material or
substances into new products, whereas service firms (division I) are companies that usually provide a wide variety of
services for individuals, businesses, and governments, such as hotels, automobile repair, and health services.
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components over the sample period.20 I also restrict the topology of Gn to have no cycles so that

firms’ probabilities of facing negative shocks in each state of the economy—expressions {πi(s)}ni=1

in equations (8) and (9)—are easy to compute.21 This restriction seems to be innocuous, because

cycles are not frequent in the dataset. Figure 7 depicts the degree distribution of the benchmark

production network.

To pin down the parameters that define the dynamics of ζ, I need proxies for the cross-sectional

distributions of propensities of relationships to transmit shocks. However, the propensity of the

relationship between firm i and j at year t, p̃ijt, is unobservable. In the context of supply chains,

nonetheless, evidence documented by Barrot and Sauvagnat (2016) suggest that p̃ijt is related with

firms i and j’s input specificities. As firms’ input specificities are likely to depend on the percentage

of sales that a customer represents for its supplier as well as firms’ industry concentration, I proxy

for p̃ijt as

p̃ijt ≈ % of sales that j represents for i at t× Concentration score in j’s industry at t. (13)

Thus, the higher the percentage customer j represents for supplier i, the higher the likelihood that

shocks affecting j also affect i. In addition, if customer j’s industry is highly concentrated then

supplier i is likely to face problems finding another customer in case j faces distress, other things

being equal. I obtain the percentage of sales that a customer represents for its supplier at a given

year from the Cohen and Frazzini (2008)’s dataset, and industry concentration scores from the

Hoberg and Phillips (2010)’s fitted SIC-based concentration data.

For illustration, figures 8, 9 and 10 depict the time series of cross-sectional distributions of

propensities from 1980 to 1997; namely,
{
{p̃ijt}(i,j)∈Gn

}1997

t=1980
. To determine the parameters that

define the dynamics of ζ, I fit a Beta distribution to each cross-sectional distribution of propensities.

The fitted Beta distributions are depicted with dots in figures 8, 9 and 10. From this procedure,

I obtain a time series of estimates for ζ, {ζ∗t }2005t=1980, which are depicted in figure 11. I then fit

a vector autoregressive (VAR) process to the time series of estimates {ζ∗t }2005t=1980. After doing so,

I discretize the fitted VAR into a four-states Markov chain using Gospodinov and Lkhagvasuren

20The construction of the network emulates a variation of a preferential attachment model and it is similar to a
static version of the model proposed by Atalay et al. (2011).

21A cycle consists of a sequence of firm relationships starting and ending at the same firm, with each pair of
consecutive firms in the sequence directly connected to each other in the network.
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(2014)’s method and obtain ζ∗1L = 0.90, ζ∗1H = 1.19, ζ∗2L = 52.41, ζ∗2H = 72.70, and

Ω∗ =




0.61 0.16 0.16 0.04

0.16 0.63 0.04 0.17

0.17 0.04 0.63 0.16

0.04 0.16 0.16 0.61




,

with a stationary distribution given by P(ζ∗LH) = P(ζ∗HL) = P(ζ∗LL) = P(ζ∗HH) = 0.25.

Figures 12, 13 and 14 depict the centrality of a relationship as a function of its propensity to

transmit shocks for each customer–supplier network from 1980 to 1997. As these figures suggest,

there is a slight negative relationship between the propensity of relationships to transmit shocks and

relationships centrality, as the relationships of peripheral firms tend to exhibit higher propensities

than the relationships of central firms.

It is important to note one important caveat regarding the selection of the network topology

using this database. Because firms need to be sufficiently large to be publicly traded and to

represent at least 10% of the annual sales of a publicly traded company, many U.S. firms and their

relationships are overlooked. As a consequence, one may be able to construct, in the most favorable

case, a network that resembles a small part of the aggregate U.S. economy. To partially ensure that

the topology of the benchmark economy provides a fair representation of the network that underlies

the aggregate U.S. economy, I compare the topology of the benchmark economy with the topology

of networks constructed from BEA input–output tables. As table VII shows, the network in the

benchmark economy does a good job representing some features of the U.S. input–output network

and, in doing so, potentially provides a reasonable representation of the aggregate U.S. economy.22

22It is an empirical issue whether a network uncovered using BEA input–output tables provides a sensible repre-
sentation of the network structure that underlies the U.S. economy—I leave this for future research. Another way to
uncover the underlying network using the framework in this paper is to use probabilistic graphical models—which are
commonly used to represent statistical relationships in large and complex systems—as my baseline model predicts
certain behavior of return covariances across stocks. For instance, one may calibrate the network using a graphical
lasso estimator (GLASSO) to match observed return covariances. In doing so, one estimates an undirected and tem-
porally invariant network by estimating a sparse inverse covariance matrix using a lasso (L1) penalty as in Friedman,
Hastie, and Tibshirani (2008). The basic estimation strategy assumes that observations have a multivariate Gaussian
distribution with mean µ and covariance matrix Σ. If the ijth component of Σ−1 is zero, then variables i and j
are conditionally independent, given the rest of the variables, which is graphically represented as the lack of an edge
between variables i and j in Gn. The normality assumption can be relaxed as in Liu et al. (2012).
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B. Selecting the rest of the parameter values

For the sake of illustration, the rest of the parameters can be separated into three groups. Table

IV reports the key parameter values in the calibrated model. Parameters in the first group define

the preferences of the representative investor, which I select in line with Bansal and Yaron (2004).

Thus, β = 0.997, γ = 10 and ρ = 0.65 (IES ≈ 1.5).

Parameters in the second group define the dynamics of firms’ cash flows. I use annual data

on earnings per share from COMPUSTAT to proxy for firms’ cash flows. I restrict my focus to

firms mentioned in the customer–supplier database, as the number of direct relationships of a

firm is known only for such firms. To determine parameters α0 and α1, I run cross-sectional OLS

regressions specified by equation (1) at an annual frequency. To run such cross-sectional regressions,

I need to determine whether firm i faces a negative cash-flow shock in any given year. To do so,

I exploit the temporal variation of firms’ cash flows and run time series regressions at the firm

level, correcting for the existence of time trends. In particular, I run the following n time series

regressions,

log

(
yi,t
Yt−1

)
= β0 + β1 ∗ t+ ǫt, (14)

and consider that firm i faces a negative shock at year t if log
(

yi,t
Yt−1

)
is below the value predicted by

equation (14) for more than one standard deviation of the residuals computed from equation (14).

This procedure allows me to potentially identify the years in which firms faced negative cash-

flow shocks and compute annual estimates for α0 and α1, which are depicted in figure 16. I set

α0 = 0.27 and α1 = 0.05, which correspond to the averages of annual estimates.23 For simplicity,

I set α2 = 0.0626 and q = 0.129 so that the unconditional mean and volatility of dividend growth

generated by the calibrated model are similar to the ones found in the data.24 Appendix C describes

the method used to simulate the model.

Parameters in the third group define the difference between aggregate output and consumption

23Estimates of α0 and α1 are statistically significant for most of the years in the sample.
24To determine the benchmark values of α0 and α1 at a monthly frequency, I assume that yi,year = 12× yi,month,

with i ∈ {1, · · · , n}. Provided that the data on firms’ cash flows are at an annual frequency, this assumption
facilitates the computation of parameters α0 and α1 at a monthly frequency because Yyear = 12 × Ymonth so that

log
(

yi,year+1

Yyear

)
= log

(
yi,month+1

Ymonth

)
.
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growth. Within the baseline model, output growth equals consumption growth at equilibrium. To

provide a more realistic description of dividends and improve the fit of the calibrated model to

data, I augment the baseline model so that consumption and dividends are two different processes.

Similar to many others, including Cecchetti, Lam, and Mark (1993), Abel (1999), Campbell (1999,

2003), and Bansal and Yaron (2004), I assume that dividend and consumption growth jointly satisfy,

x̃t+1 = µ̄+ τ∆c̃t+1 + σxξ̃t+1. (15)

Parameters µ̄ and τ are constant and ξ̃t+1 is an i.i.d. normal with zero mean and unit variance. Thus,

the representative investor is implicitly assumed to have access to labor income in the augmented

model. For simplicity, ξ̃t+1 is independent of both ∆c̃t+1 and variables {ε̃i,t+1}ni=1. As in Abel

(1999), parameter τ represents the leverage ratio on equity. If µ̄ = σx = 0 and τ = 1, then the

market portfolio is a claim to total wealth and the baseline model is recovered. I follow Bansal

and Yaron (2004) and set τ = 3. I set µ̄ = −0.019/12 so that the difference between unconditional

means of consumption and dividend growth generated by the calibrated model is similar to the

one found in the data. Finally, I set σx = 0.05/
√
12 so that the difference between unconditional

volatilities of dividend and consumption growth generated by the calibrated model is similar to the

one found in the data.25

V. Implications of the Calibrated Model

This section quantitatively evaluates the ability of the calibrated model to rationalize dynamics

of stock returns. It shows that changes in the propagation of shocks within production networks that

resemble U.S. customer–supplier networks are quantitatively important to understanding variations

in stock returns in both the aggregate and the cross section. Section V.A shows that the model

generates long-run risks in consumption, high and volatile risk premia and a low and stable risk-

free rate. Section V.B shows that the model generates a realistic return spread between central

and peripheral firms in the network, which cannot be accounted for by standard asset pricing

25 Despite the fact that aggregate output and consumption are two different processes within the augmented
model, both of these processes are still determined by the propagation of shocks within the network economy. In
particular, the distribution of x̃t+1 is fully determined by the propagation of shocks, as equation (3) shows, whereas
the distribution of ∆c̃t+1 is also determined by the propagation of shocks, as equation (15) states.
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models. Section V.C shows that the model also generates a high degree of common time variation

in firm-level return volatilities, which is aligned with recent empirical evidence.

A. Customer–Supplier Networks and Long-Run Risks

Table V exhibits moments generated under the benchmark parameterization. By construction,

the benchmark parameterization delivers annual averages and volatilities of consumption and divi-

dend growth similar to those found in the data. It also delivers an average market return of 12%,

an annual volatility of the market return of 18.92%, an average risk-free rate of 2.16%, an annual

volatility of the risk-free rate of 0.7%, an annual equity premium of 10%, and an average Sharpe

ratio of 0.52. With the exception of the volatility of the risk-free rate and Sharpe ratio, all values

are aligned with those found in the data.

Besides matching the above moments, the calibrated model generates a persistent component

in expected consumption growth and stochastic consumption volatility similar to those assumed

by the long-run risks (LRR) model of Bansal and Yaron (2004). As Bansal and Yaron (2004)

and Bansal, Kiku, and Yaron (2012) show, these two features, together with Epstein-Zin-Weil

preferences, help to quantitatively explain an array of important asset market phenomena.26 Table

VI reports summary statistics of several similarity measures of time series generated with either

the calibrated model or the LRR model. To compute averages and standard deviations of these

similarity measures, I sample from the calibrated model and the LRR model to construct two

distributions for each similarity measure: one for expected consumption growth, Et [∆c̃t+1], and

one for the conditional volatility of consumption growth, Volt [∆c̃t+1]. Reported values are based

on 300 simulated economies over 620 periods. The first 100 periods are disregarded to eliminate

bias coming from the initial condition. As table VI suggests, both models generate similar time

series for conditional expected consumption growth and conditional consumption volatility.

It is important to appreciate that the persistent component in expected consumption growth

and stochastic consumption volatility are endogenously generated within my model rather than

26Since Bansal and Yaron (2004), several authors have used the long-run risk framework to explain an array of
market phenomena. For instance, Kiku (2006) provides an explanation of the value premium within the long-run
risks framework. Drechsler and Yaron (2011) show that a calibrated long-run risks model generates a variance
premium with time variation and return predictability that is consistent with the data. Bansal and Shaliastovich
(2013) develop a long-run risks model that accounts for bond return predictability and violations of uncovered interest
parity in currency markets.
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exogenously imposed, as in many asset pricing models. The calibrated model generates these

two features because of two reasons: (1) inter-firm relationships are long-term, and (2) the four

parameter vectors estimated from the data, ζ∗LL, ζ
∗
LH , ζ∗HL, and ζ∗HH , generate similar cross-sectional

distributions of {p̃ijt}(i,j)∈Gn
, as figure 15 shows. As a consequence, the propagation mechanism of

shocks across firms is fairly stable over time.

While the model endogeneously generates long-run risk, it does not provides a complete micro-

foundation of long-run risks because inter-firm relationships are exogenously determined. Nonethe-

less, the model provides a novel link between equilibrium asset prices and the propagation of firm

level shocks within customer–supplier networks that is consistent with the existence of long-run

risks. In doing so, the model provides a new perspective on the potential sources of long-run risks

and suggests that small changes in the propagation mechanism of shocks in fairly sticky production

networks are quantitatively relevant to understanding asset market phenomena.

B. Firms’ Centrality and the Cross Section of Risk Premiums

Besides helping to explain aggregate asset market phenomena, the model helps to understand

the cross section of expected returns because it provides a mapping between firms’ quantities of

priced risk and firms’ importance in the network. To measure the importance of a firm in the

network, I define the centrality of firm i at period t as the average number of firms that can be

affected by a shock to firm i at period t. This measure captures the relative importance of firm i

in transmitting shocks to other firms in the economy at period t. Provided that the cross-sectional

distribution of {p̃ij}(i,j)∈Gn
changes over time, firms’ centrality scores also change over time.

To quantitatively assess the effect of a firm’s importance in the network on a firm’s return–

risk trade off, I simulate the benchmark economy at a monthly frequency and construct portfolios

based on centrality. Firms are assigned into centrality terciles once per year, and the value-weighted

portfolios are not rebalanced for the next 12 months. Using simulated data, a portfolio that is long

in the low centrality tercile portfolio and short the high centrality tercile portfolio generates a

statistically significant annual return of 3.8% (0.32% per month). Such a return is computed using

200 simulated economies over 1100 monthly observations. I disregard the first 100 observations in

each simulation to eliminate the potential bias coming from the initial condition.

The above result is explained by the fact that relationships of peripheral firms tend to exhibit
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higher propensities to transmit shocks than relationships of central firms. As a consequence, pe-

ripheral firms tend to have higher exposure to negative shocks that affect their partners. Such a

contagion risk overweights the potential benefits that peripheral firms receive from their few rela-

tionships and, thus, peripheral firms command higher risk premiums than central firms on average.

However, central firms benefit from the diversification of their customers and suppliers because their

relationships exhibit, on average, small propensities to transmit shocks and, thus, their contagion

risk is overweighted by the benefits generated by their many relationships.

Table VIII shows that the calibrated model generates a realistic spread between low and high

centrality portfolios as the average annual return difference between low and high centrality port-

folios in the Cohen and Frazzini (2008) database is 4.1% (0.34% per month). Table VIII reports

monthly average returns, alphas—from the CAPM, Fama and French (1993) three–factor model,

Carhart (1997) four–factor model, and Fama and French (2015) five–factor model—and loadings

from the five–factor model of Fama and French (2015) for three portfolios of stocks sorted by annual

centrality as well as the portfolio that is long the low centrality tercile and short the high central-

ity tercile. Firms are assigned into centrality terciles at the end of October every year and the

value-weighted portfolios are not rebalanced for the next 12 months. The sample is from June 1981

to December 2004. The last five columns report betas for the five–factor model of each centrality

tercile.

As table VIII suggests, there is a strong negative relation in the data between firms’ centrality

and future returns that cannot be captured by commonly used asset pricing models. Firms in

the low centrality tercile command an average monthly return of 2.06%, whereas firms in the high

centrality tercile command an average monthly return of 1.71%. The 0.34% monthly difference

in returns between these two portfolios is economically and statistically significant and appears

naturally in an equilibrium context, like the one illustrated in this paper, as a compensation for

contagion risk.

To better understand the sources of the difference in future returns between firms with different

centrality scores, I focus on manufacturing and service firms because they jointly represent almost

70% of the firms in the dataset. Table IX considers only manufacturing firms, table X considers

only service firms, and table XI considers both manufacturing and service firms. As in table

VIII, tables IX, X, and XI report raw returns, alphas, and betas of each centrality tercile and the
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portfolio that is long the low centrality tercile and short the high centrality tercile. They also

report alphas from the CAPM, and the three–, four– and five–factor models. Consistent with

empirical evidence documented by Wu and Birge (2014), these tables suggest that central firms in

manufacturing and service industries may benefit from the diversification of customers and suppliers.

Such diversification helps central firms to mitigate contagion risk better than less central firms and,

thus, command lower risk premiums.

C. Factor Structure on Firm-Level Return Volatility

The calibrated model also generates a high degree of common time variation in return volatilities

at the firm level, which is aligned with recent empirical evidence, e.g., Herskovic et al. (2014) and,

Duarte et al. (2014). To facilitate comparison with evidence documented by Herskovic et al. (2014),

figure 17 illustrates the annual total return volatility at the firm-level averaged within start-of-year

size quintiles. As figure 17 shows, firms of all sizes exhibit similar time series volatility patterns

in the calibrated model. On average, the first principal component of the cross section of annual

return volatility accounts for 99% of the variance. Within the model, the existence of this factor

structure is not surprising, as fluctuations in the cross-sectional distribution of {p̃ijt}(i,j) ∈ Gn
drive

changes in growth opportunities and uncertainty across firms, which translate into changes in prices

and returns at the firm-level. Provided that stock returns respond to a common factor—given by

the state of ζ—firm-level return volatilities inherit a factor structure.27

VI. Conclusion

This paper develops a dynamic equilibrium model to study the asset pricing properties that

stem from the propagation of shocks across firms in a network economy. The fundamental insight

is that extending standard asset pricing models to take into account the way that shocks propagate

within fairly sticky production networks can make significant progress toward generating a unifying

27Recent empirical evidence also suggests the existence of common time variation in firm-level idiosyncratic volatil-
ities, e.g., Herskovic et al. (2014) and Duarte et al. (2014). In unreported results, I explore the extent to which
idiosyncratic volatilities exhibit a factor structure within the calibrated model. After removing the market as a com-
mon factor of return volatilities, the high degree of common time variation in firm-level return volatilities tends to
disappear. On average, the first principal component of the cross section of annual idiosyncratic volatility accounts
only for 3% of the variance (see figure 17(b)).
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framework that simultaneously captures dynamics of the aggregate and the cross section of stock

returns.

A calibrated model that matches key features of customer–supplier networks in the United

States generates long-run risks, high and volatile risk premiums, and a low and stable risk-free rate.

In the model, low-frequency changes in the shock propagation mechanism endogenously generate

persistence in firms’ growth prospects, which, in turn, drives a small and persistent component

in expected aggregate consumption growth. With recursive preferences, sizeable risk premiums

arise because investors fear that extended periods of low economic growth coincide with low asset

prices. Similarly, a small risk-free rate is driven by investors saving for long periods of low economic

growth.

The model also helps in understanding the cross section of expected returns, as it provides a

mapping between firms’ quantities of priced risk and firms’ importance in the network. In the

calibrated economy, firms that are more central in the network command lower risk premiums than

firms that are less central: central firms tend to benefit from the diversification of their customers

and suppliers and, thus, they mitigate contagion risk better than less central firms. In the time

series, firm-level return volatilities exhibit a high degree of co-movement. These two predictions

are consistent with data from firms in manufacturing and service industries and recent empirical

evidence but cannot be accounted for by standard asset pricing models.
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Formation in the Presence of Contagious Risk.” Journal ACM Transactions on Economics and

Computation 1:6:1–6:20.

Boehm, Christoph, Aaron Flaaen, and Nitya Pandalai-Nayar. 2015. “Input Linkages and the

Transmission of Shocks: Firm-Level Evidence from the 2011 Tohoku Earthquake.” Working

Paper .

Boone, Audra and Vladimir Ivanov. 2012. “Bankruptcy Spillover Effects on Strategic Alliance

Partners.” Journal of Financial Economics 103:551–569.

Boyarchenko, Nina and Anna Costello. 2015. “Counterparty Risk in Material Supply Contracts.”

Federal Reserve Bank of New York Staff Report 694.

Buraschi, Andrea and Paolo Porchia. 2012. “Dynamic Networks and Asset Pricing.” Working

Paper .

27



Campbell, John. 1999. “Asset prices, consumption and the business cycle.” In Handbook of Macroe-

conomics, edited by John Taylor and Michael Woodford. Elvesier, North-Holland, 3967–4056.

Campbell, John Y. 2003. “Consumption-based asset pricing.” In Handbook of the Economics of

Finance, edited by G.M. Constantinides, M. Harris, and R. Stulz. Elsevier Science, 803–887.

Carhart, Mark. 1997. “On Persistence in Mutual Fund Performance.” Journal of Finance 52:57–82.

Carvalho, Vasco and Xavier Gabaix. 2013. “The Great Diversification and its Undoing.” American

Economic Review 103:1697–1727.

Carvalho, Vasco, Makoto Nirei, and Yukiko Saito. 2014. “Supply Chain Disruptions: Evidence

from the Great East Japan Earthquake.” Working Paper .

Carvalho, Vasco M. 2010. “Aggregate Fluctuations and the Network Structure of Intersectoral

Trade.” Unpublished Manuscript .

Cecchetti, Stephen, Poksang Lam, and Nelson Mark. 1993. “The equity premium and the risk-free

rate.” Journal of Monetary Economics 31:21–45.

Chaney, Thomas. 2014. “The Network Structure of International Trade.” American Economic

Review 104:3600–3634.

———. 2016. “The Gravity Equation in International Trade: An Explanation.” Journal of Political

Economy .

Cohen, Lauren and Andrea Frazzini. 2008. “Economic Links and Predictable Returns.” Journal of

Finance 33:1977–2011.

Colbourn, Charles J. 1987. The Combinatorics of Network Reliability. Oxford University Press.

Demange, Gabrielle and Myrna Wooders. 2005. Group Formation in Economics: Networks, Clubs,

and Coalitions. Cambridge University Press.

Di Giovanni, Julian, Andrei A. Levchenko, and Isabelle Mejean. 2014. “Firms, Des-

tinations, and Aggregate Fluctuations.” Econometrica 82 (4):1303–1340. URL

http://dx.doi.org/10.3982/ECTA11041.

28

http://dx.doi.org/10.3982/ECTA11041


Drechsler, Itamar and Amir Yaron. 2011. “What’s Vol Got to Do with It.” Review of Financial

Studies 24:1–45.

Duarte, Jefferson, Avraham Kamara, Stephen Siegel, and Celine Sun. 2014. “The Systemic Risk

of Idiosyncratic Volatility.” University of Washington Working Paper .

Elliott, Matthew, Benjamin Golub, and Matthew Jackson. 2014. “Financial Networks and Conta-

gion.” American Economic Review 104:3115–3153.

Fama, Eugene and Kenneth French. 2015. “A five-factor asset pricing model.” Journal of Financial

Economics 116:1–22.

Fama, Eugene F. and Kenneth R. French. 1993. “Common risk factors in the returns on stocks

and bonds.” Journal of Financial Economics 33:3–56.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2008. “Sparse inverse covariance estima-

tion with the graphical lasso.” Biostatistics 9:432–441.

Gabaix, Xavier. 2011. “The Granular Origins of Aggregate Fluctuations.” Econometrica 79:733–

772.

Gamarnik, David. 2013. “Correlation Decay Method for Decision, Optimization, and Inference in

Large-Scale Networks.” In Theory Driven by Influential Applications. 108–121.

Garcia, Rene, Eric Renault, and A. Semenov. 2006. “Disentangling Risk Aversion and Intertemporal

Substitution.” Finance Research Letters 3:181–193.

Gospodinov, Nikolay and Damba Lkhagvasuren. 2014. “A Moment-Matching Method for Approx-

imating Vector Autoregressive Processes by Finite-State Markov Chains.” Journal of Applied

Econometrics 29:843–859.

Goyal, Sanjeev. 2007. Connections: An Introduction to the Economics of Networks. Princeton

University Press.
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Appendix A: Asymptotic Normality of Consumption Growth

To fix notation, let Gn+1 denote the network Gn, to which I add one new firm and all the relationships the

entrant firm may create with incumbent firms in Gn. The following proposition imposes sufficient conditions on: (a)

the sequence of production networks {Gn}n≥1 and (b) the values within the propensity matrix, p̃t+1, so that ∆c̃t+1

is normally distributed as n grows large.

PROPOSITION 5 (Asymptotic Normality of ∆c̃t+1): Given 0 < q < 1 and a sequence of production networks,

{Gn}n≥1, define the threshold probability pqc and the set Cn as

pqc ≡ sup
p∈(0,1)

{
p : If every relationship in Gn has propensity p, then lim

n→∞
Pα
q (Gn) = 0

}

Cn ≡ {G is a connected component of Gn : Number of nodes in G = O(n)}

where Pα
q (Gn) denotes the probability that a shock to any given firm in Gn affects at least αn firms via shock propagation,

with α > 0. The graph G is said to be a connected component of Gn if G is a subset of Gn in which any two firms are

connected to each other by sequences of relationships and which is connected to no additional firms in Gn. Notation

x = O(n) indicates that x grows, at most linearly, with n. If

lim
n→∞

{
max

(i,j) ∈ Cn

p̃ij,t+1

}
< pqc,

then
√
nW̃n,t+1 and ∆c̃t+1 are normally distributed as n grows large.

Under the conditions of Proposition 5, the distribution of ∆c̃t+1 can be characterized in terms of its mean and

variance. Because the network topology is fixed, the dynamics of the mean and variance of consumption growth are

fully determined by the dynamics of the propensity matrix p̃t+1. Provided that the dynamic of p̃t+1 is determined

by ζt+1, the economy follows a Markov process with a continuum of values for aggregate consumption and its growth

rate, ∆c̃t+1, but only four values for the first two moments of the distribution of consumption growth.

The following corollaries provide a more detailed characterization of those large network economies in which

consumption growth is normally distributed. Corollary 1 focuses on large networks in which all firms have the same

number of direct relationships.
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COROLLARY 1 (Symmetric Production Networks): Suppose p̃ij,t+1 = pt+1 > 0, ∀(i, j) ∈ Gn. Given a sequence of

production networks, {Gn}n≥1, with limiting topology G∞,28

• pqc = 1− 2 sin
(

π
18

)
≈ 0.65 if G∞ is the two-dimensional honeycomb lattice.

• pqc = 1
2
if G∞ is the two-dimensional square lattice.

• pqc = 2 sin
(

π
18

)
≈ 0.34 if G∞ is the two-dimensional triangular lattice.

• pqc = 1
z−1

if G∞ is the Bethe lattice with z neighbors per each firm.

Figure 3 illustrates each of the network economies considered in corollary 1. Corollary 2 focuses on large networks

in which the number of direct relationships differs across firms.

COROLLARY 2 (Asymmetric Production Networks): Suppose p̃ij,t+1 = pt+1 > 0, ∀(i, j) ∈ Gn. Given a sequence of

production networks, {Gn}n≥1,

• pqc = 1
branching number of G∞

if G∞ is a tree. The branching number of a tree is the average number of relationships

per firm in a tree.29

• pqc = 1
eM

if Gn is sparse and locally treelike. Gn is said to be sparse if the number of relationships in Gn

increases linearly with n, as n increases. Gn is said to be locally treelike if an arbitrarily large neighborhood

around any given firm takes the form of a tree. For finite n, parameter eM is the leading eigenvalue of the

matrix

Mn =


 An In −Dn

In 0


 (1)

where An is the adjacency matrix of Gn, i.e. the n× n matrix in which Aij = 1 if there is a direct relationship

between firms i and j and zero otherwise. In is the n× n identity matrix, and Dn is the diagonal matrix that

contains the number of relationships per firm along the diagonal.

Appendix B: Proofs

This section contains the proofs of the propositions and corollaries in the body of the paper and Appendix A.

The following computations consider three assumptions:

ASSUMPTION 1: Firm i’s output at period t+ 1, yi,t+1, follows

log

(
yi,t+1

Yt

)
≡ α0 + α1di − α2

√
nε̃i,t+1 , (1)

where Yt denotes the aggregate output of the economy at t and ε̃i,t+1 denotes a Bernoulli random variable that equals

28A lattice is a graph whose drawing can be embedded in R
n. The two-dimensional honeycomb lattice is a graph

in 2D that resembles a honeycomb. The two-dimensional square lattice is a graph that resembles the Z
2 grid. The

two-dimensional triangular lattice is a graph in 2D in which each node has six neighbors.
29A tree is a network in which any two nodes are connected by exactly one sequence of edges. A forest is a network

whose components are trees.
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one if firm i faces a negative shock at t+1 and zero otherwise. Parameter di denotes the number of direct relationships

of firm i. Parameters α0, α1 and α2 are non-negative real numbers.

ASSUMPTION 2: The aggregate output of the economy at t, Yt, is defined as

Yt ≡
n∏

i=1

y
1/n
i,t . (2)

ASSUMPTION 3: Let x̃t+1 ≡ log
(

Yt+1

Yt

)
be the log output growth rate of the economy at t + 1 and let ∆c̃t+1 ≡

log
(

C̃t+1

Ct

)
be the log aggregate consumption growth rate at t+ 1. The processes for x̃t+1 and ∆c̃t+1 jointly satisfy

x̃t+1 = µ̄+ τ∆c̃t+1 + σxξ̃t+1, (3)

where µ̄ and τ are constants, σx > 0, and ξ̃t+1
d−→ i.i.d. N (0, 1). Variable ξ̃t+1 is independent of ∆c̃t+1 and all the

variables in the sequence {ε̃i,t+1}ni=1.

Let st denote the state of the parameter vector ζt. Because the network topology is fixed, st determines the

distributions of aggregate output and consumption growth at t. Provided that ζt follows a Markov process, the

distributions of aggregate output and consumption growth vary over time and the dynamics of the moments of these

distributions satisfy the Markov property.

Sketch of proof of Proposition 5 and Corollaries 1 and 2. Given a sequence of network topologies {Gn}n≥1 and the

realization of the matrix p̃t, the goal is to find the conditions under which
√
nW̃n,t is normally distributed as n grows

large. Without loss of generality, fix period t so that subscript t on the sequence {ε̃i,t}ni=1 and on the matrix p̃t can

be eliminated. If the sequence of Bernoulli random variables {ε̃i}ni=1 is independent, the Lindeberg-Lévy central limit

theorem implies that
√
nW̃n is normally distributed as n grows large. Consequently, if p̃ is a matrix of zeros then

{ε̃i}ni=1 is a sequence of independent random variables and
√
nW̃n is asymptotically normally distributed. In the

presence of inter-firm relationships, however, some elements in the matrix p̃ are different from zero. In particular, ε̃i

and ε̃j are correlated if there exists a sequence of relationships between firms i and j in Gn. In this case, {ε̃i}ni=1 is

a sequence of dependent random variables and the conditions under which the Lindeberg-Lévy central limit theorem

hold are not satisfied.

Despite the fact that the sequence {ε̃i}ni=1 may be dependent,
√
nW̃n may still be asymptotically normally

distributed if the dependence among variables in {ε̃i}ni=1 is sufficiently weak. In particular, if the sequence {ε̃i}ni=1 is

α-mixing and stationary,
√
nW̃n follows a normal distribution as n grows large—see Billingsley (1995, Theorem 27.4).

Generally speaking, the sequence {ε̃i}ni=1 is said to be α-mixing if ε̃k and ε̃k+n are approximately independent for

large n and k ≥ 1.30 The sequence is said to be stationary if the distribution of the subsequence {ε̃l, ε̃l+1, · · · , ε̃l+j}

30To be more specific, let αn be a non-negative number such that

∣∣P(A ∩ B)− P(A)P(B)
∣∣ ≤ αn (4)

with A ∈ σ(ε̃1, · · · , ε̃k), B ∈ σ(ε̃k+n, ε̃k+n+1, · · · ), k ≥ 1 and n ≥ 1; where σ(·) denotes the σ-algebra defined on the
power set of {0, 1}n ≡ {0, 1} × · · · × {0, 1}. The sequence {ε̃i}ni=1 is said to be α-mixing if αn → 0 as n grows large.
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does not depend on the subscript l. A special case of the above result occurs if there exists an ordering of the

sequence {ε̃i}ni=1 such that the dependence between variables ε̃k and ε̃j decreases as the distance between them in

such an ordering increases. In particular, if there exists such an ordering and a positive constant m such that the

subsequences {ε̃1, · · · , ε̃k} and {ε̃1,k+s, · · · , ε̃k+s+l} are independent whenever s > m, the sequence {ε̃i}ni=1 is said to

be m-dependent in which case
√
nW̃n follows a normal distribution as n grows large.31

In what follows, I apply an idea similar to that behind the notion of m-dependent random variables to sketch

the proof of the asymptotic normality of
√
nWn. In particular, I impose sufficient conditions on the sequence of

networks {Gn}n≥1 and on the matrix p̃ so that negative shocks to individual firms tend to remain locally confined as

n grows large. In case the shocks remain locally confined, shocks would almost surely spread only over sets of firms

of finite size—with all sets independent among each other—whose size would become negligible compared to the size

of the economy as n grows large. As a consequence, one would almost surely be able to find an index ordering I

and a positive constant m̂ under which the sequence {ε̃i}i∈I would be m̂-dependent and, thus,
√
nWn would follow

a normal distribution as n grows large.

For the sake of illustration, suppose that ∀ (i, j) ∈ Gn, pij = p0 > 0, with i 6= j. Given 0 < q < 1 and a sequence

of networks, {Gn}n≥1, define the threshold probability pqc as

pqc ≡ sup
p∈(0,1)

{
p : lim

n→∞
Pα
q (Gn) = 0

}
, (5)

where Pα
q (Gn) denotes the probability that a shock to any individual firm in Gn at least affects other αn firms via

shock propagation, with α > 0. Determining the conditions under which a CLT applies to
√
nWn is related to

determining the threshold probability pqc. If every relationship in Gn has a propensity p0 and p0 < pqc, then shocks

would remain locally confined because the number of firms affected by the shock would become negligible compared

to the size of the economy as n grows large. Then, one would almost surely be able to find an index ordering I and

a positive constant m̂ under which the sequence {ε̃i}i∈I would be m̂-dependent.

The condition p0 < pqc may be stronger than necessary to prove the asymptotic normality of
√
nWn. Imposing such

a condition, however, greatly facilitates the proof, as the determination of the threshold pqc has been extensively studied

in percolation theory, e.g. Grimmett (1989) and Stauffer and Aharony (1994). In percolation, pqc is sometimes called

the critical probability or critical phenomenon because it indicates the arrival of an infinite, connected component as

n grows large. A connected component of a graph is a subgraph in which any two nodes are connected to each other

by sequences of edges, and which is connected to no additional nodes in the original graph.

To illustrate how pqc can be determined, consider the following two examples:

• Imagine n firms are arranged in a straight line and each relationship may transmit shocks with probability p0.

The probability that every relationship in the line transmits shocks is pn−1
0 . Given how shocks spread from

31An independent sequence is 0-dependent using this terminology.
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one firm to another, the probability that at least one negative shock spreads over n− 1 different firms equals

(1− (1− q)n)P [every relationship in the line transmits shocks] (6)

≈ (1− e−nq)pn−1
0 (for large n)

which tends toward zero as n→ ∞. Thus, pqc = 1.

• Suppose n firms are arranged in a circle. The probability that every relationships in the circle transmits shocks

is pn0 , which tends toward zero as n→ ∞. Following the previous argument, it is easy to see that pqc = 1.

Taking results from bond percolation, Table I reports critical probabilities for several symmetric network topolo-

gies assuming that every relationship in the graph transmits shocks with the same probability. As Table I shows,

pqc varies across network topologies. For instance, if the limiting topology of the sequence {Gn}n≥1, G∞, is the two-

dimensional honeycomb lattice, then pqc = 1− 2 sin
(

π
18

)
≈ 0.65, whereas if G∞ is the two-dimensional square lattice

then pqc = 1
2
.

The previous analysis determines conditions under which
√
nW̃n is normally distributed for some symmetric net-

work topologies. But what happens in other networks? In particular, under what conditions is
√
nW̃n asymptotically

normally distributed in large asymmetric networks? Using random walks on trees, Lyons (1990) shows that if G∞ is

a tree then

pc =
1

branching number of G∞
, (7)

where the branching number of a tree is the average number of branches per node in a tree.32 A tree is a connected

graph in which two given nodes are connected by exactly one sequence of edges. A tree is said to be z-regular if each

node has degree z. If G∞ is a z-regular tree, the average number of branches per node is z − 1 so pc = 1
z−1

; which is

consistent with Table I.33

One can generalize the previous result for topologies where G∞ is sparse and locally treelike. Gn is said to be

sparse if Gn has m edges and m = O(n). Notation m = O(n) indicates that m grows, at most, linearly with n so

there exists a positive number c such that
∣∣m
n

∣∣ < c for all n. Namely, Gn is sparse if only a small fraction of the

possible n(n−1)
2

edges are present. G∞ is said to be locally treelike if in the limit an arbitrarily large neighborhood

around any node takes the form of a tree. Reformulating percolation in trees as a message passing process, Karrer,

32For a concrete definition of the branching number see Lyons (1990, page 935).
33To motivate the previous result, it is informative to compute the percolation threshold in the Bethe lattice with

z neighbors per every node. Start at the root and check whether there is a chance of finding an infinite open path
from the root. Starting from the root, one has (z − 1) new edges emanating from each new node in each layer of the
lattice. Each of these (z − 1) new edges leads to one new node, which is affected with probability p. On average,
(z − 1)p nodes are affected at each layer of the lattice. If (z − 1)p < 1 then the average number of affected nodes
decreases in each layer by a factor of (z− 1)p. As a consequence, if (z− 1)p < 1 the probability of finding an infinite
open path goes to zero exponentially in the path length. Thus, pc = 1

z−1
for the Bethe lattice with z neighbors for

every node.
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Newman, and Zdeborová (2014) show that if G∞ is sparse and locally treelike then

pc =
1

ǫH
(8)

where ǫH is the leading eigenvalue of the 2n× 2n matrix

M =


 A I−D

I 0


 (9)

where A is the adjacency matrix that represents Gn, I is the n×n identity matrix, and D is the diagonal matrix with

the number of relationships per firm along the diagonal.

Now to allow for propensities to vary across relationships, one can extend the previous argument in the following

way. Let Cn be the set of graphs composed by those connected components of Gn whose number of nodes grows, at

most, linearly with n. Mathematically,

Cn ≡ {G is a connected component of Gn : the number of nodes in G = O(n)} (10)

Because in the limit one only needs to pay attention to components of Gn that potentially grow linearly with n, the

following inequality

lim
n→∞

{
max

(i,j) ∈ Cn

p̃ij

}
< pqc, (11)

ensures that shocks to individual firms would remain locally confined provided that sets of firms of finite size become

negligible as the economy grows large. As a consequence, if inequality (11) holds then
√
nW̃n and ∆c̃ are normally

distributed as n grows large.

Proof of Proposition 1. I look for an equilibrium such that the price dividend ratio is stationary. I conjecture that

if c is the current aggregate consumption and s the current state of ζt, then Pa(c, s) = wa
s c, in which Pa is the price

of aggregate wealth and wa
s a number that depends on state s. If st = s and st+1 = s′, the realized gross return at

period t+ 1 of the asset that delivers aggregate consumption as its dividend each period, R̃a,t+1, equals

R̃a,t+1 =
P̃a,t+1 + C̃t+1

Pa,t
=

wa
s′ + 1

wa
s

C̃t+1

Ct
(12)

Setting R̃i,t+1 = R̃a,t+1 in equation (4) yields,

Et



[
β

(
C̃t+1

Ct

)−ρ] 1−γ
1−ρ [

R̃a,t+1

] 1−γ
1−ρ


 = 1

⇒ E



[
β

(
C̃t+1

Ct

)−ρ] 1−γ
1−ρ

[
wa

s′ + 1

wa
s

C̃t+1

Ct

] 1−γ
1−ρ

∣∣∣∣s


 = 1 (13)
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Provided that st follows a Markov process, equation (13) can be rewritten as

β
1−γ
1−ρ


 ∑

s′=LL,LH,HL,HH

ωs,s′E

((
C̃t+1

Ct

)1−γ ∣∣∣∣s
′
)(

wa
s′ + 1

wa
s

) 1−γ
1−ρ


 = 1 (14)

Reordering equation (14) yields,

wa
s = β


 ∑

s′=LL,LH,HL,HH

ωs,s′E

(
e(1−γ)∆c̃t+1

∣∣s′
)
(wa

s′ + 1)
1−γ
1−ρ




1−ρ
1−γ

(15)

which completes the proof.

REMARK 1: If
√
nW̃n,t+1 is normally distributed, then

E

(
e(1−γ)∆c̃t+1

∣∣s
)

= exp

(
(1− γ)(α0 + α1d̄− α2µs − µ̄)

τ
+

(1− γ)2

2

(
α2
2σ

2
s − σ2

x

τ 2

))
(16)

where

µs ≡ lim
n→∞

E

(
n∑

i=1

ε̃i,t+1√
n

∣∣∣∣s
)

and σ2
s ≡ lim

n→∞
Var

(
n∑

i=1

ε̃i,t+1√
n

∣∣∣∣s
)

and the above constants are assumed to be finite so that equation (16) is well-defined.

REMARK 2 (Price of Market Return): If consumption and output growth differ, I compute the price of the market

return as follows. I conjecture that if y is the current aggregate output and s the current state of ζt, then Pm(c, s) =

wm
s y, where Pm is the price of the market portfolio and wm

s a number that depends on state s. If st = s and st+1 = s′,

then the realized gross return at period t + 1 of the asset that delivers aggregate output as its dividend each period,

R̃m,t+1, equals

R̃m,t+1 =
P̃m,t+1 + Yt+1

Pm,t
=

wm
s′ + 1

wm
s

Yt+1

Yt
(17)

Setting R̃i,t+1 = R̃m,t+1 in equation (4) yields,

Et



[
β

(
C̃t+1

Ct

)−ρ] 1−γ
1−ρ [

R̃a,t+1

] 1−γ
1−ρ

−1

R̃m,t+1


 = 1

⇒ E



[
β

(
C̃t+1

Ct

)−ρ] 1−γ
1−ρ

[
wa

s′ + 1

wa
s

(
C̃t+1

Ct

)] 1−γ
1−ρ

−1(
wm

s′ + 1

wm
s

X̃t+1

) ∣∣∣∣s


 = 1 (18)

where X̃t+1 =
Yt+1

Yt
. Provided that st follows a Markov process, equation (18) can be rewritten as

β
1−γ
1−ρ


 ∑

s′={LL,LH,HL,HH}
ωs,s′E

((
C̃t+1

Ct

)−γ

X̃t+1

∣∣∣∣s
′
)(

wa
s′ + 1

wa
s

) 1−γ
1−ρ

−1(
wm

s′ + 1

wm
s

)
 = 1 (19)
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Reordering equation (19) yields,

wm
s = β

1−γ
1−ρ


 ∑

s′∈{LL,LH,HL,HH}
ωs,s′E

(
e−γ∆c̃t+1+x̃t+1

∣∣s′
)(wa

s′ + 1

wa
s

) 1−γ
1−ρ

−1

(wm
s′ + 1)


 (20)

It follows from (3) that −γ∆c̃t+1 + x̃t+1 = µ̄+ (τ − γ)∆c̃t+1 + σxξ̃t+1. Therefore, (20) equals to

wm
s = β

1−γ
1−ρ eµ̄+

σ2
x
2


 ∑

s′∈{LL,LH,HL,HH}
ωs,s′E

(
e(τ−γ)∆c̃t+1

∣∣s′
)(wa

s′ + 1

wa
s

) 1−γ
1−ρ

−1

(wm
s′ + 1)


 (21)

Proof of Proposition 2. Setting R̃i,t+1 = Rf in equation (4) yields,

E



[
β

(
C̃t+1

Ct

)−ρ] 1−γ
1−ρ [

R̃a,t+1

] 1−γ
1−ρ

−1
∣∣∣∣s


 =

1

Rf (s)
. (22)

Provided that st follows a Markov process and Pa(c, s) = wa
s c, the left hand side of equation (22) can be rewritten

as the following sum

β
1−γ
1−ρ


 ∑

s′=LL,LH,HL,HH

ωs,s′E

((
C̃t+1

Ct

)−γ ∣∣∣∣s
′
)(

wa
s′ + 1

wa
s

) ρ−γ
1−ρ




Therefore,

1

Rf (s)
= β

1−γ
1−ρ


 ∑

s′=LL,LH,HL,HH

ωs,s′E

(
e−γ∆c̃t+1

∣∣s′
)(wa

s′ + 1

wa
s

) ρ−γ
1−ρ


 ,

which completes the proof

Proof of Proposition 3. Consider st = s and st+1 = s′. Equation (4) can be rewritten as,

Pi,t = Et

(
M̃t+1

(
P̃i,t+1 + yi,t+1

))
i = 1, · · · , n (23)

where

M̃t+1 ≡
[
β

(
C̃t+1

Ct

)−ρ] 1−γ
1−ρ [

R̃a,t+1

] 1−γ
1−ρ

−1

represents the pricing kernel. Dividing equation (23) by Yt yields

Pi,t

Yt
= Et

(
M̃t+1X̃t+1

P̃i,t+1

Yt+1

)
+ Et

(
M̃t+1

yi,t+1

Yt

)
i = 1, · · · , n (24)
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which can be rewritten as

vi,t = Et

(
M̃t+1X̃t+1vi,t+1

)
+ Et

(
M̃t+1

yi,t+1

Yt

)
i = 1, · · · , n (25)

with vi,t ≡ vi(s) ≡ Pi,t

Yt
. Provided that st follows a Markov process and Pa(c, s) = wa

s c, the first term in the right

hand side of equation (25) can be rewritten as

Et

(
M̃t+1X̃t+1vi,t+1

)
= β

1−γ
1−ρ eµ̄+

σ2
x
2


 ∑

s′=LL,LH,HL,HH

ωs,s′

(
wa

s′ + 1

wa
s

) ρ−γ
1−ρ

E

(
e(τ−γ)∆c̃t+1

∣∣s′
)
vi(s

′)


 (26)

whereas the second term in the right hand side of equation (25) can be rewritten as

Et

(
M̃t+1

yi,t+1

Yt

)
= eα0+α1diEt

(
M̃t+1e

−α2
√

nε̃i,t+1

)
(27)

The expectation term in the right hand side of equation (27) can be written as

Et

(
M̃t+1e

−α2
√

nε̃i,t+1

)
= β

1−γ
1−ρ


 ∑

s′=LL,LH,HL,HH

ωs,s′E

((
C̃t+1

Ct

)−γ

e−α2
√

nε̃i,t+1

∣∣∣∣s
′
)(

wa
s′ + 1

wa
s

) ρ−γ
1−ρ




= β
1−γ
1−ρ


 ∑

s′=LL,LH,HL,HH

ωs,s′E

(
e−γ∆c̃t+1−α2

√
nε̃i,t+1

∣∣∣∣s
′
)(

wa
s′ + 1

wa
s

) ρ−γ
1−ρ




As a consequence,

vi(s) = β
1−γ
1−ρ eµ̄+

σ2
x
2


 ∑

s′=LL,LH,HL,HH

ωs,s′

(
wa

s′ + 1

wa
s

) ρ−γ
1−ρ

E

(
e(τ−γ)∆c̃t+1

∣∣s′
)
vi(s

′)




+ β
1−γ
1−ρ eα0+α1di


 ∑

s′=LL,LH,HL,HH

ωs,s′E

(
e−γ∆c̃t+1−α2

√
nε̃i,t+1

∣∣∣∣s
′
)(

wa
s′ + 1

wa
s

) ρ−γ
1−ρ


 i = 1, · · · , n

Define πi(s
′) ≡ E [ε̃i,t+1|st+1 = s′]. It is worth noting that

−γ∆c̃t+1 − α2

√
nε̃i,t+1 = −γ


 1

τ



α0 + α1d̄− α2


∑

j 6=i

ε̃j,t+1√
n


− σxξ̃t+1 − µ̄








︸ ︷︷ ︸

−α2

√
n
(
1− γ

τn

)
ε̃i,t+1

= −γ ∆c̃−i,t+1 − α2

√
n
(
1− γ

τn

)
ε̃i,t+1 (28)

Because ∆c̃−i,t+1 and ε̃i,t+1 are independent

E

(
e−γ∆c̃−i,t+1−α2

√
n(1− γ

τn )ε̃i,t+1

∣∣∣∣s
)

= E

(
e−γ∆c̃−i,t+1

∣∣s
){

πi(s)e
−α2

√
n(1− γ

τn ) + (1− πi(s))
}

≈ E

(
e−γ∆c̃t+1

∣∣s
)
(1− πi(s)) (29)

where the last approximation is accurate for large n. If the distribution of ∆c̃t+1 is known, the expectation of
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−γ∆c̃t+1 − α2
√
nε̃i,t+1 can be approximated using equation (29). Therefore,

vi(s) = β
1−γ
1−ρ eµ̄+

σ2
x
2


 ∑

s′=LL,LH,HL,HH

ωs,s′

(
wa

s′ + 1

wa
s

) ρ−γ
1−ρ

E

(
e(τ−γ)∆c̃t+1

∣∣ps′
)
vi(s

′)




+ β
1−γ
1−ρ eα0+α1di


 ∑

s′=LL,LH,HL,HH

ωs,s′E

(
e−γ∆c̃t+1

∣∣s
)
(1− πi(s))

(
wa

s′ + 1

wa
s

) ρ−γ
1−ρ


 i = 1, · · · , n

which completes the proof

Proof of Proposition 4. Recall that

Var
(
M̃t+1

∣∣s
)

= E

(
M̃2

t+1

∣∣s
)
− E

2
(
M̃t+1

∣∣s
)

(30)

The first term in the right hand side of equation (30) can be rewritten as

E

(
M̃2

t+1

∣∣s
)

= β
2
(

1−γ
1−ρ

)

 ∑

s′=LL,LH,HL,HH

ωs,s′E

((
C̃t+1

Ct

)−2γ ∣∣∣∣s
′
)(

wa
s′ + 1

wa
s

)2
(

ρ−γ
1−ρ

)
 (31)

Provided that λm(s) ≡ −
Var

(
M̃t+1

∣∣s
)

E

(
M̃t+1

∣∣s
) and E

(
M̃t+1

∣∣s
)
= 1

Rf (s)
, it then follows from equation (30) that

λm(s) =
1

Rf (s)
−Rf (s)


β2

(
1−γ
1−ρ

) ∑

s′=LL,LH,HL,HH

ωs,s′

(
wa

s′ + 1

wa
s

)2
(

ρ−γ
1−ρ

)

E

(
e−2γ∆c̃t+1

∣∣s′
)



which completes the proof

Appendix C: Simulation of the Model

This section describes the algorithm I use to compute firms’ probabilities of facing negative cash-flow shocks in

each state of nature so one can compute asset prices and returns at the firm level using proposition 4. Let st denote

the state of the parameter vector ζt at period t. To simplify the computation of probabilities {πi(st)}ni=1, I restrict

the topology of Gn. In general topologies, computing {πi(st)}ni=1 is difficult, because the number of states that need

to be considered increases exponentially with n. In economies with no cycles, however, computing {πi(st)}ni=1 is

easier. In those economies, computing {πi(st)}ni=1 can be framed as a recursive problem, as the following algorithm

describes.

Algorithm Firms’ Probabilities (Gn, st, q)

(∗ Description: Algorithm that computes firms’ probabilities of facing negative shocks if Gn is a forest ∗)

Input: Gn (a forest), st, q.

Output: The set of probabilities of firms facing a negative cash-flow shock at time t, {πi(st)}ni=1

1. for each firm i ∈ Gn
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2. Determine the subgraph of Gn wherein firm i participates. Denote such a graph as Ti and label firm i

as its root.34

3. if firm i has a no connections

4. return πi(st) = q

5. else return Prob(i,Ti,st,q)

where Prob(i,Ti,st,q) corresponds to the following recursive program:

Algorithm Prob(i,Ti,st,q)

(∗ Description: Recursive algorithm that computes firm i’s probability of facing a negative cash-flow shock ∗)

Input: A node i in Gn, the tree Ti wherein node i is the root, st, and q.

Output: πi(st)

1. Determine the set of children of node i in Ti, say Ci.
35

2. if Ci = ∅

3. return πi(st) = q

4. else if every node in Ci has no children

5. return πi(st) = q + (1− q)
(
1− E

[∏
k∈Ci

(1− qp̃ikt)
∣∣st
])

6. else return πi(st) = q + (1− q)
(
1− E

[∏
k∈Ci

(1− p̃iktProb(k, Ti,k, st, q))
) ∣∣st

]
36

In economies with no cycles, it is also simple to compute the first two moments of the distribution of
√
nW̃n,t+1

at t+ 1. Let µs, σ
2
s denote the mean and variance of

√
nW̃n,t+1 if st+1 = s, respectively. In other words,

µs = lim
n→∞

E

(
n∑

i=1

ε̃i,t+1√
n

∣∣∣∣s
)

= lim
n→∞

n∑

i=1

πi(s)√
n

s = LL,LH,HL,HH. (1)

and

σ2
s = lim

n→∞
Var

(
n∑

i=1

ε̃i,t+1√
n

∣∣∣∣s
)

(2)

= lim
n→∞





1

n

n∑

i=1

πi(s) (1− πi(s)) +
1

n

∑

(i,j)∈Gn

Cov
(
ε̃i,t+1, ε̃j,t+1

∣∣st = s
)


 s = LL, LH,HL,HH.

The second term in the equation above can be simplified further. If there exists a path between firms i and j after

edges are removed at period t + 1, then ε̃i,t+1 = ε̃j,t+1. If there is no path between firms i and j in Gn, variables

ε̃i,t+1 and ε̃j,t+1 are independent. It then follows that

Et

[
ε̃i,tε̃j,t

∣∣∣∣ there is a path between i and j

]
= Vart [ε̃i,t] + E

2
t [ε̃i,t] = πi(s)(1− πi(s)) + π2

i (s)

Et

[
ε̃i,tε̃j,t

∣∣∣∣ there is no path between i and j

]
= Et [ε̃i,t]Et [ε̃j,t] = πi(s)πj(s).

34Note that such a graph is a tree provided that Gn is a forest.
35In a rooted tree, the parent of a node is the node connected to it on the path to the root. Every node except

the root has a unique parent. A child of a node v is a node of which v is the parent.
36Tree Ti,k denotes the branch of tree Ti that starts at node k.
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Hence,

Et [ε̃i,tε̃j,t] = Et

[
ε̃i,tε̃j,t

∣∣∣∣ there is a path between i and j

]
P [there is a path between i and j at t]

+ Et

[
ε̃i,tε̃j,t

∣∣∣∣ there is no path between i and j

]
P [there is no path between i and j at t]

=
(
πi(s)(1− πi(s)) + π2

i (s)
)
Pij(s) + πi(s)πj(s) (1−Pij(s)) ,

where Pij(s) ≡ P [there is a path between i and j if st = s]. Thus,

Covt [ε̃i,t, ε̃j,t] = Et [ε̃i,tε̃j,t]− Et [ε̃i,t]Et [ε̃j,t]

=
(
πi(s)(1− πi(s)) + π2

i (s)
)
Pij(s) + πi(s)πj(s) (1−Pij(s))− πi(s)πj(s)

= πi(s) (1− πj(s))Pij(s).

Therefore,

σ2
s = lim

n→∞





1

n

n∑

i=1

πi(s) (1− πi(s)) +
1

n

∑

(i,j)∈Gn

πi(s) (1− πj(s))Pij(s)



 s = LL,LH,HL,HH.

To compute Pij(s) I need to determine the set of paths that connect firms i and j on Gn. If there is more than

one path connecting firms i and j, computing Pij(s) is difficult because shocks can be transmitted by any of those

paths. On the other hand, if there is only one path connecting any two given firms, say firms i and j, computing

Pij(s) becomes easier because there is a unique path connecting firms i and j. It then becomes handy to restrict the

topology of Gn so that it does not have cycles. The following remark describes Pij(s) when Gn is a forest.

REMARK 3: Suppose Gn is a forest; namely, there are no cycles. Then, every component of Gn is a tree. Provided

that any two given firms are jointed by a unique path (in case such a path exists),

Pij (s) =





E

[∏
(k,l)∈Pi,j

p̃kl

∣∣∣∣s
]

where Pi,j is the (unique) path between i and j in Gn

0 there is no path between i and j.

(3)

Appendix D: Tables and Figures

This section contains the tables and figures mentioned in the paper and in the appendix.
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Table I

Critical probability for different symmetric network topologies

The table reports critical probabilities for different symmetric network topologies. Besides reporting the two examples

described in Appendix A, the table reproduces a subset of the values reported in Stauffer and Aharony (1994, Table

1). The first column reports the topology of G∞. The second column reports the number of neighbors of any given

node in G∞. The third column reports the critical probability, pc(G∞). Despite the fact that G∞ may be highly

connected, if max p̃t < pc(G∞), then no infinite component emerges as n → ∞, and thus
√
nW̃n is asymptotically

normally distributed. For illustrative purposes, figure 3(a) depicts a 2D honeycomb lattice, figure 3(b) depicts a 2D

squared lattice, figure 3(c) depicts a 2D triangular lattice, and figure 3(d) depitcs a Bethe lattice with z = 3. The

Bethe lattice of degree z is defined as an infinite tree in which any node has degree z. For finite n such topologies

are called Cayley Trees.

Topology of G∞ Number of neighbors pc(G∞)

Infinite line (1D lattice) 2 1
Infinite circle 2 1
2D honeycomb lattice 3 1− 2 sin

(
π
18

)

2D squared lattice 4 1
2

2D triangular lattice 6 2 sin
(

π
18

)

Bethe lattice z 1
z−1

Table II

Major Industry Groups in Customer–Supplier Database

The table reports the distribution of firms across major industry groups in the Cohen and Frazzini (2008) customer–

supplier database for which monthly return data were available from 1980 to 2004. Major industry groups are defined

by the first two numbers of SIC codes.

Industry Number of firms

Agriculture, forestry, and fishing 14
Construction 32
Finance, insurance, and real estate 308
Manufacturing 2,639
Mining 337
Public Administration 7
Retail 240
Service 1,099
Transportation, communications, electric, gas, and sanitary 432
Wholesale 234

Total 5,342
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Table III

Characteristics of Customer–Supplier Networks

The table reports characteristics of customer-supplier networks generated at an annual frequency using the Cohen

and Frazzini (2008) dataset from 1980 to 2004. Two firms are connected in the network of year t if one of them

represents at least 10% of the other firm’s sales during that year. The number of components (clusters) in each

network is computed via two consecutive depth-first searches. Provided that degree distributions exhibit fat tails,

one can approximate them via power law distributions in at least the upper tail. Namely, the probability of a given

degree d in the network of year t, P
t(d), can be expressed as P

t (d) = atd
−ξt , where at > 0 and ξt > 1 are the

parameters to be estimated. The last row shows the average and standard deviation of the maximum likelihood

estimators for ξt over the sample period. Finally, the column benchmark reports the characteristics of the network

in the benchmark economy.

Characteristic Mean Standard Deviation Benchmark

Number of firms per customer–supplier network 1,038 415 1,038
Number of relationships per customer–supplier network 1,066 635 918
Number of components per network 174 25 120
Size of the largest component 482 382 482
Size of the second largest component 54 31 54
Size of the third largest component 19 17 19
Size of the fourth largest component 11 7 11
Size of the fifth largest component 9 5 9
Exponent of fitted power law to the degree distribution 2.36 0.18 2.36

Table IV

Benchmark Parameterization

The table reports the list of parameter values in the benchmark parameterization. I set µ̄ = −0.019/12 so the

difference between unconditional means of consumption and dividend growth generated by the benchmark economy

are similar to the ones found in data. I follow Bansal and Yaron (2004), and I set τ = 3. I set σx = 0.05/
√
12 so

that the difference between unconditional means of consumption and dividend growth generated by the benchmark

economy is similar to the ones found in data. I divide the rest of the parameter values into three groups. Parameters in

the first group define the preferences of the representative investor: β represents the time discount factor, γ represents

the coefficient of relative risk aversion for static gambles, and ρ represents the inverse of the inter-temporal elasticity

of substitution. Parameters in the second group describe firms’ cash-flows: α0 measures the part of firms’ cash-flows

unrelated to inter-firm relationships, α1 measures the marginal benefit a firm receives from each relationship, and α2

measures the decrease in a firm’s cash flow if a firm faces a negative shock. Given a network topology, parameters

in the third group define the stochastic process that determines the propagation of shocks across firms. Parameter q

measures how frequently firms face negative idiosyncratic shocks. The rest of parameters define the cross-sectional

distribution from which propensities of relationships to transmit shocks are determined: ζ1L, ζ1H , ζ2L, and ζ2H .

Preferences Firms’ Cash-flows Propagation of shocks
β γ ρ α0 α1 α2 ζ1L ζ1H q ζ2L ζ2H
0.997 10 0.65 0.27 0.05 0.0626 0.90 1.19 0.129 52.4 72.7
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Table V

Moments under the Benchmark Parameterization

The table reports the first two moments of consumption and dividend growth as well as a set of key asset pricing

moments. Column Data reports moments found in data. Column Model reports moments generated under the

benchmark parameterization described in Table IV. Column BY2004 reports moments generated under the long-run

risks model of Bansal and Yaron (2004). Data on consumption and dividends is obtained from Robert Shiller’s

website http://www.econ.yale.edu/ shiller/data.htm. Moments on the return on aggregate wealth, risk-free rate,

equity premium, and Sharpe ratio are based on data from 1928 to 2014 and obtained from Aswath Damodaran’s

website: http://pages.stern.nyu.edu/∼adamodar/. The annual return on aggregate wealth is approximated by the

annual return of the S&P 500. The return on the risk-free asset is approximated by the yield on three-month T-bills.

All values are in percentage with the exception of average Sharpe ratios.

Moments Data Model BY2004

Average annual log of consumption growth rate 1.9 1.9 1.8
Annual volatility of log consumption rate 3.5 3.5 2.8
Average annual log dividend growth rate 3.8 3.8 1.8
Annual volatility of the log dividend growth rate 11.63 11.7 12.3
Average annual market return (S&P 500) 11.53 12 7.2
Annual volatility of the market return 19 18.92 19.42
Average annual risk-free rate (3-month T-bill) 3.53 2.16 0.86
Annual volatility of risk-free rate 3 0.7 0.97
Average annual equity risk premium 8 10 6.33
Average annual Sharpe ratio 0.4 0.52 0.33
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Table VI

Similarities between the calibrated model and the LRR model

The table reports averages and standard deviations of similarity measures between time series generated with either

the calibrated model or the benchmark parameterization in the LRR model of Bansal and Yaron (2004). To compute

averages and standard deviations, I sample from the calibrated model and the LRR model to construct two finite-

sample empirical distributions for each similarity measure: one for expected consumption growth, Et [∆c̃t+1], and

one for the conditional volatility of consumption growth, Volt [∆c̃t+1]. Reported values are based on 300 simulated

samples over 620 periods. The first 100 periods in each sample are disregarded to eliminate bias coming from the

initial condition. All similarity measures report scores computed as 1
1+distance

, where distance is defined according to

each similarity measure. Let XT = (X1, · · · , XT ) and YT = (Y1, · · · , YT ) denote realizations from two time series,

X = {Xt} and Y = {Yt}. The first and second similarity measures focus on the proximity between X and Y at

specific points of time. The euclidean distance (ED) is defined as
√∑T

t=1(Xt − Yt)2, whereas the dynamic time

warping (DTW) distance is defined as minr

(∑m
i=1 |Xai − Ybi |

)
, where r = ((Xa1 , Yb1), · · · , (Xam , Ybm)) is a sequence

of m pairs that preserves the order of observations, i.e., ai < aj and bi < bj if j > i. DTW seeks to find a mapping

such that the distance between X and Y is minimized. This way of computing distance allows two time series

that are similar but locally out of phase to align in a nonlinear manner. The third measure focuses on correlation-

based distances. It uses the partial autocorrelation function (PACF) to define the distance between time series. In

particular, distance is defined as
√

(ρ̂Xt − ρ̂Yt)′Ω(ρ̂Xt − ρ̂Yt), where Ω is a matrix of weights, whereas ρ̂Xt and ρ̂Yt

are the estimated partial autocorrelations of X and Y , respectively. The fourth and fifth measures assume that a

specific model generates both time series. The idea is to fit the specific model to each time series and then measure

the dissimilarity between the fitted models. The fourth measure computes the distance between two time series

as the ED between the truncated AR operators. In this case, distance is defined as
√∑k

j=1(ej,Xt − ej,Yt)2, where

eXt = (e1,Xt , · · · , ek,Xt) and eYt = (e1,Yt , · · · , ek,Yt) denote the vectors of AR(k) parameter estimators for X and

Y , respectively. The fifth measure computes dissimilarity between two time series in terms of their linear predictive

coding in ARIMA processes, as in Kalpakis, Gada, and Puttagunta (2001). The last measure defines distance based

on nonparametric spectral estimators. Let fXT and fYT denote the spectral densities of XT and YT , respectively. In

this case, the dissimilarity measure is given by a nonparametric statistic that checks the equality of the log-spectra

of the two time series. It defines distance as
∑n

k=1

[
Zk − µ̂(λk)− 2 log(1 + eZk−µ̂(λk))

]
−∑n

k=1

[
Zk − 2 log(1 + eZk)

]
,

where Zk = log(IXT (λk)) − log(IYT (λk)), and µ̂(λk) is the local maximum log-likelihood estimator of µ(λk) =

log(fXT (λk))− log(fYT (λk)) computed with local lineal smoothers of the periodograms. All similarity measures are

computed using the R package TSclust (see Montero and Vilar (2014)).

Et [∆c̃t+1] Volt [∆c̃t+1]
Similarity measure Mean Standard Deviation Mean Standard Deviation

ED 0.958 0.012 0.974 0.008
DTW 0.758 0.091 0.723 0.105
PACF 0.736 0.043 0.743 0.043
ED in AR 0.908 0.100 0.910 0.097
Linear predictive in ARIMA 0.726 0.325 0.729 0.313
Spectral distance 1.0 0.000 1.0 0.000
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Table VII

Eigenvector Centrality Summary Statistics

The table reports averages of summary statistics for log(eigenvector centrality). To compute averages in the third

and fourth columns, I use customer–supplier data on years 1982, 1987, 1992, 1997, and 2002 to be consistent with the

years used by Ahern (2013). Using data reported in Ahern (2013, Internet Appendix Table II), the second column

presents averages of the statistics for log(eigenvector centrality) in inter-sectoral trade networks. The third column

presents averages in annual customer–supplier networks in which two firms are connected if one firm represents at

least 10% of the other firm’s annual sales. The fourth column presents averages in annual customer–supplier networks

in which two firms are connected if one firm represents at least 20% of the other firm’s annual sales. The fifth column

reports the statistics for log(eigenvector centrality) in the network of the calibrated economy.

Statistic Inter-sectoral Customer–Supplier Customer–Supplier Calibrated
Networks Networks (10%) Networks (20%) Network

Number of sectors/firms 474 750 382 400
Mean −6.68 −6.74 −6.62 −6.09
Standard deviation 1.48 1.07 1.31 1.71
Skewness 0.87 4.04 3.28 1.54
Kurtosis 4.45 18.50 12.38 3.70
Minimum −10.21 −7.01 −7.01 −7.01
1st percentile −9.39 −7.01 −7.01 −7.01
25th percentile −7.71 −7.01 −7.01 −7.01
Median −6.85 −7.01 −7.01 −6.09
75th percentile −5.90 −7.01 −7.01 −6.42
99th −2.27 −1.83 −1.67 −2.30
Maximum −0.17 −0.46 −0.34 −0.74

Table VIII

Performance of Centrality Portfolios

The table reports monthly average raw returns, alphas and loadings from the five-factor model for three portfolios

of stocks sorted by annual centrality and the portfolio that is long on the low tercile and short on the high tercile of

centrality. The bottom row provides the t-statistics for the low minus high portfolio. Firms are assigned into terciles

at the end of October every year and the value-weighted portfolios are not rebalanced for the next 12 months. The

sample is from June 1981 to December 2004. Raw returns and alphas are in percent.

Raw Alphas 5-Factor Loadings
Tercile Return CAPM 3-Factor 4-Factor 5-Factor MKT SMB HML RMW CMA

Low 2.06 0.89 1.12 1.01 1.26 0.94 0.12 -0.34 -0.36 0.11
2 1.96 0.86 0.87 0.83 0.77 1.00 0.06 -0.12 0.07 0.22
High 1.71 0.64 0.72 0.75 0.72 0.94 -0.23 -0.11 -0.05 0.05
Low - High 0.34 0.25 0.40 0.25 0.54 -0.006 0.36 -0.23 -0.30 0.05
t-statistic [1.72] [1.26] [2.3] [1.44] [3.05] [-0.13] [6.10] [-2.67] [-3.94] [0.44]
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Table IX

Performance of Centrality Portfolios in Manufacturing Stocks

The table reports monthly average raw returns, alphas and loadings from the five-factor model for three portfolios of

manufacturing stocks sorted by annual centrality and the portfolio that is long on the low tercile and short on the

high tercile of centrality. The bottom row provides the t-statistics for the low minus high portfolio. Manufacturing

firms are assigned into terciles at the end of October every year and the value-weighted portfolios are not rebalanced

for the next 12 months. The sample considers from June 1981 to December 2004. Raw returns and alphas are in

percent. Manufacturing stocks represent about 50% of the stocks in the database.

Raw Alphas 5-Factor Loadings
Tercile Return CAPM 3-Factor 4-Factor 5-Factor MKT SMB HML RMW CMA

Low 2.02 0.85 1.11 1.01 1.14 0.93 0.29 -0.54 -0.20 0.29
2 1.85 0.74 0.84 0.87 0.75 0.97 0.13 -0.30 -0.005 0.33
High 1.79 0.71 0.82 0.85 0.81 0.93 -0.22 -0.19 -0.09 0.15
Low - High 0.23 0.13 0.28 0.15 0.33 0.002 0.52 -0.34 -0.11 0.14
t-statistic [1.02] [0.58] [1.49] [0.80] [1.64] [0.04] [7.76] [-3.50] [-1.27] [1.08]

Table X

Performance of Centrality Portfolios in Service Stocks

The table reports monthly average raw returns, alphas and loadings from the five-factor model for three portfolios of

service stocks sorted by annual centrality and the portfolio that is long on the low tercile and short on the high tercile

of centrality. The bottom row provides the t-statistics for the low minus high portfolio. Service firms are assigned

into terciles at the end of October every year and the value-weighted portfolios are not rebalanced for the next 12

months. The sample considers from June 1981 to December 2004. Raw returns and alphas are in percent. Service

stocks represent about 20% of the stocks in the database.

Raw Alphas 5-Factor Loadings
Tercile Return CAPM 3-Factor 4-Factor 5-Factor MKT SMB HML RMW CMA

Low 2.86 1.38 1.87 1.69 2.34 1.14 0.58 -0.42 -0.71 -0.46
2 2.32 1.03 1.34 1.27 1.39 1.07 0.40 -0.43 -0.009 -0.09
High 1.54 0.19 0.87 1.13 0.99 1.00 0.06 -0.67 0.15 -0.66
Low - High 1.31 1.19 1.00 0.55 1.35 0.14 0.51 0.24 -0.87 0.20
t-statistic [2.38] [2.14] [1.79] [0.98] [2.36] [1.03] [2.73] [0.88] [-3.58] [0.54]

Table XI

Performance of Centrality Portfolios in Manufacturing and Service Stocks

The table reports monthly average raw returns, alphas and loadings from the five-factor model for three portfolios of

manufacturing and service stocks sorted by annual centrality and the portfolio that is long on the low tercile and short

on the high tercile of centrality. The bottom row provides the t-statistics for the low-high portfolio. Manufacturing

and service firms are assigned into terciles at the end of October every year and the value-weighted portfolios are

not rebalanced for the next 12 months. The sample considers from June 1981 to December 2004. Raw returns and

alphas are in percent. Manufacturing and service stocks represent about 70% of the stocks in the database.

Raw Alphas 5-Factor Loadings
Tercile Return CAPM 3-Factor 4-Factor 5-Factor MKT SMB HML RMW CMA

Low 2.17 0.93 1.26 1.13 1.35 0.98 0.28 -0.59 -0.30 0.24
2 1.98 0.85 0.99 0.99 0.96 0.96 0.15 -0.33 -0.06 0.25
High 1.80 0.71 0.87 0.91 0.92 0.92 -0.24 -0.18 -0.13 -0.01
Low - High 0.36 0.22 0.39 0.21 0.42 0.05 0.52 -0.41 -0.17 0.26
t-statistic [1.48] [0.92] [1.91] [1.04] [2.00] [1.11] [7.42] [-3.95] [-1.87] [1.89]
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Figure 2. The figure illustrates how changes in the propensity of inter-firm relationships to transmit shocks at t, p̃t, affect the distribution
of

√
nW̃n,t. Figure 2(a) depicts an economy with n = 5 firms, whereas figure 2(b) depicts estimates of the density function of

√
nW̃n,t for

different values of p̃t. These estimates are computed via normal kernel smoothing estimators using function ksdensity(·) in MATLAB.
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(a) 2D honeycomb lattice (b) 2D square lattice

(c) 2D triangular lattice (d) Bethe lattice with degree 3

Figure 3. The figure shows the topologies of the symmetric networks considered in corollary 1 and Table I.
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(a) 1980 (b) 1981 (c) 1982

(d) 1983 (e) 1984 (f) 1985

Figure 4. The figure shows customer–supplier networks from 1980 to 1985.
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(a) 1986 (b) 1987 (c) 1988

(d) 1989 (e) 1990 (f) 1991

Figure 5. The figure shows customer–supplier networks from 1986 to 1991.
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(a) 1992 (b) 1993 (c) 1994

(d) 1995 (e) 1996 (f) 1997

Figure 6. The figure shows customer–supplier networks from 1992 to 1997.
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Figure 7. The figure shows the degree distribution under benchmark parameterization (shown with bars). Dots represent a power law
distribution with exponent 2.36.

55



Empirical PDF

Relationships’ propensities

D
en

si
ty

0.00 0.02 0.04 0.06 0.08 0.10

0
10

20
30

40
50

60

(a) 1980

Empirical PDF

Relationships’ propensities

D
en

si
ty

0.00 0.02 0.04 0.06 0.08 0.10

0
10

20
30

40
50

60
70

(b) 1981

Empirical PDF

Relationships’ propensities

D
en

si
ty

0.00 0.02 0.04 0.06 0.08 0.10

0
10

20
30

40
50

(c) 1982

Empirical PDF

Relationships’ propensities

D
en

si
ty

0.00 0.02 0.04 0.06 0.08 0.10

0
10

20
30

40
50

(d) 1983

Empirical PDF

Relationships’ propensities

D
en

si
ty

0.00 0.02 0.04 0.06 0.08 0.10

0
10

20
30

40
50

60
70

(e) 1984

Empirical PDF

Relationships’ propensities

D
en

si
ty

0.00 0.02 0.04 0.06 0.08

0
10

20
30

40
50

(f) 1985

Figure 8. The figure shows annual density functions of relationship propensities in customer–supplier networks from 1980 to 1985. In
the above figures, bars depict annual empirical probability density functions whereas red dots comes from fitting a beta distribution to
each empirical probability density function.
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Figure 9. The figure shows annual density functions of relationship propensities in customer–supplier networks from 1986 to 1991. In
the above figures, bars depict annual empirical probability density functions whereas red dots comes from fitting a beta distribution to
each empirical probability density function.
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Figure 10. The figure shows annual density functions of relationship propensities in customer–supplier networks from 1992 to 1997. In
the above figures, bars depict annual empirical probability density functions whereas red dots comes from fitting a beta distribution to
each empirical probability density function.
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Figure 11. The figure shows annual estimates of parameters ζ1 and ζ2. I obtain these estimates by fitting Beta distributions to the
annual link weight distributions using maximum likelihood.
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Figure 12. The figure shows the relationship between link betweenness centrality and link weights in customer–supplier networks from
1980 to 1985.
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Figure 13. The figure shows the relationship between link betweenness centrality and link weights in customer–supplier networks from
1986 to 1991.
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(c) 1994
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(d) 1995
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(e) 1996
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Figure 14. The figure shows the relationship between link betweenness centrality and link weights in customer–supplier networks from
1992 to 1997.
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Figure 15. The figure shows probability density functions for Beta distributions with shape parameter vectors ζLL, ζLH , ζHL, and ζHH .

63



.1
.2

.3
.4

.5
α 0

1980 1985 1990 1995 2000 2005
year

Annual estimates of α0

0
.0

2
.0

4
.0

6
.0

8
.1

α 1

1980 1985 1990 1995 2000 2005
year

Annual estimates of α1

Figure 16. The figure shows annual estimates of parameters α0 and α1 in equation (1).
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(b) Idiosyncratic Volatility by Size Quintile

Figure 17. Annualized firm-level volatilities averaged within size quintiles. I simulate 200 panels with 400 firms over 1, 500 periods
and disregard the first 500 periods to eliminate biases coming from the initial condition. Within each panel, I compute firm-level total
volatility as the annualized standard deviation of monthly firm level realized returns. I construct firm-level idiosyncratic volatility as the
annualized standard deviation of residuals computed from monthly CAPM regressions of firm-level excess realized returns on the excess
realized return of the market portfolio. This procedure yields panels of firm-year total and idiosyncratic volatilities estimates. Then,
at the beginning of each year I sort firms based on size and average annual volatilities within size quintiles. This procedure yields five
time series of total and idiosyncratic volatilities per panel. Figure 17(a) plots total volatilities per quintile, whereas figure 17(b) plots
idiosyncratic volatilities per quintile averaged over the 200 panels.
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