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PRELIMINARIES. This Supplemental Appendix contains the statements and proofs of all Lem-
mas that support the paper’s main Theorems, as well as the asymptotic properties for OLS

estimation of the ARCH(1), GJR ARCH(1), and ARCH(p) with 1 < p ≤ ∞ models. Con-

cerning notation, C denotes a constant that can assume different values in different places.

For matrices A and B, A ≥ B means that every element in A ≥ every corresponding element
in B. For a vector y, δy denotes the Dirac measure at y. Finally, RV(κ0) is shorthand for

Regularly Varying with tail index κ0.

LEMMA 1. For ARCH processes that can be cast in terms of the SRE

σ2t = ω0 + σ2t−1At, (1)

let Assumptions A1 and A2 hold. Then Assumption A4 is suffi cient for E
(
σ3t
)
<∞.

Proof.

σ3t ≤ σ2t ×
(
ω
1/2
0 + σt−1A

1/2
t

)
. (2)

≤
(
ω0 + σ2t−1At

)
×
(
ω
1/2
0 + σt−1A

1/2
t

)
≤ ω0σt + ω

1/2
0 σ2t + σ3t−1A

3/2
t ,

where the first inequality follows from the Triangle Inequality, and the third inequality uses σ2t−ω0 =

σ2t−1At. Since
{
σ2t
}
is strictly stationary (see; e.g., Mikosch, 1999, Corollary 1.4.38) with a well-

defined second moment (see; e.g., Bollerslev, 1986, Theorem 1),

E
(
σ3t
)
≤ C + E

(
σ3t−1

)
E
(
A
3/2
t

)
≤ C

(
1 + E

(
A3/2

)
+ E

(
A3/2

)2
+ · · ·+ E

(
A3/2

)k−1)
+ E

(
σ3t−k

)
E
(
A3/2

)k
.

As a consequence, lim
k→∞

E
(
σ3t
)
≤ C

1−E(A3/2)
<∞ if and only if E

(
A3/2

)
< 1.
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LEMMA 2. For ARCH processes consistent with (1), let Assumptions A1—A2 and A4 hold. Con-
sider the following lagged vectors for h ≥ 0:

Y
(i)
h =

(
|Y0|

i , . . . , |Yh|
i
)
, i = 1, 2,

E
(2)
h =

(
ε20, A1ε

2
1,

2∏
j=1

Ajε
2
2, . . . ,

h∏
j=1

Ajε
2
h

)
.

If σ is RV (κ0), then Y
(2)
h is RV (κ0/2), and Y(1)

h is RV (κ0).

Proof. That σ is RV(κ0); i.e.,

P (σ > x) ∼ c0x−κ0 , n→∞, (3)

where c0 = c0
(
ω0, α1,0, α2,0

)
, and κ0 ∈ (3, p] is the unique solution to

E (A)κ0/2 = 1

follows from Mikosch and Stărică (2000, Theorem 2.1).1 Next,

Y
(2)
h =

(
σ20ε

2
0, . . . , σ2hε

2
h

)
=

(
σ20ε

2
0, σ20A1ε

2
1, . . . , σ2h−1Ahε

2
h

)
+ω0 ×

(
0, ε21, . . . , ε2h

)
= C

(2)
h +R

(2)
h .

Since the tail of R(2)h is small relative to the tail of C(2)h , the tail of Y
(2)
h is determined only by

the tail of C(2)h . By induction, then, the tail of Y
(2)
h is determined by the tail of σ20 × E

(2)
h . Given

(3) and Mikosch (1999, Proposition 1.5.9), σ20 × E2h is RV(κ0/2) by Mikosch (1999, Proposition

1.3.9(b)). Given Y(2)
h is RV(κ0/2), Y(1)

h is RV(κ0) by Mikosch (1999, Proposition 1.5.9).

REMARK R1: Lemma 2 summarizes a collection of results for (G)ARCH processes proved else-
where in the literature (see; e.g., Davis and Mikosch, 1998, and Mikosch and Stărică, 2000).

Note that A3 is not influential in determining Y(i)
h to be regularly varying.

LEMMA 3. For the GJR ARCH (1) model, let Assumptions A1—A2 and A4 hold. Consider the

following lagged vectors for h ≥ 0,

Yi
h =

(
Y i
0 , . . . , Y i

h

)
, i = 1, 3,

1The precise value of c0 is given in Goldie (1991).
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E
(1)
h =

(
ε0, |ε0| ε1, |ε0| |ε1| ε2, . . . ,

h−1∏
i=0
|εi| εh

)
.

Then for all y1h ∈ Rh+1 \ {0}, Y1
h is RV (κ0), and Y

3
h is RV (κ0/3).

Proof. For the GJR ARCH(1) model,

σ2t (ω0,α0) = ω0 + α0,t−1Y
2
t−1, (4)

where α0 =
(
α1,0, α2,0

)′. Define
α = min

(
α1,0, α2,0

)
≤ α0,t−1, α = max

(
α1,0, α2,0

)
≥ α0,t−1 ∀ t. (5)

Take a first-order Taylor Expansion of σh (ω0,α0) around ω so that

σh (ω0,α0) =
α0,h−1Y

2
h−1

σh (ω,α0)
+

(ω0 + ω)

2σh (ω,α0)
.

Then,

Y1
h =

(
Y0, Y1, Y2, . . . , Yh

)
= σ0 ×

(
ε0, σ−10

(
α0,0Y

2
0

σ1(ω,α0)

)
ε1, σ−10

(
α0,1Y

2
1

σ2(ω,α0)

)
ε2, . . . , σ−10

(
α0,h−1Y

2
h−1

σh(ω,α0)

)
εh

)
+ (ω0 + ω)×

(
0,

ε1
2σ1(ω,α0)

,
ε2

2σ2(ω,α0)
, . . . ,

εh
2σh(ω,α0)

)
= C1h +R1h

Since σ−1h (ω,α0) is bounded, the tail of R
1
h is light relative to the tail of C

1
h. As a consequence,

the tail of C1h determines the tail of Y
1
h. Let C

1
h = σ0×E

(1)∗
h . Since y1h is bounded away from zero

for all h,
α0,h−1Y

2
h−1

σh (ω,α0)
≤

αY 2h−1
σh (ω,α0)

≤
αY 2h−1

α1/2
∣∣Yh−1∣∣ =

α

α1/2
× σh−1

∣∣εh−1∣∣ ,
in which case,

E
(1)∗
h ≤

(
ε0,

(
α

α1/2

)
× |ε0| ε1,

(
α

α1/2

)
×
(
σ1
σ0

)
× |ε1| ε2, . . . ,

(
α

α1/2

)
×
(
σh−1
σ0

)
×
∣∣εh−1∣∣ εh ) .

Using the Triangle Inequality,

σ1
σ0
≤
ω
1/2
0 + α

1/2
0,0 |Y0|

σ0
≤ ω

1/2
0 + α1/2 |Y0|

σ0
≤ C × |Y0|

σ0
= C × |ε0| ,
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where the final inequality holds because y1h is bounded away from zero for all h, and

σ2
σ0
≤ C × |Y1|

σ0
= C ×

(
σ1
σ0

)
× |ε1| .

Suppose that
σh−2
σ0
≤ C ×

h−3∏
i=0
|εi| .

Then
σh−1
σ0
≤ C ×

(
σh−2
σ0

)
×
∣∣εh−2∣∣ ≤ C × h−2∏

i=0
|εi| ,

so that by induction,

E
(1)∗
h ≤ C ×E(1)h . (6)

Since E
(∣∣∣E(1)h ∣∣∣κ0+ε) <∞ for all h and some ε > 0, σ0 ×E

(1)
h is RV(κ0) by Lemma 2 and Basrak,

Davis, and Mikosch (2002, Corollary A.2) for d = 1, meaning that the tail behavior of σ0 determines

the tail behavior of the product σ0×E
(1)
h . Since C

1
h = σ0×E

(1)∗
h is established to determine the tail

behavior of Y1
h, given (6), σ0 must also determine the tail behavior of C

1
h. As a consequence, Y

1
h is

RV(κ0); in which case, Y
3
h is RV(κ0/3) along the same lines as Resnick (2007, proof of Proposition

7.6), since Y(2)
h is RV(κ0/2) by Lemma 2.

REMARK R2: In the case of the GJR ARCH(1) model, Lemma 3 requires αi > 0 for i =

1, 2. Lemma 3 also applies to the special case where α1,0 = α2,0 = α0 (i.e., the ARCH(1)

model). Under Lemma 3, regular variation of {Yt} follows minus any need for symmetry in
the distribution of rescaled errors and so is consistent with A3 and complementary to Basrak,

Davis, and Mikosch (2002, Corollary 3.5(B)). If the rescaled errors are, in fact, symmetrically

distributed, then regular variation of {Yt} can also follow from regular variation of {|Yt|} as
given by Lemma 2 and independence of {|Yt|} and {sign (εt)} so that Basrak, Davis, and
Mikosch (2002, Corollary A.2) applies. Both Davis and Mikosch (1998, Lemma A.1) and

Mikosch and Stărică (2000, Theorem 2.3) rely on this latter argument.

LEMMA 4. Consider the GJR ARCH (1) model under the same Assumptions as Lemma 3. For

the sequence of constants {an}, where

nP (|Y| > an) −→ 1, n→∞,

|Y| = max
m=0,...,h

|Ym|, an = n1/κ0L (n), and L (·) is slowly-varying at ∞,

Nn :=
n∑
t=1
δa−1n Yt

d−→ N :=
∞∑
i=1

∞∑
j=1

δPiQi,j , (7)
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where: (i)
∞∑
i=1
δPi is a Poisson process on (0, ∞); (ii) For Qi,j =

(
Q
(0)
ij , . . . , Q

(h)
ij

)
,

∞∑
j=1

δQi,j , i ∈ N, is an i.i.d. sequence of point processes on R
h+1
+ \ {0} with common distrib-

ution Q; (iii)
∞∑
i=1
δPi and

∞∑
j=1

δQi,j , i ∈ N, are mutually independent.

Proof. The proof proceeds by verifying the following conditions from Davis and Mikosch (1998,

Theorem 2.8):

CONDITION C1: (joint) regular variation of all finite-dimensional distributions of Yt

CONDITION C2: weak mixing for {Yt}

CONDITION C3: That

lim
k→∞

lim
n→∞

P

 ∨
k≤|t|≤rn

|Yt| > any | |Y0| > any

 = 0, y > 0,

where ∨ibi = max
i

(bi), and rn, mn → ∞ are two integer sequences such that nφmn/rn → 0,

rnmn/n→ 0, and φn is the mixing rate of {Yt}

Lemmas 2 and 3 establish (C1). {Yt} is strongly mixing by Carrasco and Chen (2002, Corollary
6) when α1,0 = α2,0 and by Carrasco and Chen (2002, Corollary 10) when α1,0 6= α2,0. Lastly, when

α1,0 = α2,0, (C3) follows immediately from Davis and Mikosch (1998, proof of Theorem 4.1). When

α1,0 6= α2,0, note that

Y 2t = σ2t ε
2
t

= α0,t−1ε
2
tY

2
t−1 + ω0ε

2
t

= A∗tY
2
t−1 +Bt,

where A∗t = α1,0 × I{εt−1≥0} + α2,0 × I{εt−1<0}. Since
{(

A∗t , Bt

)}
is an i.i.d. sequence,

{
Y 2t
}

satisfies an SRE. In this case, (C3) follows along the same lines as Davis, Mikosch, and Basrak

(1999, proof of Theorem 3.3).

REMARK R3: Lemma 4 is the nonstandard CLT upon which (weak) distributional convergence
of the IV and OLS estimators discussed in the main paper and this Supplemental Appendix

are based. A generalization of this Lemma applies to the ARCH(p) case (see Basrak, Davis,

and Mikosch, 2002, Theorem 2.10). Specification of the distribution Q is found in Davis and

Mikosch (1998, Theorem 2.8). Following from Lemma 4, for

Y
(l)
t =

(
Y l
t , . . . , Y l

t+h

)
, l = 2, 3,
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Nn :=
n∑
t=1
δa−ln Ylt

d−→ N :=
∞∑
i=1

∞∑
j=1

δ
P liQ

(l)
i,j

, (8)

where Q(l)i,j =

((
Q
(m)
ij

)l
, m = 0, . . . , h

)
by a continuous mapping argument.

LEMMA 5. For the ARCH (1) model, let Assumptions A1—A2 and A4 hold. For m = 0, . . . , h,

define

γ̂(Y, Y 2) (m) = n−1
n−m∑
t=1

YtY
2
t+m, γ(Y, Y 2) (m) = E

(
Y0Y

2
m

)
.

Then for a κ0 ∈ (3, 6),

na−3n

(
γ̂(Y, Y 2) (m)− γ(Y, Y 2) (m)

)
d−→ (Vm)m=0,...,h , h ≥ 1, (9)

where V0 := V ∗0 − c∗3α
3/2
0

(
1− c3α

3/2
0

)−1
V ∗∗0 , and Vm := V ∗m + α0Vm−1.

Proof. For an ε > 0, consider

a−3n
∑
t

(
Y 3t+1 − E

(
Y 3t+1

))
(10)

= a−3n
∑
t
σ3t+1

(
ε3t+1 − c∗3

)
× I{|Yt|≤anε}

+a−3n
∑
t
σ3t+1

(
ε3t+1 − c∗3

)
× I{|Yt|>anε}

+c∗3a
−3
n

∑
t

(
σ3t+1 − E

(
σ3t+1

))
= Ia+ IIa+ IIIa,

where σ3t+1 ≡ σ3t+1 (ω0, α0). Let κ ≡ κ0/3, and consider a r ∈ (κ, 2). For a ζ > 0,

P (|Ia| > ζ) ≤
(
ζ−1a−3n

)r
E

∣∣∣∣∑
t
σ3t+1 × I{|Yt|≤anε} ×

(
ε3t+1 − c∗3

)∣∣∣∣r (11)

≤
(
ζ−1a−3n

)r
2nE

(
σ3rt+1 × I{|Yt|≤anε}

)
× E

∣∣(ε3t+1 − c∗3)∣∣r
≤

(
ζ−1a−3n

)r
2CnE

(
|Yt|

3r × I{|Yt|≤anε}
)
× E

∣∣(ε3t+1 − c∗3)∣∣r
≤

(
ζ−1a−3n

)r
2C

(
κ0

3r − κ0

)
(anε)

3r nP (|Y | > anε)× E
∣∣(ε3t+1 − c∗3)∣∣r

−→ ζ−r2C

(
κ0

3r − κ0

)
ε3r−κ0 × E

∣∣(ε3t+1 − c∗3)∣∣r , n→∞

−→ 0, ε→ 0.

The first inequality follows from Markov’s Inequality. Since for

Mn ≡
∑
t
σ3t+1 × I{|Yt|≤anε} ×

(
ε3t+1 − c∗3

)
,
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E
(
Mn+1 | Mn

)
= Mn + σ3n+2E

(
I{|Yn+1|≤an+1ε} | Mn

)
× E

((
ε3n+2 − c∗3

)
| Mn

)
= Mn a.s.,

the second inequality follows from von Bahr and Esseen (1965, Theorem 2).2 In the third inequality,

the constant C ∈ (0,∞). The fourth inequality relies on

E
(
|Yt|

3r × I{|Yt|>anε}
)

=

∫ anε

0
|y|3r f (y) dy (12)

= −κ0
∫ anε

0
|y|3r−κ0−1 L (y) dy

∼ κ0
(3r − κ0)

|y|3r−κ0 L (y) |anε0

=
κ0

(3r − κ0)
(anε)

3r P (|Y | > anε) ,

where the second equality follows from Mikosch (1999, Theorem 1.2.9), and the "∼" is the result
of Karamata’s Theorem. Lastly, "−→" as n→∞ follows from the properties of regular variation,

while "−→" as ε→ 0 follows given the defined support for r. Next, for IIa,

IIa = a−3n
∑
t
Y 3t+1I{|Yt|>anε} − c

∗
3a
−3
n

∑
t
σ3t+1I{|Yt|>anε}

A first-order Taylor Expansion of σ3t+1 around ω is (with some simplification),

σ3t+1 = Cσt+1 (ω, α0) + α0σt+1 (ω, α0)Y
2
t , (13)

so

a−3n
∑
t
σ3t+1I{|Yt|>anε} = Ca−3n

∑
t
σt+1 (ω, α0) I{|Yt|>anε} + α0a

−3
n

∑
t
σt+1 (ω, α0)Y

2
t I{|Yt|>anε}. (14)

Next, let xt =
(
x
(0)
t , . . . , x

(h)
t

)
∈ Rh+1 \ {0}, and define for j ≥ 1,

Tj,m,ε

( ∞∑
i=1
niδxi

)
=

∞∑
i=1
ni

(
x
(m)
i

)j
I{∣∣∣x(0)i ∣∣∣>ε}, m = 0, 1,

T
(a)
j,m,ε

( ∞∑
i=1
niδxi

)
=

∞∑
i=1
ni

∣∣∣x(m)i

∣∣∣j I{∣∣∣x(0)i ∣∣∣>ε}, m = 0, 1,

T (1)m,ε

( ∞∑
i=1
niδxi

)
=

∞∑
i=1
nix

(0)
i

(
x
(m−1)
i

)2
I{∣∣∣x(0)i ∣∣∣>ε}, m ≥ 2,

noting that the set
{
x ∈ Rh+1 \ {0} :

∣∣x(m)∣∣ > ε
}
for any m ≥ 0 is bounded away from the origin.

2The applicability of von Bahr and Esseen (1965, Theorem 2) in this general context is first noted by Vaynman
and Beare (2014, proof of Lemma 1).
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Then, for the first part of the decomposition in (14),

0 ≤ a−3n
∑
t
σt+1 (ω, α0) I{|Yt|>anε}

≤ ω1/2a−3n
∑
t
I{|Yt|>anε} + α0a

−3
n

∑
t
|Yt| I{|Yt|>anε} −→ 0, n→∞,

since (for suffi ciently large n),

n

(
n−1

∑
t
I{|Yt|>anε}

)
∼ nP (|Y | > anε) −→ ε−κ0 , n→∞, (15)

as in (11) and

a−1n
∑
t
|Yt| I{|Yt|>anε} = T

(a)
1,0,ε (Nn)

d−→ T
(a)
1,0,ε (N) , n→∞, (16)

by (7), Remark R3 and, given Vaynman and Beare (2014, Lemma A.2), and the continuous mapping

theorem.3 For the second part of the decomposition in (14),

α
3/2
0 a−3n

∑
t
|Yt|

3 I{|Yt|>anε} ≤ α0a
−3
n

∑
t
σt+1 (ω, α0)Y

2
t I{|Yt|>anε}

≤ Ca−3n
∑
t
Y 2t I{|Yt|>anε} + α

3/2
0 a−3n

∑
t
|Yt|

3 I{|Yt|>anε},

where the second inequality follows from the Triangle Inequality. Since

a−2n
∑
t
Y 2t I{|Yt|>anε} = T2,0,ε (Nn)

d−→ T2,0,ε (N) , n→∞ (17)

by the same argument that supports (16),

a−3n
∑
t
σ3t+1I{|Yt|>anε} = α

3/2
0 a−3n

∑
t
|Yt|

3 I{|Yt|>anε} + oP (1) .

As a consequence,

IIa = T3,1,ε (Nn)− c∗3α
3/2
0 T

(a)
3,0,ε (Nn) + oP (1) .

Also, given the same argument that supports the simplification of III from Davis and Mikosch

(1998, Section 4(B2), p. 2072),

IIIa = c∗3α
3/2
0 a−3n

∑
t

(
ω0 + α0Y

2
t

)3/2 − E ((ω0 + α0Y
2
t

)3/2)
(18)

= c∗3α
3/2
0 a−3n

∑
t

(
|Yt|

3 − E |Yt|
3
)

+ oP (1) .

3Elsewhere in this Appendix, implicit in applications of the continuous mapping theorem to functions of Nn defined
in Lemma 4 is Vaynman and Beare (2014, Lemma A.2).
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Next, the same decomposition in (10) is also applicable to

a−3n
∑
t

(∣∣Yt+1∣∣3 − E ∣∣Yt+1∣∣3) = Ib+ IIb+ IIIb

where
∣∣εt+1∣∣3 in Ib and IIb is centered around c3. By the same argument that supports (11), for a

ζ > 0,

lim
n→∞

lim
ε→0

supP (|Ib| > ζ) = 0.

Reliance on (13), (16), and (17) produces

IIb = T
(a)
3,1,ε (Nn)− c3α

3/2
0 T

(a)
3,0,ε (Nn) + oP (1)

As a consequence,

a−3n
∑
t

(∣∣Yt+1∣∣3 − E ∣∣Yt+1∣∣3) =
(

1− c3α
3/2
0

)−1 (
T
(a)
3,1,ε (Nn)− c3α

3/2
0 T

(a)
3,0,ε (Nn)

)
+ oP (1) ,

noting that IIIa = IIIb. In addition,

a−3n
∑
t

(
Y 3t+1 − E

(
Y 3t+1

))
= T3,1,ε (Nn) (19)

−c∗3α
3/2
0

(
1− c3α

3/2
0

)−1 (
T
(a)
3,1,ε (Nn)− c3α

3/2
0 T

(a)
3,0,ε (Nn)

)
+ oP (1)

d−→ T3,1,ε (N)− c∗3α
3/2
0

(
1− c3α

3/2
0

)−1 (
T
(a)
3,1,ε (N)− c3α

3/2
0 T

(a)
3,0,ε (N)

)
= S (ε,∞) + c∗3c3α

3
0

(
1− c3α

3/2
0

)−1
S∗ (ε,∞)

d−→ V ∗0 + c∗3c3α
3
0

(
1− c3α

3/2
0

)−1
V ∗∗0 ,

where the first " d−→" is as n→∞ and follows from (7), Remark R3, and the continuous mapping

theorem, and the second " d−→" is as ε → 0 and follows from Davis and Hsing (1995, Proof of

Theorem 3.1, pp. 897-898). As a consequence,

na−3n

(
γ̂(Y, Y 2) (0)− γ(Y, Y 2) (0)

)
d−→ V ∗0 + c∗3c3α

3
0

(
1− c3α

3/2
0

)−1
V ∗∗0 =: V0
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Next consider

a−3n
∑
t
YtY

2
t+1 − E

(
YtY

2
t+1

)
(20)

= a−3n
∑
t
Ytσ

2
t+1

(
ε2t+1 − 1

)
× I{|Yt|≤anε}

+a−3n
∑
t
Ytσ

2
t+1

(
ε2t+1 − 1

)
× I{|Yt|>anε}

+a−3n
∑
t
Ytσ

2
t+1 − E

(
Ytσ

2
t+1

)
= Ic+ IIc+ IIIc

Again by the same arguments that establish Eq. (11), for a ζ > 0,

lim
n→∞

lim
ε→0

supP (|Ic| > ζ) = 0.

Since

a−1n
∑
t
YtI{|Yt|>anε} = T1,0,ε (Nn)

d−→ T1,0,ε (N) , n→∞,

given the same arguments that support (16),

IIc = a−3n
∑
t
YtY

2
t+1I{|Yt|>anε} + a−3n

∑
t
Y 3t I{|Yt|>anε} + oP (1)

= T
(1)
2,ε (Nn)− α0T3,0,ε (Nn) + oP (1) .

Finally, since

a−3n
∑
t
Yt = n

κ0−6
2κ0

(
n−1/2

∑
t
Yt

)
−→ 0, n→∞,

by Ibragimov and Linnik (1971, Theorem 18.5.3), given that {Yt} is strongly mixing by Carrasco
and Chen (2002, Corollary 6),

IIIc = α0a
−3
n

∑
t
Y 3t − E

(
Y 3t
)

+ oP (1)

so that

a−3n
∑
t
YtY

2
t+1 − E

(
YtY

2
t+1

)
= T

(1)
2,ε (Nn)− α0T3,0,ε (Nn) + IIIc+ oP (1)

d−→ V ∗1 + α0V0,

where, as is true elsewhere, " d−→" is first as n→∞ and then as ε→ 0, given the same arguments

that support (19). As a consequence,

na−3n

(
γn, (Y, Y 2) (1)− γ(Y, Y 2) (1)

)
d−→ V ∗1 + α0V0 =: V1. (21)

10



Extending (21) to higher lags (i.e., m > 1) is a continuation of the arguments given above.

LEMMA 6. For the GJR ARCH (1) model, let Assumptions A1—A2 and A4 hold. For m =

0, . . . , h, define

γ̂+(Y, Y 2) (m) = n−1
n−m∑
t=1

Y 2t+mYt × I{Yt≥0}, γ+
(Y, Y 2)

(m) = E
(
Y 2mY0 × I{Y0≥0}

)
,

with γ̂−(Y, Y 2) (m) and γ−
(Y, Y 2)

(m) defined analogously using I{Yt<0}. Then for a κ0 ∈ (3, 6)

and h > 1,

na−3n

(
γ̂+(Y, Y 2) (m)− γ+

(Y, Y 2)
(m)

)
d−→
(
W+
m

)
m=0,...,h

, (22)

and

na−3n

(
γ̂−(Y, Y 2) (m)− γ−

(Y, Y 2)
(m)

)
d−→
(
W−m

)
m=0,...,h

, (23)

where

W+
m = V +m + α1,0W

+
m−1, W−m = V −m + α2,0W

−
m−1,

and both W+
0 and W−0 jointly depend on V ∗∗0 from the proof of Lemma 5.

Proof. Let I+ (m) ≡ I{εt+m≥0} and I− (m) ≡ I{εt+m<0} for m = 0, 1, noting that I+ (m) =

I{Yt+m≥0} and I
− (m) = I{Yt+m<0}. Then,

E
(
Y 3t+1 × I+/− (1)

)
= E

(
σ3t+1

)
c
+/−
3 ,

where c+/−3 = E
(
ε3t+1 × I+/− (1)

)
, and

a−3n
∑
t
Y 3t+1 × I+/− (1)− E

(
Y 3t+1 × I+/− (1)

)
= a−3n

∑
t
σ3t+1

(
ε3t+1 × I+/− (1)− c+/−3

)
× I{|Yt|≤anε}

+a−3n
∑
t
σ3t+1

(
ε3t+1 × I+/− (1)− c+/−3

)
× I{|Yt|>anε}

+c
+/−
3 a−3n

∑
t

(
σ3t+1 − E

(
σ3t+1

))
= Ia+/− + IIa+/− + IIIa+/−.

Given the same arguments that support (11), for a ζ > 0, lim
n→∞

lim
ε→0

supP
(∣∣Ia+/−∣∣ > ζ

)
= 0.

Consider next IIa+. Given (4),

σ3t+1 (ω0,α0) = Cσt+1 (ω,α0) + α0,tσt+1 (ω,α0)Y
2
t

11



by a first-order Taylor Expansion of σ3t+1 around ω. Then

a−3n
∑
t
σ3t+1 × I{|Yt|>anε} = Ca−3n

∑
t
σt+1 (ω,α0)× I{|Yt|>anε}

+a−3n
∑
t
α0,tσt+1 (ω,α0)Y

2
t × I{|Yt|>anε}.

Note that

0 ≤ a−3n
∑
t
σt+1 (ω,α0)× I{|Yt|>anε}

≤ a−3n
∑
t

(
ω1/2 + α

1/2
0,t |Yt|

)
× I{|Yt|>anε}

≤ ω1/2a−3n
∑
t
I{|Yt|>anε} + α1/2a−3n

∑
t
|Yt| × I{|Yt|>anε} −→ 0, n→∞

where the second inequality follows from the Triangle Inequality; the third inequality relies on (5),

and "−→" to zero follows from (15) and (16). Also note that, again based on (5),

a−3n
∑
t
α0,tσt+1 (ω,α0)Y

2
t × I{|Yt|>anε} ≥ αa−3n

∑
t

(
ω + αY 2t

)1/2
Y 2t × I{|Yt|>anε}

≥ α3/2a−3n
∑
t
|Yt|

3 × I{|Yt|>anε},

and

a−3n
∑
t
α0,tσt+1 (ω,α0)Y

2
t × I{|Yt|>anε} ≤ αa−3n

∑
t

(
ω + αY 2t

)1/2
Y 2t × I{|Yt|>anε}

≤ α3/2a−3n
∑
t
|Yt|

3 × I{|Yt|>anε} + αω1/2a−3n
∑
Y 2t × I{|Yt|>anε}

t

= α3/2a−3n
∑
t
|Yt|

3 × I{|Yt|>anε} + oP (1) ,

where the equality follows from (17) so that there exists a constant C for which

IIa+ = a−3n
∑
t
Y 3t × I{Yt+1≥0} × I{|Yt|>anε} − c

+
3 a
−3
n

∑
t
σ3t+1 × I{|Yt|>anε}

= a−3n
∑
t
Y 3t × I{Yt+1≥0} × I{|Yt|>anε} − c

+
3 Ca

−3
n

∑
t
|Yt|

3 × I{|Yt|>anε} + oP (1) .

Based on xt defined in the proof of Lemma 5 and for the same j and m, define

T+j,m,ε

( ∞∑
i=1
niδxi

)
=
∞∑
i=1
ni

(
x
(m)
i

)j
× I{

x
(m)
i ≥0

} × I{∣∣∣x(0)i ∣∣∣>ε},

and define T−j,m,ε

( ∞∑
i=1
niδxi

)
analogously, with I{

x
(m)
i <0

} replacing I{
x
(m)
i ≥0

}. Then
IIa+ = T+3,1,ε (Nn)− c+3 CT

(a)
3,0,ε (Nn) + oP (1) .

12



Next, from

IIIa+ = c+3

[
a−3n
∑
t
σ3t+1 × I{Yt≥0} − E

(
σ3t+1 × I{Yt≥0}

)
+ a−3n

∑
t
σ3t+1 × I{Yt<0} − E

(
σ3t+1 × I{Yt<0}

)]
,

where

a−3n
∑
t
σ3t+1 × I{Yt≥0} − E

(
σ3t+1 × I{Yt≥0}

)
= a−3n

∑
t

(
ω0 + α1,0Y

2
t

)3/2 × I{Yt≥0} − E ((ω0 + α1,0Y
2
t

)3/2 × I{Yt≥0})
= α

3/2
1,0 a

−3
n

∑
t
|Yt|

3 × I{Yt≥0} − E
(
|Yt|

3 × I{Yt≥0}
)

+ oP (1) ,

with an analogous decomposition holding for a−3n
∑
t

(
σ3t+1 × I{Yt<0} − E

(
σ3t+1 × I{Yt<0}

))
, follows

that

IIIa+ = c+3 α
3/2
1,0 a

−3
n

∑
t
|Yt|

3 × I{Yt≥0} − E
(
|Yt|

3 × I{Yt≥0}
)

+c+3 α
3/2
2,0 a

−3
n

∑
t
|Yt|

3 × I{Yt<0} − E
(
|Yt|

3 × I{Yt<0}
)

+ oP (1) .

As a consequence,

a−3n
∑
t

(
Y 3t+1 × I{Yt+1≥0} − E

(
Y 3t+1 × I{Yt+1≥0}

))
(24)

=
(

1− c+3 α
3/2
1,0

)−1 [
T+3,1,ε (Nn)− c+3 CT

(a)
3,0,ε (Nn)

]
+c+3 α

3/2
2,0

(
1− c+3 α

3/2
1,0

)−1 [
a−3n
∑
t
|Yt|

3 × I{Yt<0} − E
(
|Yt|

3 × I{Yt<0}
)]

+ oP (1) .

The same arguments that establish (24) also establish

a−3n
∑
t

(
Y 3t+1 × I{Yt+1<0} − E

(
Y 3t+1 × I{Yt+1<0}

))
(25)

=
(

1− c−3 α
3/2
2,0

)−1 [
T−3,1,ε (Nn)− c−3 CT

(a)
3,0,ε (Nn)

]
+c−3 α

3/2
1,0

(
1− c−3 α

3/2
2,0

)−1 [
a−3n
∑
t

(
Y 3t+1 × I{Yt≥0} − E

(
Y 3t+1 × I{Yt≥0}

))]
+ oP (1) .

13



From (24) and (25) then follows that

a−3n
∑
t

(
Y 3t+1 × I{Yt+1≥0} − E

(
Y 3t+1 × I{Yt+1≥0}

))
d−→
[
1−

(
c+3 α

3/2
1,0 + c−3 α

3/2
2,0

)]−1
×
[(

1− c−3 α
3/2
2,0

)
T+3,1,ε (N) + c+3 α

3/2
2,0 T

−
3,1,ε (N) + c+3 CT

(a)
3,0,ε (N)

]
=

[
1−

(
c+3 α

3/2
1,0 + c−3 α

3/2
2,0

)]−1
×
[
S+ (ε,∞) + c+3 CS

∗ (ε,∞)
]

d−→
[
1−

(
c+3 α

3/2
1,0 + c−3 α

3/2
2,0

)]−1
×
[
V +0 + c+3 CV

∗∗
0

]
where, as is true elsewhere, " d−→" is first as n→∞ and then as ε→ 0, with each result following

from the same, respective, arguments that support (19). As a consequence,

na−3n

(
γ̂+(Y, Y 2) (0)− γ+

(Y, Y 2)
(0)
)

d−→
[
1−

(
c+3 α

3/2
1,0 + c−3 α

3/2
2,0

)]−1
×
[
V +0 + c+3 CV

∗∗
0

]
=: W+

0 .

Moreover, since following parallel arguments,

a−3n
∑
t

(
Y 3t+1 × I{Yt+1<0} − E

(
Y 3t+1 × I{Yt+1<0}

))
d−→
[
1−

(
c+3 α

3/2
1,0 + c−3 α

3/2
2,0

)]−1
×
[(

1− c+3 α
3/2
1,0

)
T−3,1,ε (N) + c−3 α

3/2
1,0 T

+
3,1,ε (N) + c−3 CT

(a)
3,0,ε (N)

]
=

[
1−

(
c+3 α

3/2
1,0 + c−3 α

3/2
2,0

)]−1
×
[
S− (ε,∞) + c−3 CS

∗ (ε,∞)
]

d−→
[
1−

(
c+3 α

3/2
1,0 + c−3 α

3/2
2,0

)]−1
×
[
V −0 + c−3 CV

∗∗
0

]
,

na−3n

(
γ̂−(Y, Y 2) (0)− γ−

(Y, Y 2)
(0)
)

d−→
[
1−

(
c+3 α

3/2
1,0 + c−3 α

3/2
2,0

)]−1
×
[
V −0 + c−3 CV

∗∗
0

]
=: W−0 .

Next, define

T+m,ε

( ∞∑
i=1
niδxi

)
=
∞∑
i=1
nix

(0)
i

(
x
(m−1)
i

)2
× I{

x
(0)
i >ε

}, m ≥ 2,

and consider

a−3n
∑
t
Y 2t+1Yt × I+/− (0)− E

(
Y 2t+1Yt × I+/− (0)

)
= a−3n

∑
t
σ2t+1Yt × I+/− (0)×

(
ε2t+1 − 1

)
× I{|Yt|≤anε}

+a−3n
∑
t
σ2t+1Yt × I+/− (0)×

(
ε2t+1 − 1

)
× I{Yt>anε}

+a−3n
∑
t
σ2t+1Yt × I+/− (0)− E

(
σ2t+1Yt × I+/− (0)

)
= Ib+/− + IIb+/− + IIIb+/−.

Again following the same arguments that support (11), lim
n→∞

lim
ε→0

supP (|Ib+| > ζ) = 0 for a ζ > 0.

14



In addition,

IIb+ = a−3n
∑
t
Y 2t+1Yt × I{Yt>anε} − Ca

−3
n

∑
t
Y 3t × I{Yt>anε} + oP (1)

= T+2,ε (Nn)− CT+3,0,ε (Nn) + oP (1) ,

since

αa−3n
∑
t
Y 3t × I{Yt>anε} + oP (1) ≤ a−3n

∑
t
σ2t+1Yt × I{Yt>anε}

≤ αa−3n
∑
t
Y 3t × I{Yt>anε} + oP (1) .

As a consequence,

a−3n
∑
t
Y 2t+1Yt × I{Yt≥0} − E

(
Y 2t+1Yt × I{Yt≥0}

)
(26)

= T+2,ε (Nn)− CT+3,0,ε (Nn) + α1,0a
−3
n

∑
t
Y 3t × I{Yt≥0} − E

(
Y 3t × I{Yt≥0}

)
+ oP (1)

d−→ V +1 + α1,0W
+
0 ,

where " d−→" is first as n→∞ and then as ε→ 0 so that

na−3n

(
γ̂+(Y, Y 2) (0)− γ+

(Y, Y 2)
(0)
)

d−→ V +1 + α1,0W
+
0 =: W+

1 .

Comparable arguments to those establishing (26) then also establish

a−3n
∑
t
Y 2t+1Yt × I{Yt<0} − E

(
Y 2t+1Yt × I{Yt<0}

)
d−→ V −1 + α2,0W

−
0

so that

na−3n

(
γ̂−(Y, Y 2) (0)− γ−

(Y, Y 2)
(0)
)

d−→ V −1 + α2,0W
−
0 =: W−1 . (27)

Extending (27) to higher lags (i.e., m > 1) is a continuation of the arguments given above.

LEMMA 7. Let Assumptions A1*, A2 and A4* hold. For m = 0, 1 define

γ̂+Y 2 (m) = n−1
n−m∑
t=1

Y 2t+mY
2
t × I{Yt≥0}, γ+

Y 2
(m) = E

(
Y 2mY

2
0 × I{Y0≥0}

)
,

with γ̂−Y 2 (m) and γ−
Y 2

(m) defined analogously using I{Yt<0}. Then for a κ0 ∈ (4, 8),

na−4n
(
γ̂+Y 2 (m)− γ+

Y 2
(m)

) d−→
(
Q+m
)
m=0,1

,

15



and

na−4n
(
γ̂−Y 2 (m)− γ−

Y 2
(m)

) d−→
(
Q−m
)
m=0,1

,

where

Q+1 = U+1 + α1,0Q
+
0 , Q−1 = U−1 + α2,0Q

−
0 ,

jointly depend on U1 from Proposition 1.

Proof. Following the notation introduced in the proof to Lemma 6, if c+/−4 = E
(
ε4t+1 × I+/− (1)

)
,

then

a−4n
∑
t
Y 4t+1 × I+/− (1)− E

(
Y 4t+1 × I+/− (1)

)
= a−4n

∑
t
σ4t+1

(
ε4t+1 × I+/− (1)− c+/−4

)
× I{|Yt|≤anε}

+a−4n
∑
t
σ4t+1

(
ε4t+1 × I+/− (1)− c+/−4

)
× I{|Yt|>anε}

+c
+/−
4 a−4n

∑
t

(
σ4t+1 − E

(
σ4t+1

))
,

and

a−4n
∑
t
Y 2t+1Y

2
t × I+/− (0)− E

(
Y 2t+1Y

2
t × I+/− (0)

)
= a−4n

∑
t
σ2t+1Y

2
t × I+/− (0)×

(
ε2t+1 − 1

)
× I{|Yt|≤anε}

+a−4n
∑
t
σ2t+1Y

2
t × I+/− (0)×

(
ε2t+1 − 1

)
× I{Yt>anε}

+a−4n
∑
t
σ2t+1Y

2
t × I+/− (0)− E

(
σ2t+1Y

2
t × I+/− (0)

)
.

Following the same, general, steps provided in the proof to Lemma 6 (while recognizing that σ4t+1
has an exact expression and, so, does not require a first-order Taylor approximation), it follows

that

a−4n
∑
t
Y 4t+1 × I+ (1)− E

(
Y 4t+1 × I+ (1)

) d−→ U+0 + c+4 CU
∗∗
0

1−
(
c+4 α

2
1,0 + c−4 α

2
2,0

) =: Q+0 ,

where U∗∗0 is a component of U1 in Proposition 1 and

a−4n
∑
t
Y 2t+1Y

2
t × I+ (0)− E

(
Y 2t+1Y

2
t × I+ (0)

) d−→ U+1 + α1,0Q
+
0 =: Q+1 .

In addition, following from parallel arguments,

a−4n
∑
t
Y 4t+1 × I− (1)− E

(
Y 4t+1 × I− (1)

) d−→ U−0 + c−4 CU
∗∗
0

1−
(
c+4 α

2
1,0 + c−4 α

2
2,0

) =: Q−0
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and

a−4n
∑
t
Y 2t+1Y

2
t × I− (0)− E

(
Y 2t+1Y

2
t × I− (0)

) d−→ U−1 + α2,0Q
−
0 =: Q−1 .

LEMMA 8. For the ARCH (p) model, let Assumptions A1 and A2 hold. Then Assumption A7 is

suffi cient for E
(
σ3t
)
<∞.

Proof. The proof is by induction.

σ3t ≤ σ2t ×
(
ω
1/2
0 +

p∑
i=1
α
1/2
i,0

∣∣Yt−i∣∣)
≤ ω

3/2
0 + ω0

p∑
i=1
α
1/2
i,0

∣∣Yt−i∣∣+ ω
1/2
0

p∑
i=1
αi,0Y

2
t−i +

p∑
i=1

p∑
j=1

αi,0α
1/2
j,0 Y

2
t−i
∣∣Yt−j∣∣ ,

where the first inequality follows from the Triangle Inequality. Then, using Bollerslev (1986, The-

orem 1),

E
(
σ3t
)
≤ C +

p∑
i=1

p∑
j=1

αi,0α
1/2
j,0 E

(
Y 2t−i

∣∣Yt−j∣∣)
≤ C +

p∑
i=1

p∑
j=1

αi,0α
1/2
j,0 E

∣∣Yt−j∣∣3
≤ C + c3

p∑
i=1

p∑
j=1

αi,0α
1/2
j,0 E

(
σ3t−j

)
From Lemma 1,

C + c3α
3/2
1,0E

(
σ3t−1

)
≤ C + c3α

3/2
1,0E

(
σ3t
)
.

Suppose

C + c3

p−1∑
i=1

p−1∑
j=1

αi,0α
1/2
j,0 E

(
σ3t−j

)
≤ C + c3

(
p−1∑
i=1

p−1∑
j=1

αi,0α
1/2
j,0

)
E
(
σ3t
)
.

Then

E
(
σ3t
)
≤ C + c3

(
p−1∑
i=1

p−1∑
j=1

αi,0α
1/2
j,0

)
E
(
σ3t
)

+ c3

(
p∑
i=1
αi,0α

1/2
p,0 +

p−1∑
j=1

α
1/2
i,0 αp,0

)
E
(
σ3t−p

)
≤ C +DE

(
σ3t−p

)
≤ C

(
1 +D +D2 + . . .

)
≤ C

1−D

≤ C

1− c3
p∑
i=1

p∑
j=1

αi,0α
1/2
j,0
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LEMMA 9. For the ARCH (p) model let Assumptions A1, A2 and A7 hold. Consider

Xt = X
′
t−1α0 +Wt (28)

as it is defined in Section 2.3 of the main text and the set of instruments

Zt−1 =
(
Yt−1, . . . , Yt−h

)′
,

where, in this case, h = p. Given Assumption A3, Zt−1 identifies α0.

Proof. The proof is by induction. When p = 1, Zt−1 identifies α0 (see Section 2.1 in the main

paper). From (28),

Xt =
p−1∑
i=1

Xt−iαi,0 +Xt−pαp,0 +Wt

= X̃
′
t−1α̃0 +Xt−pαp,0 +Wt.

Let

Z̃t−1 =
(
Yt−1, . . . , Yt−p+1

)′
,

and assume that E
(
Z̃t−1X̃

′
t−1

)
is nonsingular. Then

α̃0 = E
(
Z̃t−1X̃

′
t−1

)−1 [
E
(
Z̃t−1Xt

)
− E

(
Z̃t−1Xt−p

)
αp,0

]
. (29)

Further let

L0 = E
(
Yt−pX̃

′
t−1

)
E
(
Z̃t−1X̃

′
t−1

)−1
E
(
Z̃t−1Xt

)
,

M0 = E
(
Yt−pX̃

′
t−1

)
E
(
Z̃t−1X̃

′
t−1

)−1
E
(
Z̃t−1Xt−p

)
,

noting that M0 is a scalar. Then given (29),

αp,0 =
E
(
Yt−pXt

)
− L0

E
(
Y 3t−p

)
−M0

,

where E
(
Y 3t−p

)
−M0 6= 0 given A3 and Guo and Phillips (2001, Lemma 1).

LEMMA 10. For the ARCH (p) model, let Assumptions A1, A2 and A7 hold. Then

a−3n
∑
t
σ3t − E

(
σ3t
) d−→ V0,σ

when κ0 ∈ (3, 6), where V0,σ is (κ0/3)−stable.
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Proof.

a−3n
∑
t
σ3t − E

(
σ3t
)

= a−3n
∑
t

(
σ3t − E

(
σ3t
))
× I{σt≤anε}

+a−3n
∑
t

(
σ3t − E

(
σ3t
))
× I{σt>anε}

= Ia+ IIa.

Given Carrasco and Chen (2002, Proposition 12), {σt} is strictly stationary. Then from Ia, given

Lemma 8,

a−3n
∑
t
E
(
σ3t
)
× I{σt≤anε} = n

κ0−6
2κ0 E

(
σ3t
)
n−1/2

∑
t
I{σt≤anε}

−→ 0,

as n→∞ by the CLT in Ibragimov and Linnik (1971, Theorem 18.5.3), so that

Ia = a−3n
∑
t
σ3t × I{σt≤anε} + op (1) .

Then, for a ζ > 0,

P

(
a−3n
∑
t
σ3t × I{σt≤anε} > ζ

)
≤
(
ζ−1a−3n

)
nE
(
σ3 × I{σ≤anε}

)
by Markov’s Inequality. Next, for the same r defined in the proof to Lemma 5, there exists a

constant C ∈ (0,∞) such that

(
ζ−1a−3n

)
nE
(
σ3 × I{σ≤anε}

)
≤ C

(
ζ−1a−3n

)r
nE
(
σ3r × I{σ≤anε}

)
≤ C

(
κ0

3r − κ0

)(
ζ−1a−3n

)r
(anε)

3r nP (σ > anε) ,

where the second inequality follows from the same arguments that support (12). As a consequence,

lim
n→∞

lim
ε→0

supP

(
a−3n
∑
t
σ3t × I{σt≤anε} > ζ

)
= 0,

given the convergence results in (11). Next, since

a−3n
∑
t
E
(
σ3t
)
× I{σt>anε} = na−3n E

(
σ3t
)
n−1

∑
t
I{σt>anε}

∼ a−3n E
(
σ3t
)
nP (σt > anε)

−→ 0,
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then

IIa = a−3n
∑
t
σ3t × I{σt>anε} + op (1)

= T3,0,ε (Nn) + op (1)

so that

a−3n
∑
t
σ3t − E

(
σ3t
) d−→ T3,0,ε (N)

d−→ V0,σ

where the first " d−→" is as n → ∞ and the second as ε → 0. The first " d−→" relies on Basrak,
Davis, and Mikosch (2002, Corollary 3.5(B)) to establish

{(
Yt, σt

)}
as RV(κ0) and Basrak,

Davis, and Mikosch (2002, Theorem 2.10), which is a generalization of Lemma 4 to Ỹt, since {σt}
is also strongly mixing given Carrasco and Chen (2002, Proposition 12). The second " d−→", as is
the case elsewhere in this Appendix, follows from Davis and Hsing (1995, Proof of Theorem 3.1,

pp. 897-898).

LEMMA 11. For the ARCH (p) model, let Assumptions A1, A2 and A7 hold. Then

a−3n
∑
t
Y 2t Yt+m

d−→
(
Rp,m

)
m=1,...,p

,

when κ0 ∈ (3, 6).

Proof. To begin,
E
(
Y 2t Yt+m

)
= E

(
Y 2t σt+mE

(
εt+m | zt−m+1

))
= 0.

Then,

a−3n
∑
t
Y 2t Yt+m = a−3n

∑
t
Y 2t Yt+m × I{|Yt|≤anε} + a−3n

∑
t
Y 2t Yt+mI{|Yt|>anε}

= Ib+ IIb

For a ζ > 0, using the same arguments that support the inequalities in (11),

P (|Ib| > ζ) ≤
(
ζ−1a−3n

)r
E

∣∣∣∣∑
t
Y 2t Yt+m × I{|Yt|≤anε}

∣∣∣∣r (30)

≤
(
ζ−1a−3n

)r
nE
∣∣∣Y 2t Yt+m × I{|Yt|≤anε}∣∣∣r

≤
(
ζ−1a−3n

)r
nE
((
σ2t+m

)r/2 × Y 2rt × I{|Yt|≤anε} × ∣∣εt+m∣∣r)
≤

(
ζ−1a−3n

)r
nE

((
ω0 +

p∑
i=1
αi,0Y

2
t+m−i

)r/2
× Y 2rt × I{|Yt|≤anε}

)
× E

∣∣εt+m∣∣r
≤ C

(
ζ−1a−3n

)r
nE
(
|Yt|

3r × I{|Yt|≤anε}
)
× E

∣∣εt+m∣∣r ,
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where in the final inequality, as is true elsewhere, the constant C ∈ (0,∞). Then,

lim
n→∞

lim
ε→0

supP (|Ib| > ζ) = 0,

given (12) and the convergence results in (11). Next, building off of the definitions introduced in

the proof of Lemma 5, consider

T (2)m,ε

( ∞∑
i=1
niδxi

)
=
∞∑
i=1
ni

(
x
(0)
i

)2
x
(m−1)
i I{∣∣∣x(0)i ∣∣∣>ε}, m ≥ 2.

Then

a−3n
∑
t
Y 2t Yt+m = Ib+ T (2)m,ε (Nn)

d−→ T (2)m,ε (N)

d−→ Rp,m,

where " d−→" is as n → ∞ first, and then as ε → 0. As for Lemma 10, the first " d−→" relies
on Basrak, Davis, and Mikosch (2002, Corollary 3.5(B) and Theorem 2.10) and the continuous

mapping theorem. As is true elsewhere in this Appendix, the second " d−→" follows from Davis and

Hsing (1995, Proof of Theorem 3.1, pp. 897-898).

LEMMA 12. For the ARCH (p) model, let Assumptions A1, A2 and A7 hold. Then, given the

definitions of γ̂(Y, Y 2) (m) and γ(Y, Y 2) (m) in Lemma 5,

na−3n

(
γ̂(Y, Y 2) (m)− γ(Y, Y 2) (m)

)
d−→
(
Vp,m

)
m=0,...,h

(31)

for a κ0 ∈ (3, 6), where Vp,0 := V ∗p,0 + c∗3V0,σ, and Vp,m := V ∗p,m − α1,0Vp,m−1.

Proof. Begin by considering the following modification to (10)

a−3n
∑
t

(
Y 3t+1 − E

(
Y 3t+1

))
= a−3n

∑
t
σ3t+1

(
ε3t+1 − c∗3

)
× I{σt+1≤anε}

+a−3n
∑
t
σ3t+1

(
ε3t+1 − c∗3

)
× I{σt+1>anε}

+c∗3a
−3
n

∑
t

(
σ3t+1 − E

(
σ3t+1

))
= Ia+ IIa+ IIIa

introduced to deal with the complications posed by a multi-lag parameterization of σ2t+1. From

21



this decomposition, for a ζ > 0,

lim
n→∞

lim
ε→0

supP (|Ia| > ζ) = 0,

given the arguments that support (11). Next,

IIa = a−3n
∑
t
Y 3t+1 × I{|Yt+1|>anε} − c

∗
3a
−3
n

∑
t
σ3t+1 × I{σt+1>anε} + oP (1)

= T3,0,ε (Nn)− c∗3T ∗3,0,ε (Nn) + oP (1)

where the first equality follows from Basrak, Davis and Mikosch (2002, proof of Theorem 3.6), and

T ∗3,0,ε (Nn) denotes that Nn is defined in terms of σt+m, while T3,0,ε (Nn) retains its definition from

the proof of Lemma 5, where Nn is a function of Yt+m. As a result,

a−3n
∑
t

(
Y 3t+1 − E

(
Y 3t+1

))
= T3,0,ε (Nn)− c∗3T ∗3,0,ε (Nn) + IIIa+ oP (1) (32)

d−→ V ∗p,0 + c∗3V0,σ,

where " d−→" is as n → ∞ first, and then as ε → 0. Here, " d−→" follows from Basrak, Davis,

and Mikosch (2002, Corollary 3.5(B) and Theorem 2.10), Lemma 10, and Davis and Hsing (1995,

Theorem 3.1, pp. 897-898) and grants that

na−3n

(
γ̂(Y, Y 2) (0)− γ(Y, Y 2) (0)

)
d−→ Vp,0 := V ∗p,0 + c∗3V0,σ. (33)

Consider next the decomposition in (20). From this decomposition,

P (|Ic| > ζ) ≤ 2
(
ζ−1a−3n

)r
nE
∣∣∣Ytσ2t+1 × I{|Yt|≤anε}∣∣∣r × E ∣∣ε2t+1 − 1

∣∣r
≤ 2

(
ζ−1a−3n

)r
nE

(
|Yt|

r

(
ω0 +

p∑
i=1
αi,0Y

2
t+1−i

)r
× I{|Yt|≤anε}

)
× E

∣∣ε2t+1 − 1
∣∣r

≤ 2C
(
ζ−1a−3n

)r
nE
(
|Yt|

3r × I{|Yt|≤anε}
)
× E

∣∣ε2t+1 − 1
∣∣r

using similar arguments to those that support (30). As a consequence, as is true elsewhere,

lim
n→∞

lim
ε→0

supP (|Ic| > ζ) = 0,

given (12) and the convergence results in (11). Next,

IIc = a−3n
∑
t
YtY

2
t+1 × I{|Yt|>anε} − α1,0a

−3
n

∑
t
Y 3t × I{|Yt|>anε}

−a−3n
∑
t

p∑
i=2
αi,0YtY

2
t+1−i × I{|Yt|>anε} + oP (1)

= T
(1)
2,ε (Nn)− α1,0T3,0,ε (Nn)−

p∑
i=2
αi,0T

(2)
i,ε (Nn) + oP (1) .
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Finally,

IIIc = α1,0a
−3
n

∑
t
Y 3t − E

(
Y 3t
)

+ a−3n
∑
t

p∑
i=2
αi,0YtY

2
t+1−i + oP (1) ,

so that

a−3n
∑
t
YtY

2
t+1 − E

(
YtY

2
t+1

)
= Ic+ T

(1)
2,ε (Nn)− α1,0T3,0,ε (Nn)−

p∑
i=2
αi,0T

(2)
i,ε (Nn)

+IIIc+ oP (1)
d−→ V ∗p,1 + α1,0Vp,0,

where " d−→" is with respect to n → ∞ first (following from the same arguments that support

convergence as n→∞ in (32) and Lemma 11) and ε→ 0 second (as established elsewhere in this

appendix) so that

na−3n

(
γ̂(Y, Y 2) (1)− γ(Y, Y 2) (1)

)
d−→ Vp,1 := V ∗p,1 + α1,0Vp,0. (34)

Extending (34) to higher lags (i.e., m > 1) is a continuation of the arguments given above.

OLS Estimation of the ARCH(1) Model

Recall that

Yt = σtεt, σ2t = ω0 + α0Y
2
t−1

implies the second-order (centered) AR(1) model of

Xt = α0Xt−1 +Wt, (35)

where Xt ≡ Y 2t − γ0 and γ0 ≡ E
(
Y 2t
)

=
ω0
1−α0

.

ASSUMPTION A1*: Under A1(i), let E |εt|
j = cj <∞ for j > 4.

A1* strengthens A1 from the main paper.

ASSUMPTION A4*: E
(
Al
)
< 1 for l ≥ 2.

A4* strengthens A4 from the main paper. Given A4* with l = 2,

E
(
XtXt−m

)
= αm0 E

(
X2
t

)
, m ≥ 1, (36)

so that OLS estimators for α0 and ω0 are

α̂OLS =

∑
t
X̂tX̂t−1∑
t
X̂2
t−1

, (37)
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ω̂OLS = γ̂
(

1− α̂OLS
)
. (38)

Versions of (37) were first studied by Weiss (1986) and more recently by Guo and Phillips (2001).

PROPOSITION 1. Consider the estimators in (37) and (38) for the model of (35). Let As-
sumptions A1*, A2, and A4* with l = 2 hold. Then

α̂OLS
a.s.−→ α0, ω̂OLS

a.s.−→ ω0.

In addition,

na−4n

(
α̂OLS − α0

)
d−→ E

(
X2
t−1
)−1

U1 (39)

if κ0 ∈ (4, 8), where U1 is (κ0/4)−stable, and

na−4n

(
ω̂OLS − ω0

)
= −γ0na−4n

(
α̂OLS − α0

)
+ op (1) . (40)

Alternatively, if Assumption A4* with l = 4 holds so that E
(
Y 8t
)
< 8 and κ0 ∈ (8, ∞), then

√
n
(
α̂OLS − α0

)
d−→ N

(
0, E

(
X2
t−1
)−2

E
(
W 2
t X

2
t−1
))
, (41)

and
√
n
(
ω̂OLS − ω0

)
d−→ N

(
0, Σω0

)
, (42)

where

Σω0
= Σγ0

+ E
(
X2
t−1
)−1(

γ20E
(
X2
t−1
)−1

E
(
W 2
t X

2
t−1
)
− 2

∞∑
s=1

E
(
WtXt−1Y

2
t−s
))

. (43)

Proof. Recall that
X̂t = Xt − (γ̂ − γ0) , (44)

and

X̂t = c+ α0X̂t−1 +Wt. (45)

Given (44) and (45),

α̂OLS = α0 +

(∑
t
X̂2
t−1

)−1(
c
∑
t
X̂t−1− (γ̂ − γ0)

∑
t
Wt+

∑
t
WtXt−1

)
. (46)

Then α̂OLS a.s.→ α0, and ω̂
OLS a.s.→ ω0 given the same arguments that establish consistency in the

proof of Theorem 1 (see the main paper’s Appendix). Next, given (44),

na−4n

(
α̂OLS − α0

)
= E

(
X2
t−1
)−1(

a−4n
∑
t
XtXt−1 − E

(
XtXt−1

))
+ oP (1) (47)

d−→ E
(
X2
t−1
)−1

U1,
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given Lemmas 2 and 3, Davis and Mikosch (1998), and von Bahr and Essen (1965, Theorem 2),

where application of the latter permits j ∈ (4, 8) in A1*.4 Comparable to Theorem 1, this (weak)

distributional convergence results relies on

a−4n
∑
t
XtXt−1 − E

(
XtXt−1

)
= a−4n

∑
t
Y 2t Y

2
t−1 − E

(
Y 2t Y

2
t−1
)

+ oP (1)

since

a−4n
∑
t
Y 2t − γ0 = n

κ0−8
2κ0

(
n−1/2

∑
t
Y 2t − γ0

)
d−→ 0 (48)

by Ibragimov and Linnik (1971, Theorem 18.5.3). Also given (48),

na−4n

(
ω̂OLS − ω0

)
= −γ0na−4n

(
α̂OLS − α0

)
+ oP (1) .

Finally, if κ0 ∈ (8, ∞), then given (46),

√
n
(
α̂OLS − α0

)
= E

(
X2
t−1
)−1(

n−1/2
∑
t
WtXt−1

)
+ oP (1)

d−→ N
(

0, E
(
X2
t−1
)−2

E
(
W 2
t X

2
t−1
))

by Ibragimov and Linnik and the Slutsky Theorem, and

√
n
(
ω̂OLS − ω0

)
=
√
n (γ̂ − γ0)− γ0

√
n
(
α̂OLS − α0

)
d−→ N

(
0, Σω0

)
where Σω0

is defined in Theorem 1 of the main paper.

The OLS estimator in (37) depends on the first (sample) second-order autocovariance from

(36). The resulting (weak) distributional limit in (39) follows immediately from Davis and Mikosch

(1998) if c∗3 = 0, and j = 8 in A1. Under Proposition 1, in contrast, the asymptotic properties

of α̂OLS are unaffected by whether or not A3 holds. Moreover, given von Bahr and Esseen (1965,

Theorem 2), j ∈ (4, 8), instead, supports (39). The distribution of U1 is similar to that of V1 in

Theorem 1 of the main paper but, nonetheless, is distinct because the former is based on fourth-

order mixtures of Poisson and i.i.d. point processes (see Lemma 4 and Remark R3, as well as Davis

and Hsing, 1995, Theorem 3.1), while the latter depends on third-order mixtures of these same

processes. The general method of proof behind Proposition 1 and Theorem 1 in the main paper

is analogous. Asymptotic normality under Proposition 1 mirrors Weiss (1986, Theorem 4.4). The

heavy-tailed case of (39), where the rate of convergence is n
κ0−4
κ0 , is closely related to Kristensen

and Linton (2006, Theorem 2).

It is important to note that if κ0 ∈ (4, 8) and A3 holds, then α̂IV in the main paper converges

4Application of von Bahr and Esseen (1965, Theorem 2) in this instance closely mirrors that in the proof of Lemma
5.
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at a faster rate than does α̂OLS . Also, if κ0 ∈ (4, 8), then for

τ̂2n = n−1
∑
t
Y 8t , na−8n τ̂2n

d−→ S̃0, (49)

where S̃0 is (κ0/8)−stable (see Davis and Mikosch, 1998, Section 4B(1), for a closely-related result).
As a consequence, normalizing the left-hand-side of (39) by τ̂n enables inference on α̂

OLS to be

conducted using the subsampling and bootstrapping methods discussed above in the context of

Theorem 1 in the main paper. Lastly, the borderline case of κ0 = 8 is not considered for the same

reason that κ0 = 6 is excluded from consideration in Theorem 1 in the main paper.

OLS Estimation of the GJR ARCH(1) Model

Recall that

Yt = σtεt, σ2t = ω0 + α1,0Y
2
t−1 × I{Yt−1≥0} + α2,0Y

2
t−1 × I{Yt−1<0}

implies

Xt = α1,0X1,t−1 + α2,0X2,t−1 +Wt (50)

= X
′
t−1α0 +Wt,

where Xt ≡ Y 2t − γ0 and γ0 ≡ E
(
Y 2t
)
as before, with

E
(
Y 2t
)

=
ω0 + α1,0Cov

(
Y 2t , I{Yt≥0}

)
+ α2,0Cov

(
Y 2t , I{Yt<0}

)
1−

(
α1,0 × P (Yt ≥ 0) + α2,0 × P (Yt < 0)

) ,

and

X1,t−1 = Y 2t−1× I{Yt−1≥0} −E
(
Y 2t × I{Yt≥0}

)
, X2,t−1 = Y 2t−1× I{Yt−1<0} −E

(
Y 2t × I{Yt<0}

)
.

ASSUMPTION A6*: E
(
Xt−1X

′
t−1

)
is nonsingular.

A6* is the analog to A6 in the main paper. It serves as the key identifying condition for the

following OLS estimator:

α̂OLS = K̂

(
n−1

∑
t
X̂tX̂t−1

)
, K̂ =

(
n−1

∑
t
X̂t−1X̂

′
t−1

)−1
. (51)

PROPOSITION 2. Consider the estimator in (51) for the model in (50), and let K0 = E
(
Xt−1X

′
t−1

)−1
.

In addition, let Assumptions A1*, A2, A4* with l = 2, and A6* hold. Then,

α̂OLS
a.s.−→ α0.
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In addition,

na−4n

(
α̂OLS −α0

)
d−→ K0Q

(+,−)
1 (52)

if κ0 ∈ (4, 8), where the vector Q(+,−)1 =
(
Q+1 , Q−1

)′
is jointly (κ0/4)−stable with com-

ponents Q+1 and Q−1 defined in Lemma 7, if A4* with l = 4 holds so that E
(
Y 8t
)
< 8 and

κ0 ∈ (8, ∞), then

√
n
(
α̂OLS −α0

)
d−→ N

(
0, K0E

(
W 2
t Xt−1X

′
t−1

)
K
′
0

)
. (53)

Proof. From (51), using the expressions for X̂t−1 and X̂t as they relate toXt−1 andWt, respectively

(see the proof of Theorem 2 in the Appendix of the main paper),

α̂OLS −α0 = K̂

[
c

(
n−1

∑
t
Xt−1

)
+
(
Ĝ−G0

)(
n−1

∑
t
Wt − 1

)
+ n−1

∑
t
Xt−1Wt

]
. (54)

Then, given A6*, α̂OLS a.s.−→ α0 follows from the same arguments that establish (almost sure)

consistency in the proof of Theorem 2. Next, let X̂t−1 = Z
(2)
t−1−G0. In the case where κ0 ∈ (4, 8),

consider

na−4n

(
α̂OLS −α0

)
= K0

[
a−4n

∑
t
Xt−1Xt − E

(
Xt−1Xt

)]
+ op (1)

= K0

[
a−4n

∑
t
Z
(2)
t−1Y

2
t − E

(
Z
(2)
t−1Y

2
t

)]
−n

κ0−8
2κ0

[
G0n

−1∑
t
Y 2t − E

(
Y 2t
)

+ γ0n
−1∑

t
Xt−1

]
+ op (1)

= K0

[
a−4n

∑
t
Z
(2)
t−1Y

2
t − E

(
Z
(2)
t−1Y

2
t

)]
+ op (1)

d−→ K0Q
(+,−)
1 ,

where Q(+,−)1 =
(
Q+1 , Q−1

)
; the third equality follows from the CLT of Ibragimov and Linnik

(1971, Theorem 18.5.3), and (weak) convergence in distribution to a (κ0/4)−stable limit follows
from Lemma 7 and Samorodnitsky and Taqqu (1994, Theorem 2.1.5(c)). Finally, if κ0 ∈ (8, ∞),

then given (54), (53) follows along the same lines as given in the proof to Theorem 2.

Proposition 2 extends results from Davis and Mikosch (1998) to the GJR ARCH(1) model. Nec-

essary for the proof of Proposition 2 is establishing the (weak) distributional limit of n−1
∑
t
XtXt−1,

(see Lemma 7). Given (49), normalizing the left-hand-side of (52) by τ̂n produces

√
n

(
α̂OLS −α0

τ̂n

)
d−→ K0Q

(+,−)
1

S̃
1/2
0

,

in which case, subsample and bootstrap confidence intervals for α̂OLS can also result as in the
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discussion that follows Proposition 1. Like Proposition 1, Proposition 2 does not require D in A1*

to be symmetric. As a result, Proposition 2 can also apply to the same processes towards which

Theorem 2 in the main paper is directed; provided (of course) that the requisite higher moments

are well defined. In cases where κ0 ∈ (4, 6), however, α̂IV in Theorem 2 converges at a faster rate

(although, to a different and stable distribution) than does α̂OLS , and when κ0 ∈ [6, 8), α̂IV is
√
n

asymptotically normal. Moreover, and in contrast to the convergence rate differentials discovered

between α̂IV in Theorem 1 of the main paper and α̂OLS in Proposition 1, improvements in the

rate of convergence enjoyed by α̂IV over α̂OLS do not, necessarily, rely on skewness in the model’s

rescaled errors.

OLS Estimation of the ARCH(p) Model

Given

Yt = σtεt, σ2t = ω0 +
p∑
i=1
αi,0Y

2
t−i, 1 ≤ p <∞,

the generalization of (35) is

Xt = X
′
t−1α0 +Wt,

where α0 =
(
α1,0, . . . , αp,0

)′
, and

Xt−1 =
(
Xt−1, . . . , Xt−p

)′
. (55)

If A9 with s = 2 holds, then (51) with X̂t−1 defined as the feasible version of (55) is a (almost

surely) consistent estimator of α0 following the same method of proof for Proposition 2. Moreover,

following the same method of proof for Lemmas 9—12, it can further be established that

na−4n

(
α̂OLS −α0

)
d−→ K0Up,p,

where the vector Up,p =
(
Up,1, . . . , Up,p

)′
is jointly (κ0/4)−stable, reduces to U1 from (39) in

the special case where p = 1, but generally is not solely determined by functionals of the observable

sequence {Yt}. If A9 with s = 4 holds, then (53) is established following the same method of proof

for Proposition 2 and echoes the result of Weiss (1986, Theorem 4.4). Confidence intervals for

α̂OLS can be constructed from
√
n
(
α̂OLS−α0

τ̂n

)
using (49), given either the subsample or bootstrap

method discussed above in the context of Proposition 1.
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