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Abstract

Using prices of both S&P 500 options and recently introduced VIX options, we

study asset pricing implications of volatility risk. While pointing out the joint pricing

kernel is not identified nonparametrically, we propose model-free estimates of marginal

pricing kernels of the market return and volatility conditional on the VIX. We find that

the pricing kernel of market return exhibits a decreasing pattern given either a high or

low VIX level, whereas the unconditional estimates present a U-shape. Hence, stochas-

tic volatility is the key state variable responsible for the U-shape puzzle documented in

the literature. Finally, our estimates of the volatility pricing kernel feature a U-shape,

implying that investors have high marginal utility in both high and low volatility states.
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1 Introduction

In addition to the uncertainty of market returns, volatility risk has been well documented as

an essential component of time-varying investment opportunities. Together with the pref-

erences of economic agents, a priced volatility factor leads to a pricing kernel (or stochastic

discount factor) which depends on both market returns and volatility. Nevertheless, because

volatility is neither tradable nor observable, existing studies on pricing kernels either impose

strong parametric restrictions, or ignore the unobservable volatility factor in nonparametric

analysis. The pricing kernel estimates produced by these studies exhibit a puzzling U-shape

as a function of market return, in conflict with a standard expected utility theory.

The lack of tradable and observable volatility has changed substantially since the intro-

duction of the Volatility Index (VIX) in 1993 by the Chicago Board of Options Exchange

(CBOE),1 and the introduction of VIX derivatives such as futures and options in 2004 and

2006, respectively. The VIX, derived from S&P 500 options as the square root of the ex-

pected average variance over the next 30 calendar days, provides investors with a direct

measure of volatility; and VIX derivatives offer investors convenient instruments for trading

on the volatility of S&P 500 index.2 As a result, the VIX is constantly exposed in the media

spotlight, and VIX options have achieved huge liquidity and become the third most active

contracts at CBOE as of October 2011.

Taking advantage of the S&P 500 and VIX option markets, we nonparametrically identify

and estimate the marginal pricing kernel of market returns and volatility, which equals the

ratio of state-price density (or risk-neutral density) to physical density. We show that infor-

mation in the two option prices is fully captured by the two marginal state-price densities of

market returns and volatility separately, whereas the joint state-price density and hence joint

1The VIX, from its inception, was calculated from S&P 500 index options by inverting the Black-Scholes
formula. In 2003, the CBOE amended this approach and adopted a model-free method to calculate the VIX.

2Previously, investors have to take positions in option portfolios, such as straddles or strangles, in order
to trade volatility.
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pricing kernel cannot be identified nonparametrically as a result of incomplete markets.3 We

then provide nonparametric estimates of pricing kernels with respect to return and volatility

respectively. Our estimates not only shed light on the puzzling U-shaped pricing kernel, but

also provide new empirical stylized facts on the pricing kernel of volatility. In particular, we

make several important findings regarding asset pricing implications of volatility.

First, our estimates of pricing kernels with respect to the market return show that stochas-

tic volatility is the key state variable responsible for the “pricing kernel puzzle.” More

specifically, we find that a pricing kernel of market return conditional on either a high or

low VIX level presents a decreasing pattern, whereas an unconditional pricing kernel (i.e.

the one that ignores volatility) may become U-shaped. In fact, marginal utility (the pricing

kernel up to a scaling factor) conditional on high volatility is above that conditional on low

volatility, as low volatility signals a good investment opportunity and hence is preferred by

investors. As a mixture of pricing kernel estimates conditional on different volatility levels,

unconditional estimates can exhibit an increasing pattern over the high return region (right

tail), where high volatility is prevalent. Our finding echoes the conclusions of parametric

models in Chabi-Yo et al. (2008) and Christoffersen et al. (2010), which show that missing

state variables in the pricing kernel may result in a U-shape. Without restricting the spec-

ification of pricing kernels, however, we show that including volatility as a state variable is

the solution to this puzzle.

Second, we provide nonparametric estimates of pricing kernels with respect to volatility,

for the first time to the best of our knowledge. Our estimates exhibit a pronounced U-shape

conditional on either a high or low VIX, indicating that investors attach high marginal

utility to payoffs received in both high and low future volatility states, regardless of today’s

3We emphasize that the joint pricing kernel, though not identifiable nonparametrically using the S&P
500 and VIX options, can be estimated with certain parametric correlation restriction on the two marginal
pricing kernels. We do not explore this approach because our focus is to recover the pricing kernels without
any parametric restrictions. A follow-up paper of our study, Jackwerth and Vilkov (2013), implemented such
an exercise using the parametric Frank copula for the two marginal distributions.
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volatility level. Bakshi et al. (2010) also document a U-shape for the unconditional volatility

pricing kernel, but indirectly, by exploring the link between the monotonicity of pricing

kernel and returns of VIX option portfolios. In contrast, we provide direct estimates of

the conditional volatility pricing kernel by nonparametric methods, which provide further

information about the shape and tail behavior of the pricing kernel. In particular, we find

that the volatility pricing kernel is asymmetric, and the asymmetry conditional on a current

high volatility is much stronger than that conditional on a low volatility. This finding implies

that market investors price the volatility risk differently according to different scenarios of

the economy, which presents new empirical regularities that need to be incorporated into

models of volatility risk.

Finally, we evaluate the performance of our nonparametric estimator for in-sample fitting

and out-of-sample forecasts against two alternative methods: the nonparametric approach of

Aı̈t-Sahalia and Lo (1998) without a volatility factor and a martingale approach commonly

used by practitioners that simply predicts tomorrow’s implied volatility by interpolating

today’s implied volatility surface. We find that our estimator outperforms both alternative

methods for density and implied volatility forecasts, which again highlights the importance

of conditioning on volatility.

Estimating pricing kernels from option prices is discussed in Aı̈t-Sahalia and Lo (1998),

Aı̈t-Sahalia and Duarte (2003), Jackwerth (2000), and Rosenberg and Engle (2002), which

ignore the volatility risk and discover a puzzling U-shape.4 Hereafter, many studies have pro-

posed different explanations for the U-shaped pricing kernel, including models with missing

state variables in Chabi-Yo et al. (2008), Chabi-Yo (2011), and Christoffersen et al. (2010),

and models with heterogeneous agents in Bakshi and Madan (2008) and Ziegler (2007). Our

empirical study contributes to this literature by showing, without imposing any parametric

restrictions, that volatility is the missing state variable responsible for the puzzle.

4A related study, Fan and Mancini (2009), proposes nonparametric methods for pricing derivatives based
on state price distributions.
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Our paper is also related to the large literature on models with volatility risk, including

both reduced-form option pricing models, e.g. Bakshi et al. (1997), Bates (2000), Pan (2002),

Eraker (2004), and Broadie et al. (2007), and equilibrium models, such as Bansal et al. (2012),

Bollerslev et al. (2012), and Campbell et al. (2012). Unlike these studies, our framework

does not depend on any parametric restrictions on volatility dynamics that may obscure the

empirical characteristics of pricing kernels. Several recent studies have constructed model-

free measures of risk-neutral volatility from S&P 500 options, e.g. Bakshi and Kapadia

(2003), Bollerslev et al. (2009), Carr and Wu (2009), and Todorov (2010), and compared

them with measures of realized volatility. Their focuses are on the sign, time variation, and

return predictability of variance risk premium, which only relates to the conditional mean of

variance distributions under different measures. In contrast, we recover the entire volatility

pricing kernel.

Methodologically, our paper is also related to Boes et al. (2007) and Li and Zhao (2009)

who estimate pricing kernels of stock market returns and interest rates, respectively, condi-

tional on an ex-post volatility proxy filtered from historical time series. Our strategy differs

from their approach by using the VIX, which possesses a monotonic functional relationship

with the unobservable volatility for almost all state-of-the-art volatility models. Therefore,

our method avoids estimation errors from the filtering stage, while making it possible to

study volatility pricing kernels with the help of VIX options.

Furthermore, several recent studies document the importance of multiple volatility factors

in capturing dynamics of option prices or the term structure of variance swaps, see e.g.

Christoffersen et al. (2008), Egloff et al. (2010), Mencia and Sentana (2012), and Bates

(2012). Our nonparametric framework can be extended to nest these models by including

additional regressors such as a VIX future contract, or CBOE S&P 500 3-Month Volatility

Index (VXV). Such an extension, though being interesting and important itself, is beyond

the scope of the current focus, to which term structure of volatility is less relevant.
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Section 2 discusses the nonparametric identification of pricing kernels of both the market

return and volatility. Section 3 provides our nonparametric estimation framework and Monte

Carlo simulations. Empirical estimates of pricing kernels are presented in Section 4. Section

5 concludes the paper.

2 Pricing Kernels with a Volatility Factor

The pricing kernel equals the ratio of risk-neutral density, also known as state-price density

(SPD), to the density under the physical measure. To study pricing kernels, we first discuss

the identification of state price densities, by exploring the underlying connection of S&P 500

options, VIX, and VIX options through the latent volatility factor.

2.1 Identification of State-Price Densities

To fix ideas, we denote the log price of the S&P 500 index as St, the VIX as Zt, and the

unobserved volatility as Vt. The information in the derivative markets is driven by the joint

evolution of St and Vt, which determines Zt endogenously. As Vt is not observable, there

exist no Arrow-Debreu securities traded on Vt directly.

In fact, the payoffs of S&P 500 and VIX options depend on their own underlying indices

at maturity T . Therefore, we focus on the marginal state-price densities with respect to S

and Z separately. We show that the marginal densities together span the two option markets,

and provide sufficient and necessary information about the dynamics of the market return

and its volatility. The joint dynamics, nevertheless, cannot be identified nonparametrically

unless certain options whose payoff depends on both ST and ZT are traded.
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We write the time-t price of a S&P 500 call option with maturity T and strike x as: 5

C(τ, ft,τ , vt, x, rt,τ ) =e
−rt,τ τEQ

[
(eST − x)

+|Ft,τ = ft,τ , Vt = vt

]
=e−rt,τ τ

∫
R
(esT − x)+p∗(sT |τ, ft,τ , vt)dsT

where Ft,τ denotes the log forward price of the S&P 500 index, τ = T − t is the time-to-

maturity, and rt,τ is the deterministic risk-free rate between t and T at time t. Similarly, the

price of a VIX call option with strike y is given by:

H(τ, ft,τ , vt, y, rt,τ ) =e
−rt,τ τEQ [(ezT − y)+|Ft,τ = ft,τ , Vt = vt

]
=e−rt,τ τ

∫
R
(ezT − y)+q∗(zT |τ, ft,τ , vt)dzT

Observe that the two SPDs p∗(sT |τ, ft,τ , vt) and q∗(zT |τ, ft,τ , vt) completely determine

these option prices. Building upon the insight of Breeden and Litzenberger (1978), they can

be estimated as the second order derivative of option prices with respect to different strikes.

In particular, we can recover

p∗(sT |τ, ft,τ , vt) = ert,τ τ+sT
∂2C(τ, ft,τ , vt, x, rt,τ )

∂x2

∣∣∣
x=esT

, (1)

from S&P 500 options and

q∗(zT |τ, ft,τ , vt) = ert,τ τ
∂2H(τ, ft,τ , vt, y, rt,τ )

∂y2

∣∣∣
y=zT

, (2)

from VIX options. It is apparent that p∗(sT |τ, ft,τ , vt) and q∗(zT |τ, ft,τ , vt) summarize the

entire information about these two option markets, hence the joint density of sT and zT

cannot be identified from the data without additional parametric assumptions.

Nevertheless, these two densities p∗(sT |τ, ft,τ , vt) and q∗(zT |τ, ft,τ , vt) are not practically

feasible to estimate as Vt is unobservable. Alternatively, with the observed VIX from the

5In our setting, the time-t information set Ft contains stock prices, instantaneous volatility, interest rates
and dividends, which can be summarized by the log forward price Ft,τ and the volatility Vt.
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market,6 we may rewrite the option prices with zt as a state variable, i.e., C(τ, ft,τ , zt, x, rt,τ )

and H(τ, ft,τ , zt, y, rt,τ ),
7 and take second order derivatives to obtain

p∗(sT |τ, ft,τ , zt) =ert,τ τ+sT
∂2C(τ, ft,τ , zt, x, rt,τ )

∂x2

∣∣∣
x=esT

q∗(zT |τ, ft,τ , zt) =ert,τ τ
∂2H(τ, ft,τ , zt, y, rt,τ )

∂y2

∣∣∣
y=zT

. (3)

In fact, writing options in terms of ft,τ and zt amounts to assuming that Vt can be determined

from Zt and Ft,τ , which is rigorous under most models of volatility risk in the literature (see

Section 2.3 below for details). With state variables being fully observable, p∗(sT |τ, ft,τ , zt)

and q∗(zT |τ, ft,τ , zt) can be identified from the data.

In summary, state-price densities p∗(sT |τ, ft,τ , zt) and q∗(zT |τ, ft,τ , zt) encapsulate all the

information in the two option markets. They complement each other to reveal an intact

picture of the market return, its volatility dynamics and the interactions of the two markets.

2.2 From State-Price Densities to Pricing Kernels

We now discuss how to obtain the pricing kernels by combining the risk-neutral and physical

densities of St and Zt. We denote π(sT , zT |τ, ft,τ , zt) as the pricing kernel and use π for

short. Not surprisingly, for the same reason described in Section 2.1, the joint pricing

kernel π (sT , zT |τ, ft,τ , zt) cannot be identified nonparametrically. We therefore study the

projections of pricing kernel π on ST
8 and ZT , denoted as π(sT |τ, ft,τ , zt) and π(zT |τ, ft,τ , zt),

respectively. They are called the pricing kernel of the market return and the pricing kernel

6The CBOE constructs Zt form a portfolio of options weighted by strikes according to the formula:

(Zt/100)
2 = EQ(QVt,τ |Ft) =

2ert,ττ

τ

(∫ eft,τ

0

P (τ, x)

x2
dx+

∫ ∞

eft,τ

C(τ, x)

x2
dx
)
+ ϵ

where QVt,T denotes the quadratic variation of the log return process from t to t + τ , P (τ, x) and C(τ, x)
are put and call options with time-to-maturity τ and strike x, and ft,τ is the log price of forward contracts,
see e.g. Britten-Jones and Neuberger (2000) and Carr and Wu (2009).

7Strictly speaking, the function C (·) here is a composite function, which is different from the previous
call option pricing function. We recycle it to simplify our notations.

8The projection of π on ST is defined as EP(π|ST = sT , Ft,τ = ft,τ , Zt = zt).
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of the VIX in the following.

In fact, the price of a S&P 500 call option can be written as

C(τ, ft,τ , zt, x, rt,τ ) =e
−rt,τ τEP

[
π · (eST − x)

+|Ft,τ = ft,τ , Zt = zt

]
=e−rt,τ τ

∫
R
π (sT |τ, ft,τ , zt) (esT − x)+p(sT |τ, ft,τ , zt)dsT , (4)

and the price of a VIX call option is

H(τ, ft,τ , zt, y, rt,τ ) =e
−rt,τ τEP [π · (ezT − y)+|Ft,τ = ft,τ , Zt = zt

]
=e−rt,τ τ

∫
R
π (zT |τ, ft,τ , zt) (ezT − y)+q(zT |τ, ft,τ , zt)dzT , (5)

where p(sT |τ, ft,τ , zt) and q(zT |τ, ft,τ , zt) are conditional densities of ST and ZT under the

physical measure, respectively. Note that the law of iterated expectation is used in the

second equality of both (4) and (5).

Similar to (3), equations (4) and (5) imply that the second order derivatives of the S&P

500 and VIX call prices with respect to their strikes are also equal to π (sT |τ, ft,τ , zt) p(sT |τ, ft,τ , zt)

and π (zT |τ, ft,τ , zt) q(zT |τ, ft,τ , zt), respectively. This fact, combined with (3), further implies

that

π (sT |τ, ft,τ , zt) =
p∗(sT |τ, ft,τ , zt)
p(sT |τ, ft,τ , zt)

π (zT |τ, ft,τ , zt) =
q∗(zT |τ, ft,τ , zt)
q(zT |τ, ft,τ , zt)

That is, by combining the risk-neutral and physical densities of St and Zt, we obtain the

projections of π onto ST and ZT , respectively. These two pricing kernels contain rich infor-

mation on how risks, especially those associated with volatility shocks, are priced in financial

markets. In the equilibrium setup of Aı̈t-Sahalia and Lo (2000) with a representative agent,

these pricing kernels represent—up to a scaled factor—the marginal rate of substitution.

While Aı̈t-Sahalia and Lo (2000) and Jackwerth (2000) estimate the pricing kernels of S&P

500 returns, our π (sT |τ, ft,τ , zt) includes the VIX zt in the conditional information set so that
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volatility becomes relevant to the price of risk regarding the expected returns. In addition,

we are able to identify the pricing kernel of the VIX.

2.3 Nested Models

As discussed in Section 2.1, we employ the information set generated by Ft,τ and Zt to

replace the information generated by Ft,τ and Vt, because Zt is directly observable. In

fact, the information set of Ft,τ and Zt is coarser than the set generated by Ft,τ and Vt,

and equating these two effectively assumes that Vt is an invertible function of Ft,τ and Zt.

We now show that this assumption is satisfied in most parametric models proposed in the

literature, including both reduced-form option pricing models and equilibrium models with

a priced stochastic volatility factor. Unlike Boes et al. (2007) and Li and Zhao (2009) who

use an ex-post volatility proxy filtered from historical time series, we use VIX instead, which

bears no approximation errors in most cases.

We first consider the class of option pricing models that induce an affine relationship

between the unobservable variance and squared VIX. This class of models has the following

risk-neutral dynamics:9

dSt = (r − d− 1

2
Vt)dt+

√
VtdW

Q
t + dLS

t

dVt = κ(ξ − Vt)dt+ σ(Vt)dB
Q
t + dLV

t (6)

where dLS
t and dLV

t may be driven by finite activity compound Poisson processes with

correlated jump sizes JS
t and JV

t . Such models include those discussed in Bakshi et al.

(1997), Bates (2000), Pan (2002), Chernov and Ghysels (2000), Eraker (2004), Carr et al.

(2003), Eraker et al. (2003), and Broadie et al. (2007). Jumps can be driven by Lévy

processes such as the CGMY process in Carr et al. (2003) and Bates (2012). Note that

this class also includes non-Gaussian OU processes, as introduced in Barndorff-Nielsen and

9The discontinuous part of the quadratic variation of St is assumed to be linear in V .
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Shephard (2001); see Shephard (2005) for a collection of similar models.

For models of this class, we have

Z2
t = aVt + b,

where a and b are functions of model parameters (see Carr and Wu (2009) for details). That

is, Z2
t is a linear function of Vt, hence Zt and Vt deliver the same information set.

The second class of models introduces a non-affine structure between the squared VIX

and variance, such as the exponential-OU-L models in Shephard (2005). In particular, under

the risk-neutral measure, such models specify the volatility process as

log Vt = α + βFt, dFt = κFtdt+ dLt,

The squared VIX, as calculated by Tauchen and Todorov (2011), is

Z2
t =

1

τ

∫ τ

0

γ + (η + 1) exp
(
α + eκu(log Vt − α) + C(u)

)
du, (7)

where C(u) is determined by the characteristic exponent of the Lévy process Lt, and γ and

η are constants determined by the quadratic variation of LS
t . Observe that the function

Vt 7→ Zt is invertible, so that the information sets generated by Vt and by Zt are equivalent.

Finally, we consider a stylized general equilibrium model, which is a simplified version

of Bollerslev et al. (2009) and Drechsler and Yaron (2011) that builds on the long-run risk

framework of Bansal and Yaron (2004).10 Specifically, the representative agent’s preference

over consumption is recursive (Epstein and Zin (1989)). Therefore, the log pricing kernel at

time t+1 is

mt+1 = θ log δ − θψ−1∆ct+1 + (θ − 1)rc,t+1, (8)

where θ = (1− γ)/(1− ψ−1), 0 < δ < 1 is the subjective discount factor, γ is the risk

10Other equilibrium models that satisfy the invertibility between Zt and Vt include Bansal et al. (2012),
Bollerslev et al. (2009), and Campbell et al. (2012). We choose to present the framework of Bollerslev et al.
(2009) and Drechsler and Yaron (2011) for simplicity of illustration.
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aversion coefficient, ψ is the intertemporal elasticity of substitution, ∆ct+1 is the growth

rate of log consumption, and rc,t+1 is the time t to t+1 return on the aggregate wealth

claim.11 The state vector of the economy follows

∆ct+1 =µc + σc,tzc,t+1 + Jc,t+1

σ2
c,t+1 =µσ + ρσσ

2
c,t + σc,tzσ,t+1 + Jσ,t+1 (9)

where {zc,t} and {zσ,t} are independent i.i.d. N(0,1) processes, Jc,t+1 is a compound Poisson

process with intensity λc,t and i.i.d. jump size ζci , Jσ,t+1 is a compound Poisson process with

intensity λσ,t and i.i.d. jump size ζσi , and both jump processes are independent of each other

and of the Gaussian shocks. Note that both the Gaussian process zσ,t+1 and jump process

Jσ,t+1 contribute to volatility shocks.

By the standard log-linearization approach following Campbell and Shiller (1988), we

have

rc,t+1 = κ0 + κ1wt+1 − wt +∆ct+1, (10)

where the price-wealth ratio wt is conjectured to be affine in the state vector:

wt = A0 + Aσσ
2
c,t (11)

with A0 > 0 and Aσ < 0 as functions of the model parameters we suppress for notational

brevity. With (10) and (11), we have

rc,t+1 = ∆ct+1 + κ1Aσσ
2
c,t+1 − Aσσ

2
c,t + κ0 + κ1A0 − A0.

Therefore, the volatility factor σ2
c,t+1 shows up in rc,t+1, and hence in the pricing kernel mt+1

given in (8). Following the standard practice to proxy the aggregate wealth (consumption)

by the aggregate stock market St (see Aı̈t-Sahalia and Lo (2000), Bansal and Yaron (2004),

11The literature usually assumes that γ > 1 and ψ > 1, which implies θ < 0. This assumption ensures
that the representative agent has a preference for early resolution of uncertainty, which is the key for the
price of volatility risk.
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and Campbell et al. (2012)), the return ST − St corresponds to ∆ct+1, and Zt corresponds

to the square root of the risk-neutral expectation of the consumption growth variance σ2
c,t.

Although the state vector dynamics are specified in discrete time, the model (9) is actually

a special case of the affine model in Bollerslev et al. (2012). Therefore, Zt is an invertible

function of Vt = σ2
c,t+1, which represents the variance of consumption growth rate under this

equilibrium model.

In summary, most parametric models with volatility risk proposed in the literature,

whether reduced-form or structural, can be nested within our nonparametric framework.

As a result, we do not lose any information about the dynamics of St and Vt when incor-

porating Zt into the information set; instead, the implementation becomes feasible with the

information set fully observable.

3 Estimation Strategy

3.1 Multivariate Local Linear Estimators for Densities

Here we introduce our nonparametric estimation strategies for SPDs. To fix ideas, we assume

the observed prices, C̃ and H̃, are contaminated with observation errors, such that12

C(τ, ft,τ , zt, x) = E
(
C̃
∣∣∣τ̃ = τ, Ft,τ = ft,τ , Zt = zt, X = x

)
H(τ, ft,τ , zt, y) = E

(
H̃
∣∣∣τ̃ = τ, Ft,τ = ft,τ , Zt = zt, Y = y

)
.

We then construct nonparametric estimators of C and H, and take derivatives to estimate

the SPDs. Different from the multivariate kernel regression approach adopted by Aı̈t-Sahalia

and Lo (1998), we prefer the local linear estimator (Fan and Gijbels (1996)) for two main

reasons. First of all, the bias and variance of local polynomial estimators are of the same

12Hereafter, we multiply all option prices by the corresponding ert,ττ , so that we can omit rt,τ in C and H,
and reduce one state variable in the following regressions. Again, we recycle the notations C and H without
ambiguity.
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order of magnitude in the interior or near the boundary, whereas kernel estimators are

notorious for the boundary effects. As our empirical studies focus on the tail of pricing

kernels, it is advantageous to adopt more efficient estimators. Second, local polynomial

regression provides estimates of derivatives, in addition to option prices, which makes it

more convenient for our purpose.

Theoretically, it is better to use a local cubic estimator to obtain second-order derivatives.

Since we have more than one state variable, including all cross-terms of cubic polynomials

into the regression is cumbersome. We avoid this by applying the local linear estimator, so

that estimators for SPDs can be obtained simply by a first-order differentiation with respect

to the strike.

We write the option price C as a function of u = (τ, f, z, x)′, and consider the following

minimization problem,

min
α,β

n∑
i=1

{Ci − α− β′ (ui − u)}2Kh (ui − u)

where ui = (τ i, fti,τi , zti , xi)
′ and Ci are the characteristics and price respectively of the

i-th option in the sample. Kh is a kernel function scaled by a bandwidth vector h =

(hτ , hf , hz, hx)
′:

Kh(ui − u) =
1

hτ
k

(
τ i − τ

hτ

)
1

hf
k

(
fti,τi − f

hf

)
1

hz
k

(
zti − z

hz

)
1

hx
k

(
xi − x

hx

)
(12)

where k (·) is, for example, the density a of standard normal distribution. The minimizer

has a closed-form representation: α̂

β̂


(1+4)×1

= (Ω′KΩ)
−1

Ω′KC (13)
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where

Ω =


1

...

1

(u1 − u)′

...

(un − u)′

 , C =


C1

...

Cn

 , K =


Kh (u1 − u)

. . .

Kh (un − u)

 .
The nonparametric local linear estimator for the option pricing function C(τ, f, z, x) is

Ĉ(τ, f, z, x) = α̂ = e′1 (Ω
′KΩ)

−1
Ω′KC, (14)

with e1 = (1, 0, 0, 0)′ and the estimator p̂∗(s′|τ, f, z) for the SPD of St is

p̂∗(s′|τ, f, z) = es
′ ∂β̂4

∂x

∣∣∣
x=es

′
= es

′ ∂
(
e′5 (Ω

′KΩ)−1 Ω′KC
)

∂x

∣∣∣
x=es

′
. (15)

where e5 = (0, 0, 0, 0, 1)′. The nonparametric estimator Ĥ (·) and q̂∗(z′|τ, s, z) can be con-

structed similarly.

It may be worth pointing out that β̂ in our local linear regression (13) provides estimates

of option Greeks. Specifically, option Theta is given by by e′1β = ∂C/∂τ , Delta by e′2β · es,

and Vega by e′3β.

3.2 Dimension Reduction

One of the major issues of nonparametric estimation is the curse of dimensionality. The rate

of convergence decreases rapidly as the dimension of state variables increases. In the most

general forms, the pricing functions C (·) and H (·) depend not only on time-to-maturity,

strike, VIX, and the S&P 500 index, but also on interest rates and dividends. Instead of

regressing on additional interest rate and dividend variables, we assume that option prices

multiplied by ert,τ τ depend on these variables only through forward prices. As mentioned in

Aı̈t-Sahalia and Lo (1998), models that violate this assumption seem very remote empirically.

Furthermore, following many existing studies such as Aı̈t-Sahalia and Lo (1998) and Li

and Zhao (2009), we assume that the S&P 500 option price is homogeneous of degree one in

14



the forward price level:

C(τ, f, z, x) = efC(τ, 0, z, x/ef ) = ef C̄(τ, z,m) (16)

where m = x/ef represents the moneyness of the option. Consequently, we obtain the

estimate of C(τ, f, z, x) through multiplying the nonparametric estimate of C̄ (·) by ef , and

write the SPD of ST as

p∗(sT |τ, ft,τ , zt) = esT−ft,τ
∂2C̄(τ, zt,m)

∂m2

∣∣∣
m=esT /eft,τ

.

As for VIX options, we assume that the information about Zt′ in Ft,τ is fully incorporated

into Zt. In other words, conditional on Zt, Zt′ is independent of Ft,τ , for any t′ > t. This

assumption further implies that the SPD of ZT , obtained from VIX option prices, depends

on Ft,τ only through Zt, i.e., q∗(zT |τ, ft,τ , zt) = q∗(zT |τ, zt). Thus, the number of state

variables for the SPD of VIX is also decreased by one. We conduct robustness checks for

these assumptions in Section 4.5, and find supportive evidence. Our dimension reduction

strategy is motivated from the economic intuition, which is in sharp contrast to the statistical

approach proposed by Yao and Hall (2005), who discuss an alternative method in the context

of conditional density estimation.

3.3 Estimation of Pricing Kernels

Given the homogeneity assumption in (16), the risk neutral density of the return RT can be

estimated using the following formula:

p∗(RT |τ, zt) = eRT−rt,τ τ
∂2C̄(τ, zt,m)

∂m2

∣∣∣
m=eRT−rt,τ τ

,

where RT = sT − ft,τ . Note that homogeneous of degree one in option prices is equivalent to

that the conditional density of the log returns is independent of st, see, e.g. Joshi (2007) for

more details. This property is satisfied by all parametric models discussed in Section 2.3.

While estimating the risk neutral density from option prices, we estimate the physical
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density p(RT |τ, zt) using the time series of the S&P 500 index and VIX based on the local

linear method. A similar strategy has been adopted by Aı̈t-Sahalia et al. (2009). We collect

time series of (RTi
, zti), i = 1, . . . , n, with τ = Ti − ti fixed. We then construct the local

linear estimator of the conditional density of returns p(R|τ, z) by minimizing:

min
γ,η

n∑
i=1

{KbR(RTi
−R)− γ − η′ (zti − z)}2Wbz (zti − z)

where bR and bz are the bandwidths to be selected, and KbR(·) = 1/bR ·k(·/bR) and Wbz(·) =

1/bz · w(·/bz) are kernels. Therefore, our density estimator is,

p̂(R|τ, z) = γ̂. (17)

Consequently, our pricing kernel estimator can be constructed as

π̂(R|τ, z) = p̂∗(R|τ, z)
p̂(R|τ, z)

.

Similarly, we can construct the estimator for the pricing kernel of VIX.

3.4 Asymptotic Theory

To provide theoretical guidance for our approach, we derive the asymptotic distribution of

the option price and density for S&P 500 options as an example. Suppose the sample size of

the S&P 500 options is n. Using the equivalent kernels introduced in Fan and Gijbels (1996)
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and following the derivation in Aı̈t-Sahalia and Lo (1998), we obtain:13

n1/2 (hτhfhzhx)
1/2
(
Ĉ(τ, f, z, x)− C(τ, f, z, x)

)
(18)

d−→ N

(
0,

[∫
k2 (c) dc

]3
s2 (τ, f, z, x) /π (τ, f, z, x)

)
, as nhτhfhzhx −→ ∞;

n1/2h2x (hτhfhzhx)
1/2
(
p̂(s′|τ, f, z)− p(s′|τ, f, z)

)
(19)

d−→ N

(
0,

[∫
k2 (c) dc

]3 [∫ (
ck̇ (c) + k(c)

)2
dc

]
/

[∫
k (c) c2dc

]2
s2 (τ, f, z, s′) /π (τ, f, z, s′)

)
,

as nhτhfhzh
5
x −→ ∞,

where s2 (τ, f, z, x) is the conditional variance for the local linear regression of C on the

state variables, and π (τ, f, z, x) is the joint density of these variables. The estimator for

s2 (·) can be constructed using similar nonparametric regressions of squared fitting errors on

these state variables. The same asymptotic distributions apply to estimators for VIX option

prices and their SPDs. Similar technique has been adopted in Ruppert and Wand (1994).

In addition to estimating the option price and its first and second order derivatives, we

13We sketch a proof here for the asymptotic theory as part of it is non-standard. Notice from (13) that[
α̂

β̂

]
(1+4)×1

= (Ω′KΩ)
−1

Ω′KC.

Using the properties of Gaussian kernel, we have

1

n
(Ω′KΩ)

−1
=


1

n

n∑
i=1

Kh(ui − u)
1

n

n∑
i=1

Kh(ui − u)(ui − u)′

1

n

n∑
i=1

Kh(ui − u)(ui − u)
1

n

n∑
i=1

Kh(ui − u)(ui − u)(ui − u)′


P−→
[
f(u) 0′

0 f(u) ·
∫
c2k2(c)dc · diag(h2τ , h2f , h2z, h2x)

]
, as h→ 0, n→ 0.

Therefore, we can write the estimators in their equivalent kernel forms:

α̂ ≈ 1

nf(u)

n∑
i=1

Kh(ui − u) · Ci

β̂4 ≈ 1

nh2xf(u)
∫
c2k2(c)dc

n∑
i=1

Kh(ui − u)(xi − x) · Ci

Using the standard kernel asymptotic results, we can obtain the above asymptotic theory.
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apply a local linear method to estimate the conditional density in (17). Its asymptotic theory

is given by (see, e.g. Fan et al. (1996)):

n1/2(brbz)
1/2
(̂̃p(r′|τ, z)− p̃(r′|τ, z)

)
d−→ N

(
0,

[∫
k2(c)dc

] [∫
w2(c)dc

]
p̃(r′|τ, z)/π(z)

)
.

The asymptotic theories provided here are applied to construct confidence bands in our

empirical studies.

3.5 Bandwidth Selection

Bandwidth selection is important especially for multivariate nonparametric regressions. In

theory, the optimal rate of bandwidth for estimating the option price is n−1/(4+d), whereas

to estimate densities, we need to adopt a bandwidth with rate n−1/(6+d) due to the curse

of differentiation. These bandwidth choices ensure that the nonparametric pricing function

achieves the optimal rate of convergence in the mean-squared sense. Empirically, we can

choose a bandwidth hj (j = τ, z, and m for S&P 500 options, or y for VIX options) as

hj = cjσjn
−1/(4+d+2ν), where σj is the unconditional standard deviation of the regressor j,

d is the number of regressors, and ν = 0 and 1 for option prices and SPDs, respectively.

The constant cj is chosen by minimizing the mean-squared error of option prices via cross-

validation. The cross-validation objective function for regression (14) is given by the weighted

mean squared errors:

min
h

1

n

n∑
i=1

(
Ci − Ĉh,−i(τi, fi, zi, xi)

)2
ω(τi, fi, zi, xi)

where −i means leaving the ith observation out, and ω(·) is the weighting function. To

further accelerate the cross-validation, we adopt the popular K-fold cross-validation, which

is faster compared with this leave-one-out method.

The bandwidths of our nonparametric conditional density estimator (17) under the phys-
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ical measure are chosen by the cross-validation following Fan and Yim (2004):

min
b

1

n

n∑
i=1

ω(sti , zti)

∫
(p̂b(s

′|τ, sti , zti))2ds′ −
2

n

n∑
i=1

p̂b,−i(sTi
|τ, sti , zti)ω(sti , zti).

where the first integral can be calculated in closed-form from (17). Alternative choices of

bandwidths have been discussed in Yao and Tong (1998) and Ruppert et al. (1995).

3.6 Monte Carlo Simulations

Here we provide simulation studies of our local linear estimators. The Monte Carlo ex-

periments are designed to match our empirical studies. First, we select the same option

characteristics as those traded on CBOE in our sample. Second, we select a sample path

generated from the following stochastic volatility models with both jumps in volatility and

prices:

dSt = (r − d− 1

2
Vt)dt+

√
VtdW

Q
t + JQ

S dNt − µλtdt

dVt = κ(ξ − Vt)dt+ σ
√
VtdB

Q
t + JQ

V dNt

where WQ
t and BQ

t are standard Brownian motions satisfying E(dWQ
t dB

Q
t ) = ρdt, JQ

S and

JQ
V are random jump sizes, dNt is a pure-jump process with intensity λt = λ0 + λ1Vt, and

µ = E(eJ
Q
S − 1). The jump sizes follow:

JQ
V ∼ exp(βV ), JQ

S ∼

 exp(β+) with probability q

− exp(β−) with probability 1− q

The parameters are taken from Amengual and Xiu (2012), where κ = 2, σ = 0.3, ρ = −0.8,

ξ = 0.04, β+ = 0.01, β− = 0.03, q = 0.3, βV = 0.02, λ0 = 2, and λ1 = 30. We then

calculate S&P 500 and VIX option prices, according to the closed-form formulae given in

Amengual and Xiu (2012). Finally, we pollute the prices with multiplicative measurement

errors following log-normal distribution with a 5% standard deviation.

Based on the generated sample, we evaluate our nonparametric estimators of option prices
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on the grid of time-to-maturity and current index level, with the VIX Zt and strike X fixed

at their sample median. We also calculate the index densities on the grid of τ and ST , with St

fixed at the sample mean, to evaluate our density estimators. The nonparametric estimators

of VIX option prices and densities are evaluated similarly. All of these quantities and their

percentage errors are reported in Figure 1, averaged over 1000 replications. We observe

that the nonparametric estimates are within 5% and 10% of their theoretical Black-Scholes

implied volatilities for S&P 500 and VIX options, respectively. The errors for densities are

slightly larger, due to the fact that derivatives are estimated with slower rates of convergence,

i.e., the so-called curse of differentiation.

4 Empirical Results

In this section, we estimate nonparametric SPDs and pricing kernels using both S&P 500

and VIX options, and present our empirical findings. Before delving into the details, we

introduce the dataset.

4.1 Data

We obtain daily bid and offer prices of S&P 500 and VIX options, quoted between 3:59

p.m. and 4:00 p.m. EST from the OptionMetrics. Our sample period is chosen as June 1,

2009–May 31, 2011, during which the liquidity of VIX options is satisfactory. We plot the

daily open interests of VIX options in Figure 2, along with those of S&P 500 options for

comparison. It is obvious from the figure that the liquidity of VIX options has improved

dramatically since introduced in 2006, and their open interests have achieved roughly 1/4

of those of S&P 500 options. As a result, our choice of sample ensures that our empirical

results are not subject to liquidity issues.

Figure 3 plots the joint time series of the S&P 500 index and VIX over the sample period,
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Figure 1: Monte Carlo Simulations
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Note: This figure plots the nonparametric estimation error in the Monte Carlo simulations. The left panel

plots the pricing error measured in terms of difference in implied volatility, whereas the right panel plots the

percentage error in density estimates. The number of Monte Carlo samples is 1000.
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Figure 2: Open Interests of the S&P 500 and VIX Options
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Note: This figure plots the monthly time series of the open interests of S&P 500 and VIX options from

March 1, 2006 to May 31, 2011.

Figure 3: Time Series of the S&P 500 Index and the VIX
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Note: This figure plots the time series of the S&P 500 index and VIX from Jun 1, 2009 to May 31, 2011.
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while Table 1 provides their summary statistics. We observe that the VIX ranges between

14.62 and 45.79, which is large enough to have both relatively low and high volatility levels.

Moreover, Table 2 also presents summary statistics of option prices. It is worth pointing

out that the differences between adjacent strikes of VIX options range from $0.50 to $5 for

smaller strikes and from $1 to $10 for large strikes, which are significantly larger percentage-

wise than their counterparts for S&P 500 options. Therefore, the impact of price discreteness

on the nonparametric estimation of VIX densities could be more severe than on the density

estimation of the S&P 500 index, as discussed in Section 3.6.

Table 1: Summary Statistics of the S&P 500 Index and VIX

Mean Std Skew Kurt Min 25% 75% Max

Index 1141.670 115.806 0.065 2.414 879.130 1070.453 1221.178 1363.610
Return 0.001 0.011 -0.330 4.822 -0.040 -0.004 0.006 0.043
VIX 22.307 4.900 0.891 4.173 14.620 18.000 25.153 45.790

Note: This table reports the summary statistics of the time series of S&P 500 index, return, and VIX from

June 1, 2009 to May 31, 2011.

We follow the data-cleaning routine commonly used in the literature; see, e.g., Aı̈t-Sahalia

and Lo (1998). First, observations with bid or ask prices smaller than $0.025 are eliminated

to mitigate the effect of pricing errors. For each option, we take the midquote as the observed

option price. Due to liquidity concerns, we eliminate any options with zero open interests or

trading volumes as well as options with time-to-maturity of less than 5 days. In addition,

we only consider options with maturity of less than 136 days, because only VIX option

contracts with maturities shorter than 6 months are offered by the CBOE after 2009. It is

well known that in-the-money S&P 500 options are less liquid than out-of-the-money options.

Therefore, we delete in-the-money options, and use the put-call parity to construct prices

of in-the-money call options from out-of-the-money put options. There is no such pattern
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Table 2: Summary Statistics of S&P 500 and VIX Options

SPO VXO
Moneyness ITM ATM OTM ITM ATM OTM
# of Records 72161 27144 33245 5573 16823 17726
Volume 102.12 82.73 35.76 2.43 37.55 32.86
Open Interest 1665.98 616.39 513.05 44.57 356.76 471.44

min 41.07 0.13 0.05 2.03 0.03 0.03
25% 120.19 18.15 0.35 6.40 1.83 0.18

Derivative Prices 50% 186.63 33.36 1.73 8.55 3.05 0.50
75% 284.04 49.00 6.40 11.70 4.55 1.03
max 1128.50 110.67 60.00 25.90 11.70 4.75
min 100 845 915 10 14 22.5
25% 825 1075 1160 15 21 35

Strike Prices 50% 940 1135 1225 17 25 42.5
75% 1040 1250 1325 20 30 50
max 1305 1415 3000 40 65 100
min 5 5 5 5 5 5
25% 18 17 21 21 27 28

Time-to-Maturity 50% 32 32 35 44 50 50
75% 53 51 56 77 82 78
max 136 136 136 128 128 126
min 16.05 9.39 9.48
25% 27.56 16.67 15.31

Implied Volatility 50% 33.85 19.84 18.13
75% 43.41 23.37 20.84
max 143.48 45.81 49.44

Note: This table reports the summary statistics (minimum, quantiles, and maximum) for selected S&P 500

and VIX option quotes from June 1, 2009 to May 31, 2011, including the number of records, trading volume,

open interest, option price, strike price, time-to-maturity, and implied volatility. In total, there are 132,550

trading records for S&P 500 options, and 40,122 records for VIX options. All options are call options.

The prices of S&P 500 ITM call options are computed from OTM put options using the put-call parity for

liquidity concerns. For S&P 500 options, ATM is defined as K/F ∈ [0.96, 1.04], whereas for VIX options, it

is defined as K/VIX ∈ [0.9, 1.5], with F as the forward price and K as the generic strike.
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for VIX options and hence we only consider VIX call options. The last step is to eliminate

option contracts that violate no-arbitrage conditions. The resulting sample covers a broad

cross section of options, including 420,711 S&P 500 call options, and 53,530 VIX call options,

which account for 50.84% and 54.18% of their total number of records, respectively.

4.2 Pricing Kernels of the Market Return

The upper panels of Figure 4 provide nonparametric SPD estimates of the S&P 500 index

for both low and high levels of VIX, fixed at 18.00 and 25.15 that correspond to the 25%

and 75% quantiles of the VIX time series in our sample, respectively. We observe that index

densities strongly depend on the VIX level Zt. Conditional on a low Zt, p(sT |τ, st, zt) has

pronounced spikes, while the density becomes more dispersed when Zt rises to a high level,

suggesting that volatility is a key state variable that should be included in the SPDs.

To further demonstrate the importance of volatility in studying the SPDs of market

return, the bottom panels of Figure 4 compare the nonparametric SPD estimates proposed

by Aı̈t-Sahalia and Lo (1998) (AL) who neglect the volatility variable, with p(sT |τ, st, zt)

conditional on the two different VIX levels of 18.00 and 25.15. We choose the time-to-

maturity as 42 days, and compute the 95% confidence intervals by the asymptotic theory

given in (19). Observe that our SPDs differ from the AL densities substantially, with the

former more compact and showing higher spikes for a low Zt, which confirms the importance

of incorporating volatility into the SPDs.

Given the importance of volatility in SPDs of the S&P 500 index documented above,

we now study whether and how volatility affects the shape of the pricing kernel p(RT |τ, zt).

According to Section 3.3, we further estimate the physical densities of the S&P 500 return

conditional on VIX and obtain the pricing kernel estimates. The top two panels of Figure

5 report the pricing kernel estimates with Zt equal to 18.00 (left) and 25.15 (right) and a

maturity of 42 days. We observe that the pricing kernels conditional on either a low or high
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Figure 4: State-Price Densities of the S&P 500 Index
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Note: The top panels provide our nonparametric estimates of SPDs of the S&P 500 index at various time-

to-maturities, with volatility levels at 18.00 (left) and 25.15 (right) that correspond to the 25% and 75%

quantiles of the VIX time series in our sample, respectively. The bottom panels compare our estimates (SX)

of index SPDs (black, solid) with those using the Aı̈t-Sahalia and Lo (1998) (AL) method (blue, dashed)

for the maturity of 42 days, and two current VIX levels at 18.00 and 25.15. Dotted lines around each SPD

estimate are the 95% confidence intervals constructed by the asymptotic distribution theory in (19). The

interest rate and dividend are fixed at their averages, 2.15% and 2.06%, respectively.
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VIX level exhibit a decreasing shape, consistent with a standard expected utility theory,

which prescribes that the pricing kernel decrease when expected returns are increasing. In

contrast, the bottom left panel of Figure 5 shows that the unconditional estimator of the

pricing kernel shows a pronounced U-shape, consistent with what have been found in the

literature (Jackwerth (2000) and Bakshi et al. (2010)). Therefore, it is the volatility factor,

missing in the unconditional estimates, that may lead to the puzzling U-shape.

Specifically, high volatility signals bad future investment opportunities, and investors

should have high marginal utility in such a state. Hence, the pricing kernel of market return

conditional on a high volatility, which equals the marginal utility up to a re-scaling, is higher

than that conditional on a low volatility, as shown in the bottom left panel of Figure 5.

The unconditional pricing kernel, however, is a mixture of pricing kernels conditional on

different volatility levels, and could exhibit a U-shape when volatility switches from low

to high levels. Our finding echoes the conclusions of parametric models in Jackwerth and

Brown (2001), Chabi-Yo et al. (2008), Chabi-Yo (2011), and Christoffersen et al. (2010), that

missing state variables in the pricing kernel may result in the U-shape. Without restricting

the specification of pricing kernels, however, our result shows that stochastic volatility is the

key but missing state variable of pricing kernels estimated in the literature.

The pricing kernels conditional on low and high values of Zt have different supporting

regions on the left and right tail. For instance, over the interval (0.08, 0.15), we only have

the pricing kernel estimates conditional on a high Zt. The reason is that the realized return

RT never exceeds 8% given Zt = 18.00, as can be seen from the scatter plot of (RT , Zt) on

the bottom right panel of Figure 5. In fact, this observation implies that the unconditional

pricing kernel estimates around high levels of market return RT are dominated by high level

volatility, which shifts the unconditional estimates upwards, and explains why they present a

U-shape. In other words, large market returns RT are accompanied by high current volatility

Zt, because of which investors have a high marginal utility that leads to the increasing portion

27



Figure 5: Pricing Kernels of the S&P 500
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Note: The top panels plot the nonparametric estimates of pricing kernels of the S&P 500 index return (black,

solid) for the maturity of 42 days, with two current VIX levels at 18.00 and 25.15 that correspond to the 25%

and 75% quantiles of the VIX time series in our sample, respectively. Dotted lines are the 95% confidence

intervals. The bottom left figure compares the unconditional pricing kernel (red, solid) with the previous

two conditional pricing kernels. The bottom right panel presents the scatter plot of S&P 500 returns RT

against the current VIX level Zt.
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of the unconditional pricing kernel on the right tail.

Overall, our nonparametric state-price density estimates differ significantly from those

without conditioning on volatility, and confirms that volatility is a key state variable that

should be included in the pricing kernel. More importantly, without imposing any restrictions

on the dynamics of the market return and volatility, our pricing kernel estimates conditional

on VIX show that stochastic volatility is the key variable responsible for the “pricing kernel

puzzle.”

4.3 Pricing Kernels of the VIX

We now present nonparametric estimates of SPDs and pricing kernels of the VIX and inves-

tigate their implications for the pricing of volatility risk. The top panels of Figure 6 present

the VIX SPDs at various maturities conditional on two different levels of Zt equal to 18.00

and 25.15. We find first that the VIX SPDs are all positively skewed, with the probability

of achieving higher VIX levels decreasing given a low time-t VIX level. Second, the SPD

of VIX conditional on a high Zt (right panel) has a spike around median volatility levels,

consistent with the conventional wisdom that volatility reverts to its long-run mean.

Furthermore, we estimate the pricing kernel π(ZT |τ, zt) by combining estimates of both

risk-neutral and physical densities of the VIX. The bottom panels of Figure 6 provide non-

parametric estimates of π(ZT |τ, zt) for a maturity of 42 days and two different levels of Zt

at 18.00 and 25.15. We observe that the pricing kernel exhibits a pronounced U-shape as a

function of future VIX levels. Therefore, volatility risk is priced, and the price of volatility

risk increases when volatility deviates from its median level. In other words, investors attach

high marginal utility to payoffs received when the future volatility is either extremely high

or low. Bakshi et al. (2010) document the U-shape for the volatility pricing kernel indirectly,

by exploring the link between the monotonicity of the pricing kernel and returns of VIX

option portfolios. They further provide a model with heterogeneity in beliefs to account for
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Figure 6: State-Price Densities and Pricing Kernels of the VIX
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Note: The top panels provide the nonparametric estimates of SPDs of the VIX at various time-to-maturities,

with volatility level at 18.00 (left) and 25.15 (right) that correspond to the 25% and 75% quantiles of the

VIX time series in our sample, respectively. The bottom panels plot the nonparametric estimates of VIX

pricing kernels (black, solid) for the maturity of 42 days, and two current VIX levels at 18.00 and 25.15.

Dotted lines are the the 95% confidence intervals. The interest rate and dividend are fixed at their averages,

2.15% and 2.06%, respectively.
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the U-shape, in which the volatility market is dominated by investors with zero market risk.

In contrast, we provide direct estimates of the volatility pricing kernel by nonparametric

methods, which provide more robust information about the shape. In particular, we find

that the volatility pricing kernel is asymmetric, and the asymmetry conditional on a high

time-t volatility is much stronger than that conditional on a low volatility. This finding

implies that investors price the volatility risk differently according to different scenarios of

the economy, which presents new empirical regularities that need to be incorporated into

models of volatility risk.

In summary, our SPD estimates of VIX document empirical features of risk-neutral dy-

namics of volatility such as positive skewness and mean reversion. Although the volatility

process under the physical measure is well documented as displaying a mean-reverting pat-

tern using historical time series, its risk-neutral behavior is not crystal clear. Our findings

uncover the risk-neutral dynamics of volatility without any parametric restrictions. More

importantly, our estimates of the volatility pricing kernel show that investors have high

marginal utility even in low volatility states, which supports the model with heterogeneity

in beliefs.

4.4 In-Sample Fitting and Out-of-Sample Forecasts

We evaluate the performance of our nonparametric estimator (SX) by comparing in-sample

fitting and out-of-sample forecasts with two alternative methods discussed in Aı̈t-Sahalia

and Lo (1998): the nonparametric approach without volatility factor (AL) in terms of both

density and option implied volatility forecasts, and the martingale approach (MKT) for

option implied volatility forecasts only. As it is widely used by practitioners, the MKT ap-

proach simply forecasts tomorrow’s implied volatility by interpolation using today’s implied

volatility surface.

Intuitively, a potential advantage of our estimator over the MKT method lies in the
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inclusion of historical options with similar characteristics. As opposed to the MKT approach

that relies exclusively on the cross section of options on the previous day, the SX estimator is

able to capture a more stable pricing function over time, and hence is expected to outperform

the MKT approach in out-of-sample forecasting, although not surprisingly, the SX estimator

may fit the cross section of option prices worse on certain days, but better on other days.

With historical option prices incorporated, the AL estimator is also capable of capturing

certain stability in the historical data, which helps make predictions. However, it misses an

important volatility factor that is incorporated into the SX approach.

Panel A of Table 3 reports the forecasting performance of the SX, AL, and MKT methods

for option prices (quoted in implied volatility). For each date t, we adopt a preceding 16-

month window, within which the SX, AL, and MKT estimators for the target options are

obtained. The selected target options have a maturity of 42 days with moneyness ranging

between −0.15 and 0.15. We forecast such options on day t+γ, for γ = 0 (in-sample), and γ

=7, 14, 21, 28, 35, 42, 63 and 84 days (out-of-sample) progressively. We repeat the procedure

for each day t in the last 8 months of our sample period and average across days to obtain

the root-mean-squared percentage difference between the predictions and the realized option

prices.

We observe first that the MKT approach outperforms the AL approach uniformly in fore-

casting option prices for the sample period we consider, which is in contrast with findings of

Aı̈t-Sahalia and Lo (1998). However, this is not surprising as the AL estimator does not in-

clude volatility as a conditioning variable which changed substantially over the sample period

we consider, i.e., June 1, 2009 – May 31, 2011. In contrast, the SX estimator outperforms

both the AL and MKT methods especially for longer horizons. The superior performance

of the SX estimator highlights the benefit of predicting by capturing certain stable price

patterns in the historical data and incorporating the volatility factor. Not surprisingly, the

MKT approach has a better in-sample performance given its implementation.
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Panel B of Table 3 reports the forecasting performance of the SX and AL estimators for

state-price densities. The empirical design is similar to the forecasting exercise of option

implied volatility, with a 16-month window, a target maturity of 42 days, and horizons of

τ =7, 14, 21, 28, 35, 42, 63, and 84 days for the out-of-sample performance. We compute

the average forecast error (root-mean-squared percentage difference) as a percentage of the

mode value of the realized density over the last 8 months of our sample period. The realized

density is computed by the SX approach using a 16-month window including the target day.

Results in Panel B show that the SX estimator outperforms the AL density substantially over

all horizons, due to the missing volatility factor in AL densities. For example, the forecast

error for τ = 84 is 2.2% and 7.4% for the SX and AL density estimators, respectively.

4.5 Robustness Checks

As robustness checks, we verify the two dimension-reduction assumptions employed in our

nonparametric procedure: the homogeneity of degree one for S&P 500 options, and the

conditional independence of state-price densities of the VIX with respect to St.

Figure 7 plots nonparametric estimators of the implied volatility surface of S&P 500

options across both log-moneyness and time-to-maturities: one with the assumption of ho-

mogeneity of degree one (left panel) and the other without using it (right panel). We observe

that the shape of the two surfaces match each other well in general, although there are slight

differences around the boundaries where nonparametric estimators usually incur relatively

large biases. Moreover, the estimator without dimension reduction is noiseier as its conver-

gence rate is lower due to the “curse of dimensionality.”

Figure 8 plots estimates of VIX SPDs against the S&P 500 index St and VIX ZT for

τ = 42, and for Zt = 18.00 and 25.15 respectively. We observe that conditional densities do

not vary much with St conditional on either the low or high level of Zt, especially for the part

away from the boundary. Overall, the dimension-reduction assumption for VIX options, i.e.,

34



Figure 7: Robustness Check I
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Note: This figure plots the nonparametric estimates for the implied volatility surface of S&P 500 option

prices. The left panel plots the estimates based on dimension reduction techniques, whereas the right panel

plots the estimates without such techniques.

Figure 8: Robustness Check II
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Note: This figure plots the nonparametric estimates of VIX state-price densities with both Zt and St as

conditioning variables. The time-to-maturity is τ = 42, and Zt is fixed at 18.00 and 25.15 respectively.
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the dependence of VIX SPD on St mainly through Zt, seems valid for the sample period we

consider.

5 Conclusion

Volatility has been well documented as a priced risk factor, and hence an essential component

of pricing kernels. Taking advantage of the rapidly developed volatility derivative markets,

we provide nonparametric estimates of both SPDs and pricing kernels with volatility. We

show that volatility is the key but missing state variable in the unconditional pricing kernel

estimates that exhibit the puzzling U-shape. Moreover, we document a U-shaped pricing

kernel of volatility, which cannot be captured by standard models with volatility risk, such

as Bollerslev et al. (2009) and Drechsler and Yaron (2011). Therefore, it remains important

to develop extensions of these models that are in compliance with our empirical findings.

In addition, our framework extends the nonparametric option pricing method to allow for

stochastic volatility, by exploring additional information from the VIX. Existing parametric

stochastic volatility models face an unfortunate compromise between model flexibility and

tractability. In contrast, our method enjoys several advantages, such as being model-free,

robust to model misspecification and pricing measures, and computationally efficient. Hence,

our nonparametric option pricing approach with VIX alleviates the compromise to a great

extent.
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