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Abstract

This paper provides a closed-form solution for the price-dividend ratio in a stan-

dard asset pricing model with stochastic volatility. The solution is useful in allowing

comparisons among numerical methods used to approximate the non-trivial closed-

form.
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1 Introduction

The purpose of this paper is to obtain an exact expression for the price-dividend ratio for a

simple asset pricing model with stochastic volatility. Stochastic volatility has become an

important feature of macroeconomic models that seek to jointly explain stylized business

cycle and asset pricing facts. Since closed-form solutions elude richer macroeconomic

models, various numerical methods have been proposed to provide an approximated solu-

tion. The contribution of this paper is to present a simple stochastic volatility model in

which an exact solution exists, which may serve as a benchmark from which to compare

alternative numerical approximation methods.

∗I would like to thank E. de Groot, M. Gonzalez-Astudillo and J. Roberts for useful discussions and

insightful comments.
†Affi liation: Federal Reserve Board, Washington D.C., Email: oliver.v.degroot@frb.gov. The views

expressed in this paper are those of the author and do not necessarily reflect those of the Federal Reserve

Board.

1



Burnside (1998) provided an exact solution for the Lucas (1978) asset pricing model

with Gaussian, autoregressive dividend growth shocks and time separable constant relative

risk aversion (CRRA) preferences.1 Tsionas (2003) extended Burnside’s solution to an

arbitrary shock distribution while Chen, Cosimano, and Himonas (2008) and Collard,

Féve, and Ghattassi (2006) extended it to the case with non-time separable preferences

through habits in consumption. In each case, the solutions provide a useful benchmark

against which to test numerical solution algorithms. This paper follows in that tradition.

It extends the Burnside model by adding stochastic volatility to the dividend growth

process.

Since Bansal and Yaron (2004) showed the importance of stochastic volatility to ac-

count for stylized asset pricing facts, the use of stochastic volatility has become a wide-

spread addition to macro-finance models. Stochastic volatility is attractive because it

generates heteroskedastic aggregate fluctuations, a basic property of many time series

(such as consumption) and adds extra flexibility in accounting for asset-pricing patterns.

Due to the increasing importance of stochastic volatility, which naturally adds additional

non-linearity into the solution of models, a growing literature has been testing how differ-

ent numerical solution methods that solve equilibrium models with stochastic volatility

perform. Caldara, Fernández-Villaverde, Rubio-Ramírez, and Yao (2012), for example,

compare perturbation methods (of second and third order), Chebyshev polynomials and

value function iteration in a real business cycle model with stochastic volatility.

In this paper, I show the exact solution for the price-dividend ratio of a simple asset

pricing model as a non-trivial function of the model’s two state variables, the current div-

idend growth rate and the current volatility of the dividend growth process. The solution

has the following properties: First, the price-dividend ratio increases when the volatility of

dividend growth increases as well as when the volatility of the stochastic volatility process

increases. Second, the sensitivity of the price-dividend ratio to a change in the volatility

state is increasing in the persistence of the stochastic volatility process. In addition, I

derive an expression for the unconditional mean of the price-dividend process that is also

increasing in the volatility and persistence of the stochastic volatility process. Finally, I

provide parameter conditions under which the price-dividend ratio and its unconditional

mean are finite.

The rest of the paper is structured as follows. Section 2 presents the basic asset-

pricing model with stochastic volatility and section 3 presents and discusses the results.

Section 4 concludes. The appendix provides a detailed derivation of the key results of

the paper as well as discussing a variant of the basic model.

1An early contribution by Labadie (1989) also provided the solution in a slightly more general context.
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2 The asset pricing model

There is a representative agent who maximizes the expected discounted stream of utility

E0
∑∞

t=0 β
t c

1−γ
t

1− γ , (1)

subject to the budget constraint

ct + st+1pt ≤ (dt + pt) st, (2)

where Et is mathematical expectations operator conditional on the time t information

set, ct is consumption and st denotes units of an asset whose price at date t is pt with

dividends, dt. The discount factor is β ∈ (0, 1) and the coeffi cient of relative risk aversion

is γ > 0 and γ 6= 1. The growth rate of dividends, denoted xt ≡ log (dt/dt−1), is assumed

to follow a Gaussian AR (1) process

xt = x+ ρ (xt−1 − x) +
√
ηtεt, (3)

where x is the steady state growth rate of dividends, ρ ∈ [0, 1) is the persistence parameter

and εt is a sequence of i.i.d. innovations from the standard normal distribution. The

innovations to xt are scaled by
√
ηt. ηt is therefore the conditional variance of dividend

growth and is time varying. In particular, it follows an AR (1) process

ηt = η + ρη
(
ηt−1 − η

)
+ ωεη,t, (4)

where η is its steady state, ρη ∈ [0, 1) is the persistence of the stochastic volatility process,

ω is a scalar and εη,t is a sequence of i.i.d. innovations from the standard normal distrib-

ution.2

The first-order equilibrium condition of the agent’s maximization problem, equations

(1)-(2), is

c−γt pt = Etβc
−γ
t+1 (pt+1 + dt+1) .

Market clearing, st = 1, implies that ct = dt, and, in defining the price-dividend ratio as

2This formulation of the stochastic volatility process ensures a closed-form expression for the price-
dividend ratio but could technically cause the standard deviation of dividend growth to become negative.
However, under reasonable calibrations of the process, this happens rarely. Bansal and Yaron (2004)
use the same process and choose the following parameter values based on a monthly frequency: η =
1.232× 10−3, ρη = 0.987, and ω = 0.04658× 10−3. Simulating this process 105 times for 840 quarters
results in the process turning negative in 0.13% of the simulations. A discussion of the model solution
using an appropriately truncated normal distribution is provided in Appendix A.2.
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yt ≡ pt/dt, the first-order equilibrium condition becomes

yt = Etβ

(
dt+1
dt

)1−γ
(yt+1 + 1) . (5)

Iterating forward and making using of xt, we are left with

yt =
∑∞

i=1 β
iEt exp

(
(1− γ)

∑i
j=1 xt+j

)
. (6)

3 The model solution

Equation (6) shows that, in this asset pricing model, the price-dividend ratio at time t

is simply a function of expected future dividend growth. Finding an exact solution for

yt means finding a closed-form expression for Et exp
(

(1− γ)
∑i

j=1 xt+j

)
for i = 1, 2, ...in

terms of the current state, xt and ηt. In the case without stochastic volatility Burnside

(1998) derived such a solution. The theorem below shows an exact solution with stochastic

volatility.

Theorem 1 The solution to equation (6) is

yt =
∑∞

i=1 β
i exp

(
Aix+Bi (xt − x) + Ciη +Di (ηt − η) + Fiω

2
)

(7)

where

Ai ≡ (1− γ) i, Bi ≡
(
1−γ
1−ρ

)
ρ (1− ρi)

Ci ≡ 1
2

(
1−γ
1−ρ

)2 (
i− 2ρ1−ρ

i

1−ρ + ρ2 1−ρ
2i

1−ρ2

)
,

Di ≡ 1
2

(
1−γ
1−ρ

)2(
ρη

1−ρiη
1−ρη
− 2ρiηρ

1−(ρ−1η ρ)
i

1−ρ−1η ρ
+ ρiηρ

2 1−(ρ−1η ρ2)
i

1−ρ−1η ρ2

)
,

Fi ≡ 1
4

(
1−γ
1−ρ

)4


iφ21 + φ22
1−ρ2iη
1−ρ2η

+ φ23
1−ρ2i
1−ρ2 + φ24

1−ρ4i
1−ρ4

+2φ1φ2
1−ρiη
1−ρη

+ 2φ1φ3
1−ρi
1−ρ + 2φ1φ4

1−ρ2i
1−ρ2

+2φ2φ3
1−(ρηρ)

i

1−ρηρ
+ 2φ2φ4

1−(ρηρ2)
i

1−ρηρ2
+ 2φ3φ4

1−ρ3i
1−ρ3

 ,

and where

φ1 ≡
1

1− ρη
, φ2 ≡

−ρη
(
ρη + ρ

)
(1− ρ)2(

ρη − ρ2
) (

1− ρη
) (
ρη − ρ

) , φ3 ≡
2ρ2

ρη − ρ
ρi−1, and φ4 ≡ −

(
ρ4

ρη − ρ2

)
.

Proof. See Appendix A.1.
In Burnside (1998), the solution without stochastic volatility is

yt =
∑∞

i=1 β
i exp (Aix+Bi (xt − x) + Ciη) ,
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therefore, it is the term Di (ηt − η) +Fiω
2 inside the exponential function in equation (7)

that is novel. It is straightforward to show (see equation (13) and (15) in Appendix A.1)

that both Di > 0 and Fi > 0.3 It follows that ∂yt
∂(ηt−η)

> 0 and ∂yt
∂ω2

> 0: A rise in the

volatility of dividend growth unambiguously increases the price-dividend ratio as does a

rise in the volatility of the stochastic volatility process itself. Since the agent is risk averse,

greater uncertainty reduces the agent’s demand for the asset, reducing the price. It also

follows that ∂|∂yt/∂(xt−x)|
∂(ηt−η)

> 0 and ∂|∂yt/∂(xt−x)|
∂ω2

> 0: The price-dividend ratio responds

more to movements in the dividend growth rate in a high volatility state than in a low

volatility state as well as in an environment with greater stochastic volatility. The insight

from this result is that the heteroskedasticity (inherent in the exogenous dividend growth

process) will be more pronounced in the endogenous price-dividend ratio. Equations (13)

and (15) also show clearly that ∂Di
∂ρη

, ∂Fi
∂ρη

> 0: A rise in the persistence of the stochastic

volatility process increases the sensitivity of the price-dividend ratio to both changes in

dividend growth and volatility.

Since the price-dividend ratio is the sum of an infinite sequence, it is not clear from

equation (7) whether the price-dividend ratio is finite. The following theorem states the

parameter conditions under which the price-dividend ratio is finite.

Theorem 2 The series in equation (7) converges if and only if

β exp

(
(1− γ)x+

1

2

(
1− γ
1− ρ

)2(
η +

1

2

(
1

1− ρη

)2
ω2

))
< 1. (8)

Proof. See Appendix A.3.
In Burnside (1998), the convergence criterion is

β exp

(
(1− γ)x+

1

2

(
1− γ
1− ρ

)2
η

)
< 1,

and thus less demanding that the condition in Theorem 2, conditional on the same para-

meters for β, γ, x, ρ and η.

To get a better understanding of the restriction the condition in Theorem 2 places

on the parameters of the stochastic volatility process, I following Schmitt-Grohé and

Uribe (2004) and Bansal and Yaron (2004) in parameterizing the asset pricing model as

follows: β = 0.95, x = 0.0179, and η = 6.084 × 10−5. In addition, I consider three

different parameterizations of the pair (ρ, γ) using ρ = {−0.137, 0.9} and γ = {2.5, 11}.
I ignore the high persistence, high risk aversion combination since the price-dividend

3The exception is logarithmic preferences (γ = 1) in which case Ai = Bi = Ci = Di = Fi = 0 and
the price-dividend ratio becomes constant. With logarithmic preferences Bi = 0 because the wealth
and subsitution effects of a change in the dividend-growth rate exactly offset eachother. Since the
price-dividend ratio remains constant in response to dividend growth movements, it follows that the
price-dividend ratio is also invariant to changes in the volatility of those movements.
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Figure 1: Regions of convergence in the parameter space
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Note: Red crosses mark the parameter space for which the condition in Theorem 2 holds, blue circles

the parameter space for which the condition is violated and the price-dividend ratio is no longer finite.

The black square denotes parameters values ρη= 0.987, and ω = 0.0465× 10−3 used by Bansal and
Yaron (2004). Remaining parameters are β = 0.95, x = 0.0179 and η = 6.084× 10−5.

ratio is never finite in this case. Figure 1 shows the
(
ρη, ω

)
pairs (the two parameters

describing the stochastic volatility process) for which the condition for a finite price-

dividend ratio (in Theorem 2) holds. The plots show that when both the persistence of the

endowment growth process and risk aversion are low (the left panel), then the conditions

on the stochastic volatility process to ensure that the price-dividend ratio is finite are

relatively weak. Bansal and Yaron (2004) choose parameter values of ρη = 0.987 and

ω = 0.0465× 10−3 (indicated in the figure), significantly inside the convergent parameter

space. However, as either the level of risk aversion (middle panel) or the persistence of

the dividend growth process (right panel) increases, the parameter space for the stochastic

volatility process consistent with a finite price-dividend process shrinks considerably.

The same condition as in Theorem 2 also ensures that the unconditional mean of the

price-dividend ratio is finite, as stated in the next theorem.

Theorem 3 The mean of the price-dividend ratio is

E (yt) =
∑∞

i=1 β
i exp

 Aix+ Ciη + Fiω
2

+1
2

B2i η

1−ρ2 + ω2

2

(
γ2i,1
1−ρ2η
− 2γi,1γi,2

1−ρηρ2
+

γ2i,2
1−ρ4

)  ,

6



where

γi,1 ≡
(
B2
i

2

ρη
ρη − ρ2

+Di

)
, γi,2 ≡

B2
i

2

ρ2

ρη − ρ2
,

and is finite if and only if the condition in Theorem 2 holds.

Proof. See Appendix A.4.
The unconditional mean price-dividend ratio is increasing in both the volatility, ω and

the persistence ρη of the price-dividend ratio (as is made clear by the quadratic expression

in (19) in Appendix A.4).

4 Conclusion

This paper provides an exact expression for the price-dividend ratio in an endowment asset

pricing model with CRRA preferences, Gaussian autoregressive shocks and stochastic

volatility. The solution provides a useful benchmark against which to test the performance

of alternative numerical solution algorithms which one may wish to use to solve more

elaborate macro-finance models with stochastic volatility.

Since the structure of the model with stochastic volatility shares many of the properties

of the basic Burnside asset pricing model, it should be possible to derive an exact solution

for this stochastic volatility model with the addition of multivariate and higher order

autoregressive processes as in Burnside (1998) or with habits in consumption as in Chen,

Cosimano, and Himonas (2008) and Collard, Féve, and Ghattassi (2006). This would be

a fruitful direction for future research.
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A Appendix

A.1 Solution: Proof of Theorem 1

The ultimate aim is to rewrite the expression

Et exp
(

(1− γ)
∑i

j=1 xt+j

)
for i = 1, 2, ... (9)

in terms of the time t state variables, xt and ηt. Iterating forward the dividend growth

process, equation (3), so that xt+j is in terms of xt gives

xt+j = x+ ρj (xt − x) +
∑j

k=1 ρ
j−k√ηt+kεt+k.

Substituting this into (9) gives

Et exp
(

(1− γ)
∑i

j=1

(
x+ ρj (xt − x) +

∑j
k=1 ρ

j−k√ηt+kεt+k
))

.

Collecting terms for x, (xt − x) and each εt+j gives

Et exp

(
(1− γ)

( ∑i
j=1 (x+ ρj (xt − x))

+
∑i

j=1

(∑i−j+1
k=1 ρk−1

)√
ηt+jεt+j

))
.

Using the standard results of geometric progressions gives

Et exp

(
(1− γ) ix+ (1− γ) ρ1−ρ

i

1−ρ (xt − x)

+ (1−γ)
1−ρ

∑i
j=1 (1− ρi−j+1)√ηt+jεt+j

)
.

Since the first row in the previous expression is only in terms of x and (xt − x), the

expectations operator can be moved, leaving
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exp (Aix+Bi (xt − x))Et exp
(
θ
∑i

j=1

(
1− ρi−j+1

)√
ηt+jεt+j

)
, (10)

where

Ai ≡ (1− γ) i, Bi ≡ θρ
(
1− ρi

)
and θ ≡

(
1− γ
1− ρ

)
.

At this stage it is instructive to rewrite the expression with the expectations operator in

(10) as an integral of probabilistic outcomes

∫
· · ·
∫

εη,t+1 εη,t+i

∫
· · ·
∫

εt+1 εt+i

exp
(
θ
∑i

j=1

(
1− ρi−j+1

)√
ηt+jεt+j

)
dF
εt+1
· · · dF

εt+i
dG
εη,t+1

· · · dG
εη,t+i

,

where F and G are the density functions for the i.i.d. random variables ε and εη, respec-

tively. Since the ε innovations are independent, we can rewrite the problem as

∫
· · ·
∫

εη,t+1 εη,t+i

(∏i
j=1

∫
εt+j

exp
(
θ
(
1− ρi−j+1

)√
ηt+jεt+j

)
dF
εt+j

)
dG
εη,t+1

· · · dG
εη,t+i

,

Using a standard result for random variables, namely that if z ∼ N (0, 1) and k is a scalar,

then E (exp (kz)) = exp
(
k2

2

)
, we get

∫
· · ·
∫

εη,t+1 εη,t+i

(∏i
j=1 exp

(
θ2

2

(
1− ρi−j+1

)2
ηt+j

))
dG
εη,t+1

· · · dG
εη,t+i

,

or ∫
· · ·
∫

εη,t+1 εη,t+i

exp

(
θ2

2

∑i
j=1

(
1− ρi−j+1

)2
ηt+j

)
dG
εη,t+1

· · · dG
εη,t+i

. (11)

If we assumed ηt+i = η for all i = 1, 2, ... the expectations operator would disappear from

the above expression and with a little further manipulation we would recover the solution

in Burnside (1998). Instead, with stochastic volatility there is more work to do. Iterating

forward the stochastic volatility process, equation (4), so that ηt+j is in terms of ηt gives

ηt+j = η + ρjη (ηt − η) +
∑j

k=1 ρ
j−k
η ωεη,t+k.

Substituting this expression into (11) gives

∫
· · ·
∫

εη,t+1 εη,t+i

exp

(
θ2

2

∑i
j=1

(
1− ρi−j+1

)2 (
η + ρjη (ηt − η) +

∑j
k=1 ρ

j−k
η ωεη,t+k

))
dG
εη,t+1

· · · dG
εη,t+i

.
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Collecting terms for η, (ηt − η) and each εη,t+j gives

∫
· · ·
∫

εη,t+1 εη,t+i

exp

θ22


∑i
j=1 (1− ρi−j+1)2 η

+
∑i

j=1 (1− ρi−j+1)2 ρjη (ηt − η)

+ω
∑i

j=1

(∑i−j+1
k=1

(
1− ρi−j+2−k

)2
ρk−1η

)
εη,t+j


 dG

εη,t+1
· · · dG

εη,t+i
.

Since the first two rows in the previous expression are only in terms of η and (ηt − η), the

integral can be moved, leaving

exp (Ciη +Di (ηt − η)) (12)

×
∫
· · ·
∫

εη,t+1 εη,t+i

exp

(
θ2ω

2

∑i
j=1

(∑i−j+1
k=1

(
1− ρi−j+2−k

)2
ρk−1η

)
εη,t+j

)
dG
εη,t+1

· · · dG
εη,t+i

,

where

Ci ≡
θ2

2

∑i
j=1

(
1− ρi−j+1

)2
and Di ≡

θ2

2

∑i
j=1

(
1− ρi−j+1

)2
ρjη. (13)

Notice that Di ≥ 0, ∂Di
∂ρ
≤ 0 and ∂Di

∂ρη
≥ 0. Expanding the quadratic terms in Ci and Di

gives
Ci = θ2

2

∑i
j=1

(
1− 2ρiρ−(j−1) + ρ2iρ−2(j−1)

)
Di = θ2

2

∑i
j=1

(
ρηρ

j−1
η − 2ρηρ

i
(
ρηρ

−1)j−1 + ρηρ
2i
(
ρηρ

−2)j−1) ,
and using the standard results of geometric progressions gives

Ci = θ2

2

(
i− 2ρ1−ρ

i

1−ρ + ρ2 1−ρ
2i

1−ρ2

)
Di = θ2

2

(
ρη

1−ρiη
1−ρη
− 2ρiηρ

1−(ρ−1η ρ)
i

1−ρ−1η ρ
+ ρiηρ

2 1−(ρ−1η ρ2)
i

1−ρ−1η ρ2

)
The final expression left to evaluate is the integral expression in (12),

∫
· · ·
∫

εη,t+1 εη,t+i

exp

(
θ2ω

2

∑i
j=1

(∑i−j+1
k=1

(
1− ρi−j+2−k

)2
ρk−1η

)
εη,t+j

)
dG
εη,t+1

· · · dG
εη,t+i

, (14)

which becomes exp (Fiω
2) where

Fi ≡
θ4

4

∑i
j=1

(∑i−j+1
k=1

(
1− ρi−j+2−k

)2
ρk−1η

)2
. (15)

Notice that Fi ≥ 0, ∂Fi
∂ρ
≤ 0 and ∂Fi

∂ρη
≥ 0. The above expression is another geometric

progression (albeit a more tedious one). Expand to give

Fi =
θ4

4

∑i
j=1

(∑i−j+1
k=1

(
ρk−1η − 2ρi−j+1

(
ρηρ

−1)k−1 + ρ2(i−j+1)
(
ρηρ

−2)k−1))2 .
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Using (for the penultimate time) the results of geometric progressions gives

Fi =
θ4

4

∑i
j=1

(
1− ρi−j+1η

1− ρη
− 2ρi−j+1

1−
(
ρηρ

−1)i−j+1
1− ρηρ−1

+ ρ2(i−j+1)
1−

(
ρηρ

−2)i−j+1
1− ρηρ−2

)2
.

It is useful to reverse the indexation for j = 1, ..., i by rewriting i + j − 1 = j, in which

case

Fi =
θ4

4

∑i
j=1

(
1− ρjη
1− ρη

− 2ρj
1−

(
ρηρ

−1)j
1− ρηρ−1

+ ρ2j
1−

(
ρηρ

−2)j
1− ρηρ−2

)2
.

Further manipulation gives

Fi =
θ4

4

∑i
j=1

(
φ1 + φ2ρ

j−1
η + φ3ρ

j−1 + φ4ρ
2(j−1))2 .

where

φ1 ≡
1

1− ρη
, φ2 ≡

−ρη
(
ρη + ρ

)
(1− ρ)2(

ρη − ρ2
) (

1− ρη
) (
ρη − ρ

) , φ3 ≡
2ρ2

ρη − ρ
ρi−1, and φ4 ≡ −

(
ρ4

ρη − ρ2

)
.

Multiplying out the quadratic term gives

Fi =
θ4

4

∑i
j=1

 φ21 + φ22ρ
2(j−1)
η + φ23ρ

2(j−1) + φ24ρ
4(j−1)

+2φ1φ2ρ
j−1
η + 2φ1φ3ρ

j−1 + 2φ1φ4ρ
2(j−1)

+2φ2φ3
(
ρηρ
)j−1

+ 2φ2φ4
(
ρηρ

2
)j−1

+ 2φ3φ4ρ
3(j−1)

 .

Using (for the final time) the results of geometric progressions gives

Fi =
θ4

4


iφ21 + φ22

1−ρ2iη
1−ρ2η

+ φ23
1−ρ2i
1−ρ2 + φ24

1−ρ4i
1−ρ4

+2φ1φ2
1−ρiη
1−ρη

+ 2φ1φ3
1−ρi
1−ρ + 2φ1φ4

1−ρ2i
1−ρ2

+2φ2φ3
1−(ρηρ)

i

1−ρηρ
+ 2φ2φ4

1−(ρηρ2)
i

1−ρηρ2
+ 2φ3φ4

1−ρ3i
1−ρ3

 .

This completes the proof.�

A.2 Ruling out negative volatility with a truncated normal

Drawing the εη innovations from the standard normal distribution creates the technical

possibility that we get negative values for ηt. One candidate solution might be to draw

from a truncated standard normal distribution which, with appropriate truncation, can

guarantee non-negative values for ηt. To find the natural truncation point, we can

calculate the value of ηt+i (without loss of generality, we set ηt = η) following a sequence

11



of lowest-possible realizations of εη, namely εminη to give

ηmint+i = η + ρi−1η ωεminη + · · ·+ ωεminη .

The non-negativity constraint requires lim
i→∞

ηmint+i > 0, in which case

η + lim
i→∞

1− ρiη
1− ρη

ωεminη > 0 or εminη > −
η
(
1− ρη

)
ω

.

This expression implies that for a small ω relative to a large η (and low persistence,

ρη), the probability of ηt becoming negative can be extremely small and of no practical

concern. Bansal and Yaron (2004) use the following parameterization for the stochastic

volatility process: η = 1.232× 10−3, ρη = 0.987, and ω = 0.04658× 10−3. In this case

εminη = −0.344. However, drawing from this distribution would also lower the volatility

of the process that Bansal and Yaron targeted since

var
(
εtruncη

)
= 1 +

2εminη φ
(
εminη

)
1− 2Φ

(
εminη

) < 1,

where the trunc superscript denotes that it is the truncated random variable and the 1 on

the right-hand side of the expression is the variance of the non-truncated standard nor-

mal. To consider how the model solution would be altered by the additional truncation,

reconsider (14), reproduced here

∫
· · ·
∫

εη,t+1 εη,t+i

exp

(
θ2ω

2

∑i
j=1

(∑i−j+1
k=1

(
1− ρi−j+2−k

)2
ρk−1η

)
εη,t+j

)
dG
εη,t+1

· · · dG
εη,t+i

,

and rewrite it as

∏i
j=1

∫
εη,t+j

exp

(
θ2ω

2

(∑i−j+1
k=1

(
1− ρi−j+2−k

)2
ρk−1η

)
εη,t+j

)
dG
εη,t+j

.

In general, the moment generating function of a stochastic variable X with distribution

G is

M (t) = E exp (τX) =
∫∞
−∞ exp (τX) dG (εη) , τ ∈ R.

Rewriting (14) using the moment generating function becomes

∏i
j=1M

(
θ2ω

2

(∑i−j+1
k=1

(
1− ρi−j+2−k

)2
ρk−1η

))
. (16)

12



Using the results of geometric progressions gives(
1

1− ρη
− 2

ρi−j+2

ρ− ρη
+
ρ2(i−j+2)

ρ2 − ρ2η

)
−
(

1

1− ρη
− 2

ρ

ρ− ρη
+

ρ2

ρ2 − ρη

)
ρi−j+1η ,

for the summation in expression (16). The term Fiω
2 in equation (7) from the main text

is therefore replaced with the following expression:

∑i
j=1 logM

θ2ω
2

 1
1−ρη
− 2ρ

i−j+2

ρ−ρη
+ ρ2(i−j+2)

ρ2−ρ2η

−
(

1
1−ρη
− 2 ρ

ρ−ρη
+ ρ2

ρ2−ρη

)
ρi−j+1η

 .

With εη drawn from a symmetrically truncated standard normal distribution with εminη =

−η(1−ρη)
ω

, the moment generating function is given by

exp

(
τ 2

2

)(
Φ
(
−εminη − τ

)
− Φ

(
εminη − τ

)
1− 2Φ

(
εminη

) )
.

In the limit,
η(1−ρη)

ω
→∞, the moment generating function would be exp

(
τ2

2

)
, recovering

the solution in the main text.

A.3 Convergence: Proof of Theorem 2

The aim is to show that the infinite summation

∑∞
i=1 β

i exp
(
Aix+Bi (xt − x) + Ciη +Di (ηt − η) + Fiω

2
)
,

convergences to a finite number. First, I define

zi = βi exp
(
Aix+Bi (xt − x) + Ciη +Di (ηt − η) + Fiω

2
)
,

so that the price-dividend ratio given by

yt =
∑∞

i=1 zi.

To test convergence, it is suffi cient to show that lim
i→∞

∣∣∣ zi+1zi ∣∣∣ < 1. It follows that

∣∣∣∣zi+1zi
∣∣∣∣ = β exp

(
(Ai+1 − Ai)x+ (Bi+1 −Bi) (xt − x)

+ (Ci+1 − Ci) η + (Di+1 −Di) (ηt − η) + (Fi+1 − Fi)ω2

)
,

13



which, when defining X̃i ≡ Xi+1 −Xi becomes∣∣∣∣zi+1zi
∣∣∣∣ = β exp

(
Ãx+ B̃i (xt − x) + C̃iη + D̃i (ηt − η) + F̃iω

2
)
,

where

Ã ≡ 1− γ, B̃i ≡ (1− γ) ρi+1

C̃i ≡ θ2

2

(
1− 2ρi+1 + ρ2(i+1)

)
,

D̃i ≡ θ2

2

((
ρi+1η − 2ρηρ

ρη−ρ
(
ρi (1− ρ)− ρiη

(
1− ρη

))
+

ρηρ
2

ρη−ρ2
(
ρ2i (1− ρ2)− ρiη

(
1− ρη

))))
,

and F̃i ≡ θ4

4

 φ21 + φ22ρ
2i
η + φ23ρ

2i + φ24ρ
4i

+2φ1φ2ρ
i
η + 2φ1φ3ρ

i + 2φ1φ4ρ
2i

+2φ2φ3
(
ρηρ
)i

+ 2φ2φ4
(
ρηρ

2
)i

+ 2φ3φ4ρ
3i

 .

Taking the limit of these terms gives

lim
i→∞

Ã = 1− γ, lim
i→∞

B̃i = 0

lim
i→∞

C̃i = 1
2

(
1−γ
1−ρ

)2
,

lim
i→∞

D̃i = 0, and lim
i→∞

F̃i =

(
θ2

2(1−ρη)

)2
.

It then follows that

lim
i→∞

∣∣∣∣zi+1zi
∣∣∣∣ = β exp

(1− γ)x+
1

2

(
1− γ
1− ρ

)2
η +

(
θ2

2
(
1− ρη

))2 ω2
 .

A.4 Mean price-dividend ratio: Proof of Theorem 3

In order to calculate the unconditional mean, it is necessary to appropriately capture the

autocorrelation created by the εη innovations in the dividend growth process. Iterating

backward the stochastic volatility process, equation (4), so that ηt is in terms of a sequence

of past εη realizations gives

ηt − η = ρkη
(
ηt−k − η

)
+ ω

∑k
s=1 ρ

s−1
η εη,t+1−s. (17)

Taking the limit gives

lim
k→∞

ηt − η = ω
∑∞

s=1 ρ
s−1
η εη,t+1−s,

in which case

ηt+1−j − η = ω
∑∞

s=1 ρ
s−1
η εη,t+2−j−s.
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Similarly, xt can be written as

xt − x = ρk (xt−k − x) +
∑k

j=1 ρ
j−1√ηt+1−jεt+1−j,

and

lim
k→∞

xt − x =
∑∞

j=1 ρ
j−1√ηt+1−jεt+1−j.

Substituting in for equation (17) gives

xt − x =
∑∞

j=1 ρ
j−1
(√

η + ω
∑∞

s=1 ρ
s−1
η εη,t+2−j−s

)
εt+1−j. (18)

The unconditional mean of yt is

E (yt) =
∑∞

i=1 β
i exp

(
Aix+ Ciη + Fiω

2
)
E exp (Bi (xt − x) +Di (ηt − η)) ,

which means we need only evaluate the expectations term

E exp (Bi (xt − x) +Di (ηt − η)) .

To do this, first substitute using equation (18), which gives

E exp
(
Bi

(∑∞
j=1 ρ

j−1
(√

η + ω
∑∞

s=1 ρ
s−1
η εη,t+2−j−s

)
εt+1−j

)
+Di

(
ω
∑∞

j=1 ρ
j−1
η εη,t+1−j

))
.

At this stage it is instructive to rewrite the expectations operator as an integral of prob-

abilistic outcomes

∫
· · ·
∫

εη,t εη,t−∞

∫
· · ·
∫

εt εt−∞

exp

 Bi

∑∞
j=1 ρ

j−1
(√

η + ω
∑∞

s=1 ρ
s−1
η εη,t+2−j−s

)
εt+1−j

+Diω
(∑∞

j=1 ρ
j−1
η εη,t+1−j

)  dF
εt
· · · dF

εt−∞
dG
εη,t
· · · dG

εη,t−∞
,

Rearranging the above expression gives

∫
· · ·
∫

εη,t εη,t−∞

(∏∞
j=1

∫
· · ·
∫

εt εt−∞

exp
(
Biρ

j−1
(√

η + ω
∑∞

s=1 ρ
s−1
η εη,t+2−j−s

)
εt+1−j

)
dF
εt
· · · dF

εt−∞

)
× exp

(
Diω

(∑∞
j=1 ρ

j−1
η εη,t+1−j

))
dG
εη,t
· · · dG

εη,t−∞
.

Using the same standard result as before for Gaussian shocks gives

∫
· · ·
∫

εη,t εη,t−∞

∏∞
j=1 exp

(
B2
i

2
ρ2(j−1)

(
η + ω

∑∞
s=1 ρ

s−1
η εη,t+2−j−s

))
× exp

(
Diω

(∑∞
j=1 ρ

j−1
η εη,t+1−j

))
dG
εη,t
· · · dG

εη,t−∞
,
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which can be rewritten as

∫
· · ·
∫

εη,t εη,t−∞

exp

(
B2
i

2

∑∞
j=1 ρ

2(j−1) (η + ω
∑∞

s=1 ρ
s−1
η εη,t+2−j−s

)
+Diω

(∑∞
j=1 ρ

j−1
η εη,t+1−j

))
dG
εη,t
· · · dG

εη,t−∞
,

Removing the constants term from the integral gives

Hi

∫
· · ·
∫

εη,t εη,t−∞

exp

(
B2
i ω

2

∑∞
j=1 ρ

2(j−1) (∑∞
s=1 ρ

s−1
η εη,t+2−j−s

)
+Diω

(∑∞
j=1 ρ

j−1
η εη,t+1−j

))
dG
εη,t
· · · dG

εη,t−∞
,

where

Hi ≡ exp

(
1

2

B2
i η

1− ρ2

)
.

Focussing on the integral term, the above expression is rearranged in order to bring

together εη innovations with the same time subscript:

∫
· · ·
∫

εη,t εη,t−∞

exp

(∑∞
j=1

(
B2
i ω

2
ρj−1η

(∑j
s=1

(
ρ−1η ρ2

)s−1)
+Diωρ

j−1
η

)
εη,t+1−j

)
dG
εη,t
· · · dG

εη,t−∞
.

Again, using the results of standard normals and geometric series gives

exp

ω2
2

∑∞
j=1

(
B2
i

2
ρj−1η

(
1−

(
ρ−1η ρ2

)j
1− ρ−1η ρ2

)
+Diρ

j−1
η

)2 .

This can be rewritten as

exp

(
ω2

2

∑∞
j=1

(
γ1ρ

j−1
η − γ2ρ2(j−1)

)2)
, (19)

where

γi,1 ≡
(
B2
i

2

ρη
ρη − ρ2

+Di

)
and γi,2 ≡

B2
i

2

ρ2

ρη − ρ2
.

Multiplying out the quadratic term in expression (19) gives

exp

(
ω2

2

∑∞
j=1

(
γ2i,1ρ

2(j−1)
η − 2γi,1γi,2

(
ρηρ

2
)j−1

+ γ22ρ
4(j−1)

))
,

And using the standard results of geometric series gives

exp

(
ω2

2

(
γ21

1− ρ2η
− 2γ1γ2

1− ρηρ2
+

γ22
1− ρ4

))
.

Thus, the unconditional mean price-dividend ratio is

E (yt) =
∑∞

i=1 β
i exp

 Aix+ Ciη + Fiω
2

+1
2

B2i η

1−ρ2 + ω2

2

(
γ2i,1
1−ρ2η
− 2γi,1γi,2

1−ρηρ2
+

γ2i,2
1−ρ4

)  .
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Next, it is necessary to show that the condition for convergence of the infinite summation

in the expression above is the same as the condition stated in Theorem 2. Let

zi = βi exp

 Aix+ Ciη + Fiω
2

+1
2

B2i η

1−ρ2 + ω2

2

(
γ2i,1
1−ρ2η
− 2γi,1γi,2

1−ρηρ2
+

γ2i,2
1−ρ4

)  ,

so that E (yt) =
∑∞

i=1 zi. Then

∣∣∣∣zi+1zi
∣∣∣∣ = β exp

 Ãx+ C̃iη + F̃iω
2 + η

2(1−ρ2)
(
B2
i+1 −B2

i

)
+ ω2

2

×
((

1
1−ρ2η

(
γ2i+1,1 − γ2i,1

)
− 2

1−ρηρ2
(
γi+1,1γi+1,2 − γi,1γi,2

)
+ 1

1−ρ4
(
γ2i+1,2 − γ2i,2

)))
 .

The parameters Ã, C̃i, and F̃i are the same as in Section A.3. Since Section A.3 also shows

that lim
i→∞

B̃i = lim
i→∞

D̃i = 0, it follows naturally (or after much tedious manipulation4) that

this result also implies that

lim
i→∞

(
B2
i+1 −B2

i

)
= lim

i→∞
(Di+1 −Di) = 0,

lim
i→∞

(
γ2i+1,1 − γ2i,1

)
= lim

i→∞

(
γi+1,1γi+1,2 − γi,1γi,2

)
= lim

i→∞

(
γ2i+1,2 − γ2i,2

)
= 0.

4Available upon request.
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