
Running MCE Simulations in EViews
Using the MCE SOLVE LIBRARY

Subroutines

January 26, 2014

1. Overview

The EViews subroutines collected in mce solve library use the E-Newton
and E-QNewton algorithms to impose model-consistent expectations (MCE)
in simulations of macro models.1 The algorithms iterate to find a model’s
MCE solution with a sequence of updates to either exogenous estimates of
the model’s future-dated endogenous variables or exogenous components of
such estimates. The E-Newton algorithm is a straightforward implementa-
tion of Newton’s method that relies on the numerical computation (via per-
turbation simulations) and inversion of the Jacobian matrix of derivatives of
the expectations errors with respect to the exogenous expectations estimates
or components. The E-QNewton algorithm is a limited-memory implemen-
tation of Broyden’s quasi-Newton method whose iterations are based on a
derivative-free approximate Jacobian. The latter is much cheaper to con-
struct and use than the E-Newton full Jacobian, especially when the size
of the Jacobian is large. E-Newton solutions, however, usually converge in
fewer iterations.

For single simulations of linear RE models, E-Newton is likely to be faster
for models of small-to-medium size and E-QNewton is likely to be faster for
larger models. For nonlinear models, E-Newton tends to be penalized relative
to E-QNewton to the extent that the nonlinearity eliminates patterns that
can be exploited in computing the the Newton Jacobian. The E-Newton
algorithm has a substantial advantage over E-QNewton on experiments that
involve a large number of RE solutions, as long as the same Jacobian can be
used for each E-Newton solution.

Use of the two algorithms typically involves a sequence in which: (i) the
MCE model is set up to conform to the general requirements of the algo-
rithms; (ii) a particular algorithm is selected and its parameters are set;
and (iii) a simulation experiment is specified and executed. The available
types of experiments are single simulations, unconstrained optimization, and

1The solution algorithms are described in detail in Flint Brayton, “Two Practical Al-
gorithms for Solving Rational Expectations Models,” FEDS Working Paper 2011-44.

1



constrained optimization. Two approaches to optimization are permitted.
Using the terminology associated with the literature on optimal government
policy, one approach computes optimal trajectories of one or more policy
(or other types of) instruments under committment and the other computes
time-consistent trajectories without committment. Exact committment so-
lutions can be calculated for linear and (in principle) for nonlinear models.
Exact time-consistent solutions without committment, which are more diffi-
cult to compute, are limited to linear models, unless the user writes code to
embed the call to the optimizer in a loop which involves repeated updating
of the linearized relationship between the instruments and targets.

The mce run subroutine provides the primary interface for carrying out
this sequence of steps. For many models and experiments, a single call to
mce run may suffice. For other models, the model setup step may have to
be carried out manually or, as is the case for FRB/US, via another subroutine
prior to the call to mce run.

Section 2 presents the general syntax of mce run. Sections 3 through
5 go over the model setup, algorithm selection, and simulation execution
steps in detail. Partial examples are presented in each of these sections,
and complete examples are discussed in section 6. Section 7 contains some
material specific to FRB/US.

2



2. General Syntax of mce run

The call tomce run takes three arguments that designate options and inputs
for specifying the model (m opts), the algorithm (a opts), and the simulation
(s opts).

call mce_run(m_opts,a_opts,s_opts)

Each argument consists of a comma-separated list of keywords and keyword
assignments, as in,

"kword1,kword2=2,kword3=xyz,kword4=%zyx"

where kword1, kword2, kword3, and kword4 stand in for valid keywords.
The action of some keywords, such as kword1, depends on their absence or
presence. The action of other keywords depends on the number (kword2),
sequence of characters (kword3), or string variable (kword4) to which they
are assigned. Most these keywords have default settings. Keywords may
appear in any order. Each argument may be a string, string variable or
string object.

%algstr = "kword11,kword12=3"

string simstr = "kword21=yes,kword22"

call mce_run("kword1,kword2=2",%algstring,simstr)

An EViews program can contain multiple calls to mce run. These calls may
involve different models or they may involve repeated simulations of the same
model. When a model is reused, the same solution algorithm may also be
retained. Making the first subroutine argument a null string causes the previ-
ous model to be used and any model processing steps to be skipped. Making
the second subroutine argument a null string causes the previous algorithm
to be used and skips the initialization of the Jacobian or approximate Jaco-
bian. The ability to bypass initializing the Jacobian can significantly reduce
the time time required for repeated E-Newton solutions of models that are
linear or nearly linear. When the same algorithm is repeated, the length of
the simulation period must remain unchanged.

3



3. MCE Model Setup

General discussion

In order to use the E-Newton and E-QNewton algorithms, two separate oper-
ational models must be created. In many cases, the first of these operational
models is a simple transformation of the original model in which each appear-
ance of a future-dated endogenous variable is replaced with a new exogenous
variable, and the second operational model consists of identities that define
the MCE errors. A simple example illustrates this organization. Let Model
O, Model B, and Model F respectively designate (a part of) the original
model and the pair of operational models.

Model O

y = c1*y(-1) + c2*y(1) + ...

Model B

y = c1*y(-1) + c2*x + ...

Model F

ey = x - y(1)

Model O contains the endogenous variable y and coefficients c1 and c2. The
first lead of y in Model O is replaced with the exogenous variable x in Model
B, and Model F contains an identity that defines the MCE error ey as the
difference between the values of x and the first lead of y. The latter is
exogenous in Model F. An iteration of either solution algorithm involves a
solution of Model B, a solution of Model F, and an update of the path of x
based on the path of ey and information on the relationship between their
paths. Iterations continue until a path of x is found that sets ey to zero.

The creation of Model B and Model F in this simple example is easily
automated and can be carried out using mce run. Not as easy to automate
is a more complex case in which the future-dated variables in Model O are re-
placed not with exogenous variables but with contemporaneous values of new
endogenous variables. This is the approach used in FRB/US, in which the
new endogenous variables represent an alternative, backward-looking char-
acterization of expectations. For example:

Model O

y = c1*y(-1) + c2*y(1) + ...

Model B

4



y = c1*y(-1) + c2*z + ...

z = c3 + c4*y(-1)

Model F

ey = z - y(1)

In this case, both solution algorithms iterate over the path of the expectations
constant c3 until the MCE error is zero, and the pair of operational models
must be created manually or, as is done for FRBUS, with a special, model-
specific subroutine.

The model or models supplied by the user must be valid EViews models.
In particular, each endogenous variable must appear as the first variable on
the left hand side of one and only one equation. In addition, when the user
supplies (the equivalents of) Models B and F, Model B cannot contain any
leads of endogenous variables, Model F must contain identities that define all
MCE errors, and Model F may include leads of its endogenous variables but
it cannot include any lags of these variables. With these restrictions, Model
B can be easilyt solved forward in time and Model F can be easily solved
backward in time.

Convergence of the algorithms to the MCE solution occurs when the
maximum absolute expectations error is less than some (small) value. This
criterion may lead to undesirable convergence characteristics of models with
substantial heterogeneity in the magnitudes of their MCE variables. One
way to resolve problems of this type is to rewrite the model so that the MCE
variables are scaled more homogeneously. Another is to multiply the right
hand sides of the relevant MCE error equations by a scale factor so that the
errors themselves are better scaled.

The m opts argument

The first subroutine argument of mce run, the m opts string, can have one
of three general forms that correspond to (1) automatic parsing of the MCE
model to form the pair of operational models; (2) declaration of the names
of operational models that have been created by other means; or (3) use of
operational models that have been created automatically or declared in a
previous call to the subroutine.

1. m opts contains the keyword create and the keyword assignmentmod =
〈name1〉, and a model named 〈name1〉 exists in the workfile. In this
case, the model procesing part of the subroutine parses model 〈name1〉

5



to form a pair of operational models with the names 〈name〉 b and
〈name〉 f .

2. m opts contains the keyword assignmentsmod b = 〈name1〉 andmod f =
〈name2〉 as well as assignments of either mce errs = 〈%name3〉 and
mce instrus = 〈%name4〉 ormce vars = 〈%name5〉. In either variant,
the model processing part of the subroutine assumes that the opera-
tional models 〈name1〉 and 〈name2〉 have already been created and
exist in the workfile. In the first variant, 〈%name3〉 is the name of a
string list of the MCE error variables and 〈%name4〉 is the name of a
string list of the exogenous expectations estimates or components. In
the second variant, 〈%name5〉 is the name of a string list that contains
the base variable names from which the names of the MCE error vari-
ables can be formed adding an “e” prefix and the names of the MCE
exogenous variables or components can be formed by adding an “ a”
suffix.

3. m opts is a null string (ie, ””). This form indicates that the operational
models declared or created in a previous call to the mce run subroutine
(within the same program) are to be used again.

The optional keywords adds, track, tstart, and tend are available in forms 1
and 2 of the m opts string. Inclusion of the adds keyword causes add factors
to be assigned to all equations in both operational models. Inclusion of the
track keyword causes the values of the add factors to be initialized so that
the equations make no errors when evaluated using actual data. The add
factors are initialized over the current workfile page sample, unless the tstart
and tend keywords are added to specify alternative starting and ending dates.
These four keywords are particularly useful when add factors are needed in
operational models that are created by the action of mce run, as the user
does not have direct access to these models while the subroutine executes.
When the operational models are created prior to the call to mce run and
add factors are desired, they may be assigned and initialized either prior
to the subroutine call or as part of the execution of mce run using the
appropriate keywords.

Examples of m opts

The first example is based on a three-equation model which contains the
endogenous variables p, r, and y, MC expectations of the first lead of p and
y, the exogenous variable shk, and coefficient vectors cp, cy, and cr.

6



Table 1: All m opts Keywords

keyword setting description

keywords specific to form 1 ——–
create see form 1 discussion
mod= name or string var see form 1 discussion

keywords specific to form 2 ——–
mod b= name operational model without endog leads
mod f= name operational model with MCE error eqs
mce errs= string var names of MCE error variables
mce instrus= string var names of MCE instrument variables
mce vars= string var base names for MCE errors and instruments

keywords for forms 1 and 2 ——–
adds assign add factors
track initialize add factors at tracking values; de-

fault sample is workfile page sample
tstart= date tracking adds initial period
tend= date tracking adds final period

model s

s.append p = cp(1)*p(-1) + (.98-cp(1))*p(1) + cp(2)*y

s.append y = cy(1)*y(-1) + (.98-cy(1))*y(1) + cy(2)*(r - p(1))

s.append r = cr(1)*r(-1) + (1-cr(1))*(cr(2)*p + cr(3)*y) + shk

When the following string is used as the m opts argument,

%mstr = "create,mod=s,adds,track"

the two operational models are automatically created, add factor variables
are assigned to the equations of each operational model, and the values of the
add factors are chosen so that these models track the baseline data over the
current workfile page sample. This syntax corresponds to form 1 of m opts.

As example of the form 2 of m opts, assume that the user has already
created a pair of operational models associated with model s, named them

7



s b and s f , and chosen to use new endogenous variables to replace the future
values of p and y.

model s_b

s_b.append p = cp(1)*p(-1) + (.98-cp(1))*zp + cp(2)*y

s_b.append y = cy(1)*y(-1) + (.98-cy(1))*zy + cy(2)*(r - zp)

s_b.append r = cr(1)*r(-1) + (1-cr(1))*(cr(2)*p + cr(3)*y) + shk

s_b.append zp = p(-1)

s_b.append zy = y(-1)

model s_f

s_f.append ezp = zp - p(1)

s_f.append ezy = zy - y(1)

If tracking add factors are needed in the operational models, but have yet to
be be assigned, the required m opts argument can be created either with the
commands

%instrus = "zp_a zy_a"

%errs = "ezp ezy"

%mstr = "mod_b=s_b,mod_f=s_f,mce_instrus=%instrus,

mce_errs=%errs,adds,track,tend=2050q4"

or with the commands

%vars = "zp zy"

%mstr = "mod_b=s_b,mod_f=s_f,mce_vars=%vars,adds,track,tend=2050q4"

The tend keyword causes the add factors to be initialized over the period
from the start of the current workfile page sample to 2050q4. Note that the
second set of example commands works correctly because the names of the
MCE error variables can be formed by adding an “e” prefix to each of the
words in the %vars string and the names of the MCE exogenous instruments
can be formed by adding an “ a” suffix to each of the words in that string.

When multiple calls to mce run are being made in the same program to
run a set of simulations of the same MCE model, the model processing step
can be skipped after the first call. To designate this, simply use a null string
for the m opts argument (ie, %mstr =””) in the second and any subsequent
calls.

8



4. Algorithm Selection

General discussion2

In the E-Newton and E-QNewton algorithms, the adjustment of the vector
of expectations estimates (or their exogenous components), x̃, at iteration i
is the product of a step length, λi, and a direction, d̃i,

∆x̃i = λid̃i, (1)

where the direction in turn depends on the product of an updating matrix
U and the vector of expectations errors, ẽ in the previous iteration,

di = −Ui−1ẽi−1. (2)

In E-Newton, the updating matrix is the inverse of the Jacobian matrix of
first derivatives of the expectations errors with respect to the expectations
estimates (J = (∂ẽ/∂x̃)). Derivatives are computed numerically using per-
turbation simulations. In E-QNewton, the updating matrix is the inverse of
an approximate Jacobian (B) whose elements are based only on the implicit
derivative information observed each iteration in the movements of ẽ and x̃.
E-QNewton employs a limited memory version of Broyden’s method in which
the direction is computed from a sequence of vector operations that do not
require the direct computation of B and its inverse. This design tends to
make E-QNewton more efficient than E-Newton for single simulations of an
MCE model, especially when the size of the Jacobian (the product of the
number of MCE variables, m, and number of simulation periods,T ) is large.

Algorithms that use the Newton or quasi-Newton directions always con-
verge to the solutions of linear models when λ=1.0. With this step length,
E-Newton solutions require a single iteration, as long as the Jacobian is ex-
actly computed, and E-QNewton solutions require at most 2mT iterations.
For nonlinear models, the convergence properties of the pair of algorithms
is improved if line-search procedures are used to examine alternative step
lengths, whenever the default length (λ = 1, typically) yields an insufficient
movement toward the MCE solution. Two line-search procedures are avail-
able. One is the simple Armijo procedure, which repeatedly shortens the

2The solution algorithms are described in detail in Flint Brayton, “Two Practical Al-
gorithms for Solving Rational Expectations Models,” FEDS Working Paper 2011-44.

9



step length until either satisfactory progress is achieved or the maximum
number of step-length iterations is reached. The other is the non-monotone
step-length procedure of La Cruz, Martinez, and Raydan (LMR).

The mce solve subs subroutines include two other solution algorithms.
One is the Fair-Taylor algorithm, which is the special case of (2) in which
U is the identity matrix. The other is an alternative, and generally less
efficient, version of Broyden’s method that works directly with the inverse
of the approximate Jacobian matrix and does not make use of the limited

memory approach.

The a opts argument

The second subroutine argument of mce run, the a opts string, is used to
choose a solution algorithm and set related options. Setting a opts to a null
string (””) has two possible effects. If this assignment is made in the first
call to mce run in a program, all keywords are set to their default values
(see table 5). If the assignment of a null string is made in subsequent calls
to mce run in the same program, the algorithm and related options chosen
in the previous call are retained.

The a opts keywords are divided into three groups. The keywords asso-
ciated with the algorithm and Jacobian group are summarized in table 2. In
this group, the meth keyword specifies the solution algorithm; the default
is “newton” (E-Newton). The jinit keyword controls the construction of
the initial Jacobian or approximate Jacobian. Three of the five valid jinit
settings are designed to be used with E-Newton: “every” computes an ex-
act Jacobian; “linear” employs a shortcut that efficiently computes an exact
Jacobian for any linear MCE model whose MCE variables are dated one pe-
riod in the future; “interp(n)” employs a shortcut that computes every nth
Jacobian column exactly and all other columns by interpolation. For mildly
nonlinear MCE models, the most efficient approach frequently is “interp(n)”
with n chosen to be between four and twelve. The “every” setting should only
be used with highly nonlinear models. Two jinit settings are designed for use
with E-QNewton: “bd” and “identity.” “bd” creates a block-diagonal initial
approximate Jacobian that is easily computed and inverted and frequently
reduces solution time compared with the more conventional (for Broyden
methods) “identity” setting.

The E-Newton Jacobian is updated after any iteration that makes in-
sufficient progress toward the MCE solution.3 Progress is measured by the

3The inherent nature of the E-QNewton approximate Jacobian requires that it always

10



Table 2: Algorithm and Jacobian a opts Keywords

keyword settings description

meth= newton E-Newton algorithm
qnewton E-QNewton algorithm
broy version of Broyden’s quasi-Newton algorithm

that is generally less efficient than E-QNewton
ft Fair-Taylor algorithm

jinit= every calculate all matrix elements exactly
interp(n) calculate every nth column exactly and all

other columns by interpolation
linear calculate only the subset of columns needed

to construct the exact matrix of a linear MCE
model

bd block-diagonal matrix
identity identity matrix

jupdate= same options as jinit; only relevant for E-
Newton; defaults to setting of jinit

jt= scalar E-Newton Jacobian is updated if the ratio of
the sum of squared expecations errors in su-
cessive iteration is greater than the scalar

broymax= integer E-QNewton maximum limited-memory pa-
rameter

ratio of the sum of squared expecations errors in the just-completed iteration
to the sum in the previous iteration. If the ratio is greater than the scalar
n assigned by the jt keyword, an update takes place (default: n = .5). If
an update takes place, the jupdate keyword designates how the E-Newton
Jacobian is updated; this keyword defaults to the setting of jinit.

The E-QNewton algorithm uses a limited-memory procedure that at iter-
ation i uses the step directions and lengths from the previous i or broymax
iterations, whichever is smaller. The default value of broymax is 600.

Each iteration, line-search procedures can be used to determine how far
(step length) the expectations estimates (or their exogenous components)
are adjusted in the optimal Newton or quasi-Newton direction. The line-

be updated between iterations.

11



Table 3: Line-search a opts Keywords

keyword settings description

lt= scalar line search executes if the ratio of the sum of
squared expecations errors in sucessive itera-
tions is greater than the scalar

lmeth= armijo default method for E-Newton
lmr default method for E-QNewton
none

lmax= integer maximum number of linesearch iterations
stepmax= scalar maximum step length
lrat= scalar Armijo step-length shortening parameter
lambda= scalar Fair-Taylor fixed step length

search keywords are summarized in table 3. Line search takes place during
any iteration that makes insufficient progress toward the MCE solution at
the initial step length. Progress is measured by the ratio of the sum of
squared expectations errors in the current iteration to the sum in the previous
iteration. If the progress ratio is greater than the scalar assigned to the lt
keyword, the line-search method specified by the lmeth keyword executes.
Line search can be turned off by setting lmeth = none.

The chosen solution algorithm iterates until the maximum absolute ex-
pectations error is less than the convergence criteria or the maximum number
of iterates is reached. The keywords c and m are used to override the de-
fault settings of these two parameters. The p keyword is used to override
the default perturbation factor applied to each MCE expectations estimate

Table 4: Other a opts Keywords

keyword settings description

c= scalar convergence criteria
m= integer maximum number of MCE iterations
p= scalar perturbation factor for MCE derivatives

12



(or exogenous compontent) in running any simulations needed for computing
the Jacobian or initial approximate Jacobian

Table 5: a opts Defaults

keyword algorithm default keyword algorithm default

meth newton lt all .9
jinit newton interp(12) lmax all 10

qnewton bd stepmax all 1.0
broy bd lrat all .5
ft identity lambda ft 1.0

jupdate newton = jinit m newton 20
jt newton .5 qnewton 200
broymax qnewton 600 broy 200
lmeth newton armijo ft 500

qnewton lmr c all 1e-6
broy lmr p all ex ft .001
ft na

Examples of a opts

In the following examples, the string variable %astr is to be used as the a opts
argument of mce run. Only the overrides to the default settings need to be
specified.

%astr = "jinit=linear,c=1e-8,lmeth=none"

%astr = "meth=qnewton,jinit=identity,lmax=50"

%astr = ""

In the first example, the solution algorithm defaults to E-Newton, the Jaco-
bian is initialized (and updated) using the “linear” shortcut that is applicable
to many linear MCE models, the convergence criteria is tightened to 1e-8,
and no step-length line-search is undertaken. The second example sets the
solution algorithm to E-QNewton, the initial approximate Jacobian to the
identity matrix, and the maximum number of line-search iterations to fifty.

13



5. Simulation Execution

General discussion

The mce run subroutine can initiate three types of MCE simulation ex-
periments: “single”, “opt”, and “opttc”. The “single” type runs an MCE
simulation whose inputs are the initial and terminal values of the model’s
endogenous variables and the projected paths of any shocks and exogenous
variables the model may contain. The “opt” type is an experiment that re-
quires a set of MCE simulations to find the paths of one or more instrument
variables that minimize the value of a loss function. The “opttc” type also
involves optimization, but the optimizing agent cannot commit to a fixed
instrument trajectory. In this case, the algorithm attempts to find the Nash
time-consistent solution using a backward-induction approach. As discussed
below, “opttc” algorithm provides only an approximate solution. The two
optimization simulation types permit inequality constraints to be imposed
on linear combinations of the model’s endogenous variables. When such con-
straints are present, the solution algorithm requires access to the quadratic
programming function in either R or Matlab.

The “opt” simtype

Let n be the number of instrument variables, Tn the number of periods in
which the instruments are active, and x the (nTn x 1) stacked vector of
instruments. In addition, let m be the number of target variables, Tm the
number of periods over which the loss function is to be minimized, y the
(mTm x 1) stacked vector of targets, and y∗ the (mTm x 1) stacked vector of
their desired paths. The objective is to minimize the quadratic loss function,

min f = (y − y∗)′W(y − y∗), (3)

where W is a (mTm x mTm) diagonal matrix of weights.
The minimization of (3) requires a single iteration for a linear model

and a sequence of iterations for a nonlinear model. When no constraints
are present, each iteration uses Newton’s method to update the estimate of
x based on the first (gradient) and second (hessian) derivatives of f with
respect to the instrument variables. A key component of the grandient and
hessian is the matrix (D) of deriviatives of the instruments with respect
to the targets. D is calculated numerically with a set of nTn perturbation
simulations, each of which is a “single” MCE solution of a ping to one of
the instrument variables in one of the periods in which the instruments are

14



active. Because it is generally expensive to calculate D, its value is updated
only after iterations in which the progress made in reducing the value of f
falls substantially short of what would be achieved if the model were linear.

There are several ways to approach the minimization of (3) when inequal-
ity constraints involving functions of endogenous variables are present. One
is to add a nonlinear penalty variable to the model for each constraint and
to include each penalty variable in the loss function. This approach provides
approximate solutions and can be solved using the methods of unconstrained
minimization. An alternative approach, which is the one described here,
recasts the constrained minimization as a standard quadratic programming
problem. In the code described here, the inequality constraints are required
to be linear,

Ayc ≥ b (4)

where A is a (c x mTn) matrix of constraint coefficients, yc a (mTn x 1)
stacked vector of endogenous variables, and b a (cTn x 1) matrix of con-
straint constants, and c the number of constraints. The stacked vectors yc

and y correspond to the same group of endogenous variables, but the vectors
contain observations drawn from time periods that may not be the same.
The former vector includes the n observations on each relevant endogenous
variable in the period that the instruments are active; the latter vector in-
cludes them observations on each variable in the period that the loss function
is minimized. If an endogenous variable appears in the constraints but not
among the endogenous variables in the loss function, that variable is added
to the loss function variables and assigned a weight of zero.

To complete the notation needed to describe the quadratic programming
problem, express the the linearized relationship between the targets and in-
struments as,

y − y0 ≈ D(x− x0) (5)

where D is the (mTm x nTn) gradient matrix of derivatives of the target
variables with respect to the instrument variables calculated around (x0,y0).
After using (5) to replace y in (3) and (4), the constrained minimization
problem can be expressed as,

min f = x′D′WDx+ 2(k− y∗)′WDx′ + cnst, (6)

15



where k = y0 −Dx0 and the constraints take the form,

ADx ≥ b−Ak (7)

In each quadratic programming iteration, the values of x,y,y∗,k,D,A and
c are to construct the arguments needed by the R or Matlab quadratic pro-
gramming function. The optimal constrained solution of a linear model is
achieved in a single iteration. A sequence of iterations of a nonlinear model
converges when the optimal instrument values from the quadratic program-
ming step yield approximately the same solution for the target variables in
the nonlinear MCE model as they do in the quadratic programming solution.

The “opttc” simtype

The “opttc” simulation type performs an optimization in which there are as
many policymakers as there are instrument-setting dates and no policymaker
can control the actions of any other policymaker. The policymaker at time
j (1 ≤ j ≤ Tn) is assumed to find the value of the instrument(s) at j that
minimize (3) subject to (4), if applicable, when the loss function is evaluated
for Tm periods starting at j. The minimization takes as given the values of
the instruments set at dates other than j. The algorithm seeks to find a
time-consistent solution in which the optimizing actions of the policymakers
are mutually consistent. The method is backward induction. Given an ini-
tial solution based on a possibly arbitrary choice of instrument values, the
optimization problem of the last (Tn) policymaker is solved first. Then the
next-to-last policymaker optimizes, conditional on the instrument choice of
the last policymaker. This sequence continues until the optimization problem
of the first policymaker is solved. Sequences of this type, each starting with
the last policymaker, are repeated until the difference between one sequence
and the next is sufficiently small.

The “opttc” simtype does not provide exact time-consistent solutions.
A first source of divergence between the true time-consistent solution and
the computed solution concerns the assumption that at each iteration one
policymaker optimizes and the other policymakers hold their policy instru-
ments fixed. This assumption is incorrect except when the non-optimizing
policymakers instrument is an adjustment factor to the model’s true time-
consistent policy rule. The “opttc” simulation procedure is designed for use
with models for which it is difficult or impossible to compute the optimal
time-consistent rule. In addition, for nonlinear models the solution is based

16



Table 6: General s opts Keywords

keyword setting description

type= single single MCE simulation (default)
opt optimization experiment
opttc time-consistent optimization

sstart= date first simulation period
send = date last simulation period
txt= name name of text file of EViews commands
terminal reset terminal conditions
scen create new scenario
suf= alias for new scenario
solveopt= string var set solve options
o= 1,2 or 3 amount of output per MCE simulation
dontstop terminate call to mce run and continue

program execution when error or
nonconvergence occurs

cleanup delete all $ * variables

on the linearized relationship (D) between the instruments and targets faced
by the first policymaker around the baseline. Constrained “opttc” simula-
tions require access to R or Matlab.

The s opts argument

The third subroutine argument of mce run, the s opts string, is used to
choose the simulation type and related parameters. The ten optional key-
words are available for all simulation types to override default settings. These
keywords are shown in table 6.

Valid settings of type are “single”, “opt”, and “opttc”. The default is
“single”. The default simulation period, which is the current workfile page
sample, can be overridded with the sstart and send keywords. The txt
keyword declares the name of a text object that contains EViews commands
to be executed after the model processing and algorithm declaration steps
of mce run have executed and before the simulation step executes. Such
a text file is useful, for example, for setting up the shocks to be included

17



in the simulation experiment, when the model processing step involves the
computation of tracking adds. In such a case, any shocks created prior to
the call to mce run would only lead to offsetting shifts in the add factors.

Inclusion of the terminal keyword causes the values of all endogenous
variables whose leads appear in the second operational model to be reset
beyond the end of the simulation period. The new values are based on the
solution values for these variables at the far end of the first solution of the first
operational model in the simulation experiment. This approach calculates
accurate terminal conditions only when the first operational model has the
same long-run characteristics as the MCE model. FRB/US satisfies this
condition.

The scen keyword can be used to create a new scenario that applies to
each of the operational models and the suf keyword to designate the scenario
alias. the solveopt keyword can be used to specify solve options. The default
setting of the latter is the string “o=n,g=12,z=1e-12”.

The “o” keyword sets the amount of output displayed for each MCE
simulation. The most amount of output displays with “o=1” and the least
with “o=3”. The “cleanup” keyword causes all $ * variables created during
the course of the execution of mce run to be deleted when it is finished
executing.

Inclusion of the dontstop keyword causes the program that callsmce run
to continue executing the commands that come after the subroutine call when
the E-Newton or E-QNewton MCE iterations fail to converge or when, in a
“single” simulation, EViews generates an error when trying to solve either
the backward or forward models. This feature may be useful when running
many simulations in a loop and the failure of one or a few of the simulations
can be tolerated. The contents of the %mce finish string indicate how a call
to mce run terminates. After a successful call to mce run, %mce finish =
“yes”. When “dontstop” is included and the MCE iterations do not converge,
%mce finish = “no”. When “dontstop” is included and a solver error occurs,
%mce finish = “failed solve”.

The “opt” and “opttc” simulation types share two required keywords
and 15 optional keywords. These are shown in table 7. The required instrus
keyword must be assigned to a group object of the exogenous instrument
variables whose values will be chosen to minimize the loss function. The
required targs keyword must be assigned to a group object of the endogenous
target variables that appear in the loss function. The other two elements of
the loss function – the desired values of the target variables and the weights

18



Table 7: Optimization s opts Keywords

keyword setting description

instrus= group optimization instruments (required)
targs= group optimization targets (required)
istart= date first date of instrument range
iend= date last date of instrument range
lstart= date first date of loss evaluation range
lend= date last date of loss evaluation range
m= scalar max number of optimziation iterations
c= number optimization convergence criteria
lmax= scalar max number of optimization line-search iterations
p= number instrument perturbation factor
stepmax= number maximum instrument step length
oo= 1,2,3,4 amount of intermediate output in optimization exper-

iments
cnstr= name name of text object with inequaltiy constraints (re-

quired)
matlab use Matlab for quadratic programming (the default is

R)
ideriv= yes/no compute/do not compute instrument derivatives
/xopen do not open R or Matlab
/xclose do not close R or Matlab

d= number damping factor, 0 < d ≤ 1 (opttc only)

– must also be specified, but for these the algorithm expects to find series
in the workfile with names based on the names of the targets. Specifically,
each target variable must be associated with a pair of series, one whose name
has an “ t” suffix attached to the target name and contains desired values,
and one with an “ w” suffix that contains weights. If “abc” is one of the
target variables, the corresponding series “abc t” and “abc w” must have
been created before the execution of the simulation.

The optional optimization keywords enable defaults (table 8) to be over-
ridden for the loss function evaluation period (lstart, lend), the period over
which the instrument variables are active (istart, iend), and various param-

19



Table 8: s opts Defaults

keyword default keyword default

type= single lstart= sstart
suf= 1 lend= 60th simulation period
o= 1 (single) m= 15

3 (opt/optqp) oo= 3
sstart= page sample start c= 1e-5
send= page sample end lmax= 10
istart= sstart p= .01
iend= 40th sim period stepmax= 1.0
solveopt= o=n,g=12,z=1e-12 ideriv yes
d= 1

eters associated with the mechanics of the optimization iterations. The d
keyword can be used to set a between-iteration damping factor for “opttc”.
No damping occurs when d = 1, the default.

The cnstr keyword is used to declare the name of a text object of in-
equality constraints whose ith line has the form:

ai,1 ∗ y1 + . . .+ ai,k ∗ yk >= bi (8)

The variables y1, . . . , yk must be the names of endogenous variables. The
coefficients ai,1, . . . , ai,k and constant bi must be specific numerical values.
Coefficients must be placed before variables and be followed by the “*” char-
acter. Coefficients that equal one (or minus one) may be omitted.

Inclusion of the matlab keyword specifies that “opt” and “opttc” simula-
tions use the quadratic programming function in Matlab; the default is the
R function. The /xopen and /xclose keywords can be used in a sequence
of constrained optimization simulations to avoid the repeated opening and
closing of the external link from Eviews to R or Matlab.

Examples of s opts

The first set of examples is based on the first model (model s) presented
in section 3 to illustrate the m opts string. For present purposes, the only
important attributes of the model are that it contains endogenous variables

20



p, y, and r, that it contains the exogenous variable shk in the equation for
r, that it has add factors, and that it has been parsed or declared in the
first argument of subroutine mce run. Note that the simulation range is
generally determined by the sample period in effect when the subroutine is
called. All of the following examples assume that the first simulation period is
2001q1 and that the string variable %sstr will be used as the third subroutine
argument.

The first example runs a single MCE simulation in which the exogenous
variable shk is raised by one unit in the first simulation period, as specified
in the text object named shock.

text shock

shock.append smpl 2001q1 2001q1

shock.append series shk = shk + 1

%sstr = "txt=shock"

smpl 2001q1 2050q4

call mce_run(..., ..., %sstr)

The second example executes up an unconstrained optimization experiment
in which shk is the instrument for minimizing the weighted, squared devi-
ations of y and p from zero. Based on default settings, the path of shk is
optimally chosen over the first 40 simulation periods to minimize the loss
function over the first 60 simulation periods.

smpl @all

group ii shk

group tt p y

series p_t = 0

series p_w = 1

series y_t = 0

series y_w = 2

%sstr = "sim=opt,instrus=ii,targs=tt"

smpl 2001q1 2050q4

call mce_run(..., ..., %sstr)

The third example sets up a constrained optimization experiment that aug-
ments the specification of the second example with the restriction that r
cannot fall below zero. (Note that the first seven lines of the second example
are omitted to save space.) The quadratic programming function in Matlab
is used.

21



text cc

cc.append r >= 0

%sstr = "sim=opt,instrus=ii,targs=tt,cnstr=cc,matlab"

smpl 2001q1 2050q4

call mce_run(..., ..., %sstr)

The fourth example executes a time-consistent optimization. For the “opttc”
simtype, the declared workfile sample (or any overrides) and the explicit
or default setting of lend describe the simulation and loss function ranges
associated with the first policymaker, who in this case chooses the value of
shk in 2001q1 that minimizes the loss function over the 40 quarters from
2001q1 to 2010q4, based on a 200-period simulation that extends to 2050q4.
The setting iend determines the date associated with the last policymaker,
who in this case chooses the value of shk in 2008q4 to minimize the loss
function over the 40 quarters starting at that date based on a 200-period
simulation also starting at that date.

text cc

cc.append r >= 0

%sstr = "sim=opt,instrus=ii,targs=tt,cnstr=cc,matlab"

%sstr = %sstr + ",iend=2008q4,lend=2010q4"

smpl 2001q1 2050q4

call mce_run(..., ..., %sstr)

In the previous three examples, the commands to create the two groups
and four series are executed prior to the call to mce run. Because these
commands do not interfere with any of the operations of the first two steps
of the subroutine, this approach yields the same outcome as placing the
group and series creation commands in a text object and using using the txt
keyword to execute the commands at the start of the simulation step.

22



6. More Examples

Example 1: a pair of “single” simulations

The first example illustrates how to run a “single” simulation and how to
set up a sequence of simulations of the same model using the same solution
algorithm. The example uses the first model presented in section 3 and
assumes that the values of its variables and coefficients have been defined.

model s

s.append p = cp(1)*p(-1) + (.98-cp(1))*p(1) + cp(2)*y

s.append y = cy(1)*y(-1) + (.98-cy(1))*y(1) + cy(2)*(r - p(1))

s.append r = cr(1)*r(-1) + (1-cr(1))*(cr(2)*p + cr(3)*y) + shk

The following commands parse model s to create the two operational mod-
els, assign tracking add factors, select the E-QNewton algorithm and a block-
diagonal initial approximate Jacobian, and execute a pair of simulations. The
m opts and a opts arguments are null strings in the second call of mce run,
indicating that the models created and algorithm chosen in the first simu-
lation are to be used again. In multiple calls of mce run of this type, the
dimensions of various matrices and vectors are set only in the first call. One
implication of this is that the simulation period must be the same in each
call. Each simulation starts in 2001q1 and ends in 2050q4.

’ first sim

text shock1

shock1.append smpl 2001q1 2001q1

shock1.append series shk = shk + 1

%mstr = "create,mod=s,adds,track"

%astr = "meth=qnewton,jinit=bd"

%sstr = "txt=shock1,scen,suf=_2"

smpl 2001q1 2050q4

series shk = 0

call mce_run(%mstr,%astr,%sstr)

smpl 2001q1 2001q1

shk = shk - 1 ’undo first shock

’second sim

text shock2

23



shock2.append smpl 2001q1 2001q1

shock2.append series y_a = y_a - 1

%sstr = "txt=shock2,scen,suf=_3"

smpl 2001q1 2050q4

call mce_run("","",%sstr)

Solution values are stored in variables named with an “ 2” suffix in the
first simulation and an “ 3” suffix in the second simulation. It is necessary
to define the shock in the first simulation in a text file to avoid its effect
being negated by the calculation of tracking add factors. Because the second
simulation does not recalculate add factors, its shock can be specified either
in a text file (as is done) or in the body of the program before the second
call of mce run.

Example 2: an “opt” simulation

For this example, assume that model s from the first example is augmented
with an identity for the first difference of r.

s.append dr = r - r(-1)

The following commands find the path for shk that minimizes the weighted
squared devations of p, y and dr from zero in the presence of a shock to the
add factor in the equation for y. The loss function is minimized over the
default interval, which is the first 60 periods of the simulation, by varying
the path of shk over the 40-period default interval.

smpl @all

series shk = 0

group ii shk

group tt p y dr

series p_t = 0

series p_w = 1

series y_t = 0

series y_w = 2

series dr_t = 0

series dr_w = .5

text shock1

shock1.append smpl 2001q1 2001q1

shock1.append series y_a = y_a - 1

24



%mstr = "create,mod=s,adds,track"

%astr = "jinit=linear"

%sstr = "type=opt,txt=shock1,instrus=ii,targs=tt,scen,suf=_2"

smpl 2001q1 2050q4

call mce_run(%mstr,%astr,%sstr)

Because the optimization experiment requires many MCE solutions, it is
generally more efficient to use the default E-Newton algorithm, especially for
models that are linear or nearly linear. In this example, the model is linear,
which also permits the “linear” shortcut to be used in forming the Jacobian.

Example 3: a sequencee of simulations

This example is based on an MCE model whose structure cannot be pro-
cessed by mce run and assumes that the user has already created a pair of
operational models named s b and s f .

model s_b

s_b.append p = cp(1)*p(-1) + (.98-cp(1))*zp + cp(2)*y

s_b.append y = cy(1)*y(-1) + (.98-cy(1))*zy + cy(2)*(r - zp)

s_b.append r = cr(1)*r(-1) + (1-cr(1))*(cr(2)*p + cr(3)*y) + shk

s_b.append dr = r - r(-1)

s_b.append zp = p(-1)

s_b.append zy = y(-1)

model s_f

s_f.append ezp = zp - p(-1)

s_f.append ezy = zy - y(-1)

The next example consists of three simulation experiments, each of which
involves the same perturbation to the add factor on the equation for y in the
first simulation period. A single simulation is followed by two optimization
simulations. The first optimization experiment constraints r to be nonnega-
tive and uses the default external connection to R to impose this constraint.
The second optimization is unconstrained. In the optimization experiments,
the values of the instrument variable, shk, are chosen over the period from
the start of the simulation to 2015q4 (an override specified by “iend”) to
minimize the loss function from the start of the simulation to 2015q4 (the
default 60-period setting). The m opts and a opts arguments are null strings
in the second and third calls of mce run, indicating that the models created
and algorithm chosen in the first simulation are to be used again.

25



’ first experiment

text shock1

shock1.append smpl 2001q1 2001q1

shock1.append series y_a = y_a - 1

%vars = "zp zy"

%mstr = "mod_b=s_b,mod_f=s_f,mce_vars=%vars,adds,track"

%astr = "jinit=linear"

%sstr1 = "type=single,scen,suf=_1"

smpl 2001q1 2050q4

call mce_run(%mstr,%astr,%sstr1)

’ second experiment -- constrained optimization

smpl @all

group ii shk

group tt p y dr

series p_t = 0

series p_w = 1

series y_t = 0

series y_w = 2

series dr_t = 0

series dr_w = .5

series shk = 0

text cc

cc r >= 0

%mstr = ""

%astr = ""

%sstr2 = "type=opt,instrus=ii,targs=tt,scen,

%sstr2 = %sstr2 + ",suf=_2,cnstr=cc,iend=2015q4"

smpl 2001q1 2050q4

call mce_run(%mstr,%astr,%sstr2)

’ third experiment -- unconstrained optimization

%sstr3 = "type=opt,instrus=ii,targs=tt,scen,

%sstr3 = %sstr3 + ",suf=_3,iend=2015q4"

smpl 2001q1 2050q4

call mce_run("","",%sstr3)

26



7. FRB/US: Notes and Examples

FRB/US contains 30 future-dated endogenous variables whose solutions may
be MC (ie, perfect foresight) or taken from backward-looking VAR-based
equations. Many FRB/US simulations assume MC expectations for a subset
of the expectations variables and VAR expectations for the others.

The construction of the pair of FRB/US operational models needed for
the E-Newton and E-QNewton algorithms is based on the following design:

• The first or backward-looking operational model contains the VAR-
based equations for all 30 expectations variables. This model is usually
one of the stored FRB/US VAR versions, such as stdver.

• The expectations instruments whose values are iteratively adjusted to
impose the MCE requirement are the EViews add factors on the VAR-
based expectations equations. For example, when the expectations
variable zpicxfe has an MC solution, zpicxfe a is an instrument. By
convention, the names of all expectations variables in the first model
start with a z.

• The second or foreward-looking operational model contains two equa-
tions for each MC expectations variable. One defines the appropriate
forward expectation and the other the expectations error. For example,
zpicxfe is the rate of picxfe inflation expected next period and, when it
has as an MC solution, the second model contains a pair of equations of
the form: wpicxfet = picxfet+1 and ezpicxfet = zpicxfet−wpicxfet.
By convention, the names of all expectations variables in the second
model start with a w. The expectations equations in this model are
usually taken from one of the stored FRB/US PF versions, such as
pfver.

The construction of the pair of operational FRB/US models can be carried
out by the mce load frbus subroutine,

call mce_load_frbus(%lstr)

whose argument (%lstr) is a string variable that is used to define five required
keywords and two optional keyword. The keywords are described in table 9.

The following example sets up the pair operational models for the case
in which the FRB/US equations are taken from versions stdver and pfver,

27



Table 9: Keywords for mce load frbus

keyword setting description

required ————
mce vars= string var list of MCE variables
mod b= string var name of source model for first operational

model
path b= string var path for mod b equations
mod f= string var name of source model for second operational

model
path f= string var path for mod f equations

optional ————
allbut= string var list of mod b equations to exclude
only= string var list of mod b equations to include

and the 12 expectations variables that are used in asset pricing have MC
expectations,

%varmod = "stdver"

%varpath = "../mods/"

%mcemod = "pfver"

%mcepath = "../mods/"

%zvars = "zdivgr zgap05 zgap10 zgap30 zrff5 zrff10 zrff30"

%zvars = %zvars + " zpi10 zpi10f zpic30 zpib5 zpic58"

%oo = "mce_vars=%zvars,mod_b=%varmod,path_b=%varpath,"

%oo = %oo + "mod_f=%mcemod,path_f=%mcepath"

call mce_load_frbus(%oo)

In the example, the code for the operational models is located in a directory
named mods that is parallel to the directory in which the simulation program
resides.

If one wanted to omit the ptr equation, for example, from the first oper-
ational model (presumably for later replacement with an alternative specifi-
cation), the first command below would be added and the definition of the
%oo string would be modified as indicated.

28



%qq = "ptr"

%oo = "mce_vars=%zvars,mod_b=%varmod,path_b=%varpath,"

%oo = %oo + "mod_f=%mcemod,path_f=%mcepath,allbut=%qq"

As noted above, the second operational model contains a set of w variables
and a set of e variables, one of each for each MC expectation. The function of
the make frbus mcevars subroutine is to assign values to these variables.
It sets the w variables equal to their z counterparts and the e variables to
zero. The subroutine’s single argument is a string containing the names of
the MCE variables. The form of the subroutine call in the current example
is as follows.

call make_frbus_mcevars(%zvars)

To complete the example, the following code runs a simulation of an
interest rate shock when monetary policy characterized by the Taylor-type
rule coded in the rfftay equation.

text shock1

shock1.append smpl 2012q1 2012q1

shock1.append series rfftay_a = rfftay_a + 1

%modstr = "mod_b=stdver,mod_f=pfver,mce_vars=%zvars,adds,track"

%algstr = "meth=qnewton"

%simstr = "type=single,txt=shock1,suf=_2,scen"

smpl 2012q1 2060q4

call mce_run(%modstr,%algstr,%simstr)

Note that keywords mod b and mod f are assigned to the same model names
that are usedin the call to mce run, because the latter subroutine sets the
names of the operational models to the names of the input models.

29


