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1 Introduction

Some of the key stylized facts regarding economic fluctuations in emerging market economies

seem at odds with the neoclassical theory of business cycle fluctuations for small open economies.

In particular, it has been a challenge for these models to generate a higher variability of con-

sumption relative to output along with a negative correlation between the cyclical components

of the trade balance and output as observed in the data.

The present paper underscores learning about the “nature” of shocks in explaining the afore-

mentioned features of emerging market business cycles. To do so, we build a small open economy

model in which the agent in an emerging market economy observes all the past and current real-

izations of TFP shocks and knows the stochastic properties of the distributions of trend growth

and transitory components, but does not observe the realizations of these components.1 Us-

ing the available information, she forms expectations about trend growth (or permanent) and

transitory (or cycle) components of total factor productivity (TFP, henceforth) shocks using the

Kalman filter.

Under imperfect information, the agent assigns some probability to the TFP shocks being

permanent even when they are purely transitory. This mechanism by itself, however, would

not be sufficient for the model to generate permanent-like responses. Because, just like purely

transitory shocks being interpreted as partly permanent, purely permanent shocks would also

be interpreted as partly transitory. In other words, every shock, regardless of its nature, would

be processed the same way. When signals are modeled as trend plus noise, this mechanism can

allow permanent shocks to dominate leading the model to generate permanent-like responses

only if the variance of trend shocks exceed that of the noise. However, when the signals are

modeled as trend plus cycle, even when the variability of the trend shocks relative to cycle is less

than one, the model can generate permanent-like responses.

In the latter case, the agent’s beliefs about the contemporaneous trend shocks relative to

the cycle are amplified through the Kalman filter. To further elaborate this point, let’s define

total TFP as At ≡ eztΓα
t .2 Γt represents the cumulative product of growth shocks defined by

Γt = egtΓt−1 =
∏t

s=0 egs . z and g are Normal AR(1) processes. The growth rate of A can be

1Apart from the modeling of learning and trend shocks, the model is a canonical small open economy RBC
model featuring production with endogenous capital and labor, where there are costs associated with adjusting
capital. The representative agent can borrow and lend in international capital markets using a one-period non-
contingent bond, i.e., the markets are incomplete.

2α is labor share of output and appears in the definition of total TFP because of the labor augmenting trend
shock assumption. See Section 3 for a more detailed description.

1



written as ln(gA
t ) ≡ ln

(
At

At−1

)
= αgt+zt−zt−1. Under the imperfect information assumption, the

agent optimally decomposes the signals, ln(gA
t ), into trend growth, gt, and change in the cycle,

zt − zt−1. An important implication of this formulation is that when updating the beliefs about

the changes in the cycle, the agent updates her beliefs not only about the contemporaneous cycle

shock, zt, but also its first lag, zt−1. This backward revision of zt−1 at time t has no implications

for the already executed decisions in the previous period. However, it implies, for example,

that in response to a positive signal, the agent may improve her beliefs about the change in

cycle, zt − zt−1, by not only improving her beliefs about the contemporaneous cycle shock, zt,

but also by lowering its first lag, zt−1. Therefore, a given upward updating of zt − zt−1 can be

attained by improving the beliefs about contemporaneous cycle shock, zt, by less than she would

in a setting without the backward revision of zt−1 (e.g., trend plus noise). Moreover, the policy

functions react more to the trend growth shocks compared to the cycle; therefore, a slightly

higher probability assigned to the trend growth component relative to the contemporaneous

cyclical component is sufficient for the model to generate “permanent-like” responses.

With this mechanism in place, the contemporaneous trend growth shocks are amplified vis-

à-vis the contemporaneous cyclical shocks, with the baseline parameters for Mexico generating

a higher variability of consumption relative to output and a strong negative correlation between

the trade balance and output for a wide range of relative variance of trend shocks. A standard

deviation of trend shocks relative to cyclical shocks in the interval [0.5, 5] allows the model to

match key features of emerging market moments reasonably well.

Our motivation as to why imperfect information is crucial for accounting for the emerging

market economy business cycles relies on the following observations derived using the GDP

growth forecasting errors for emerging market economies and developed countries. First, we

find that the root mean squared error (RMSE) of these errors for emerging market economies is

twice that of developed economies. Furthermore, we show that this unpredictability decreases

significantly with the level of development also in relative terms (i.e., considering the standard

deviation relative to the variation of the underlying series). Second, these errors are more likely

to have non-zero means in emerging markets, a symptom of systematic errors. Finally, the

data reveals significant first order autocorrelation for some emerging markets, while none of

the developed countries show this pattern. These findings suggest that an additional layer of

uncertainty regarding the decomposition of TFP into its components may be present in emerging

markets.
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To compare implications of our model with those for developed countries, e.g., Canada, we

reexamine the implied business cycle statistics of the perfect information model for Canada as

in Aguiar and Gopinath (2007). We show that the relative variance of trend shocks estimated

using Canadian data in the perfect information model is very close to that estimated using

Mexican data using the imperfect information model. In addition, we relax the full information

assumption for Canada and imperfect information for Mexico to allow for intermediate degrees of

information imperfection. In order to achieve this, we introduce an additional noisy signal that

reveals information regarding the permanent component of the TFP. By doing so, we can vary the

degree of information imperfection without changing the TFP process. Starting from the baseline

perfect information for Canada and gradually increasing the degree of information imperfection

(by increasing the variance of this signal), the model moments start resembling those of emerging

markets with high consumption variability relative to output and a stronger countercyclicality of

trade balance. Similarly, starting from the baseline imperfect information model for Mexico, and

reducing the noisiness of the signal, model moments move closer to those of developed economies.

This structural analysis provides evidence in line with our empirical observations mentioned

above. In particular, our analysis suggest that a higher degree of information imperfection for

emerging market economies compared to their developed counterparts exists.

Our paper relates mainly to AG and Garcia-Cicco, Pancrazzi and Uribe (2006) (GPU, hence-

forth).3 AG made a significant contribution to the literature by showing that introducing trend

shocks to an otherwise standard small open economy real business cycle model can account for

the aforementioned features of economic fluctuations in emerging market economies.4

In order for AG’s model to account for the two key features of emerging market cycles, a high

variability of trend shocks relative to the transitory shocks is necessary.5 Empirical evidence

regarding the predominance of trend shocks, however, is inconclusive. AG present evidence

suggesting that the relative variance of trend shocks to transitory shocks in Mexico might be

higher than in Canada. In a more recent study, GPU present estimates for Argentina that

3An early contribution in this literature includes Mendoza (1991), who provides a workhorse real business
cycle model for small open economies. Mendoza’s model calibrated to Canada proves successful in explaining the
observed persistence and variability of output fluctuations as well as counter-cyclicality of trade balance.

4The intuition for this result relies on the response of the current account to permanent changes in income, (see
e.g., Chapter 2 in Obstfeld and Rogoff, 1996) which has its roots in the permanent-income theory of consumption.
If faced with a positive trend growth shock to output, the agent increases her consumption by more than the
increase in current output since she expects an even higher output in the following period. This mechanism
generates a consumption profile that is more volatile than output and also a trade balance deficit in response to
a positive trend growth shock for the agent to finance a consumption level above output.

5Throughout the paper, we loosely use the terms “trend shocks” and “cycle shocks” to refer to the trend
growth shocks and the transitory shocks, respectively.
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suggest otherwise. GPU argue that the finding on highly dominant trend shocks is not robust

to considering longer time series data. In our study, instead of focusing on one country, we

calculate the relative variance of trend shocks using TFP data for 21 developed and 25 emerging

market countries and show that developed and emerging market countries are not significantly

different in this regard. Therefore, explanations of the differences between the business cycles of

these two types of economies should not hinge on the relative variance of trend growth shocks.

Our paper differs from the existing literature mainly with regards to introduction of imper-

fect information and learning. The existing literature assumes that the agents are fully-informed

about the types of shocks, that is, when they observe a high realization of output, they know for

sure if it is permanent or transitory. If TFP would measure primarily idiosyncratic technological

shocks at the firm level, one could argue that at the micro level, agents could have perfect infor-

mation about the type of shocks they receive and that imperfect information is just a statistical

problem for the econometrician. However, the main intuition proposed in the literature for why

trend shocks could be more dominant in emerging markets is the importance of regime changes

(monetary, fiscal, and trade policies) which most certainly are not perfectly distinguishable at

the firm or household level. Thus, it appears to be rather a strong assumption especially for

emerging market economies.

Our findings do not imply that trend shocks are unimportant. On the contrary, our study

confirms the importance of these shocks in explaining emerging market regularities in a setting

where agents are imperfectly informed about the types of shocks. By modeling this informational

friction explicitly, we eliminate the need for higher variability of trend shocks. Three key elements

in the model that lead to these results are that existence of trend shocks, existence of transitory

but persistent transitory shocks, and imperfect information regarding the decomposition of TFP

to its components.

Other papers that our study is related to include Mendoza and Smith (2006), who build

an equilibrium model with collateral constraints that amplifies negative productivity shocks to

explain excess volatility movements nested in regular business cycles such as Sudden Stops. In

a related paper, Neumeyer and Perri (2005) show that real interest rates including default risk

are volatile in emerging markets and argue that they lead the business cycles.6

Our paper also relates to the literature on macro models with To our knowledge, ours is

the first paper to incorporate a learning problem with permanent shocks as well as persistent

6See also Uribe and Yue (2006), and Oviedo (2005) on this issue.
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AR(1) transitory shocks using Kalman filtering techniques into a dynamic stochastic general

equilibrium growth model. In this literature, Nieuwerburgh and Veldkamp (2004) study U.S.

business cycle asymmetries in an RBC framework with asymmetric learning. Their analysis

focuses on whether learning regarding transitory TFP shocks can induce asymmetries in output

growth over the business cycle. Also, Boz (2007) investigates the business cycle implications of

learning about persistent productivity shocks. Again, this model does not allow simultaneously

for both, permanent and transitory shocks. In a related paper, Edge, Laubach and Williams

(2004) show that uncertainty with respect to the nature of productivity shocks (permanent shifts

versus transitory shocks) helps explain some of the U.S. business cycle characteristics. Their

model, however, differs from ours in that the focus of their paper is to understand the U.S.

economy in the presence of the alleged TFP acceleration that took place in the early 1990’s.7 In

addition, in their setup, signals are modelled as trend plus iid shocks, whereas we model signals

as trend plus AR(1) cycle shocks which leads to the amplification of trend shocks. Last but not

the least Jaimovich and Rebelo (2006) and Lorenzoni (2006) also model informational frictions

in the context of news driven business cycles.

The rest of the paper is structured as follows. The next section presents our empirical findings.

Section 3 introduces the model as well as the information structure and the consequent learning

process. Section 4 presents our baseline analysis and how we compare emerging markets with

those developed countries. Section 5 concludes and discusses extensions for further research.

2 Empirical Evidence

2.1 Comparison of Forecast Errors

To explore if there are any differences in the uncertainty faced in emerging markets compared to

developed economies, we calculate the standard deviations of forecast errors, check the efficiency

of these errors, and also examine their autocorrelation structure.

Let the forecast for period t + 1 based on information available at time t be defined by ŷt+1,t

and actual GDP growth be yt+1. Then, the one-step-ahead forecast error can be defined as:

et+1,t = yt+1 − ŷt+1,t (1)

7See also Guerrieri et. al., 2005 for an analysis of importance of learning in a multisector open economy model.
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First, we investigate the RMSE of forecast errors based on Consensus Forecasts, IMF’s World

Economic Outlook forecasts, and finally by estimating an ARMA model using TFP data. Table 1

summarizes the RMSE of Consensus Forecasts’ forecast errors (et+1,t) for quarterly GDP growth

(at annualized rates) for a set of developed and emerging market countries until the third quarter

of 2007 since - at most - the last quarter of 1998.8 This table suggests that the RMSE of forecast

errors for emerging markets are systematically higher than those of developed economies. On

average, the RMSE of these errors are 0.95 percentage points for emerging markets and 0.38

percentage points for developed countries, less than half that of emerging markets. The same

result holds if we consider the median RMSE for both groups. In this case, emerging markets

median value is 0.81 versus 0.39 for developed countries. Thus, forecasts are subject to more

uncertainty in emerging markets than in developed countries. Similar evidence is reported by

Timmermann (2006) regarding the World Economic Outlook forecast errors. For example, for

Western Hemisphere the standard deviation of forecast errors is 2.41%, Asia (2.22%), Middle

East (6.38%), Africa (3.19%), and Central and Eastern Europe (3.49%), while for advanced

economies it is 1.36%.

It could be argued that the comparison of RMSE of forecast errors in levels does not take into

account the fact that GDP growth shocks in emerging market economies have a larger standard

deviation. Thus, next we present a measure of relative predictability frequently used to compare

the accuracy of forecasts across series with different variability. The statistic used is the Theil

(1961) Ui indicator for country i, defined by:

Ui =

√√√√ 1
N

∑N
t=1 e2

i,t

1
N

∑N
t=1 y2

i,t

, (2)

where the the nominator is the RMSE of forecast errors and the denominator the standard

deviation of real GDP growth.

Clearly, when this statistic is equal to 0, it means that the forecast is perfect, whereas

larger values imply less forecasting accuracy. We compute this statistic for all countries in our

sample and plot its relationship with GDP per capita in Figure 1. As seen in the graph, there

is a significantly negative correlation between Theil’s U statistic and GDP per capita. The

simple correlation coefficient between both variables is -0.46, significant at conventional levels

of confidence. Thus, the figure provides further evidence on the fact that forecasting real GDP

8The GDP growth data are taken from Bloomberg and refer to quarterly year-on-year growth rates. We report
only those countries for which we have at least 10 quarters of forecasts available.

6



growth in less developed countries is less accurate, even in relative terms.

Furthermore, in emerging market economies forecast errors are more likely to be inefficient,

in the sense that the sample mean of forecasting errors differs significantly from zero which would

imply that forecasters make systematic errors when projecting GDP growth. While in the case

of developed countries there are just two cases out of nine where the forecast errors are biased,

for emerging markets in almost 50% of the cases (8 out of 18) the sample mean of forecast errors

differs significantly from zero at a 10% level of significance. This result suggests again that there

are serious difficulties in forecasting the relevant economic variables for emerging markets.

Finally, in the last column of Table 1, we also examine the first order autocorrelations of

forecast errors. These autocorrelations are positive and significant for the cases of Argentina,

Malaysia and Mexico; however, there is no developed country with a significant autocorrelation.

This positive autocorrelation implies that if e.g., the current GDP growth forecast is below the

actual realization, next period, it will probably underestimate growth again. This type of errors

are likely to occur if a trend shock hits and agents are uncertain about it. In the case of a

positive (negative) trend shock, they would underestimate (overestimate) until they learn that

a structural break took place.9

2.2 Comparison of Solow Residuals

In this subsection, we explore whether there are any systematic differences in the dominance of

permanent shocks between emerging market economies and developed economies. In order to

analyze this issue, we apply the methodology of Cochrane (1988) to calculate the variance of

the random walk components relative to transitory ones for Solow residuals using annual data

for 1960-2003 for a set of developed (21) and emerging market (25) countries.10

The decomposition of shocks into permanent and transitory components proposed by Cochrane

(1988) relies on the following intuition. Suppose that TFP (At) follows a random walk with drift,

such that:

9For both Argentina and Mexico, quarters of extreme collapses in output are not included due to lack of
Consensus Forecast data. We conjecture the results would be much stronger in the case of Argentina, if the two
quarters of 2002 where output collapsed at year-on-year rates greater than -10% were included in our sample.
Consensus Forecasts are unavailable for these particular quarters, which per se is an indicative of the degree of
uncertainty surrounding this kind of episodes.

10Developed countries include Australia, Austria, Belgium, Canada, Denmark, Finland, France, Greece, Ire-
land, Iceland, Italy, Japan, Netherlands, Norway, New Zealand, Portugal, Spain, Sweden, Switzerland, UK, USA.
Emerging market countries include Algeria, Argentina, Brazil, Chile, Colombia, Costa Rica, Dominican Republic,
Ecuador, El Salvador, India, Indonesia, Israel, Korea, Malaysia, Mexico, Pakistan, Panama, Peru, Philippines,
South Africa, Thailand, Trinidad and Tobago, Turkey, Uruguay, and Venezuela.
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ln At = µ + ln At−1 + εt, (3)

where ε is assumed to be a white noise process with mean 0 and standard deviation σ2
ε .

In this case, the variance of the k -differences defined as ∆k = ln At − ln At−k would increase

linearly in k, given that:

σ2
k = var(∆k) = kσ2

ε . (4)

However, if the TFP process is dominated by a stationary process - potentially following an

ARMA process around a deterministic trend (e.g. ln At = µ + αt + ηt with ηt = Θ(L)εt) this

variance would converge to a constant, independent of k. This implies that as k increases, the

following variance ratio:
σ2

k

kσ2
ε
, converges either to 1 - if the permanent component of shocks

dominates - or to 0 if transitory perturbations around a deterministic trend dominates. As

Cochrane (1988) argues, this test has the advantage of not imposing too much structure on the

underlying process and remains valid for any I(1) time series that allows a Beveridge-Nelson

representation into a stochastic trend and a transitory component.

In order to analyze whether there is any systematic evidence of trend shocks being more

dominant in emerging market countries compared to developed economies, we compute the

sample variances for the log-differences of the Solow residuals for k ∈ {1, ..., 20} for each country

from Blyde, Daude and Fernandez-Arias (2007).11 This is the same procedure AG use to analyze

the cases of Canada and Mexico. However, our sample period is almost twice as long as AG’s

and we use a large sample of countries.

Figure 2 displays average random walk components of Solow residuals for both groups of

countries. For lags less than 15, developed countries’ point estimates appear to be larger than

those of emerging market countries. This finding, however, depends on the lag specification

and is not statistically significant. Moreover, there is considerable dispersion across countries

within each group as suggested by the estimated kernel densities reported in Figure 3. For lag

specifications of 5 and 10, the distributions for developed countries are to the right of those

of emerging market countries suggesting higher dominance of the random walk component, but

again these differences are not statistically significant. We conclude that developed and emerging

market countries do not significantly differ in the importance of permanent shocks to TFP.12

11See Appendix for more details on the construction of the TFP series.
12While not reported here, using GDP data instead of TFP yield qualitatively similar results which are available

upon request.
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3 Model

We consider a standard small open economy real business cycle model with trend shocks similar

to that utilized by AG and GPU. Unlike these two studies, in our emerging market economy

model, the representative agent is imperfectly informed about the trend-cycle decomposition of

the TFP shocks and, thereby, solves a learning problem as explained in detail below. We also

compare this model with its developed counterpart in Section ??.

The model features production with endogenous capital and labor. There are costs associated

with adjusting capital which are typically introduced in the literature to match the variability

and the persistence in investment. The agent can borrow and lend in international capital

markets. We assume incomplete asset markets, such that the only financial instrument available

is a one-period non-contingent bond that pays an interest rate that increases with the debt level

to account for possible risk premia charged due to a higher default risk when debt increases.13

At the beginning of every period, the agent observes the realization of TFP shock, updates

expectations regarding the components of TFP, makes investment, labor, level of debt, and

consumption decisions.

The production function takes a standard Cobb-Douglas form,

Yt = eztK1−α
t (ΓtLt)

α, (5)

where α ∈ (0, 1) is the labor’s share of output. zt is the transitory shock that follows an AR(1)

process

zt = ρzzt−1 + εz
t (6)

with |ρz| < 1, and εz
t is independently and identically and normally distributed, εz

t ∼ N(0, σ2
z).

Γt represents the cumulative product of growth shocks and is defined by

Γt = egtΓt−1 =
t∏

s=0

egs ,

and

gt = (1− ρg)µg + ρggt−1 + εg
t ,

13Schmitt-Grohé and Uribe (2003) show that this is a useful way, although somewhat mechanical, to induce a
well-defined stationary distribution of net foreign assets in small open economy models.
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where |ρg| < 1, and εg
t is independently and identically and normally distributed with εg

t ∼
N(0, σ2

g). The term µg represents the long run mean growth rate. Combining trend growth and

transitory shocks, we define a single productivity shock A:14

ln(At) ≡ zt + α ln(Γt). (7)

and growth rate of A as gA:

ln(gA
t ) ≡ ln

(
At

At−1

)
= zt − zt−1 + αgt. (8)

The representative agent’s utility function is in Cobb-Douglas form:

ut =
(Cγ

t (1− Lt)
1−γ)1−σ

1− σ
. (9)

The agent maximizes expected present discounted value of utility subject to the following

resource constraint:

Ct + Kt+1 = Yt + (1− δ)Kt − φ

2

(
Kt+1

Kt

− µg

)2

Kt −Bt + qtBt+1. (10)

Ct, Kt, qt, and Bt denote consumption, the capital stock, price of debt and the level of debt,

respectively. We assume that capital depreciates at the rate δ, and adjustments to capital

stock requires quadratic adjustment cost where φ is adjustment cost parameter. µg denotes the

unconditional mean of the growth rate of A.

We assume that the small open economy faces a debt-elastic interest-rate premium, such that

the interest rate paid is given by:

1

qt

= 1 + rt = 1 + r∗ + ψ

[
e

Bt+1
At

−b − 1

]
, (11)

where b is the aggregate level of debt that the representative agent takes as given.15

14This follows directly from the fact that the production function could be written alternatively as Yt =
AtK

1−α
t (Lt)α, where At = eztΓα

t .
15The debt elastic interest rate premium is introduced so as to induce stationarity to the asset holdings in

the stochastic steady state. Other formulations used in the literature for this purpose include Mendoza (1991)’s
endogenous discounting, and Aiyagari (1994)’s preferences with the rate of time preference higher than the
interest rate. Schmitt-Grohé and Uribe (2003) survey some of the alternative methods used for this purpose and
concludes that quantitative differences among the approaches applied to linearized systems are negligible.
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Since realizations of shock gt permanently affect Γt, output is nonstationary. To induce

stationarity, we normalize all the variables by At−1.
16 We use the notation that a variable with

a hat denotes its detrended counterpart. After detrending, the resource constraint becomes:

Ĉt + K̂t+1g
A
t = Ŷt + (1− δ)K̂t − φ

2

(
K̂t+1

K̂t

gA
t − µg

)2

K̂t − B̂t + gA
t qtB̂t+1. (12)

The recursive representation of the representative agent’s problem can be formulated as

follows:

V (K̂t, B̂t, z̃t, ln(g̃t), g
A
t ) = max

{
u(Ĉt, Lt) + β(gA

t )γ(1−σ)EtV (K̂t, B̂t+1, z̃t+1, ln(g̃t+1), g
A
t+1)

}
,

(13)

where z̃t and ln(g̃t) are the beliefs regarding the transitory and permanent shock, respectively.

subject to the budget constraint:

Ĉt + K̂t+1g
A
t = Ŷt + (1− δ)K̂t − φ

2

(
K̂t+1

K̂t

gA
t − µg

)2

K̂t − B̂t + gA
t qtB̂t+1. (14)

Defining investment as Xt, we can summarize the evolution of the capital stock as follows:

gA
t K̂t+1 = (1− δ)K̂t + X̂t − φ

2

(
K̂t+1

K̂t

gA
t − µg

)2

K̂t. (15)

The first order conditions for the competitive equilibrium are:

γĈγ(1−σ)−1(1− Lt)
(1−γ)(1−σ)

(
gA

t φ

(
gA

t

K̂t+1

K̂t

− µg

)
+ gA

t

)
= −βg

Aγ(1−σ)
t Et

∂V

∂K̂t+1

, (16)

γĈγ(1−σ)−1(1− Lt)
(1−γ)(1−σ)gA

t qt = β(gA
t )γ(1−σ)Et

∂V

∂B̂t+1

, (17)

K̂t

1− Lt

=
γ

1− γ

∂Ŷt

∂Lt

. (18)

Equation (16) is the Euler Equation that relates the marginal benefit of investing an additional

unit of resource in capital to marginal cost of not consuming that unit. Equation (17) is the Euler

16Note that AG normalize by Γt−1. In our imperfect information setting, Γt−1 is not in the information set of
the agent. Yt−1 and At−1 are other plausible candidates for normalization as they grow at the same rate as A and
are in emerging market representative agent’s information set. We choose to normalize by At−1, but normalizing
by Yt−1 would yield identical results.
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Equation related to the level of debt and equation (18) is the first order condition concerning

the labor-leisure choice.

3.1 Filtering Problem

In our emerging market economy model, we assume that the representative agent is imperfectly

informed about the true decomposition of the TFP shocks into its trend growth and cycle

components and forms expectations about this decomposition using the Kalman filter. Her

information set as of time t includes the entire history of TFP shocks; It ≡ {At, At−1, ...}. We

also assume that underlying probabilistic distributions of Γ and z are known to the agent. Thus,

we abstract from any consideration regarding model uncertainty to concentrate exclusively on

the implications of learning under imperfect information about the nature of the shocks.

In order to use the Kalman filter, we express the filtering problem in state space form as

described in Harvey (1989). This form is composed of a measurement equation and a transition

equation. The measurement equation is just a vector reformulation of Equation (8). It describes

the relationship between the observed variable gA, and the unobserved variables z and g, and is

given by:

ln(gA
t ) =

[
1 −1 α

]

︸ ︷︷ ︸
Z




zt

zt−1

gt




︸ ︷︷ ︸
αt

. (19)

The measurement equation includes the lagged value of transitory shock, zt−1. Because, to make

the learning problem stationary, the relationship between the observed and unobserved variables

needs to be formulated in growth rates. The transition equation summarizes the evolution of

unobserved variables and is given by:
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T




zt−1

zt−2

gt−1




︸ ︷︷ ︸
αt−1

+




0

0

(1− ρg)µg




︸ ︷︷ ︸
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+
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0 1




︸ ︷︷ ︸
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 εz
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εg
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︸ ︷︷ ︸
ηt

(20)

where ηt ∼ N(0,Q) and Q ≡

 σ2

z 0

0 σ2
g


. Equation (27) simply summarizes the autoregressive

processes of trend growth and transitory components of TFP in matrix notation. Given the
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normality of the disturbances, the optimal estimator that minimizes the mean squared error is

linear. The matrices Z, d, T, c, R and Q are the system matrices. Following the notation of

Harvey (1989), we denote the optimal estimator of αt based on information set, It by at:

at ≡ E[αt|It]. (21)

The covariance matrix of the estimation error is given by Pt:

Pt ≡ E[(αt − at)(αt − at)
′]. (22)

In this setting, the updating rule converges monotonically to a time-invariant solution for the

error covariance matrix.17 In addition, the steady state error covariance matrix can be calculated

as a solution to the following algebraic Riccati equation:

P = TPT′ −TPZ′(ZPZ′)−1ZPT′ + RQR′. (23)

Finally, using It−1 and the transition equation (27), we have:

at|t−1 = Tat−1 + c. (24)

The updating rule sets the posteriors at to be a convex combination of prior beliefs at|t−1

and the new signal ln(gA
t ):

at = [I−PZ′(ZPZ′)−1Z]︸ ︷︷ ︸
k1

at|t−1 + [PZ′(ZPZ′)−1]︸ ︷︷ ︸
k2

ln(gA
t ) (25)

where I is an identity matrix of size 3 × 1. Equations (24) and (25) fully characterize learning.

Equation (25) deserves a closer look. This equation consists of two parts. The first part

is priors, at|t−1 or E[α|It−1] = E[zt, zt−1, gt|It−1], multiplied by their corresponding weights

summarized in the matrix k1
3×3. The second part is the new signal, gA

t , multiplied by the Kalman

gain k2
3×1. Weights assigned to the priors and the new signals (k1 and k2) depend mainly on the

relative variance of trend to cycle shocks, σg/σz. As we will illustrate and explain in detail in

the next section, the higher the relative variability of trend shocks, the larger the share of TFP

shocks attributed to the permanent component.

17See Harvey (1989) pp. 123 for a proof of this statement.
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4 Quantitative Analysis

This section explains the calibration and estimation procedure of the parameters, documents the

estimated parameters, and business cycle moments for both Mexico and Canada. In addition, for

Mexico, it plots impulse response functions and explains in detail the implications of introducing

imperfect information.

4.1 Emerging Market Business Cycles: Application to Mexico

We calibrate our model to quarterly Mexican data. We use a combination of calibrated and

estimated parameters. For β, γ, b, ψ, α, σ, and δ, we use values that are standard in the

literature (see e.g., Mendoza, 1991; AG; Schmitt-Grohé and Uribe, 2003; Neumeyer and Perri,

2005). The parameter γ is set to 0.36 which implies that around one-third of agent’s time is

devoted to labor in the steady-state. Note that the coefficient on the interest rate premium is

set to a small value, 0.001. The full set of calibrated parameters is summarized in Table 2.

We set µg to the average growth rate of output from the data and estimate the remaining

structural parameters, σg, σz, ρg, ρz, and φ using a GMM estimation applied to the imper-

fect information model.18 Our estimation, reported in Table 3, yields a standard deviation of

transitory component higher than the standard deviation of the trend growth component. The

autocorrelation coefficients for both the trend growth and the transitory components are close

to 0.6. Next, we summarize our findings and relate them to those in the literature.

4.1.1 Business Cycle Moments

We solve our model using a first order approximation around the deterministic steady state

following the “brute-force iterative procedure” proposed by Binder and Pesaran (1997).19 Table

4 compares the business cycle moments of the imperfect information model with Mexican data

as well as with those of the benchmark perfect information model calibrated to AG’s Mexico

parameters. For comparison, we also calculate the moments of the perfect information model

using the imperfect information model’s parameters. We calculate all moments using simulated

data series. Simulated data is HP-filtered with a smoothing parameter of 1600, the standard

18See the appendix for more details, as well as Burnside (1999) for the description and application of the GMM
methodology.

19The log-linearized system is provided in an Appendix available upon request. See Binder and Pesaran (1997)
for a detailed description of the solution method.
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value for quarterly data.

Before examining the model with imperfect information, it is worth revisiting the dynamics

of the benchmark model with perfect information. In the perfect information model, when there

is a positive transitory shock to output, the representative agent increases her consumption but

this increase is lower than the increase in output. Because the agent knows that the output

will gradually decline back to its previous level, she saves a portion of the increase in output.

This is the standard consumption-smoothing effect in the presence of transitory shocks. When

the shock is permanent, however, i.e., there is a positive shock to trend growth rate, the agent

observes an increase in output today but she also realizes that future output will be even higher.

The agent’s optimal response to such positive permanent shocks is to increase her consumption

more than the increase in current output. When both shocks are present in such an environment

with perfect information, whether the effects of trend growth shocks dominate the transitory

shocks depends on the relative variance of each shock. With imperfect information, however, the

model can generate permanent-like responses even with lower relative variability of permanent

components as agents can assign certain probability of transitory shocks being permanent or

vice versa.

The imperfect information model matches the key moments of the Mexican data very closely

(Table 4). The ratio of consumption variability to income variability is 1.17, compared to 1.26 in

the data. The correlation of net-export with output is -0.69, which compares quite well with the

value of -0.75 in the data. The model also matches the other moments closely as illustrated in

Table 4. The GMM estimation reveals a relative variability of 0.78 suggesting that the imperfect

information model matches the data without a predominance of trend growth shocks. With

this parametrization, the detrended output is less volatile than in the data, which also implies a

higher relative variability of investment and the trade balance compared to the data. This latter

result might be due to the dampening of the shocks in models with imperfect information, also

found by Boz (2007), among others.

The imperfect information model performs well with AG parameters, too. When those

parameters are fed into the imperfect information model, the model can match key moments

reasonably well as illustrated in the fourth column of Table 4. Therefore, the results of the

imperfect information model does not hinge on a specific value for relative variability of trend

shocks as we explain further below.

In contrast, the perfect information model requires strong predominance of permanent shocks.
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AG estimate a variability for trend growth shocks of 2.55 percent and a variability for transitory

shocks of 0.54 percent, which implies a relative variance of trend shock, σg/σz, of 4.02. To

illustrate the resulting implications of the perfect information model when permanent shocks

are not predominant, we also report in the last column of Table 4 the moments of this model

using the imperfect information model’s parametrization. When permanent shocks are not

predominant, the perfect information model implies a consumption variability less than that of

output and procyclical net-exports, which is clearly at odds with the empirical moments. Also,

the correlation of output with consumption and investment is significantly smaller than in the

data.

4.1.2 Impulse Response Functions

Figure 4 plots the impulse response functions to 1-percent shocks to transitory as well as perma-

nent components of TFP in the perfect information model. With a 1-percent transitory shock,

as illustrated by the first panel, the model displays consumption smoothing: taking into account

that output would gradually move back to its initial value, the agent saves a portion of the cur-

rent increase in output; hence, consumption increases less than output and net exports becomes

positive. When the economy is hit by a 1-percent permanent shock as illustrated in the second

panel, however, consumption increases more than output, and net exports become significantly

negative.

Figure 5 plots the response of the imperfect information model to transitory and permanent

shocks. In response to a 1-percent transitory shock (top panel), the model displays “permanent-

like” responses: consumption increases more than output; net export declines significantly. In

response to a 1-percent permanent shock (bottom panel), the model again displays permanent-

like responses: consumption responds more than output; net-export declines significantly. Even

though imperfect information dampens the response of all variables, for the case of transitory

shocks, there is an amplification effect, driven by the fact that the agent assigns a positive prob-

ability to the event that the shock might be permanent and, therefore, increases investment and

consumption by more than in the perfect information case. In addition, comparing the perfect

information model impulse responses depicted in Figure 4 to those of imperfect information

model, learning introduces persistence.

To illustrate the learning dynamics implied by the model, we plot beliefs for permanent and

transitory components along with TFP in Figure 6. The crossed solid line depicts TFP, the
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diamond-dashed line plots the evolution of the belief about the permanent component, while the

star-dashed line represents the evolution of the belief for the transitory component. In the top

panel, the source of fluctuations in TFP is a 1-percent transitory component shock, whereas in

the bottom panel, it is a trend shock of the same magnitude. In the first panel, interestingly,

TFP shock turns negative after the initial positive shock. This is in fact intuitive. Rewriting

Equation 8, we have: ln(gA
t ) = zt− zt−1 +αgt. Thus, gt is zero as only the transitory component

is shocked in the first panel, while zt increases by 1-percent on impact and zt−1 = 0 because we

start from the steady state. As the shock dies out after the first period, zt = ρzzt−1 becomes

smaller than zt−1 implying a negative value for zt− zt−1. With zt− zt−1 < 0 and gt = 0, we have

ln(gA
t ) turning negative after the initial period as depicted in the top panel of Figure 6.

The Kalman filter assigns slightly higher probability to trend component. This appears

counterintuitive considering that the cycle component is more volatile than the trend according

to our GMM estimations of the imperfect information model. However, the experiment explained

next clarifies the intuition for this finding.

We simulate a case where both 1% permanent shock and 1% transitory shock are given at

the same time in the perfect and the imperfect information models. Table 5 documents the

true values of these shocks in perfect information case and the beliefs calculated by the agent

in imperfect information case under baseline parameterization. As expected, under perfect

information, the shocks are 1 % each for gt and zt leading to 1.68 % growth in TFP, given that

α = 0.68. Under imperfect information, however, while decomposing TFP between gt and ∆zt,

the agent assigns 0.65% to g̃t, 0.60% to z̃t, and −0.63% to z̃t−1. In other words, the agent, using

the Kalman filter, increases z̃t while decreasing z̃t−1, part of the increase in ∆z̃t coming from an

update of z̃t−1. This leads to the increase in g̃t to be larger than z̃t inducing a dampening of the

contemporaneous cyclical component in the imperfect information model. Considering that the

policy decisions of time t−1 are already executed at the time when the signal ln(gA
t ) arrives, the

reduction in z̃t−1 does not impact the imperfect information model’s long run moments directly.

However, as mentioned earlier, the reduction in z̃t−1 allows the agent to increase ∆z̃t by increasing

z̃t by a smaller amount than she would otherwise under perfect information scenario. This has

a significant impact on the long run moments because it induces the agent to give more weight

to permanent shocks relative to the contemporaneous cycle shocks in the imperfect information

model. Moreover, note that both g̃t and z̃t under imperfect information are lower than gt and

zt under perfect information. This leads to a dampening in the overall volatilities in imperfect
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information setting. This dampening manifests itself as a reduction in overall volatilities in the

imperfect information model relative to the perfect information model (compare σ(y) of 3.21 in

the perfect information model vs 2.18 in the imperfect information model in Table 4).

This experiment reveals that although the relative variability of trend shocks, σg < σz, is less

than 1 under the baseline parametrization, trend shocks get amplified through the Kalman filter.

In order to analyze further the link between the relative variability and the amplification of trend

shocks through the Kalman filter, we conduct further experiments. We report implied beliefs

attached to the components of TFP for various values of σg/σz (Table 6). These experiments

reveal that the probability assigned to a given TFP shock being permanent (g̃t) monotonically

increases with σg/σz, while that assigned to it being transitory (z̃t) decreases. Note that the

relative variability of trend shocks that equates g̃t to z̃t is 0.76, which is slightly lower than

0.78 under baseline parametrization. This experiment illustrates the strong responsiveness of

consumption and trade balance to trend shocks. Only a small amplification of trend shock

through the Kalman filter is sufficient for explaining the stylized facts for emerging market

business cycles. Also note that, for σg/σz = 0.5, the weight assigned to the contemporaneous

cycle component is higher than the trend component so that the imperfect information model

generates moments more inline with developed country moments, i.e., σ(c)/σ(y) < 1.

This amplification of trend shocks through the Kalman filter hinges on the revision of z̃t−1.

The revision of z̃t−1 in case of a positive shock at time t is downwards. This is because the agent

assigns positive probability to a scenario with a negative transitory shock in period t − 1. A

close investigation of the top panel of Figure 6 reveals that for example in the case of a positive

transitory shock in period 1, gA
t = αgt + zt − zt−1 increases in period 1 with unchanged zt−1

and gt. However, starting with the second period, gA
t turns negative with zt < zt−1 as the shock

dies out gradually. The mirror image of these dynamics occur in the case of a negative shock.

Going back to Table 5, observing a positive signal in period t, the agent realizes that a positive

transitory or permanent shock might have hit at time t, or a negative transitory shock might

have hit in period t−1 and gA went up in period t as this negative shock dies out. Assigning some

probability to each of these scenarios, the agent increases her belief about gt, zt, and reduces the

one about zt−1.
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4.1.3 Sensitivity Analysis on the Relative Variability of Trend Shocks

Figure 7 shows how key moments change as we change the relative variability of the trend shocks,

σg/σz, while keeping the other parameters constant. As the first panel illustrates, as long as the

relative variability of the permanent component relative to the transitory component is higher

than approximately 0.7, the model can generate a higher consumption variability relative to

output variability. In order for the model to match counter-cyclicality of the trade balance, the

relative variability of trend shocks needs to be less than 2. Hence, the imperfect information

model can match these two key moments with σg/σz in 0.7 to 2 range, considering ρg = 0.61.

However, this does not imply that the imperfect information model requires a σg/σz in the range

of [0.7, 2]. Our analysis suggests that once we allow the other estimated parameters (ρz, ρg, φ)

to change, the imperfect information model is able to match the data fairly closely for a wide

range of values for σg/σz.
20

The ability of the imperfect information model to match the key moments (σ(c)/σ(y) and

ρ(nx, y)) for a wide range of relative variability of trend shocks is evident in Figure 8. The top

panel of this figure plots σ(c)/σ(y) for different values of relative variability of trend shocks (y-

axis) and ρg (x-axis).21 We keep the remaining parameters (ρz, µ, φ) at their original values from

the baseline parametrization of imperfect information model. Similarly, the bottom panel shows

ρ(nx, y) for the same sets of parameters. The top panel suggests that, in general, σ(c)/σ(y)

increases with the relative variability of trend shocks and ρg. σ(c)/σ(y) of 1.26 observed in the

data can be matched with (σg/σz, ρg) ∈ {(5, 0), (3, 0.2), (2, 0.4), (1, 0.61), (2.2, 0.8)}. That is, the

model can match this moment with higher relative variability of trend shocks if one allows for

lower ρg. Similarly, the correlation between output and net exports, ρ(nx, y) of −0.75, in the

data is implied by the imperfect information model for (σg/σz, ρg) ∈ {(4.5, 0), (2.2, 0.2), (1.1, 0.4),

(0.7, 0.61), (0.5, 0.8)}. Likewise, the model can match this moment with several values for relative

variability of trend shocks and ρg combinations if lower ρg’s are combined with higher relative

variability of trend shocks.

Figure 9 displays the results of the same exercise for the perfect information model with AG

20Comparing Figure 7 with Figure 4 of AG, in both setups, σ(c)/σ(y) increases with σg/σz. However, ρ(nx, y)
increases with σg/σz in the imperfect information setup, whereas it decreases in the perfect information model
with AG parameters.

21We conducted similar analysis by allowing ρz and φ to vary along with the relative variability of trend shocks
and found that variation in those parameters do not change the relationship between σ(c)/σ(y), ρ(nx, y), and
the relative variability of trend shocks. In other words, regardless of ρz and φ, σ(c)/σ(y) and ρ(nx, y) increase
with relative variability of trend shocks. Simulations are available upon request.

19



parametrization. The perfect information model is able to generate σ(c)/σ(y) and ρ(nx, y) that

are similar to those in the data only with high variability for trend component and low ρg. In

this model, σ(c)/σ(y) monotonically increases with relative variability of trend shocks. However,

with respect to ρg, it does not display a monotonic relationship. It generates σ(c)/σ(y) > 1 when

relative variability of trend shocks is greater than 3.5 with ρg = 0, and when relative variability

of trend shocks is greater than around 2 for higher values of ρg. For the perfect information

model to predict ρ(nx, y) < 0, ρg needs to be lower than 0.6, and for it to reach the levels of

countercyclicality in the data (lower than −0.50), ρg has to be in the close neighborhood of zero

and relative variability of trend shocks needs to be higher than 2.5.

Summing up, so far our results show the ability of the imperfect information model to match

the business cycle fluctuations in emerging market countries for a large range of key param-

eter values. Motivated by the observation that there is greater degree of uncertainty faced in

emerging markets compared to developed economies, a model that incorporates learning problem

regarding the decomposition of TFP to its components performs remarkably well. To illustrate

the importance of this layer of uncertainty that distinguishes emerging market economies from

their developed counterparts, we next revisit the implications of the perfect information model

for an developed economy business cycles, Canada.

4.2 Comparison of Emerging Market and Developed Economy Busi-

ness Cycles

In this subsection, we explore further the hypothesis that the higher degree of information

imperfection in emerging markets is the main driver of the higher consumption volatility relative

to income and countercyclical net exports. In order to do so, we perform two sets of analysis.

First, we revisit the perfect information model calibrated to match Canadian business cycles.

Second, we relax the extreme the assumptions that developed economies are characterized by

full information and that in emerging markets the only source of information is the growth rate

of TFP. We do so by generalizing our model to allow for intermediate levels of information

imperfection for both types of economies.
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4.2.1 Comparison with Perfect Information for Canada

In order to carry out the analysis under perfect information, we use the same estimation and

solution methods that we used in our baseline analysis. Calibrated parameters for Canada are

the same as those used in Table 2. Estimated parameters, however, are summarized in Table

7. These parameters are similar to those documented by AG. Notice that the implied relative

variability of the trend shock is 0.78, which is similar to the corresponding value in the imperfect

information model calibrated to match Mexican business cycles. As Table 8 illustrates, with these

estimated parameters, the perfect information model matches Canadian business cycles closely.

Thus, an important result that our analysis conveys is that simply introducing an additional

layer of uncertainty can explain the observed differences in the business cycles of developed and

emerging market economies remarkably well without reliance on differences in relative variance

of trend shocks.

4.2.2 Varying Degrees of Information Imperfection

In our baseline imperfect information model, TFP growth (gA
t ) is the only source of information

about the true values of gt and zt and therefore the noisiness of signals are inherently determined

by the TFP process. In order to separate the TFP process uncertainty from the degree of

information imperfection, we introduce an additional publicly observable signal that reveals

information about the trend shocks. Note that the baseline imperfect information model is a

particular case of this model when the noisiness of this additional signal goes to infinity and

therefore it reveals no information. And when it goes to zero and reveals entirely the true trend

shock, the model gets closer to the full information setting.22

To make such a modification, we need to alter the filtering problem. Let us define the new

additional signal as st = gt+εs
t where εs ∼ N(0, σs). Note that we could also model this signal as

one that reveals information about the cycle (z). This would yield similar results because a more

accurate knowledge of g would transform into a more accurate knowledge of z and vice versa.

This latter observation is due to the fact that the sum of g and ∆z is actually observed (through

the TFP growth). Accordingly, the information set is modified to include the realization of these

new signals, It ≡ {At, st, At−1, st−1, ...}. The measurement equation becomes:

22However, note that even in the case when trend shocks are fully observed, the agents can backtrack only
∆zt using gA

t − gt = ∆zt but not the true value of zt. Therefore, even in that case, this model does not become
identical to the full information setting.
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The transition equation is modified as:




zt

zt−1

gt

εs
t




︸ ︷︷ ︸
αt

=




ρz 0 0 0

1 0 0 0

0 0 ρg 0

0 0 0 0




︸ ︷︷ ︸
T




zt−1

zt−2

gt−1

εs
t−1




︸ ︷︷ ︸
αt−1

+




0

0

(1− ρg)µg

0




︸ ︷︷ ︸
c

+




1 0 0

0 0 0

0 1 0

0 0 1




︸ ︷︷ ︸
R




εz
t

εg
t

εs
t




︸ ︷︷ ︸
ηt

(27)

where ηt ∼ N(0,Q) and Q ≡




σ2
z 0 0

0 σ2
g 0

0 0 σ2
s


. The remaining parts of the model regarding

production, consumption, etc. remain the same as baseline. In this setting with two signals,

we can specify the degree of information imperfection by varying σs without changing the TFP

process.

Table 9 reports the business cycle moments for different degrees of information imperfection,

using the previously estimated parametrization for Mexico. The first column with σs → ∞ is

identical to our baseline imperfect information model. We report in the following five columns

the results with lower values of σs. Note that as σs falls, the moments get closer to those of

developed economies. It is possible to compare the perfect information model moments with the

baseline imperfect information parameters, as reported in the last column of Table 4, with the

last column of Table 9. For low values of σs, these moments become very similar.

We conduct the same experiment for Canada whose results are reported in Table 10. The

first column reproduces the baseline perfect information results and the remaining five columns

report the moments with increasing values for σs. As can be seen, as we increase the degree of

information imperfection, model moments start resembling those of emerging market economies

with increasing variability of consumption relative to output and a more countercyclical trade

balance. In line with the empirical findings of Section 2.1, our structural model also suggests
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the existence of a higher degree of information imperfection for emerging market economies

compared to their developed counterparts.

5 Conclusion

In this paper, we provided a framework to explain the key business cycle characteristics of

emerging market economies. We showed that when the agents are imperfectly informed about

the trend-cycle decomposition of productivity shocks, and they solve a learning problem using the

Kalman filter to estimate the components of the TFP, the model can generate higher volatility

of consumption relative to output and strongly counter-cyclical trade balance without reliance

on higher variability of trend shocks. When we estimated this model using GMM, we found

that the implied relative variability of trend shocks in this model is similar to those estimated

for developed countries. This result is consistent with our empirical analysis based on data from

21 developed and 25 emerging market countries which suggests that emerging market countries

do not differ from their developed counterparts in this respect confirming the relevance of our

theoretical findings.

The mechanism that drives the results in the imperfect information model relies on the learn-

ing dynamics. While formulating expectations, the Kalman filter decomposes the beliefs into

trend growth shocks and changes in level of cyclical shocks. While updating the beliefs about

the changes in the level of the cyclical shock, agents increase the value of their beliefs about the

contemporaneous component whereas revising their beliefs about the first lag. Therefore, the

learning mechanism dampens the effect of cycle shocks relative to the trend. In addition, per-

manent shocks have stronger effects on policy decisions compared to the transitory ones. Hence,

a slightly higher probability assigned to the trend component relative to the contemporaneous

cycle component is sufficient for the imperfect information model to produce “permanent-like”

responses. With these features in place, the imperfect information model can account for stylized

facts for a wide range of relative variability of trend shocks to transitory, including those less

than one.

Our analysis underscores the uncertainty regarding the decomposition of TFP into its trend-

cycle components in explaining the emerging market business cycles. We showed that explicitly

modeling this friction improves business cycle models’ ability to explain those fluctuations sig-

nificantly. In particular, with those frictions in place, the model can generate the key features
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of emerging market business cycles for a wide range of relative variability of trend shocks. The

three key features important in this is: existence of trend shocks, existence of transitory but

persistent cycle shocks, and uncertainty regarding the decomposition of TFP to its components.
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A Appendix

A.1 TFP computation

Assume that output (Yt) can be represented by the following Cobb-Douglas production function:

Yt = Kα
t (htLt)

1−αAt,

where Kt is the capital stock, Lt is labor which is augmented its relative efficiency due to

schooling (ht), and At is TFP.

For capital, we use annual investment data from the Penn World Tables, version 6.2. The

capital stock series are constructed via the perpetual inventory approach following Easterly and

Levine (2001). In particular, the law of motion for the capital stock is given by:

Kt+1 = Kt(1− δ) + It,

where It denotes investment and the rate of depreciation of the capital stock which is set to 0.07.

In steady state, the initial capital-output ratio is:

k =
i

g + δ
,

where i is the steady state investment-output ratio and g the steady state growth rate. In order

to calibrate k, we approximate i by the country’s average investment-output ratio in the first ten

years of the sample and g by a weighted average between world growth (75%) and the country’s

average growth in the first ten years of the sample. The initial capital level K0 is obtained by

multiplying the three-year average output at the beginning of the sample.

For labor, we use the labor force implied by the real GDP per worker and real GDP (chain)

series from the Penn World Tables. To calibrate human capital ht, we follow Hall and Jones

(1999) and consider h to be the relative efficiency of a unit of labor with E years of schooling.

In particular, h is constructed by:

h = eϕ(E),

where ϕ(·) is a function that maps the years of schooling into efficiency of labor with ϕ(0) = 0

and ϕ′(E) equal to the Mincerian return to schooling. We assume the same rates of return to
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schooling for all countries: 13.4% for the first four years, 10.1% for the next four, and 6.8% for

all years of schooling above eight years (following Psacharopoulos, 1994). The data on years of

schooling is obtained from the Barro-Lee database and linear extrapolations are used to complete

the five-year data.

Output per worker is given by:

Yt

Lt

=

(
Kt

Lt

)α

h1−α
t At

Taking logs and reorganizing terms yields:

ln(At) = ln(Yt)− ln(Lt) + α
(
ln(kt) + ln(Lt)

)
+ (1− α) ln(ht).

A.2 GMM Estimation

This subsection presents the GMM moment conditions and procedures used in our estimations.

The estimated structural parameters are b ≡ (σg, σz, ρg, ρz, φ). In terms of notation, all lower-

case variables are in logs and x̃ refers to the Hodrick-Prescott filtered series of x. Net exports, nx,

is expressed as a fraction of output. Furthermore, σ refers to the theoretical variance-covariance

terms, while S refers to the moments in the data. The moments conditions are given by:

ut =




σ2
ỹ − S2

ỹ

σ2
∆y − (∆y − ȳ)2

σ2
c̃ − S2

c̃

σ2
ĩ
− S2

ĩ

σ2
nx − (nx− n̄x)2

σỹ,c̃ − Sỹ,c̃

σỹ,̃i − Sỹ,̃i

σỹ,nx − Sỹ,nx

σỹt,ỹt−1 − Sỹt,ỹt−1

σ∆yt,∆yt−1 − S∆yt,∆yt−1




Let ū be the sample mean of ut and J(b,W ) = ū′Wū, with W being a symmetric positive

definite weighting matrix. The GMM estimate of b is given by the vector that minimizes J(b,W ).

The matrix W is estimated using the two-step procedure outlined by Burnside (1999).
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Figure 1: Relative Predictability of Real GDP Growth
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Figure 2: Relative Variance of Random Walk Component
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Figure 3: Densities of the Relative Variances of the Random Walk Component
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Figure 4: Impulse Responses in the Perfect Information Model
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Note: This figure illustrates the response of the endogenous variables to a 1-percent shock to the transitory (top
panel) vs. trend growth component (bottom panel) of the TFP.
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Figure 5: Impulse Responses in the Imperfect Information Model
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Note: This figure illustrates the response of the endogenous variables to a 1-percent shock to the transitory (top
panel) vs. trend growth component (bottom panel) of the TFP.
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Figure 6: Beliefs Attached to TFP Components
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Figure 7: Sensitivity of Moments to the Relative Variability of Trend Shocks Ratios
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Figure 8: Imperfect Information Model Moments with Different σg/σz and ρg’s
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Figure 9: Perfect Information Model Moments with Different σg/σz and ρg’s
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Table 1: Moments of Forecast Errors in EMEs vs. Developed Economies

Country No. of observations Mean RMSE corr(et+1,t, et,t−1)

Developed Countries
Australia 33 -0.01 0.50 0.16
Denmark 23 0.11 0.39 -0.02
Finland 11 0.35* 0.70 -0.41
France 25 -0.02 0.30 -0.35
Italy 18 -0.11 0.39 -0.02
Netherlands 16 -0.02 0.36 0.32
Spain 20 0.04 0.15 -0.13
Switzerland 14 0.14 0.46 0.08
United Kingdom 36 0.05* 0.14 0.01
Average 21.78 0.06 0.38 -0.01
Median 20.00 0.04 0.39 0.01

EMEs
Argentina 26 -0.57 2.23 0.57*
Brazil 28 -0.28* 0.83 0.06
Chile 14 0.10 0.28 0.21
China 21 0.30* 0.55 -0.33
Colombia 17 0.23 0.87 0.03
India 21 0.30 0.85 0.06
Indonesia 20 0.18* 0.43 0.18
Hong Kong 26 0.70* 0.80 -0.16
Korea 23 0.23 0.86 -0.10
Malaysia 28 0.01 0.99 0.62*
Mexico 33 0.05 0.59 0.31*
Peru 61 0.43* 1.45 -0.13
Philippines 17 -0.35* 0.65 -0.13
Singapore 18 -0.37* 0.46 -0.21
South Africa 23 -0.01 0.80 0.28
Taiwan 22 -0.16 0.86 0.21
Thailand 18 -0.19* 0.42 0.16
Turkey 28 -0.13 3.12 0.10
Average 24.67 0.03 0.95 0.10
Median 22.50 0.03 0.81 0.08

Source: Bloomberg. * Significantly different from 0 at 10% level.
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Table 2: Calibrated Parameters

β Discount factor 0.98

γ Consumption exponent of utility 0.36

b Steady state normalized debt 10

ψ Coefficient on interest rate premium 0.001

α Labor exponent 0.68

σ Risk aversion 2

δ Depreciation rate 0.05

Table 3: Estimated Parameters of the Imperfect Information Model for Mexico

σg Stdev of permanent component noise 1.06
(0.00)

σz Stdev of transitory component noise 1.35
(0.00)

ρg Persistence of permanent component 0.61
(0.02)

ρz Persistence of transitory component 0.60
(0.03)

φ Capital adjustment cost 1.27
(0.03)

µg Growth rate 0.66

σg/σz Relative variance of trend shocks 0.78

Note: This table summarizes the parameter estimates calculated using generalized method of moments. The
moment conditions are provided in the Appendix. The numbers in parentheses are standard errors in percent.
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Table 4: Business Cycle Moments for Mexico

Data AG GMM with II II with AG PI with II param

σ(y) 2.40 2.13 2.18 1.46 3.21

σ(∆y) 1.52 1.42 1.55 1.33 2.68

σ(c)
σ(y)

1.26 1.10 1.17 1.17 0.75

σ(I)
σ(y)

4.15 3.83 4.17 6.74 3.71

σ(NX)
σ(y)

0.90 0.95 0.89 1.44 1.31

ρ(y) 0.83 0.82 0.77 0.66 0.68

ρ(∆y) 0.27 0.18 0.27 0.04 0.10

ρ(y,NX) -0.75 -0.50 -0.69 -0.69 0.38

ρ(y, c) 0.92 0.91 0.97 0.95 0.44

ρ(y, I) 0.91 0.80 0.85 0.83 0.31

Notes: Moments are calculated using the simulated and HP-filtered data generated by the corresponding model.
AG refers to the perfect information model using the parameter values from Aguiar and Gopinath (2007), II
refers to the imperfect information model. The column “II with AG param” refers to the imperfect information
model using AG parameters, while the column ‘PI with II param’ reports the moments of the perfect information
setup generated using the estimated parameters of the imperfect information setup.

Table 5: Perfect vs Imperfect Information

ln(gA
t ) = αgt + ∆zt g̃t z̃t z̃t−1

PI 1.68 % 1 % 1 % 0 %

II 1.68 % 0.65 % 0.60 % -0.63 %

Note: g̃t, z̃t, and z̃t−1 are equal to their true values in the perfect information case.
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Table 6: Further Experiment on Kalman Learning

Model σg/σz ln(gA
t ) = αgt + ∆zt g̃t z̃t z̃t−1

PI 0.78 1.68 % 1 % 1 % 0 %

II 0.5 1.68 % 0.36 % 0.83 % -0.61 %

II 0.76 1.68 % 0.62 % 0.62 % -0.63 %

II 0.78 1.68 % 0.65 % 0.60 % -0.63 %

II 1 1.68 % 0.85 % 0.49 % -0.61 %

II 1.5 1.68 % 1.25 % 0.32 % -0.51 %

II 2 1.68 % 1.54 % 0.22 % -0.41 %

II 2.5 1.68 % 1.75 % 0.16 % -0.33 %

II 3 1.68 % 1.91 % 0.12 % -0.26 %

II 4 1.68 % 2.10 % 0.08 % -0.17 %

II 5 1.68 % 2.22 % 0.05 % -0.12 %

Notes: This table illustrates the weights or beliefs attached to the components of TFP for various values of
relative variability of permanent to transitory shock.

Table 7: Estimated Parameters of the Perfect Information Model for Canada

σg Stdev of permanent component noise 0.52
(0.00)

σz Stdev of transitory component noise 0.67
(0.00)

ρg Persistence of permanent component 0.33
(0.01)

ρz Persistence of transitory component 0.96
(0.02)

φ Capital adjustment cost 2.15
(0.03)

µg Growth rate 0.73

σg/σz Relative variance of trend shocks 0.78

Notes: This table summarizes the parameter estimates calculated using generalized method of moments to match
Canadian business cycles. The numbers in parentheses are standard errors in percent.
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Table 8: Business Cycle Moments for Canada

Data Model

σ(y) 1.55 1.29

σ(∆y) 0.80 0.92

σ(c)
σ(y)

0.74 0.71

σ(I)
σ(y)

2.67 3.72

σ(NX)
σ(y)

0.57 0.68

ρ(y) 0.93 0.76

ρ(∆y) 0.55 0.23

ρ(y,NX) -0.12 -0.13

ρ(y, c) 0.87 0.83

ρ(y, I) 0.74 0.83

Table 9: Mexico: Varying Degrees of Information Imperfection

σs →∞ σs = 0.5 σs = 0.1 σs = 0.05 σs = 0.02 σs = 0.005

σ(y) 2.18 2.20 2.26 2.46 2.81 3.11

σ(∆y) 1.55 1.56 1.61 1.77 2.04 2.30

σ(c)
σ(y)

1.17 1.16 1.13 1.03 0.91 0.83

σ(I)
σ(y)

4.17 4.16 4.11 3.94 3.75 3.62

σ(NX)
σ(y)

0.89 0.90 0.93 1.06 1.19 1.25

ρ(y) 0.77 0.77 0.82 0.67 0.76 0.74

ρ(∆y) 0.27 0.25 0.43 0.32 0.30 0.30

ρ(y,NX) -0.69 -0.64 -0.53 -0.15 0.17 0.32

ρ(y, c) 0.97 0.96 0.94 0.82 0.67 0.57

ρ(y, I) 0.85 0.83 0.79 0.62 0.41 0.30
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