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In a seminal paper, Chris Erceg, Dale Henderson, and Andy Levin (2000)

analyzed the consequences for optimal monetary policy of the stickiness of

both wages and prices. A key contribution of their paper was the demon-

stration that the expected utility of the representative household in their

model could be approximated by an objective with three terms, involving

measures of the variability of wage inflation, price inflation and the output

gap respectively. While wage-inflation stabilization has not commonly been

included among the assumed objectives of monetary policy in studies that

lack welfare-theoretic foundations, Erceg et al. showed that in the context

of their model (with Calvo-style staggering of both wage- and price-setting

decisions), such an objective is appropriate in the case that wages as well as

prices are sticky. This is because variability of the rate of growth of nominal

wages implies misalignment of wages that are adjusted at different times, and

hence inefficient utilization of different types of labor. They showed further-

more that the existence of this additional stabilization objective implies that

a policy aimed solely at inflation stabilization (a strict inflation target) is not

generally optimal, and may be quite undesirable. Instead, their numerical

analysis suggests that one can do quite well by targeting an appropriately

chosen weighted average of wage and price inflation, with a greater relative

weight on wage inflation the greater the relative stickiness of wages.

Here we reexamine the issues raised by Erceg et al. in a slightly more

general setting. Following Rotemberg and Woodford (1997), Erceg et al. as-

sume the existence of an output subsidy in order to eliminate the distortion

resulting from the market power of the suppliers of differentiated goods, and

a similar employment subsidy to eliminate the distortion resulting from the

market power of the suppliers of differentiated forms of labor.1 As a result,

the equilibrium allocation of resources would be optimal in their model, in

the case that both wages and prices were fully flexible. This is an impor-

1In fact, as we show below, there is no need for two distinct subsidies to achieve the
result that they seek. The presence of a linear term in the quadratic approximation to
utility depends only on the overall index Φ of the degree of inefficiency of steady-state
output, introduced below.
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tant simplification, for it implies, even in the model with sticky wages and

prices, that the steady state level of output under a policy that maintains

stable prices is efficient, and hence that (to first order) an increase in the

average level of output would neither raise nor lower welfare. Hence in a

quadratic approximation to expected utility, obtained as a Taylor series ex-

pansion around the allocation associated with this steady state, there is no

linear term in the expected level of output. This allows Erceg et al. to obtain

a purely quadratic loss function, just as Rotemberg and Woodford (1997) do

in the case that only prices are sticky. Hence they obtain a welfare measure

that can be evaluated, to second order in the amplitude of the exogenous

disturbances, using only an approximate solution for the equilibrium result-

ing from a given policy rule that is accurate to first order, i.e., a log-linear

approximation to the model structural relations.

While this feature of their results makes the analysis much more tractable

in the case that they consider, the assumption of output and employment

subsidies (rather than positive tax rates on sales, payrolls, and wage income)

is clearly unrealistic. Furthermore, there is reason to fear that such an analy-

sis may miss an important aspect of the welfare consequences of stabilization

policy. As Henderson and Kim (2003), among others, have stressed, in exact

models of optimal wage- and price-setting one typically finds that stabiliza-

tion policy affects the average levels of equilibrium output and employment,

and not simply their variability. In the welfare analysis of Erceg et al., such

effects may be neglected, because a change in the average level of output that

is only of second order in the amplitude of the disturbances has no second-

order effect on welfare; but this result depends on the fact that (owing to the

assumed subsidies) the steady-state level of output is optimal. Under more

realistic assumptions, the steady-state level of output would be judged to be

inefficiently low, owing to tax distortions as well as market power in both the

goods and labor markets; but this would mean that a second-order effect of

stabilization policy on average output would make a second-order contribu-

tion to welfare, that might be as important (even in the case of arbitrarily

small disturbances) as the second-order welfare effects of stabilization policy

considered by Erceg et al.

Here we show how the analysis of Erceg et al. can be extended to take ac-
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count of such effects, and hence to allow a correct welfare analysis (to second-

order accuracy) even in the presence of substantial steady-state distortions.

One approach to dealing with such effects that has recently become popular

involves solving for equilibrium under alternative policy rules to second-order

accuracy, using a second-order Taylor series expansion of the model struc-

tural relations. Here we show instead that, even in the case of a distorted

steady state, it is possible to obtain a purely quadratic loss function, similar

to the one obtained by Erceg et al., which can then be evaluated to second-

order accuracy using only log-linear approximations to both the policy rule

and the model structural relations. This requires that we substitute out the

linear terms in the Taylor series expansion for expected utility in terms of

purely quadratic terms, using the method employed by Benigno and Wood-

ford (2004) in the case of an economy with staggered price-setting but flexible

wages. (Essentially, the effects of stabilization policy on the average level of

output are used to replace a welfare measure that involves the average level

of output by one that is purely quadratic.) In this way, we are able to show

that results similar to those of Erceg et al. continue to obtain in the case of a

distorted steady state, though the size of the steady-state distortions matters

for one’s quantitative conclusions regarding the nature of optimal policy.

We generalize the analysis of Erceg et al. other respects as well. Erceg et

al. consider only policies with the property that in the absence of exogenous

disturbances, the equilibrium will correspond to the efficient steady state.

(This means policies under which both wages and prices will be constant,

in the absence of exogenous disturbances.) This allows them to obtain an

approximate welfare measure that involves only the variances of macroeco-

nomic variables. We drop this assumption, and so obtain an approximate

welfare measure that also allows one to compare policies under which the

average inflation rate is not exactly zero. It turns out that in the kind of

model considered here, optimal policy does involve a zero average inflation

rate; but this result can be derived from our evaluation of alternative rules

using the quadratic loss function, rather than having to be assumed from the

start.2 Finally, Erceg et al. restrict attention to time-invariant policy rules,

2The conclusion is not an obvious one, in the case that the steady state with zero
inflation is no longer assumed to involve an efficient level of output, since the model is one
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and evaluate unconditional expected utility in the stationary equilibrium as-

sociated with such a rule. We show instead how it is possible to evaluate

discounted expected utility conditional upon some initial state, though we

propose a criterion for optimality (“optimality from a timeless perspective”)

under which optimal policy can be shown (rather than being assumed) to be

time-invariant.

1 Monetary Stabilization Policy: Welfare-Theoretic

Foundations

Here we describe our assumptions about the economic environment and pose

the optimization problem that a monetary stabilization policy is intended to

solve. The approximation method that we use to characterize the solution

to this problem is then presented in the following section. Further details

of the derivation of the structural equations of our model of nominal price

and wage rigidities can be found in Erceg et al. (2000) and Woodford (2003,

chapter 3).

1.1 Objective and Constraints

In our model, there is a continuum of measure one of households. Household

of type j seeks to maximize

U j
t0 ≡ Et0

∞∑
t=t0

βt−t0
[
ũ(Cj

t ; ξt)− v(ht(j); ξt)
]
, (1.1)

where Ct is a Dixit-Stiglitz aggregate of consumption of each of a continuum

of differentiated goods,

Ct ≡
[∫ 1

0

ct(i)
θp−1

θp di

] θp
θp−1

, (1.2)

with an elasticity of substitution equal to θp > 1, and ht(j) is the quantity

supplied of labor which is specific to household of type j.

in which the average inflation rate affects the average level of output.
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There is a continuum of measure one of differentiated goods and each

household consumes all the goods. The objective of policy is to maximize

the sum of the utilities of the households at time t0. We will assume risk-

sharing among the households in a way that they will face the same budget

constraint and make the same consumption choices even if they have different

wages. It follows that the objective of policy is to maximize Ut0 defined as

Ut0 ≡ Et0

∞∑
t=t0

βt−t0

[
ũ(Ct; ξt)−

∫ 1

0

v(ht(j); ξt)dj

]
. (1.3)

To simplify the algebraic form of our results we shall restrict attention to the

case of isoelastic functional forms,

ũ(Ct; ξt) ≡
C1−σ̃−1

t C̄ σ̃−1

t

1− σ̃−1
, (1.4)

v(ht; ξt) ≡
λ

1 + ν
h1+ν

t H̄−ν
t , (1.5)

where σ̃, ν > 0, and {C̄t, H̄t} are bounded exogenous disturbance processes.

(We use the notation ξt to refer to the complete vector of exogenous distur-

bances, including C̄t and H̄t.) We assume that the labor used to produce

each good is a CES aggregate of the continuum of individual types of labor

supplied by the households defined by

Ht(i) ≡
[∫ 1

0

ht(j)
θw−1

θw dj

] θw
θw−1

for some elasticity of substitution θw > 1. Here ht(j) is the labor of type j

that is hired. Each differentiated type of labor is supplied in a monopolistically-

competitive market. It follows that the demand for labor of type j on the

part of wage-taking firms is given by

ht(j) = Ht

(
wt(j)

Wt

)−θw

, (1.6)

where wt(j) is the nominal wage demanded for labor of type j and Wt is the

Dixit-Stiglitz wage index

Wt ≡
[∫ 1

0

wt(j)
1−θwdj

] 1
1−θw

, (1.7)
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and Ht is defined as

Ht ≡
∫ 1

0

Ht(i)di.

We assume a common technology for the production of all goods

yt(i) = Atf(Ht(i)) = AtHt(i)
1/φ,

where At is an exogenously varying technology factor, and φ > 1. We first

note that we can write∫ 1

0

v(ht(j); ξt)dj =
λ

1 + ν
H1+ν

t ∆w,tH̄
−ν
t , (1.8)

where

∆w,t =

∫ 1

0

(
wt(j)

Wt

)−θw(1+ν)

dj ≥ 1 (1.9)

is a measure of wage dispersion at date t. Moreover

Ht =

∫ 1

0

Ht(i)di = Y φ
t A−φ

t ∆p,t, (1.10)

where

∆p,t ≡
∫ 1

0

(
pt(i)

Pt

)−θp(1+ωp)

di ≥ 1 (1.11)

is a measure of price dispersion at date t, in which Pt is the Dixit-Stiglitz

price index

Pt ≡
[∫ 1

0

pt(i)
1−θpdi

] 1
1−θp

, (1.12)

and ωp ≡ φ− 1 Using (1.8), (1.10) and the identity

Yt = Ct + Gt

to substitute for Ct, where Gt is exogenous government demand for the com-

posite good, we can write the utility flow in the form U(Yt, ∆p,t, ∆w,t; ξt),

where the vector ξt now includes the exogenous disturbances Gt and At as
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well as the preference shocks.3 Hence we can write our objective (1.3) as

Ut0 = Et0

∞∑
t=t0

βt−t0U(Yt, ∆p,t, ∆w,t; ξt). (1.13)

We assume that the wage for each type of labor is set by the monopoly

supplier of that type, who stand ready to supply as many hours of work as

turn out to be demanded at that wage. We assume that wage setters fix

the wages in monetary units for a random interval of time, as in the model

of staggered pricing introduced by Calvo (1983). We let 0 ≤ αw < 1 be

the fraction of wages that remain unchanged in any period. A supplier that

changes its wages in period t chooses its new wage wt(j) to maximize

Et

{
∞∑

T=t

(αwβ)T−t[ΛT wt(j)hT (wt(j))− v(hT (wt(j)); ξt)

}
, (1.14)

where ΛT is the representative household’s marginal utility of nominal income

in period T and the dependence of labor demand hT (j) upon the wage is given

by (1.6), and αT−t
w is the probability that a wage chosen in period t will not

have been revised by period T .

Each of the wage suppliers that revise their wages in period t choose the

same new wage w∗
t , that maximizes (1.14). Note that supplier j’s objective

function is a concave function of the quantity of working hours supplied ht(j),

since revenues are proportional to h
θw−1

θw
t (j) and hence concave in ht(j), while

costs are convex in ht(j). Moreover, since ht(j) is proportional to wt(j)
−θw ,

the objective function is also concave in wt(j)
−θw . The first-order condition

for the optimal choice of the wage wt(j) is the same as the one with respect

to wt(j)
−θw ; hence the first-order condition with respect to wt(i),

Et

{
∞∑

T=t

αw
T−tQt,T HT W θw

T

[
w∗

t − µw
vh(hT (w∗

t ); ξt)

ũc(YT −GT ; ξT )
PT

]}
= 0,

3The government is assumed to need to obtain an exogenously given quantity of the
Dixit-Stiglitz aggregate each period, and to obtain this in a cost-minimizing fashion. Hence
the government allocates its purchases across the suppliers of differentiated goods in the
same proportion as do households, and the index of aggregate demand Yt is the same
function of the individual quantities {yt(i)} as Ct is of the individual quantities consumed
{ct(i)}, defined in (1.2).
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where

µw ≡ θw

θw − 1
,

is both necessary and sufficient for an optimum. In the above expression,

Qt,T is the stochastic discount factor by which financial markets discount

random nominal income in period T to determine the nominal value of a

claim to such income in period t. In equilibrium, this discount factor is given

by

Qt,T = βT−t ũc(CT ; ξT )

ũc(Ct; ξt)

Pt

PT

.

Under our assumed isoelastic functional forms, the optimal choice has a

closed-form solution
w∗

t

Wt

=

(
Kw,t

Fw,t

) 1
1+νθw

, (1.15)

where Kw,t and Fw,t are functions of current aggregate output Yt, the real

wage Wt/Pt, the index of price dispersion ∆p,t, the current exogenous state

ξt, and the expected future evolution of wage inflation, output, real wage,

price dispersion and disturbances, defined by

Fw,t ≡ Et

∞∑
T=t

(αwβ)T−tuy(YT ; ξT )Y φ
T A−φ

T ∆p,T
WT

PT

(
WT

Wt

)θw−1

, (1.16)

Kw,t ≡ Et

∞∑
T=t

(αwβ)T−tµwvh(Y
φ
T ; ξT )Y φ

T A
−φ(1+ν)
T ∆1+ν

p,T

(
WT

Wt

)θw(1+ν)

, (1.17)

where we have used the definition

u(Y ; ξ) ≡ ũ(Y −G; ξ).

The wage index then evolves according to a law of motion

Wt =
[
(1− αw)w∗1−θw

t + αwW 1−θw
t−1

] 1
1−θw , (1.18)

as a consequence of (1.7). Substitution of (1.15) into (1.18) implies that

equilibrium wage inflation in any period is given by

1− αwΠθw−1
w,t

1− αw

=

(
Fw,t

Kw,t

) θw−1
1+νθw

, (1.19)
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where Πw,t ≡ Wt/Wt−1. This defines a short-run aggregate supply relation be-

tween wage inflation and output, real wage and the index of price dispersion,

given the current disturbances ξt, and expectations regarding future wage

inflation, output, real wage, the index of price dispersion and disturbances.

We can also use (1.18) to derive a law of motion of the form

∆w,t = hw(∆w,t−1, Πw,t) (1.20)

for the dispersion measure defined in (1.9), where

hw(∆w, Πw) ≡ αw∆wΠθw(1+ν)
w + (1− αw)

(
1− αwΠθw−1

w

1− αw

)− θw(1+ν)
1−θw

.

The producers for each differentiated good fix the prices of their goods in

monetary units for a random interval of time. We let 0 ≤ αp < 1 be the

fraction of prices that remain unchanged in any period. A supplier that

changes its price in period t chooses its new price pt(i) to maximize

Et

{
∞∑

T=t

αT−t
p Qt,T Π(pt(i), PT ; WT , YT , ξT )

}
where the function

Π(p(i), P ; W, Y, ξ) ≡ (1− τ)p(i)Y (p(i)/P )−θp −W · f−1(Y (p(i)/P )−θp/A)

(1.21)

indicates the after-tax nominal profits of a supplier with price p when the

aggregate price index is equal to P and aggregate demand is equal to Y . Here

τt is the proportional tax on sales revenues in period t; we treat {τt} as an

exogenous disturbance process, taken as given by the monetary policymaker.

We assume that τt fluctuates over a small interval around a non-zero steady-

state level τ̄ ; this is a further reason for inefficiency of the steady-state level

of output, in addition to the market power of the suppliers of differentiated

goods.4 The disturbances τt and At are also included as elements of the

vector of exogenous disturbances ξt.

4Other types of distorting taxes would have similar consequences, since it is the overall
size of the steady-state inefficiency wedge that is of greatest importance for our analysis,
as we show below. To economize on notation, we assume that the only distorting tax is
of this particular kind.
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Each of the suppliers that revise their prices in period t choose the same

new price p∗t , that maximizes (1.21). Note that supplier i’s profits are a

concave function of the quantity sold yt(i), since revenues are proportional to

y
θp−1

θp

t (i) and hence concave in yt(i), while costs are convex in yt(i). Moreover,

since yt(i) is proportional to pt(i)
−θp , the profit function is also concave in

pt(i)
−θp . The first-order condition for the optimal choice of the price pt(i) is

the same as the one with respect to pt(i)
−θp ; hence the first-order condition

with respect to pt(i),

Et

{
∞∑

T=t

αT−t
p Qt,T Π1(pt(i), PT ; WT , YT ; ξT )

}
= 0,

is both necessary and sufficient for an optimum. The equilibrium choice p∗t
(which is the same for all the firms that adjust their prices at time t) is the

solution to the above equation.

Under our assumed isoelastic functional forms, the optimal choice has a

closed-form solution
p∗t
Pt

=

(
Kp,t

Fp,t

) 1
1+ωpθp

, (1.22)

where Fp,t and Kp,t are functions of current aggregate output Yt, the current

exogenous state ξt, and the expected future evolution of inflation, output,

real wages and disturbances, defined by

Fp,t ≡ Et

∞∑
T=t

(αpβ)T−t(1− τT )uy(YT ; ξT )YT

(
PT

Pt

)θp−1

, (1.23)

Kp,t ≡ Et

∞∑
T=t

(αpβ)T−tuy(YT ; ξT )φµp
WT

PT

(
YT

AT

)φ(
PT

Pt

)θp(1+ωp)

, (1.24)

in which expressions

µp ≡
θp

θp − 1
. (1.25)

The price index then evolves according to a law of motion

Pt =
[
(1− αp)p

∗1−θp

t + αpP
1−θp

t−1

] 1
1−θp

, (1.26)
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as a consequence of (1.12). Substitution of (1.22) into (1.26) implies that

equilibrium inflation in any period is given by

1− αpΠ
θp−1
p,t

1− αp

=

(
Fp,t

Kp,t

) θp−1

1+ωpθp

, (1.27)

where Πp,t ≡ Pt/Pt−1. This defines a short-run aggregate supply relation

between inflation and both output and real wage, given the current distur-

bances ξt, and expectations regarding future inflation, output, real wage and

disturbances. We can also use (1.26) to derive a law of motion of the form

∆p,t = hp(∆p,t−1, Πp,t) (1.28)

for the dispersion measure defined in (1.11), where

h(∆p, Πp) ≡ αp∆pΠ
θp(1+ωp)
p + (1− αp)

(
1− αpΠ

θp−1
p

1− αp

)− θp(1+ωp)

1−θp

.

Equations (1.20) and (1.28) are the sources in our model of welfare losses

from price and wage inflation or deflation. Finally we note that price and

wage inflation rates are related to the real wages as

wR,t = wR,t−1
Πw,t

Πp,t

, (1.29)

where wR,t ≡ Wt/Pt.

We assume the existence of a lump-sum source of government revenue

(in addition to the proportional tax τ on sales revenues), and assume that

the fiscal authority ensures intertemporal government solvency regardless of

what monetary policy may be chosen by the monetary authority. This allows

us to abstract from the fiscal consequences of alternative monetary policies

in our consideration of optimal monetary stabilization policy, as in Erceg et

al. (2000) and much of the literature on monetary policy rules.

Finally, we follow Erceg et al. in abstracting from any monetary fric-

tions that would account for a demand for central-bank liabilities that earn a

substandard rate of return; we nonetheless assume that the central bank can

control the riskless short-term nominal interest rate it, as discussed in Wood-

ford (2003, chapter 2). We also assume that the zero lower bound on nominal
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interest rates never binds under the optimal policies considered below,5 so

that we need not introduce any additional constraint on the possible paths

of output and prices associated with a need for the chosen evolution of prices

to be consistent with a non-negative nominal interest rate. We also note that

the ability of the central bank to control it in each period gives it one de-

gree of freedom each period (in each possible state of the world) with which

to determine equilibrium outcomes. Considering (1.20), (1.28) and (1.29)

and because of the existence of the aggregate-supply relations (1.19), (1.27)

as necessary constraints on the joint evolution of price, wage inflation rates

and output, there is exactly one degree of freedom to be determined each

period, in order to determine particular stochastic processes {Πw,t, Πp,t, Yt}
from among the set of possible rational-expectations equilibria. Hence we

shall suppose that the monetary authority can choose from among the possi-

ble processes {Πw,t, Πp,t, Yt} that constitute rational-expectations equilibria,

and consider which equilibrium it is optimal to bring about; the detail that

policy is implemented through the control of a short-term nominal interest

rate will not actually matter to our calculations.

1.2 Optimal Policy from a “Timeless Perspective”

Under the standard (Ramsey) approach to the characterization of an optimal

policy commitment, one chooses among state-contingent paths {Πp,t, Πw,t, Yt,

wR,t, ∆p,t, ∆w,t, Fp,t, Kp,t, Fw,t, Kw,t} from some initial date t0 onward that

satisfy (1.16), (1.17), (1.19), (1.20), (1.23), (1.24), (1.27), (1.28) and (1.29)

for each t ≥ t0, given initial price and wage dispersions ∆p,t0−1, ∆w,t0−1 and

initial real wage wR,t0−1, so as to maximize (1.13). Such a t0−optimal plan

requires commitment, insofar as the corresponding t−optimal plan for some

later date t, given the initial conditions ∆p,t−1, ∆w,t−1 and wR,t−1 obtaining at

that date, will not involve a continuation of the t0−optimal plan. This failure

of time consistency occurs because the constraints on what can be achieved at

date t0, consistent with the existence of a rational-expectations equilibrium,

5This can be shown to be true in the case of small enough disturbances, given that the
nominal interest rate is equal to r̄ = β−1 − 1 > 0 under the optimal policy in the absence
of disturbances.
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depend on the expected paths of the above set of variables at later dates;

but in the absence of a prior commitment, a planner would have no motive

at those later dates to choose a policy consistent with the anticipations that

it was desirable to create at date t0.

However, the degree of advance commitment that is necessary to bring

about an optimal equilibrium is of only a limited sort. Paralleling the analysis

of Benigno and Woodford (2004), it can be shown that the Ramsey problem

can be decomposed in two stages of which the second is fully recursive and

of the same form of the Ramsey problem itself except for an additional con-

straint on a particular set of variables. In our case this set Xt is given by

Xt ≡ (Fp,t, Kp,t, Fw,t, Kw,t).

Our aim here is to characterize policy that solves this constrained opti-

mization problem in which one chooses among state-contingent paths {xt,

Xt}, with xt ≡ {Πp,t, Πw,t, Yt, wR,t, ∆p,t, ∆w,t} from some initial date t0 on-

ward that satisfy (1.16), (1.17), (1.19), (1.20), (1.23), (1.24), (1.27), (1.28)

and (1.29) for each t ≥ t0, given initial price and wage dispersions ∆p,t0−1,

∆w,t0−1, real wage wR,t0−1 and an initial condition on the set of variables Xt0 ,

so as to maximize (1.13). Because of the recursive form of this problem, it is

possible for a commitment to a time-invariant policy rule from date t onward

to implement an equilibrium that solves the problem, for some specification

of the initial commitments Xt. A time-invariant policy rule with this prop-

erty is said by Woodford (2003, chapter 7) to be “optimal from a timeless

perspective.”6 Such a rule is one that a policymaker that solves a traditional

Ramsey problem would be willing to commit to eventually follow, though

the solution to the Ramsey problem involves different behavior initially, as

there is no need to internalize the effects of prior anticipation of the policy

adopted for period t0. One might also argue that it is desirable to commit

to follow such a rule immediately, even though such a policy would not solve

the (unconstrained) Ramsey problem, as a way of demonstrating one’s will-

ingness to accept constraints that one wishes the public to believe that one

will accept in the future.

6See also Woodford (1999) and Giannoni and Woodford (2002).
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2 A Linear-Quadratic Approximate Problem

In fact, we shall here characterize the solution to this problem (and simi-

larly, derive optimal time-invariant policy rules) only for initial conditions

near certain steady-state values, allowing us to use local approximations in

characterizing optimal policy. We establish that these steady-state values

have the property that if one starts from initial conditions close enough to

the steady state, and exogenous disturbances thereafter are small enough, the

optimal policy subject to the initial commitments remains forever near the

steady state. Hence our local characterization describes the long run char-

acter of Ramsey policy, in the event that disturbances are small enough.7

Of greater interest here, it describes policy that is optimal from a timeless

perspective in the event of small disturbances.

We first must show the existence of a steady state, i.e., of an optimal

policy (under appropriate initial conditions) that involves constant values

of all variables. To this end we consider the purely deterministic case, in

which the exogenous disturbances C̄t,Gt,H̄t,At, τt each take constant values

C̄, H̄, Ā, τ̄ > 0, Ḡ ≥ 0 for all t ≥ t0. We wish to find an initial degree of price

and wage dispersions ∆p,t0−1, ∆w,t0−1 and initial commitments Xt0 = X̄ such

that the solution to the optimal problem involves a constant policy xt = x̄,

Xt+1 = X̄ each period, in which ∆̄p and ∆̄w are equal to the initial price and

wage dispersions. We show in the appendix that the first-order conditions

for this problem admit a steady-state solution of this form, and we verify

below that (when our parameters satisfy certain bounds) the second-order

conditions for a local optimum are also satisfied.

We show that Π̄p = Π̄w = 1(zero price and wage inflation), and corre-

spondingly that ∆̄p = ∆̄w = 1(zero price and wage dispersion). We may

furthermore assume without loss of generality that the constant values of C̄

and H̄ are chosen so that in the optimal steady state, Ct = C̄ and Ht = H̄

7See Benigno and Woodford (2004) for further discussion. In the simpler model treated
there, it is shown explicitly that Ramsey policy converges asymptotically to the steady
state of the constrained problem, so that the solution to the LQ approximate problem
approximates the response to small shocks under the Ramsey policy, at dates long enough
after t0. A similar result could be established here using similar reasoning.
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each period.8

We next wish to characterize the optimal responses to small perturbations

of the initial conditions and small fluctuations in the disturbance processes

around the above values. To do this, we compute a linear-quadratic approx-

imate problem, the solution to which represents a linear approximation to

the solution to the policy problem defined above. An important advantage

of this approach is that it allows direct comparison of our results with those

obtained in other analyses of optimal monetary stabilization policy. Other

advantages are that it makes it straightforward to verify whether second-

order conditions hold that imply that a solution to our first-order conditions

will represent at least a local optimum, and that it provides us with a welfare

measure with which to rank alternative sub-optimal policies, in addition to

allowing computation of the optimal policy.

2.1 A Quadratic Approximate Welfare Measure

We begin by computing a Taylor-series approximation to our welfare measure

(1.13), expanding around the steady-state allocation defined above, in which

yt(i) = Ȳ and ht(j) = H̄ for each good and variety of labor at all times and

ξt = 0 at all times.9 As a second-order (logarithmic) approximation to this

measure, we obtain10

Ut0 = Ȳ ūc · Et0

∞∑
t=t0

βt−t0ΦŶt −
1

2
uyyŶ

2
t + Ŷtuyξξt − u∆p∆̂p,t − u∆w∆̂w,t

+ t.i.p. +O(||ξ||3), (2.30)

where Ŷt ≡ log(Yt/Ȳ ), ∆̂p,t ≡ log ∆p,t and ∆̂w,t ≡ log ∆w,t measure deviations

of aggregate output, price and wage dispersion measured from their steady-

8Note that we may assign arbitrary positive values to C̄, H̄ without changing the nature
of the implied preferences, as long as the value of λ is appropriately adjusted.

9Here the elements of ξt are assumed to be c̄t ≡ log(C̄t/C̄), h̄t ≡ log(H̄t/H̄), at ≡
log(At/Ā), Ĝt ≡ (Gt − Ḡ)/Ȳ , and τ̂t ≡ (τt − τ̄)/τ̄ , so that a value of zero for this vector
corresponds to the steady-state values of all disturbances. The perturbation Ĝt is not
defined to be logarithmic so that we do not have to assume positive steady-state value for
this variable.

10See the appendix for details. Our calculations here follow closely those of Woodford
(2003, chapter 6) and Benigno and Woodford (2004).
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state levels, the term “t.i.p.” collects terms that are independent of policy

(constants and functions of exogenous disturbances) and hence irrelevant for

ranking alternative policies, and ||ξ|| is a bound on the amplitude of our

perturbations of the steady state.11 Here the coefficient

Φ ≡ 1− θw − 1

θw

θp − 1

θp

(1− τ̄) < 1

measures the steady-state wedge between the marginal rate of substitution

between consumption and leisure and the marginal product of labor, and

hence the inefficiency of the steady-state output level Ȳ . The coefficients

uyy, uyξ, u∆p and u∆w are defined in the appendix.

In addition, we can take a second-order approximation to equations (1.20)

and (1.28) and integrate them to obtain

∞∑
t=t0

βt−t0 ∆̂w,t =
αw

(1− αw)(1− αwβ)
θw(1+ν)(1+νθw)

∞∑
t=t0

βt−t0
π2

w,t

2
+t.i.p.+O(||ξ||3),

(2.31)
∞∑

t=t0

βt−t0 ∆̂p,t =
αp

(1− αp)(1− αpβ)
θp(1+ωp)(1+ωpθp)

∞∑
t=t0

βt−t0
π2

p,t

2
+t.i.p.+O(||ξ||3),

(2.32)

where πp,t ≡ ln Pt/Pt−1 and πw,t ≡ ln Wt/Wt−1. Substituting (2.31) and

(2.32) into (2.30), we can then approximate our welfare measure by

Ut0 = Ȳ ūc · Et0

∞∑
t=t0

βt−t0 [ΦŶt −
1

2
uyyŶ

2
t + Ŷtuyξξt −

1

2
uπpπ

2
p,t −

1

2
uπwπ2

w,t]

+t.i.p. +O(||ξ||3), (2.33)

for certain coefficients uπw , uπp > 0 defined in the appendix. Note that we

can now write our stabilization objective purely in terms of the evolution of

the aggregate variables {Ŷt, πw,t, πp,t} and the exogenous disturbances.

11Specifically, we use the notation O(||ξ||k) as shorthand for
O(||ξ, ∆̂1/2

p,t0−1, ∆̂
1/2
w,t0−1, X̂t0 ||k), where in each case hats refer to log deviations from

the steady-state values of the various parameters of the policy problem. We treat ∆̂1/2
p,t0 ,

∆̂1/2
w,t0 as expansion parameters, rather than ∆̂p,t0 , ∆̂w,t0 because (1.20), (1.28) imply

that deviations of the inflation rates from zero of order ε only result in deviations in the
dispersion measures ∆p,t, ∆w,t from one of order ε2. We are thus entitled to treat the
fluctuations in ∆p,t, ∆w,t as being only of second order in our bound on the amplitude of
disturbances, since if this is true at some initial date it will remain true thereafter.
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We note that when Φ > 0, there is a non-zero linear term in (2.33), which

means that we cannot expect to evaluate this expression to second order using

only an approximate solution for the path of aggregate output that is accurate

only to first order. Thus we cannot determine optimal policy, even up to first

order, using this approximate objective together with approximations to the

structural equations that are accurate only to first order. Erceg et al. (2000)

avoid this problem by assuming an output subsidy (i.e., a value τ̄ < 0) of

the size needed to ensure that Φ = 0. Here we wish to relax this assumption.

We show here that an alternative way of dealing with this problem is to use

a second-order approximation to the aggregate-supply relations to eliminate

the linear terms in the quadratic welfare measure. We show in the appendix

that to second order, equations (1.19) and (1.27) can be written as

Vj,t = ξj(c
′
j,xxt + cj,ξξt +

1

2
x′tCj,xxxt − x′tCj,xξξt +

1

2
cj,πpπ

2
p,t +

1

2
cj,πwπ2

w,t) + βEtVj,t+1

+s.o.t.i.p. +O(||ξ||3), (2.34)

for j = p, w. Here the notation “s.o.t.i.p.” indicates terms independent of

policy that are entirely of second or higher order, xt denotes a two-by-one

vector whose elements are Ŷt and ŵR,t ≡ log(wR,t/w̄R). We have defined

Vj,t ≡ πj,t +
1

2
vj,ππ2

j,t + vj,zπj,tZj,t,

where

Zj,t ≡ Et

∞∑
T=t

(αjβ)T−t[zj,yŶT + zj,rŵR,T + zj,ππj,T + zj,ξξT ];

for certain coefficients defined in the appendix. Note that to first order,

Vj,t = πj,t, and (2.34) reduces simply to

πj,t = ξj(c
′
j,xxt + cj,ξξt) + βEtπj,t+1, (2.35)

for j = p, w, which represents two “New Keynesian Phillips curve” relations,

for prices and wages respectively, as in Erceg et al. (2000).

In the appendix, we sum the two equations in (2.34) and integrate the

resulting equation forward to obtain a relation of the form

Vt0 = Et0

∞∑
t=t0

βt−t0 [Ŷt+
1

2
cyyŶ

2
t −Ŷtcyξξt+

1

2
cπpπ

2
p,t+

1

2
cπwπ2

w,t]+t.i.p.+O(||ξ||3).

(2.36)
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We can then use (2.36) to write the discounted sum of output terms in (2.33)

as a function of purely quadratic terms, up to a residual of third order. As

shown in the appendix, we can rewrite (2.33) as

Ut0 = −ΩEt0

∞∑
t=t0

βt−t0
{qy

2
(Ŷt − Ŷ ∗

t )2 +
qp

2
π2

p,t +
qw

2
π2

w,t

}
+Tt0+t.i.p.+O(||ξ||3),

(2.37)

where 12

Ω ≡ Ȳ uc > 0,

qy ≡ ω + σ−1 + Φ(1− σ−1)− Φσ−1(s−1
C − 1)

ω + σ−1
, (2.38)

Ŷ ∗
t = ω1Ŷ

n
t − ω2Ĝt + ω3τ̂t, (2.39)

qp ≡
θp

ξp(ω + σ−1)
[(ω + σ−1) + Φ(1− σ−1)], (2.40)

qw ≡ θw

ξw(ω + σ−1)
[(ω + σ−1) + Φ(1− σ−1)], (2.41)

and

Ŷ n
t =

σ−1gt + ωqt − ωτ τ̂t

(ω + σ−1)
, (2.42)

in which expressions

ω1 = q−1
y [(ω + σ−1) + Φ(1− σ−1)],

ω2 =
Φs−1

C σ−1

(ω + σ−1)2 + Φ[(1− σ−1)(ω + σ−1)− (s−1
C − 1)σ−1]

,

ω3 ≡
ωτ

(ω + σ−1) + Φ[(1− σ−1)− (s−1
C − 1)σ−1(ω + σ−1)−1]

.

Here Ŷ n
t and ω̂n

t represent log-linear approximations to the “natural rate

of output and real wage,” i.e., the flexible-price equilibrium levels of output

and real wages (Woodford, 2003, chap. 3). In terms of this notation, the

log-linear aggregate supply relations (2.35) can be written as

πp,t = κp[Ŷt − Ŷ n
t ] + ξp[ω̂R,t − ω̂n

t ] + βEtπp,t+1, (2.43)

12In what follows, the following definitions have been used: σ−1 ≡ σ̃−1s−1
C with sC ≡

C̄/Ȳ ; ω ≡ φν + ωp; ωqt ≡ νh̄t + φ(1 + ν)at; gt ≡ Ĝt + sC c̄t; ωτ ≡ τ̄ /(1 − τ̄); ξp ≡
(1− αpβ)(1− αp)/[αp(1 + θpωp)]; ξw ≡ (1− αwβ)(1− αw)/[αw(1 + θwν)].
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πw,t = κw[Ŷt − Ŷ n
t ]− ξw[ω̂R,t − ω̂n

t ] + βEtπw,t+1, (2.44)

while

ω̂R,t = ω̂R,t−1 + πw,t − πp,t, (2.45)

where κp ≡ ξpωp and κw ≡ ξwνφ. The term Tt0 ≡ ΦȲ ūcVt0 is a transitory

component where Vt0 is defined in the appendix.

Once again, we are interested in characterizing optimal policy from a

timeless perspective. We observe from the form of the structural relations

(2.34) and the definition of Vj,t that the aspects of the expected future evo-

lution of the endogenous variables that affect the feasible set of values for

inflation rates, real wage and output in any period t can be summarized (in

our second-order approximation to the structural relations) by the expected

values of Vj,t+1, Zj,t+1 for j = p, w. Hence the only commitments regarding

future outcomes that can be of value in improving stabilization outcomes

in period t can be summarized by commitments at t regarding the state-

contingent values of those two variables in the following period. It follows

that we are interested in characterizing optimal policy from any date t0 on-

ward subject to the constraint that given values for Vj,t0 , Zj,t0 for j = p, w

be satisfied,13 in addition to the constraints represented by the structural

equations.

But given predetermined values for Vj,t0 the value of the transitory com-

ponent Tt0 is predetermined. Hence, over the set of admissible policies, higher

values of (2.37) correspond to lower values of

Et0

∞∑
t=t0

βt−t0
{qy

2
(Ŷt − Ŷ ∗

t )2 +
qp

2
π2

p,t +
qw

2
π2

w,t

}
. (2.46)

It follows that we may rank admissible policies in terms of the implied value

of the discounted quadratic loss function (2.46). Because this loss function

is purely quadratic (i.e., lacking linear terms), it is possible to evaluate it

to second order using only a first-order approximation to the equilibrium

evolution of inflation and output under a given policy. Hence the log-linear

13Note that a specification of initial values for these four variables corresponds, in our
quadratic approximation to the structural equations, to a specification of initial values for
the four variables Fp,t0 ,Kp,t0 , Fw,t0 ,Kw,t0 in section 1.

19



approximate structural relations (2.43), (2.44) and (2.45) are sufficiently ac-

curate for our purposes.

Similarly, it suffices that we use log-linear approximations to the variables

Vj,t0 in describing the initial commitments, which are given by V̂j,t0 = πj,t0 for

j = p, w. Then an optimal policy from a timeless perspective is a policy from

date t0 onward that minimizes the quadratic loss function (2.46) subject to

the constraints implied by the linear structural relation (2.43), (2.44) and

(2.45) holding in each period t ≥ t0 given the initial condition ω̂R,t0−1and

subject also to the constraints that a certain predetermined values for V̂p,t0

and V̂w,t0 be achieved.14 This last constraint may equivalently be expressed

as a constraint on the initial inflation rates,

πp,t0 = π̄p,t0 πw,t0 = π̄w,t0 . (2.47)

2.2 Comparison with Erceg, Henderson and Levin

Thus we obtain a quadratic stabilization objective (2.46) similar to the one

derived in Erceg et al. (2000) under the assumption that Φ = 0, but now

allowing for an arbitrary degree of steady-state distortions. As in the analysis

of Erceg et al., the loss function is a sum of three terms, indicating the

distortions resulting from variations in the rate of price inflation, the rate of

wage inflation, and the output gap, respectively.

There are, however, some noteworthy differences between (2.46) and the

loss function of Erceg et al.. One is that the loss function of Erceg et al. is

expressed as a sum of variances of the three variables (price inflation, wage

inflation, and the output gap), whereas our loss function is linear in the ex-

pected values of these variables squared. Our loss function implies (assuming

that qy, qp, qw > 0, as discussed below) that an increase in the variance of any

of the variables, holding constant its mean level, will lower welfare; and in-

deed our loss function is linear in the variances, holding constant the expected

values of the variables. But we find that there are also losses associated with

an average rate of price or wage inflation different from zero (in either di-

14The constraint associated with a predetermined value for Zt0 can be neglected, in a
first-order characterization of optimal policy, because the variable Zt does not appear in
the first-order approximation to the aggregate-supply relation.
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rection), and similarly with an average output gap different from zero; these

effects are neglected by Erceg et al. by assumption.15

The loss function (2.46) also differs from the one derived by Erceg et al. in

that it involves expected losses in each of an infinite sequence of periods, with

the losses expected in future periods discounted at the rate βt. The form of

loss function derived by Erceg et al. is instead obtained, following Rotemberg

and Woodford (1997), by evaluating the unconditional expectation of the

utility of the representative household in the stationary equilibrium implied

by one stationary policy rule or another; since the unconditional expectation

of the period utility in such an equilibrium is the same each period, one need

only consider the unconditional expectation of the utility flow in a single

period. The alternative (discounted) welfare measure derived here is instead

appropriate if one wishes to characterize optimal policy in the sense described

above (what we have called “optimal policy from a timeless perspective”).

One advantage of defining the policy problem as we have here is that it allows

us to use standard methods for the solution of (discounted) linear-quadratic

stochastic control problems to characterize optimal policy.16

Apart from these differences in what our loss function measures (and

hence in the form in which we report our results), there are also differences

in our conclusions that result from the fact that we treat the more general case

in which Φ (our measure of the overall severity of steady-state distortions)

need not equal zero. First of all, a non-zero value of Φ affects the quantitative

magnitudes of the weights qy, qp, qw on the different stabilization objectives.

In the case that Ḡ = 0 (there are no steady-state government purchases),

each of these weights is proportional to

(ω + σ−1) + Φ(1− σ−1).

It then follows that increasing Φ (for given values of the other model pa-

rameters) does not change the relative weights on alternative stabilization

15Erceg et al. restrict their attention to policies with the property that in the absence
of shocks, the equilibrium obtained will be the optimal steady state. This restriction is
innocuous as far as the characterization of optimal stabilization policy is concerned (since
the optimal policy belongs to the class considered); but the more general form of loss
function provides additional insight into the nature of optimal policy.

16For further discussion, see Woodford (2003, chap. 7).
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objectives, and hence the relative ranking of alternative equilibria. Even in

this case, however, the assumed value of Φ will affect one’s conclusion about

how much the improvement of stabilization policy matters for welfare; in the

case that we judge to be most realistic, in which σ > 1,17 a higher value of Φ

implies greater welfare gains from stabilization. For example, if we calibrate

the parameters ω and σ in accordance with the estimates of Rotemberg and

Woodford (1997),18 then an inefficiency wedge of a more realistic magnitude,

Φ = 1/3,19 would increase the expected losses from any given degree of ag-

gregate volatility by 45 percent, relative to what would be obtained under

the assumption that Φ = 0.

In a more realistic parameterization, of course, one should allow for the

existence of a positive average level of government purchases, Ḡ, so that

sC < 1. In this case, increasing Φ does not increase qy by as great a factor

as the increase in the weights qp and qw; hence the relative weight on the

output-stabilization objective should be somewhat lower in an economy with

a distorted steady state than would be appropriate if Φ = 0. It is not clear,

however, how important this qualification is likely to be in practice. Under

the calibration just considered, for example, if we assume that Ḡ is equal to 20

percent of steady-state output, then increasing Φ from 0 to 1/3 will increase

qp and qw by nearly 45 percent, as just discussed, while it will increase qy

by a factor of only 41 percent. However, the value obtained for the relative

weight qy/(qp + qw) under the assumption that Φ = 0 is exaggerated only by

slightly more than 2 percent.

Under more extreme assumptions about the share of government pur-

chases in total demand, the mis-estimation of the appropriate relative weight

on output stabilization could be much greater. In fact, the correct value of qy

indicated by (2.38) may actually be negative, whereas Erceg et al. conclude

that the relative weight on the output stabilization objective is positive (as

we also find, if Φ = 0). This failure of convexity of our welfare-theoretic loss

17Note that in this model, σ is the intertemporal elasticity of substitution for all private
expenditure, and not simply for non-durable consumer expenditure. See Woodford (2003,
chaps. 4, 5) for further discussion.

18These values are ω = .473 and σ−1 = .157.
19This would result, for example, if we assume an elasticity of demand θ = 10, a wage

markup of 8 percent, and an average tax rate τ̄ of 20 percent.
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function does not necessarily imply that the second-order conditions for a

local welfare maximum fail to hold, or that randomization of policy would

be welfare-improving, as discussed in Benigno and Woodford (2004). But

such a case would mean that the conclusions of Erceg et al. about the degree

to which one should be willing to accept greater variability of price and wage

inflation for the sake of output-gap stabilization would be quite inaccurate.

This will occur, however, only under fairly extreme assumptions. For exam-

ple, a sufficient condition for qy to be positive, regardless of the magnitude

of the steady-state distortions, is that

sG <
(1 + ω)(ω + σ−1)

(1 + ω)(ω + σ−1) + σ−1
. (2.48)

(Here sG ≡ Ḡ/Ȳ is the steady-state share of government purchases in total

demand.) For moderate values of Φ, the value of sG can be even larger;

but even the bound (2.48) is likely to hold. For example, in the case of the

Rotemberg-Woodford parameter values, this bound holds as long as govern-

ment purchases are no more than 85 percent of GDP.

Allowing for Φ > 0 also changes the definition of the target output level

Ŷ ∗
t in the welfare-theoretic loss function (2.46). Contrary to what Erceg et

al. obtain, Ŷ ∗
t no longer corresponds in general to the equilibrium level of

output under flexible wages and prices, Ŷ n
t , as shown by (2.39). We observe

that when Φ = 0, ω1 = 1 and ω2 = 0, so that (2.39) implies that Ŷ ∗
t = Ŷ n

t ,

in the absence of fluctuations in the tax rate (also not considered by Erceg

et al.). If, instead, Φ > 0, and in addition sG is positive (but less than the

upper bound (2.48)), then ω1 > 1. This means that fluctuations in tastes

or technology move Ŷ ∗
t by more than their effect on Ŷ n

t .20 This has the

consequence that attempting to stabilize output around trend rather than

around the time-varying target level would be an even greater mistake than

is indicated by an analysis that assumes that Φ = 0.

Furthermore, when Φ > 0, and sG satisfies (2.48),21 ω2 > 0 in (2.39).

20Under the parameter values considered above, for example, one would obtain ω1 =
1.02.

21In fact, it suffices for this conclusion (and for those of the previous paragraph) that
sG be small enough for qy to be positive.
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Indeed, one can show that

ω2 >
σ−1

ω + σ−1
(ω1 − 1),

from which it follows (also using (2.42)) that an increase in government

purchases increases Ŷ ∗
t by less than the increase in Ŷ n

t . This means that

it is not desirable to allow output to increase quite as much in response to

an increase in government purchases as would occur under flexible wages and

prices.22

The fact that the target level of output will move in a somewhat different

way than the flexible-wage-and-price equilibrium level of output (or natural

rate of output) has consequences for the degree to which stabilization of some

combination of wages and prices, without attention to the consequences of

policy for aggregate real activity, is likely to provide a good approximation

to optimal policy. As a result, some of the more suggestive results of Erceg

et al. may not be quite so accurate a guide to policy in the case of significant

steady-state distortions.

We have shown that the policy objective (2.46) can be expressed solely

as a function of the evolution of the inflation rates and the welfare-relevant

output gap

xt ≡ Ŷt − Ŷ ∗
t .

It is useful to write the linear constraints implied by our model’s structural

equations in terms of the welfare-relevant output gap as well. The aggregate-

supply relations (2.43) and (2.44) can alternatively be expressed as

πp,t = κpxt + ξp[ω̂R,t − ω̂n
t ] + βEtπp,t+1 + up,t, (2.49)

πw,t = κwxt − ξw[ω̂R,t − ω̂n
t ] + βEtπw,t+1 + uw,t (2.50)

where uj,t, for j = p, w are composite “cost-push” term. In terms of our

previous notation for the exogenous disturbances in the model, this is given

by

uj,t ≡ κj(Ŷ
∗
t − Ŷ n

t )

= κj(ω1 − 1)Ŷ n
t − κjω2Ĝt + κjω3τ̂t.

22For example, under the parameter values considered above, an increase in government
purchases equal to one percent of steady-state output would increase Ŷ n

t by 0.25 percent,
while it would increase Ŷ ∗

t by only 0.14 percent.
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The presence of these “cost-push” terms (not present in the aggregate-

supply relations of Erceg et al.) implies a tension between the goals of wage

and price stabilization, on the one hand, and output-gap stabilization (in

the welfare-relevant sense) on the other. In the case that Φ = 0, then ω1 =

1, ω2 = 0, and up,t = uw,t = 0, except if there are fluctuations in the tax

rate. If, instead, Φ > 0, then there are other reasons for the cost-push

terms to be non-zero. As we have just discussed, in the case of greatest

interest, fluctuations in preferences or technology that raise the natural rate

of output will result in positive cost-push terms in both (2.49) and (??), while

increases in government purchases will result in negative cost-push terms in

both equations.

This makes it even more difficult for all three stabilization goals to be

simultaneously achieved than is indicated by the analysis of Erceg et al. For

example, Erceg et al. conclude that if either wages or prices are completely

flexible (so that the welfare-theoretic weight on one of the stabilization objec-

tives is zero), then it should be possible to fully achieve both of the remaining

stabilization objectives by completely stabilizing wage inflation (if only wages

are sticky) or price inflation (if only prices are sticky). In the presence of

cost-push terms, this ceases to be the case. Even when prices are fully flex-

ible, the presence of the cost-push terms implies that complete stabilization

of wage inflation will not imply complete stabilization of the welfare-relevant

output gap, or vice versa.23

Erceg et al. find, on the basis of numerical analysis of a calibrated model,

that a simple policy rule that stabilizes an index of wages and prices provides

a close approximation to optimal policy, if the relative weight on wages as

opposed to prices in this index is appropriately chosen.24 However, this

result most likely depends on their having made assumptions under which

there are no cost-push terms. For example, it is easy to see why the result

is true, if there are no cost-push terms, in the case just discussed in which

only wages are sticky. (In that case, the appropriate index to target involves

nominal wages only.) But when cost-push terms are present, as is almost

23The corresponding result in the case of an economy in which only prices are sticky is
established by Benigno and Woodford (2004).

24See also Woodford (2003, chap. 6) for results in the same vein.

25



inevitably the case if the steady state is distorted, optimal policy no longer

corresponds to stabilization of the nominal wage; instead, the nominal wage

should be a function of the history of the cost-push terms.25 On the other

hand, the optimal evolution of the real wage (and hence, of goods prices)

should depend on the evolution of the natural real wage ωn
t as well. In

general, real disturbances will affect the natural real wage in a different way

than they affect the cost-push terms, and so one cannot expect there to be

any linear combination of wages and prices that will be constant in an optimal

equilibrium. Since in this case, the optimal simple rule is fully optimal when

there are no cost-push terms, but can be far from optimal when Φ is far

from zero, one suspects that the same is true when both wages and prices

are sticky.26

Erceg et al. also find that another class of simple policy rules, in which

a weighted average of price inflation and the output gap is stabilized, also

provides a good approximation to optimal policy when the weights are ap-

propriately chosen. But here again, it is likely that the result depends on the

absence of cost-push terms (in the case of substantial stickiness of wages).

Let us once more consider the simple case of perfectly flexible prices but

sticky wages. In this case, optimal policy requires complete stabilization of

the nominal wage when there are no cost-push shocks. Flexibility of prices

means that the pricing relation (2.49) reduces to

ω̂R,t − ω̂n
t + ωpxt = 0,

if there is no cost-push term. At the same time, (2.50) implies that in the

optimal equilibrium, since wage inflation is always zero,

κwxt − ξw[ω̂R,t − ω̂n
t ] = 0,

if there is no cost-push term. Together, these two relations imply that xt = 0

in the optimal equilibrium, which is a limiting case of the class of simple rules.

On the other hand, if Φ > 0, cost-push terms are present in both (2.49)

and (2.50). It is no longer optimal to fully stabilize wage inflation, exactly

25A method that can be used to characterize the way in which the wage should depend
on the history of disturbances is discussed in the next section.

26The same conclusion is supported by a consideration of the case of “equally sticky”
wages and prices in section xx below.
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because this will no longer imply complete stability of the output gap; in-

stead, the optimal evolution of both the nominal wage and the output gap

will be a function of the history of cost-push disturbances. At the same time,

the optimal evolution of the real wage (and hence, of goods prices), will de-

pend on the evolution of the natural real wage as well. Once again, there will

in general be no linear combination of price inflation and the output gap for

which these different sorts of dependence on the history of real disturbances

will happen to cancel. And since the family of simple rules ceases to include

an optimal rule even in this special case, it is likely that it ceases to include

any rule that is so close to being optimal as Erceg et al. report, in the case

that both wages and prices are sticky.

3 Optimal Stabilization Policy

We now use our linear-quadratic approximate policy problem to characterize

optimal policy in the event of small enough disturbances. We begin by noting

that the first-order conditions associated with an LQ problem of this kind

characterize an optimum only in the case that certain second-order conditions

are satisfied as well. However, it follows from our results in the previous

section that the weights qp, qw > 0. Hence the loss function (2.46) is convex

(and the second-order conditions are necessarily satisfied) as long as qy > 0 as

well.27 A sufficient condition for this, in turn, is that the share of government

purchases in total demand satisfy (2.48). As long as this bound is satisfied,

the solution to the first-order conditions will represent an optimum of the

LQ problem. This means that in the even of small enough disturbances, this

same solution will represent a linear approximation to a policy that represents

at least a local welfare optimum in the exact model.

3.1 The Case of “Equally Sticky” Wages and Prices

As stressed by Erceg et al. (2000), it is not in general possible to fully stabilize

all the target variables in the loss function (2.46). However, in the absence of

27This condition is sufficient but not necessary. See further discussion in Benigno and
Woodford (2004).
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cost-push shocks, optimal policy still corresponds to complete stabilization

of an appropriately defined index of wages and prices, in at least one special

case. Suppose that θwφ−1 = θp and that κp = κw = κ. (We can think of this

special case as one in which wages and prices are “equally sticky”.) In this

case the loss function (2.46) can be written as

Et0

∞∑
t=t0

βt−t0
{qy

2
xt

2 +
qπ

2
π̄2

t +
qp

2
(1− γ)(ω̂R,t − ω̂R,t−1)

2
}

(3.51)

where π̄t ≡ γπp,t + (1 − γ)πw,t is a weighted average of the price and wage

inflation rates, with weight 0 < γ < 1 determined by γ ≡ ωp/(ω + σ−1), and

where qπ ≡ qp/γ. Under these conditions, by subtracting (2.50) from (2.49)

and using (2.45), we obtain a difference equation for the evolution of the

real wage, from which it follows that the real wage is independent of policy.

Moreover, by taking a weighted average of (2.50) and (2.49), we obtain

π̄t = κxt + βEtπ̄t+1 + ut, (3.52)

where ut ≡ γup,t + (1− γ)uw,t.

In the case that Φ = 0 and there are no variations in the tax rate, as

assumed by Erceg et al., there are no cost-push terms, and ut = 0 at all times

in (3.52). It then follows that complete stabilization of π̄t implies complete

stabilization of xt as well. Since the real wage evolves independently of policy

in this case, it is then obvious that (3.51) attains its lowest possible value

under such a policy. Hence it is optimal to completely stabilize a weighted

average of price inflation and wage inflation.

However, even when wages and prices are “equally sticky,” this result

fails to obtain in the case of a distorted steady state.28 When Φ > 0, real

disturbances of any sort will generally result in a non-zero cost-push term

ut in (3.52), as discussed in the previous section. Complete stabilization of

π̄t continues to be possible, but in this case requires fluctuations in xt, and

it will be preferable to allow some degree of variation in π̄t for the sake of

greater stability of the output gap.

28It would also fail if there are variations in tax rates or in market power that would
give rise to cost-push terms even in the case that Φ = 0.
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Since real wages are independent of policy, to characterize the optimal

tradeoff one can simply consider the processes {xt, π̄t} that maximize (3.51)

under the constraint (3.52) for each t ≥ t0, given an initial commitment for

the value of π̄t0 . One observes that the form of this problem is the same —

and that the solution is therefore the same (in the case of a given {ut} process

and given values of qπ and qy) — as in the Φ = 0 case treated in Woodford

(2003, chap. 7).29 We recall here some of the main results presented there,

which directly apply to the present case as well.

The first-order conditions for the optimization problem just stated are of

the form

qππ̄t + ϕt − ϕt−1 = 0, (3.53)

qyxt − κϕt = 0, (3.54)

for each t ≥ t0, where ϕt is the Lagrange multiplier associated with the

constraint (3.52) in period t. Bounded processes {π̄t, xt, ϕt} that satisfy

(3.52) and (3.53) – (3.54) for each t ≥ t0 and are consistent with the initial

condition (2.47) represent an optimum. Using (3.53) to eliminate π̄t and

(3.54) to eliminate xt,
30 (3.52) becomes an equation for the evolution of the

multiplier

βqyEtϕt+1 − [(1 + β)qy + κ2qπ]ϕt + qyϕt−1 = qπqyut. (3.55)

The initial condition (2.47) can similarly be expressed as a constraint on the

path of the multipliers

ϕt0 − ϕt0−1 = −qππ̄t0 . (3.56)

An optimum can then be described by a bounded process {ϕt} for all dates

t ≥ t0 − 1 that satisfies (3.55) for each t ≥ t0 and is also consistent with

(3.56).

Equation (3.55) has a unique bounded solution consistent with (3.56) if

and only if the characteristic equation

βµ2 −
[
1 + β +

κ2qπ

qy

]
µ + 1 = 0 (3.57)

29See also Clarida, Gali and Gertler (1999) for analysis of an LQ problem of this form.
30Here we assume that both qπ, qy 6= 0. Note that if either qπ or qy happens to equal

zero, optimal policy is easily characterized: it consists simply of the complete stabilization
of the variable with the non-zero weight in the loss function.
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has exactly one root such that |µ| < 1. This requires that the characteristic

equation have real roots, exactly one of which lies in the interval between -1

and 1; this in turn is true if and only if qπ 6= 0 and

qy

qπ

> − κ2

2(1 + β)
. (3.58)

Note that (3.58) is necessarily satisfied if (2.48) holds, since in that case

qπ, qy > 0.

A characterization of the optimal equilibrium is then obtained by solving

(3.53) and (3.54) for π̄t and xt respectively, where the multiplier process {ϕt}
is specified recursively by the relation31

ϕt = µϕt−1 − qπ

∞∑
j=0

βjµj+1Etut+j. (3.59)

Here µ is the root of (3.57) that satisfies −1 < µ < 1, and the initial value

ϕt0−1 is chosen so that the solution is consistent with the precommitted value

for π̄t0 .

We note that even in the special case that wages and prices are “equally

sticky,” optimal policy will not involve complete stabilization of any weighted

average of wages and prices. Instead, the optimal evolution of π̄t will depend

on the history of cost-push disturbances. The optimal evolution of any other

index of wages and prices will depend both on this and the exogenous deter-

minants of real wages, and since different real disturbances will affect ut and

the real wage ωR,t in different ways, there will not generally be any index of

wages and prices that will remain constant in the optimal equilibrium.

3.2 The General Case

More generally, to derive the optimal policy we can write the Lagrangian as

Lt0 = Et0{
∞∑

t=t0

βt−t0
qy

2
x2

t +
qp

2
π2

p,t +
qw

2
π2

w,t + ϕp,t(πp,t − κpxt − ξpω̂R,t − βπp,t+1)

+ϕw,t(πw,t − κwxt + ξwω̂R,t − βπw,t+1) + ϕr,t(ω̂R,t − ω̂R,t−1 − πw,t + πp,t) +

+ϕ1,t0−1πp,t0 + ϕ2,t0−1πw,t0}.
31Details of this derivation are given in the appendix.
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The first-order conditions obtained by differentiation are then

qyxt − κpϕp,t − κwϕw,t = 0; (3.60)

qpπp,t + ϕp,t − ϕp,t−1 + ϕr,t = 0; (3.61)

qwπw,t + ϕw,t − ϕw,t−1 − ϕr,t = 0; (3.62)

ξpϕp,t − ξwϕw,t − ϕr,t + βEtϕr,t+1 = 0, (3.63)

for each t ≥ t0. The first-order conditions (3.60) to (3.63) together with

the structural equations (2.50), (2.49) and (2.45) need to be solve for the

optimal path of the lagrange multipliers {ϕp,t, ϕw,t, ϕr,t} and the variables

{xt, πp,t, πw,t, wR,t} given the initial conditions (2.47). We note that the

initial conditions can similarly be expressed as a constraint on the path of

the multipliers

ϕp,t0 − ϕp,t0−1 + ϕr,t0 = −qpπ̄p,t0 ,

ϕw,t0 − ϕw,t0−1 − ϕr,t0 = −qwπ̄w,t0 .

We show in the appendix that we can express the above conditions as a

linear system of the form[
A1 0

0 A4

]
Et

(
z1,t+1

z2,t

)
=

[
B1 B2

B3 B4

](
z1,t

z2,t−1

)
+

[
C1

C2

]
υt,

for matrices defined in the appendix, where

z′1,t ≡ [ϕp,t ϕw,t ϕr,t],

z′2,t−1 ≡ [ω̂R,t−1 ϕp,t−1 ϕw,t−1]

and

υ′t ≡ [ω̂n
t up,t uw,t].

The determinacy of the equilibrium depends on the roots of the characteristic

equation associated with the system (A.67)

det(B − µA) = 0.

Rational-expectations equilibrium is determinate if the number of roots µi

such that |µi| < 1 is exactly equal to the number of predetermined variables,
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which in this case is three. Under this condition, we show in the appendix

that the unique non-explosive solution is of the form

z1,t = −(V A)−1
1 (V A)2z2,t−1 − (V A)−1

1 Et

∞∑
j=0

Φ−(j+1)V Cυt+j, (3.64)

z2,t = A−1
4 (B4−B3(V A)−1

1 (V A)2)z2,t−1+A−1
4 C2υt−A−1

4 B3(V A)−1
1 Et

∞∑
j=0

Φ−(j+1)V Cυt+j,

(3.65)

for matrices again defined in the appendix. Using (3.60) to (3.63) and (3.64),

(3.65) we can obtain the optimal paths of the variables {xt, πp,t, πw,t, wR,t}.

3.3 Optimal Targeting Rules

Finally, following Giannoni and Woodford (2003), we can use the first-order

conditions to eliminate the three Lagrange multipliers, obtaining a target

criterion of the form

(κw−κp)π
asym
t +(ξp +ξw)qt +(κw−κp){Et[βqt+1−qt]−Et−1[βqt−qt−1]} = 0,

(3.66)

where

πasym
t ≡ qpξpπp,t − qwξwπw,t

is a measure of the asymmetry between price and wage inflation,

πsym
t ≡ qpξpπp,t + qwξwπw,t

qpξp + qwξw

is a average of the rates of price and wage inflation, and

qt ≡ (qpξp + qwξw)

[
πsym

t +
qy

qpξp + qwξw

(xt − xt−1)

]
.

This criterion holds at all times in the optimal equilibrium, and a com-

mitment to use monetary policy to ensure that it holds ensures that the

only non-explosive rational-expectations equilibrium consistent with the pol-

icy will be the optimal one. In the special case analyzed above in which

κw = κp = κ > 0, the optimal target criterion reduces to qt = 0, or

πsym
t +

qy

qpξp + qwξw

(xt − xt−1) = 0. (3.67)
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This again allows us to consider the degree to which simple policy rules

of either of the two kinds discussed by Erceg et al. are likely to provide close

approximations to optimal policy in the general case. In the special case

that wages and prices are “equally sticky”, there is a linear combination of

wage inflation, price inflation and the output gap that it would be optimal

to stabilize, given by the optimal target criterion (3.67). However, all three

target variables enter with non-zero weights in this criterion, and because

real disturbances should influence these three variables in two distinct ways

in the optimal equilibrium (both through their effects on the cost-push terms

and through their effects on the natural real wage), as discussed in the pre-

vious section, it will not generally be possible to closely approximate any

one of them by a linear combination of the other two (except for the relation

implied by this target criterion itself). Hence one should not expect optimal

policy to be well-characterized by a rule that stabilizes any linear combina-

tion of wage inflation and price inflation alone, or by a rule that stabilizes a

linear combination of price inflation and the output gap alone. In the more

general case, optimal policy cannot even be characterized by a static relation

between all three variables; but there is even less reason to believe that a

good approximation to optimal policy can be obtained without reference to

all three variables.

4 Conclusion

We have shown how to extend the analysis of Erceg et al. to treat the case

in which the steady-state equilibrium level of output under a policy that

maintains zero inflation is suboptimal, due to tax distortions and market

power, and in which, as a consequence, the effects of stabilization policy on

the average level of output are important for the welfare evaluation of such

policies. Even in this case, it is possible to approximate the expected utility of

the representative household by a purely quadratic objective, so that welfare

can be evaluated, to second-order accuracy, using only a first-order accurate

solution for the equilibrium implied by a given policy rule.

As in the case of an efficient steady state treated by Erceg et al., the

welfare-theoretic loss function can be expressed as a sum of three quadratic
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terms, indicating the distortions due to non-zero levels of wage inflation,

price inflation and an appropriately defined output gap, respectively. The

inefficiency of the steady state does not change the general form of the loss

function, but it does have quantitative implications for both the weights on

each of the three stabilization objectives, and for the definition of the target

level of output, deviations from which define the welfare-relevant output gap.

An important consequence of a distorted steady state is that except under

extremely special circumstances, one cannot expect real disturbances to move

the target level of output and the natural rate of output (the equilibrium

output level in the case of flexible wages and prices) to the same extent.

This means that almost any kind of real disturbances will create a tension

between the objectives of stabilizing the welfare-relevant output gap on the

one hand and stabilizing wage and price inflation and the other. As a result,

it is likely that neither of the kinds of simple rules considered by Erceg et al.

— rules that stabilize a weighted average of wage and price inflation with

no reference to the output gap, and rules that stabilize a weighted average

of price inflation and the output gap with no reference to wage inflation —

will come as close to approximating fully optimal policy in an economy with

a distorted steady state as in the numerical examples that they consider.

Nonetheless, the most important of the conclusions of Erceg et al. remain

valid. The stickiness of wages implies that variations in the rate of wage

inflation are as closely related to distortions that monetary policy should

seek to mitigate as are variations in price inflation, and as a consequence,

a strict (goods-price) inflation target will not be optimal. Indeed, we have

shown that in the more general model considered here, optimal policy can be

characterized by a targeting rule, but the optimal target criterion generally

involves the projected paths of price inflation, wage inflation, and the output

gap. The welfare gains from adoption of a more sophisticated form of inflation

target may be substantial; and our analysis suggests that they may be even

larger when one takes account of the likely degree of distortion of the steady-

state level of output in a realistic model.
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A Appendix

A.1 The deterministic steady state

Here we show the existence of a steady state, i.e., of an optimal policy (under

appropriate initial conditions) of the recursive policy problem that involves

constant values of all variables. We consider a deterministic problem in which

the exogenous disturbances C̄t, Gt, H̄t, At, τt each take constant values C̄, H̄,

Ā, τ̄ > 0 and Ḡ ≥ 0 for all t ≥ t0. We wish to find an initial degree of price

and wage dispersions ∆p,t0−1, ∆w,t0−1, initial real wage wR,t0−1 ≡ Wt0−1/Pt0−1

and initial commitments Xt0 = X̄ such that the recursive (or “stage two”)

problem involves a constant policy xt0 = x̄, Xt+1 = X̄ each period, in which

∆̄p, ∆̄w and w̄ are equal to the initial values.

We thus consider the problem of maximizing

Ut0 =
∞∑

t=t0

βt−t0U(Yt, ∆p,t, ∆w,t) (A.1)

subject to the constraints

Kp,tp(Πp,t)
1+ωpθp

θp−1 = Fp,t, (A.2)

Fp,t = (1− τ̄)uy(Yt − Ḡ)Yt + αpβΠ
θp−1
p,t+1Fp,t+1, (A.3)

Kp,t = φµpuy(Yt − Ḡ)wR,tY
φ
t Ā−φ + αpβΠ

θp(1+ωp)
p,t+1 Kp,t+1, (A.4)

∆p,t = αp∆p,t−1Π
θp(1+ωp)
p,t + (1− αp)p(Πp,t)

− θp(1+ωp)

1−θp , (A.5)

Kw,tp(Πw,t)
1+νθw
θw−1 = Fw,t, (A.6)

Fw,t = uy(Yt − Ḡ)Y φ
t Ā−φ∆p,twR,t + αwβΠθw−1

w,t+1Fw,t+1, (A.7)

Kw,t = µwvh(Y
φ
t )Y φ

t Ā−φ(1+ν)∆1+ν
p,t + αwβΠ

θw(1+ν)
w,t+1 Kw,t+1, (A.8)

∆w,t = αw∆w,t−1Π
θw(1+ν)
w,t + (1− αw)p(Πw,t)

− θw(1+ν)
1−θw , (A.9)

wR,t =
Πw,t

Πp,t

wR,t−1, (A.10)

and given the specified initial conditions ∆p,t0−1, ∆w,t0−1, wR,t0−1, Xt0 where

we have defined

p(Πp,t) ≡

(
1− αpΠ

θp−1
p,t

1− αp

)
,
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p(Πw,t) ≡

(
1− αwΠθw−1

w,t

1− αw

)
.

We introduce Lagrange multipliers φ1t through φ9t corresponding to con-

straints (A.2) through (A.10) respectively. We also introduce multipliers

dated t0 corresponding to the constraints implied by the initial conditions

Xt0 = X̄; the latter multipliers are normalized in such a way that the first-

order conditions take the same form at date t0 as at all later dates. The

first-order conditions of the maximization problem are then the following.

The one with respect to Yt is

0 = Uy(Yt, ∆p,t, ∆w,t)− (1− τ̄)[uyy(Yt − Ḡ)Yt + uy(Yt − Ḡ)]φ2,t

−φµpĀ
−φwR,t[uyy(Yt − Ḡ)Y φ

t + φY φ−1
t uy(Yt − Ḡ)]φ3,t +

−Ā−φwR,t∆p,t[uyy(Yt − Ḡ)Y φ
t + φY φ−1

t uy(Yt − Ḡ)]φ6,t

−µwĀ−φ(1+ν)∆1+ν
p,t [φvhh(Y

φ
t )Y 2φ−1

t + φvh(Y
φ
t )Y φ−1

t ]φ7,t (A.11)

that with respect to ∆p,t is

0 = U∆p(Yt, ∆p,t, ∆w,t) + φ4t − αpβΠ
θp(1+ωp)
p,t+1 φ4,t+1 − uy(Yt − Ḡ)Y φ

t Ā−φwR,tφ6,t

−(1 + ν)µwvh(Y
φ
t )Ā−φ(1+ν)Y φ

t ∆ν
p,tφ7,t (A.12)

that with respect to Πp,t is

1 + ωpθp

θp − 1
p(Πp,t)

(1+ωpθp)

θp−1
−1

pπ(Πp,t)Kp,tφ1,t − αp(θp − 1)Π
θp−2
p,t Fp,tφ2,t−1

−θp(1 + ωp)αpΠ
θp(1+ωp)−1
p,t Kp,tφ3,t−1 − θp(1 + ωp)αp∆p,t−1Π

θp(1+ωp)−1
p,t φ4,t+

−θp(1 + ωp)

θp − 1
(1− αp)p(Πp,t)

(1+ωpθp)

θp−1 pπ(Πp,t)φ4,t + Πw,tΠ
−2
p,twR,t−1φ9,t = 0;

(A.13)

that with respect to Fp,t is

−φ1,t + φ2,t − αpΠ
θp−1
p,t φ2,t−1 = 0; (A.14)

that with respect to Kp,t is

p(Πp,t)
1+ωpθp

θp−1 φ1,t + φ3t − αpΠ
θp(1+ωp)
p,t φ3,t−1 = 0; (A.15)
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that with respect to ∆w,t is

0 = U∆w(Yt, ∆p,t, ∆w,t) + φ8,t − αwβΠ
θw(1+ν)
w,t+1 φ8,t+1 (A.16)

that with respect to Πw,t is

1 + νθw

θw − 1
p(Πw,t)

(1+νθw)
θw−1

−1pπ(Πw,t)Kw,tφ5,t − αw(θw − 1)Πθw−2
w,t Fw,tφ6,t−1

−θw(1 + ν)αwΠ
θw(1+ν)−1
w,t Kw,tφ7,t−1 − θw(1 + ν)αw∆w,t−1Π

θw(1+ν)−1
w,t φ8,t+

−θw(1 + ν)

θw − 1
(1− αw)p(Πw,t)

(1+νθw)
θw−1 pπ(Πw,t)φ8,t − Π−1

p,twR,t−1φ9,t = 0; (A.17)

that with respect to Fw,t is

−φ5,t + φ6,t − αwΠθw−1
w,t φ6,t−1 = 0; (A.18)

that with respect to Kw,t is

p(Πw,t)
1+νθw
θw−1 φ5,t + φ7,t − αwΠ

θw(1+ν)
w,t φ7,t−1 = 0; (A.19)

that with respect to wR,t is

0 = −φµpuy(Yt − Ḡ)Y φ
t Ā−φφ3,t − uy(Yt − Ḡ)Y φ

t Ā−φ∆p,tφ6,t

+φ9,t − βΠw,tΠ
−1
p,tφ9,t+1 (A.20)

We search for a solution to these first-order conditions in which Πp,t =

Πw,t = Π̄, ∆p,t = ∆̄p, ∆w,t = ∆̄w, wR,t = w̄R, Yt = Ȳ at all times. A

steady-state solution of this kind also requires that the Lagrange multipliers

take constant values. We furthermore conjecture the existence of a solution

in which Π̄ = 1, as stated in the text. Note that such a solution implies

that ∆̄p = ∆̄w = 1, p(Π̄p) = 1, p(Π̄w) = 1, pπ(Π̄p) = −(θp − 1)αp/(1 − αp),

pπ(Π̄w) = −(θw − 1)αw/(1 − αw) and K̄p = F̄p and K̄w = F̄w. Using these

substitutions, we find that (the steady-state version of) each of the first-order

conditions (A.11) – (A.20) is satisfied if the steady-state values satisfy

0 = Uy(Ȳ , 1, 1)− (1− τ̄)[uyy(Ȳ − Ḡ))Ȳ + uy(Ȳ − Ḡ))]φ2 +

+φµwµpĀ
−φ(1+ν)[φvhh(Ȳ

φ)Ȳ 2φ−1 + φvh(Ȳ
φ)Ȳ φ−1]φ2

(1− αpβ)φ4 = −U∆p(Ȳ , 1) + uy(Ȳ − Ḡ)Ā−φȲ φw̄Rφ6

−(1 + ν)µwvh(Ȳ
φ)Ā−φ(1+ν)Ȳ φφ6,
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φ1 = (1− αp)φ2,

φ3 = −φ2,

(1− αwβ)φ8 = −U∆w(Ȳ , 1, 1)

φ5 = (1− αw)φ6,

φ7 = −φ6

φ6 = φµpφ2

φ9 = 0

These equations can obviously be solved (uniquely) for the steady-state mul-

tipliers, given any value Ȳ > 0 and w̄R > 0.

Similarly, (the steady-state versions of) the constraints (A.2) – (A.10) are

satisfied if

(1− τ̄)Ȳ 1−φ = φµpw̄RĀ−φ (A.21)

uy(Ȳ − Ḡ)Ā−φw̄R = µwvh(Ȳ
φ)Ā−φ(1+ν). (A.22)

Substituting (A.21) into (A.22) we can obtain

(1− τ̄)

φµpµw

uy(Ȳ − Ḡ)Ȳ = vh

((
Ȳ

Ā

)φ
)(

Ȳ

Ā

)φ

,

which can be solved for the steady-state value Ȳ . Then either (A.21) or

(A.22) can be solved to obtain the steady-state value w̄R given Ȳ .

A.2 A second-order approximation to utility (equa-

tions (2.30) and (2.33))

We derive here equations (2.30) and (2.33) in the main text, taking a second-

order approximation to (equation (1.13)) following the treatment in Wood-

ford (2003, chapter 6). We start by approximating the expected discounted

value of the sum of the utilities of the households (the policy-objective func-

tion)

Ut0 = Et0

∞∑
t=t0

βt−t0

[
u(Yt; ξt)−

∫ 1

0

v(ht(j); ξt)dj

]
. (A.23)
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First we note that∫ 1

0

v(ht(j); ξt)dj =
λ

1 + ν
H1+ν

t ∆w,tH̄
−ν
t = v(Ht; ξt)∆w,t

where ∆w,t is the measure of price dispersion defined in the text. We can

then write (A.23) as

Ut0 = Et0

∞∑
t=t0

βt−t0 [u(Yt; ξt)− v(Ht; ξt)∆w,t] . (A.24)

The first term in (A.24) can be approximated using a second-order Taylor

expansion around the steady state defined in the previous section as

u(Yt; ξt) = ū + ūcỸt + ūξξt +
1

2
ūccỸ

2
t + ūcξξtỸt +

1

2
ξ′tūξξξt +O(||ξ||3)

= ū + Ȳ ūc · (Ŷt +
1

2
Ŷ 2

t ) + ūξξt +
1

2
Ȳ ūccŶ

2
t +

+Ȳ ūcξξtŶt +
1

2
ξ′tūξξξt +O(||ξ||3)

= Ȳ ucŶt +
1

2
[Ȳ ūc + Ȳ 2ūcc]Ŷ

2
t − Ȳ 2ūccgtŶt + t.i.p. +O(||ξ||3)

= Ȳ ūc

{
Ŷt +

1

2
(1− σ−1)Ŷ 2

t + σ−1gtŶt

}
+

+t.i.p. +O(||ξ||3), (A.25)

where a bar denotes the steady-state value for each variable, a tilde denotes

the deviation of the variable from its steady-state value (e.g., Ỹt ≡ Yt − Ȳ ),

and a hat refers to the log deviation of the variable from its steady-state value

(e.g., Ŷt ≡ ln Yt/Ȳ ). We use ξt to refer to the entire vector of exogenous

shocks,

ξ′t ≡
[

Ĝ gt qt τ̂t h̄t at

]
,

in which Ĝt ≡ (Gt − Ḡ)/Y , gt ≡ Ĝt + sC c̄t, ω ≡ (φ − 1) + φν, ωqt ≡
νh̄t + φ(1 + ν)at, τ̂t ≡ (τt − τ̄)/τ̄ , c̄t ≡ ln C̄t/C̄, at ≡ ln At/Ā, h̄t ≡ ln H̄t/H̄.

Moreover, we use the definitions σ−1 ≡ σ̃−1s−1
C with sC ≡ C̄/Ȳ . We have

used the Taylor expansion

Yt/Ȳ = 1 + Ŷt +
1

2
Ŷ 2

t +O(||ξ||3)
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to get a relation for Ỹt in terms of Ŷt. Finally the term “t.i.p.” denotes terms

that are independent of policy, and may accordingly be suppressed as far as

the welfare ranking of alternative policies is concerned.

We may similarly approximate v(Ht; ξt)∆w,t by

v(Ht; ξt)∆w,t = v̄ + v̄(∆w,t − 1) + v̄h(Ht − H̄) + v̄h(∆w,t − 1)(Ht − H̄) + (∆w,t − 1)v̄ξξt +

+
1

2
v̄hh(Ht − H̄)2 + (Ht − H̄)v̄hξξt +

1

2
ξ′tv̄ξξξt+O(||ξ||3)

= v̄(∆w,t − 1) + v̄hH̄

(
Ĥt +

1

2
Ĥ2

t

)
+ v̄h(∆w,t − 1)H̄Ĥt + (∆w,t − 1)v̄ξξt +

+
1

2
v̄hhH̄

2Ĥ2
t + H̄Ĥtv̄hξξt + t.i.p.+O(||ξ||3)

= v̄hH̄[
∆̂w,t

1 + ν
+ Ĥt +

1

2
(1 + ν)Ĥ2

t + ∆̂w,tĤt − νĤth̄t +

− ∆̂w,t

1 + ν
νh̄t] + t.i.p.+O(||ξ||3).

We take a second-order expansion of (1.20), obtaining

∆̂w,t = αw∆̂w,t−1 +
αw

1− αw

θw(1 + ν)(1 + νθw)
π2

w,t

2
+O(||ξ||3), (A.26)

from which it follows that ∆̂w,t is a second-order terms (since the equation

can be solved backward from date t0 − 1 and written showing ∆̂w,t as a

function of t.i.p. and quadratic terms). We now use (1.10) that in an exact

form implies that

Ĥt = φ(Ŷt − at) + ∆̂p,t

We take a second-order expansion of (1.28), obtaining

∆̂p,t = αp∆̂p,t−1 +
αp

1− αp

θp(1 + ωp)(1 + ωpθp)
π2

p,t

2
+O(||ξ||3), (A.27)

from which it follows that also ∆̂p,t is a second-order term for the same

reasons as above. This implies that

Ĥ2
t = φ2(Ŷ 2

t − 2atŶt) +O(||ξ||3)
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These results in turn allow us to approximate v(Ht; ξt)∆w,t

v(Ht; ξt)∆w,t = v̄hH̄φ

{
∆̂w,t

φ(1 + ν)
+ Ŷt +

∆̂p,t

φ
+

1

2
(1 + ν)φ(Ŷ 2

t − 2atŶt)− νŶth̄t

}
+

+t.i.p. +O(||ξ||3),

= (1− Φ)ūcȲ

{
∆̂w,t

1 + ω
+ Ŷt +

∆̂p,t

φ
+

1

2
(1 + ω)Ŷ 2

t − ωqtŶt

}
+

+t.i.p. +O(||ξ||3) (A.28)

where we have used the steady state relation v̄hH̄φ = (1− Φ)ūcȲ where

Φ ≡ 1−
(

θp − 1

θp

)(
θw − 1

θw

)
(1− τ̄) < 1

measures the inefficiency of steady-state output Ȳ .

Combining (A.25) and (A.28), we finally obtain equation (2.30) in the

text,

Ut0 = Ȳ ūc · Et0

∞∑
t=t0

βt−t0ΦŶt −
1

2
uyyŶ

2
t + Ŷtuyξξt − u∆p∆̂p,t − u∆w∆̂w,t

+ t.i.p. +O(||ξ||3), (A.29)

where

uyy ≡ (ω + σ−1)− Φ(1 + ω),

uyξξt ≡ [σ−1gt + (1− Φ)ωqt],

u∆w ≡ (1− Φ)

1 + ω
,

u∆p ≡ (1− Φ)

φ
.

We finally observe that (A.26) and (A.27) can be integrated to obtain

∞∑
t=t0

βt−t0 ∆̂w,t =
αw

(1− αw)(1− αwβ)
θw(1+ν)(1+νθw)

∞∑
t=t0

βt−t0
π2

w,t

2
+t.i.p.+O(||ξ||3),

(A.30)
∞∑

t=t0

βt−t0 ∆̂p,t =
αp

(1− αp)(1− αpβ)
θp(1+ωp)(1+ωpθp)

∞∑
t=t0

βt−t0
π2

p,t

2
+t.i.p.+O(||ξ||3),

(A.31)
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where πp,t ≡ ln Pt/Pt−1 and πw,t ≡ ln Wt/Wt−1.

By substituting (A.30) and (A.31) into (A.29), we obtain

Ut0 = Ȳ ūc · Et0

∞∑
t=t0

βt−t0 [ΦŶt −
1

2
uyyŶ

2
t + Ŷtuyξξt −

1

2
uπpπ

2
p,t −

1

2
uπwπ2

w,t]

+t.i.p. +O(||ξ||3).

This coincides with equation (2.33) in the text, where we have further defined

ξp ≡ (1− αpβ)(1− αp)

αp(1 + θpωp)
,

ξw ≡ (1− αwβ)(1− αw)

αw(1 + θpν)
,

uπp ≡ θp(1− Φ)

ξp

,

uπw ≡ θw(1− Φ)

ξwφ
.

A.3 A second-order approximation to the AS equa-

tions (equations (1.19) and (1.27))

Here we need to take approximations of two similar equations of the form

Γj,t ≡

(
1− αjΠ

θj−1
j,t

1− αj

)−
1+ωjθj

θj−1

=

(
Fj,t

Kj,t

)−1

for j = p,w. In what follows, ωw = ν. We show below that we can do it

just once and take care of the difference with some additional notation. We

further re-define the variables Fj,t and Kj,t as

Fj,t ≡ Et

{
∞∑

T=t

(αjβ)T−tf j
t,T

}
,

Kj,t ≡ Et

{
∞∑

T=t

(αjβ)T−tkj
t,T

}
,
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with

fp
t,T ≡ (1− τT )C−σ̃−1

T C̄ σ̃−1

T YT P
1−θp

t,T , (A.32)

kp
t,T ≡ φµpC

−σ̃−1

T C̄ σ̃−1

T wR,T Y φ
T A−φ

T P
−θp(1+ωp)
t,T , (A.33)

fw
t,T ≡ C−σ̃−1

T C̄ σ̃−1

T Y φ
T A−φ

T ∆p,T wR,T W 1−θw
t,T (A.34)

kw
t,T ≡ λµwY

φ(1+ν)
T H̄−ν

t A
−φ(1+ν)
T ∆1+ν

p,T W
−θw(1+ν)
t,T (A.35)

where we have defined Pt,T ≡ Pt/PT , Wt,T ≡ Wt/WT . We can then obtain

in an exact log-linear form that

Γ̂j,t + F̂j,t = K̂j,t. (A.36)

We take a second-order expansion of Fj,t and Kj,t, obtaining

F̂j,t +
1

2
F̂ 2

j,t = (1− αjβ)Et

{
+∞∑
T=t

(αjβ)T−t(f̂ j
t,T +

1

2
(f̂ j

t,T )2)

}
+O(||ξ||3), (A.37)

K̂j,t +
1

2
K̂2

j,t = (1− αjβ)Et

{
+∞∑
T=t

(αjβ)T−t(k̂j
t,T +

1

2
(k̂j

t,T )2)

}
+O(||ξ||3). (A.38)

Plugging (A.37) and (A.38) into (A.36), we obtain

Γ̂j,t = (1− αjβ)Et

{
+∞∑
T=t

(αjβ)T−t(k̂j
t,T − f̂ j

t,T )

}
+

+
(1− αjβ)

2
Et

{
+∞∑
T=t

(αβ)T−t((k̂j
t,T )2 − (f̂ j

t,T )2)

}
+

1

2
(F̂j,t − K̂j,t)(F̂j,t + K̂j,t) +O(||ξ||3). (A.39)

We note that in an exact log-linear form

k̂p
t,T − f̂p

t,T = −(1 + ωpθp)P̂t,T + ŵR,T + φ(ŶT − aT )− ŶT − ŜT ,

k̂w
t,T − f̂w

t,T = −(1 + νθw)Ŵt,T + φνŶT − νhT − φνaT + ν∆̂p,T − ŵR,T

+σ̃−1(ĈT − c̄T ),
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where Ŝt ≡ ln(1− τt)/(1− τ̄).

Furthermore we obtain that

k̂p
t,T + f̂p

t,T = (1 + φ)ŶT − φaT + (1− 2θp − ωpθp)P̂t,T + ŜT − 2σ̃−1(ĈT − c̄T ) + ŵR,T

= Xp,T + (1− 2θp − ωpθp)P̂t,T ,

k̂w
t,T + f̂w

t,T = φ(2 + ν)ŶT + (2 + ν)∆̂T − νh̄T − φ(2 + ν)aT + ŵR,T +

(1− 2θw − νθw)Ŵt,T − σ̃−1(ĈT − c̄T )

= Xw,T + (1− 2θw − νθw)Ŵt,T ,

where we have defined

Xp,T ≡ (1 + φ)ŶT − φaT + ŜT − 2σ̃−1(ĈT − c̄T ) + ŵR,T .

Xw,T ≡ φ(2 + ν)ŶT + (2 + ν)∆̂T − νht − φ(2 + ν)at + ŵR,T − σ̃−1(ĈT − c̄T ).

We can then substitute into (A.39) and get

1

(1− αβ)
Γ̂j,t = −1

2
Γ̂j,tZj,t + Et

+∞∑
T=t

(αjβ)T−t(k̂j
t,T − f̂ j

t,T ) +

+
1

2
Et

+∞∑
T=t

(αjβ)T−t[(k̂j
t,T − f̂ j

t,T )][Xj,T + (1− 2θj − ωjθj)P̂
j
t,T ] +

+O(||ξ||3), (A.40)

where we use the definition P̂w
t,T = Ŵt,T and

Zj,t ≡ Et

+∞∑
T=t

(αjβ)T−t[Xj,T + (1− 2θj − ωjθj)P̂
j
t,T ].

By using (A.40), and defining

zj,T ≡ k̂j
t,T − f̂ j

t,T + (1 + ωjθj)P̂
j
t,T ,

we can write

Γ̂j,t

(1− αjβ)
= zj,t +

αjβ

(1− αjβ)
Et(Γ̂j,t+1 − (1 + ωjθj)P̂

j
t,t+1)−

1

2
Γ̂j,tZj,t +

1

2
αjβEtΓ̂j,t+1Zj,t+1 +

+
1

2
zj,tXj,t +

αjβ

2
Et{

+∞∑
T=t+1

(αjβ)T−t−1(1 + ωjθj)(1− 2θj − ωjθj)(−P̂ j2
t,t+1 +

−2P̂ j
t,t+1P̂

j
t+1,T )− (1 + ωjθj)P̂

j
t,t+1Xj,T + (1− 2θj − ωjθj)P̂

j
t,t+1zj,T}+O(||ξ||3),
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which can be simplified to

Γ̂j,t

(1− αjβ)
= zj,t + αjβ

1

(1− αjβ)
Et(Γ̂j,t+1 − (1 + ωjθj)P̂

j
t,t+1) +

1

2
zj,tXj,t +

−1

2
Γ̂j,tZj,t +

1

2
αjβEt{(Γ̂j,t+1 − (1 + ωjθj)P̂

j
t,t+1)Zj,t+1}

+
αjβ

2(1− αjβ)
(1− 2θj − ωjθj)Et{(Γ̂j,t+1 − (1 + ωjθj)P̂

j
t,t+1)P̂

j
t,t+1}+

+O(||ξ||3), (A.41)

We next take a second-order expansion of Γ̂j,t

Γ̂j,t

(1 + ωjθj)
=

αj

1− αj

πj,t −
1− θj

2

αj

(1− αj)2
π2

j,t +O(||ξ||3), (A.42)

and note that and P̂ j
t−1,t = −πj,t. We can then plug (A.42) into (A.41)

obtaining

πj,t =
1− θj,t

2

1

(1− αj)
π2

j,t + ξjzj,t + βEtπj,t+1 −
1− θj

2

αjβ

(1− αj)
Etπ

2
j,t+1

+
1

2
ξjzj,tXj,t −

1

2
(1− αjβ)πj,tZj,t +

β

2
(1− αjβ)Et{πj,t+1Zj,t+1}

−β

2
(1− 2θj − ωjθj)Et{π2

j,t+1}+O(||ξ||3). (A.43)

By integrating equation (A.43) forward from time t0 we can finally obtain

Vj,t0 = ξjEt0

∞∑
t=t0

βt−t0zj,t +
1

2
ξjEt0

∞∑
t=t0

βt−t0zj,tXj,t

+
θj(1 + ωj)

2
Et0

∞∑
t=t0

βt−t0π2
j,t +O(||ξ||3), (A.44)

where

Vj,t0 ≡ πj,t0 −
1− θj

2(1− αj)
π2

j,t0
+

(1− αjβ)

2
πj,t0Zj,t0 +

θj(1 + ωj)

2
π2

j,t0

and

Zj,t = Xj,t −
αjβ

1− αjβ
(1− 2θj − ωjθj)Etπj,t+1 + αjβEtZj,t+1.
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Finally, we can take a second-order approximation of the relation between

output and consumption Yt = Ct + Gt obtaining

Ĉt = s−1
C Ŷt−s−1

C Ĝt+
s−1

C (1− s−1
C )

2
Ŷ 2

t +s−2
C ŶtĜt+s.o.t.i.p.+O(||ξ||3), (A.45)

while

Ŝt = −ωτ τ̂t + s.o.t.i.p. +O(||ξ||3), (A.46)

where ωτ ≡ τ̄ /(1− τ̄). By substituting (A.45) and (A.46) into the definition

of zj,t and Zj,t in (A.43), we finally obtain a quadratic approximation to the

AS relations. For the price constraint we obtain.

Vp,t0 = ξpEt0

∞∑
t=t0

βt−t0 [(φ− 1)Ŷt − φat + ŵR,t + ωτ τ̂t]

+
1

2
ξpEt0

∞∑
t=t0

βt−t0{[φ2 − 1− 2σ−1(φ− 1)]Ŷ 2
t + 2[φ− σ−1]ŵR,tŶt + ŵ2

R,t}

+ξpEt0

∞∑
t=t0

βt−t0{[σ−1gt − φat]ŵR,t + [φ(σ−1 − φ)at + σ−1(φ− 1)gt + (1− σ−1)ωτ τ̂t]Ŷt}

+
θp(1 + ωp)

2
Et0

∞∑
t=t0

βt−t0π2
p,t + s.o.t.i.p. +O(||ξ||3), (A.47)

This can be expressed compactly in the form

Vp,t0 = Et0

∞∑
t=t0

βt−t0ξp(c
′
p,xxt + cp,ξξt +

1

2
x′tCp,xxxt − x′tCp,xξξt +

1

2
cp,πpπ

2
p,t)

+s.o.t.i.p. +O(||ξ||3) (A.48)

or as

Vp,t = ξp(c
′
p,xxt + cp,ξξt +

1

2
x′tCp,xxxt − x′tCp,xξξt +

1

2
cp,πpπ

2
p,t) + βEtVp,t+1

+s.o.t.i.p. +O(||ξ||3) (A.49)

where we have defined

c′p,x ≡
[

(φ− 1) 1
]

cp,ξξt ≡ −φat + ωτ τ̂t,
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Cp,xx ≡

[
φ2 − 1− 2σ−1(φ− 1) φ− σ−1

φ− σ−1 1

]

Cp,xξ ≡

[
0 −σ−1(φ− 1) 0 −(1− σ−1)ωτ 0 0 −φ(σ−1 − φ)

0 −σ−1 0 0 0 0 φ

]

cp,π ≡
θp(1 + ωp)

ξp

and

Vp,t = πp,t +
1

2
vπpπ

2
p,t + vp,zπp,tZp,t,

Zp,t = zp,yŶt + zp,rŵR,t + zπpπp,t + zp,ξξt + αpβEtZp,t+1,

in which the coefficients are defined as

vp,π ≡ θp(1 + ωp)−
1− θp

(1− αp)
, vp,z ≡

(1− αpβ)

2
,

vp,k ≡
ξpαp

1− αpβ
(1− 2θp − ωpθp),

zp,y ≡ (1 + φ− 2σ−1) + vp,k(ω + σ−1)

zp,r ≡ (1 + vp,k)

zp,ξξt ≡ 2σ−1gt − φ(1 + vp,k)at − ωτ (1− vp,k)τ̂t,

zp,π ≡ −vp,k

ξp

.

Note that in a first-order approximation, (A.49) can be written simply as

πp,t = ξp[(φ− 1)Ŷt + ŵR,t + cp,ξξt] + βEtπp,t+1. (A.50)

We can also write (A.48) as

Vt0 = Et0

∞∑
t=t0

βt−t0ξp(c
′
p,xxt +

1

2
x′tCp,xxxt − x′tCp,xξξt +

1

2
cp,πpπ

2
p,t)

+t.i.p. +O(||ξ||3), (A.51)

where the term cξξt is now included in terms independent of policy. (Such

terms matter when part of the log-linear constraints, as in the case of (A.50),

but not when part of the quadratic objective.)
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For the wage constraint we obtain that

Vw,t0 = ξwEt0

∞∑
t=t0

βt−t0 [(φν + σ−1)Ŷt − ŵR,t − φνat − σ−1gt − νht]

+
1

2
ξwEt0

∞∑
t=t0

βt−t0{[(φ(2 + ν)− σ−1)(φν + σ−1)) + σ−1(1− s−1
C )]Ŷ 2

t

−2[φ− σ−1]ŵR,tŶt − ŵ2
R,t}

+ξwEt0

∞∑
t=t0

βt−t0 [−σ−1gt + φat]ŵR,t +

+ξwEt0

∞∑
t=t0

βt−t0 [σ−1(σ−1 − φ)gt − φν(1 + ν)ht + σ−1s−1
C Ĝt]Ŷt

−ξwEt0

∞∑
t=t0

βt−t0φ[2φν + φν2 + σ−1]atŶt +
θw(1 + ν)

2
Et0

∞∑
t=t0

βt−t0π2
w,t

+
θpν(1 + ωp)ξw

ξp

Et0

∞∑
t=t0

βt−t0π2
p,t + s.o.t.i.p. +O(||ξ||3),

This can be expressed compactly in the form

Vw,t0 = Et0

∞∑
t=t0

βt−t0ξw(c′w,xxt + cw,ξξt +
1

2
x′tCw,xxxt − x′tCw,xξξt +

1

2
cw,πwπ2

w,t +
1

2
cw,πpπ

2
p,t)

+s.o.t.i.p. +O(||ξ||3) (A.52)

or as

Vw,t = ξw(c′w,xxt + cw,ξξt +
1

2
x′tCw,xxxt − x′tCw,xξξt +

1

2
cw,πwπ2

w,t +
1

2
cw,πpπ

2
p,t) + βEtVw,t+1

+s.o.t.i.p. +O(||ξ||3) (A.53)

where we have defined

c′w,x ≡
[

φν + σ−1 −1
]

cw,ξξt ≡ −φνat − σ−1gt − νht,

Cw,xx ≡

[
(φ(2 + ν)− σ−1)(φν + σ−1) + σ−1(1− s−1

C ) −(φ− σ−1)

−(φ− σ−1) −1

]
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Cw,xξ ≡

[
−σ−1s−1

C −σ−1(σ−1 − φ) 0 0 φν(1 + ν) φ[2φν + φν2 + σ−1]

0 σ−1 0 0 0 −φ

]

cw,πw ≡ θw(1 + ν)

ξw

cw,πp ≡
θpν(1 + ωp)

ξp

and

Vw,t = πw,t +
1

2
vw,ππ2

w,t + vw,zπw,tZw,t,

Zw,t = zw,yŶt + zw,rŵR,t + zw,ππw,t + zw,ξξt + αwβEtZw,t+1,

in which the coefficients are defined as

vw,π ≡ θw(1 + ωw)− 1− θw

(1− αw)
, vw,z ≡

(1− αwβ)

2
,

vw,k ≡
αwξw

1− αwβ
(1− 2θw − νθw),

zw,y ≡ φ(2 + ν)− σ−1 + vw,k(φν + σ−1)

zw,ξξt ≡ σ−1(1− vw,k)gt − ν(1 + vw,k)h̄t − [φ(2 + v) + φνvw,k]at,

zw,π ≡ −vw,k

ξw

.

Note that in a first-order approximation, (A.53) can be written as simply

πw,t = ξw[(φν + σ−1)Ŷt − ŵR,t − φνat − σ−1gt − νht] + βEtπw,t+1. (A.54)

We can also write (A.52) as

Vw,t0 = Et0

∞∑
t=t0

βt−t0ξw(c′w,xxt +
1

2
x′tCw,xxxt − x′tCw,xξξt +

1

2
cw,πwπ2

w,t +
1

2
cw,πpπ

2
p,t)

+t.i.p. +O(||ξ||3). (A.55)

We can add (A.51) and (A.55) to obtain

Vt0 = Et0

∞∑
t=t0

βt−t0(Ŷt+
1

2
cyyŶ

2
t −Ŷtcyξξt+

1

2
cπwπ2

w,t+
1

2
cπpπ

2
p,t)+t.i.p.+O(||ξ||3)
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which is equation (2.34) in the text, where now

cyy ≡ 2 + ω − σ−1 + σ−1(1− s−1
C )(ω + σ−1)−1

cyξξ ≡ (ω +σ−1)−1[−σ−1s−1
C Ĝt +(1−σ−1)σ−1gt +ω(1+ω)qt−ωτ (1−σ−1)τ̂t]

cπw ≡ θw(1 + ν)

ξw(ω + σ−1)

cπp ≡
θp(1 + ω)

ξp(ω + σ−1)

and

Vt ≡
Vw,t

ξw(ω + σ−1)
+

Vp,t

ξp(ω + σ−1)

A.4 Derivation of equation (2.37)

We can multiply equation (2.36) by ΦȲ ūc and subtract from (2.30) to obtain

Ut0 = −Ȳ ūcEt0

∞∑
t=t0

βt−t0

{
1

2
qyŶ

2
t − Ŷt(uyξξt + Φcyξξt) +

1

2
qpπ

2
p,t +

1

2
qwπ2

w,t

}
+

+Tt0 + t.i.p. +O(||ξ||3),

where

qp ≡ uπp + Φcπp

=
θp(1− Φ)

ξp

+ Φ
θp(1 + ω)

ξp(ω + σ−1)

=
θp

ξp(ω + σ−1)
[(ω + σ−1) + Φ(1− σ−1)],

qw ≡ uπw + Φcπw

=
θw(1− Φ)

φξw

+ Φ
θw(1 + ν)

ξw(ω + σ−1)

=
θw

ξwφ(ω + σ−1)
[(ω + σ−1) + Φ(1− σ−1)],

qy ≡ uyy + Φcyy

= (ω + σ−1)− Φ(1 + ω) + Φ(2 + ω − σ−1) + Φσ−1(1− s−1
C )(ω + σ−1)−1

= (ω + σ−1) + Φ(1− σ−1) +
Φσ−1(1− s−1

C )

ω + σ−1
.
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This can be rewritten in the form (2.37) given in the text, where

Ŷ ∗
t ≡ q−1

y [uyξξt + Φcyξξt]

= q−1
y {σ−1gt + (1− Φ)ωqt + (ω + σ−1)−1Φ[−σ−1s−1

C Ĝt + σ−1(1− σ−1)gt + ω(1 + ω)qt

−ωτ (1− σ−1)τ̂t]}
= ω1Ŷ

n
t − ω2Ĝt + ω3τ̂t,

and Ω, Ŷ n
t , and the ωi are defined as in the text.

A.5 Determinacy conditions

Consider the first-order conditions

qyxt = κpϕp,t + κwϕw,t, (A.56)

qpπp,t = −(ϕp,t − ϕp,t−1)− ϕr,t, (A.57)

qwπw,t = −(ϕw,t − ϕw,t−1) + ϕr,t, (A.58)

ξpϕp,t − ξwϕw,t − ϕr,t + βEtϕr,t+1 = 0, (A.59)

and the structural equations

πp,t = κpxt + ξp(ω̂R,t − ω̂n
t ) + up,t + βEtπp,t+1, (A.60)

πw,t = κwxt − ξw(ω̂R,t − ω̂n
t ) + uw,t + βEtπw,t+1, (A.61)

ω̂R,t = ω̂R,t−1 + πw,t − πp,t. (A.62)

We can substitute equations (A.56), (A.57), (A.58), (A.59) and (A.62) into

(A.60) to obtain

βqwqyEtϕp,t+1 = [qwqy(1 + β) + qpqwκ2
p + 2qwqyξp]ϕp,t +

−[qwqy + qwqyξp]ϕp,t−1 + qpqyξpϕw,t−1 +

+[qwqpκwκp − ξwqyqw − ξpqyqp]ϕw,t − qpqwqyξpω̂
n
t +

+qpqwqyup,t + qyξpqpqwω̂R,t−1 + qyξp(qp + qw)ϕr,t(A.63)
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We can substitute equations (A.56), (A.57), (A.58), (A.59) and (A.62) into

(A.61) to obtain

βqpqyEtϕw,t+1 = [qpqy(1 + β) + qpqwκ2
w + 2qpqyξw]ϕw,t +

−[qpqy + qpqyξw]ϕw,t−1 + qwqyξwϕp,t−1 +

+[qpqwκwκp − ξpqyqp − ξwqyqw]ϕp,t + qpqwqyξwω̂n
t

+qpqwqyuw,t − qyξwqpqwω̂R,t−1 + qyξw(qp + qw)ϕr,t,(A.64)

Substitution of (A.57) and (A.58) yields

qwqpω̂R,t = qwqpω̂R,t−1 + qw(ϕp,t − ϕp,t−1)− qp(ϕw,t − ϕw,t−1)

+(qp + qw)ϕr,t (A.65)

finally (A.59) implies

βEtϕr,t+1 = ϕr,t + ξwϕw,t − ξpϕp,t, (A.66)

We can write the set of the above conditions (A.64), (A.63), (A.65), (A.66)

in the following system

AEtzt+1 = Bzt + Cυt (A.67)

where

z′t ≡ [ϕp,t ϕw,t ϕr,t ω̂R,t−1 ϕp,t−1 ϕw,t−1],

and

υ′t ≡ [ω̂n
t up,t uw,t],

and

A ≡



βqwqy 0 0 0 0 0

0 βqpqy 0 0 0 0

0 0 β 0 0 0

0 0 0 qwqp 0 0

0 0 0 0 1 0

0 0 0 0 0 1


,

B ≡



b11 b12 b13 b14 b15 b16

b21 b22 b23 b24 b25 b26

−ξp ξw 1 0 0 0

qw −qp (qp + qw) qwqp −qw qp

1 0 0 0 0 0

0 1 0 0 0 0


,
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b11 ≡ [qwqy(1 + β) + qpqwκ2
p + 2qwqyξp],

b12 ≡ [qwqpκwκp − ξwqyqw − ξpqyqp],

b13 ≡ qyξp(qp + qw),

b14 ≡ qyξpqpqw,

b15 ≡ −[qwqy + qwqyξp],

b16 ≡ qpqyξp,

b21 ≡ [qpqwκwκp − ξpqyqp − ξwqyqw],

b22 ≡ [qpqy(1 + β) + qpqwκ2
w + 2qpqyξw],

b23 ≡ qyξw(qp + qw),

b24 ≡ −qyξwqpqw,

b25 ≡ qwqyξw,

b26 ≡ −[qpqy + qpqyξw],

C ≡



−qpqwqyξp qpqwqy 0

qpqwqyξw 0 qpqwqy

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0


.

The determinacy of the equilibrium depends on the roots of the characteristic

equation associated with the system (A.67)

det(B − µA) = 0.

Rational-expectations equilibrium is determinate if the number of roots µi

such that |µi| < 1 is exactly equal to the number of predetermined variables

which in our case is three. Under this condition, we can solve the above

system in the following way. Consider as V the matrix of the left eigenvector

associated with the roots of the characteristic polynomial which are above

the unit circle. The matrix V has the property that V B = ΦV A, where
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Φ is a diagonal matrix that contains the roots µi such that |µi| > 1. By

premultiplying (A.67) by V we obtain

Etkt+1 = Φkt + V Cυt (A.68)

where we have defined kt ≡ V Azt. A unique and stable solution for {zt} can

be obtained by

zt = −Et

∞∑
j=0

Φ−(j+1)V Cυt+j.

We can partition V A as V A = [(V A)1 (V A)2] according to the non-predetermined

and predetermined endogenous variables in zt = [z1,t z2,t−1] and we can obtain

(V A)1z1,t + (V A)2z2,t = −Et

∞∑
j=0

Φ−(j+1)Cυt+j,

which can be solved (under conditions of invertibility on V A1) as

z1,t = −(V A)−1
1 (V A)2z2,t−1 − (V A)−1

1 Et

∞∑
j=0

Φ−(j+1)V Cυt+j (A.69)

We note that we can partition the system (A.67) in the following way[
A1 0

0 A4

]
Et

(
z1,t+1

z2,t

)
=

[
B1 B2

B3 B4

](
z1,t

z2,t−1

)
+

[
C1

C2

]
υt

We can then substitute (A.69) into the lower block of the above system to

obtain

z2,t = A−1
4 (B4−B3(V A)−1

1 (V A)2)z2,t−1+A−1
4 C2υt−A−1

4 B3(V A)−1
1 Et

∞∑
j=0

Φ−(j+1)V Cυt+j

(A.70)

Using (A.69) and (A.70) and (A.56), (A.57), (A.58) and (A.62) we can obtain

the optimal path for {xt, πp,t, πw,t, ω̂R,t}.
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