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Abstract

Since Black and Scholes (1973) and Merton (1974), structural models of credit risk

have relied almost exclusively on di�usion processes to model the evolution of �rm value.

While a di�usion approach is convenient, in empirical application, it has produced very

disappointing results. Jones, Mason, and Rosenfeld (1984) �nd that the credit spreads on

corporate bonds are too high to be matched by the di�usion approach. Also, because the

instantaneous default probability of a healthy �rm is zero under a continuous process, the

di�usion approach predicts that the term structure of credit spreads should always start

at zero and slope upward for �rms that are not currently in �nancial distress, but the

empirical literature shows that the actual credit spread curves are sometimes 
at or even

downward-sloping.

If a di�usion approach cannot capture the basic features of credit risk, what approach

can? This paper develops a new structural approach to valuing default-risky securities by

modeling the evolution of �rm value as a jump-di�usion process. Under a jump-di�usion

process, a �rm can default instantaneously because of a sudden drop in its value. With this

characteristic, a jump-di�usion model can match the size of credit spreads on corporate

bonds and can generate various shapes of yield spread curves and marginal default rate

curves, including upward-sloping, downward-sloping, 
at, and hump-shaped, even if the

�rm is currently in good �nancial standing. The model also links recovery rates to �rm

value at default in a natural way so that variation in recovery rates is endogenously generated

in the model. The model is also consistent with many other stylized empirical facts in the

credit-risk literature.



There are two basic approaches to modeling corporate default risks. One approach,

pioneered by Black and Scholes (1973) and Merton (1974) and extended by Black and Cox

(1976), Longsta� and Schwartz (1995), and others, explicitly models the evolution of �rm

value observable by investors. The �rm defaults when its market value falls below certain

exogenously given threshold level or the value of its debt. This approach for valuing risky

debt is called a structural approach by Du�e and Singleton (1995) and has been applied in

Geske (1977), Ingersoll (1977a, 1977b), Merton (1977), Smith and Warner (1979), Cooper

and Mello (1991), Hull and White (1992), Abken (1993), and many other papers.

One critical common assumption of the Merton-Black-Cox-Longsta�-Schwartz approach

is that the evolution of �rm value follows a di�usion process. Under a di�usion process,

because a sudden drop in �rm value is impossible, �rms never default unexpectedly (i.e.,

by surprise).
1

The validity of this implication is questionable. If a �rm cannot default

unexpectedly and if it is not currently in �nancial distress, its probability of defaulting

on very short-term debt is zero and therefore, its short-term debt should have zero credit

spreads and its term structure of credit spreads should slope upward at the short end. This

implication of the di�usion approach is strongly rejected. Credit spreads on typical short

term bonds are much larger than zero. Moreover, Fons (1994) and Sarig and Warga (1989)

even �nd that the yield spread curves of certain kind of bonds are 
at or even downward

sloping. The empirical application of a di�usion approach has yielded very disappointing

results. Jones, Mason, and Rosenfeld (1984) �nd that the credit spreads on corporate bonds

are generally too high to be matched by this approach.

The implication that a �rm has a constant value upon default in the typical di�usion

approach (e.g., Longsta� and Schwartz) is also problematic.
2
On the one hand, this ap-

proach emphasizes the central role of �rm value in the determination of default. On the

other hand, the approach cannot allow the variation in the recovery rate of a risky bond to

1More precisely, the time of default is accessible under a di�usion process, meaning that there is an

increasing sequence of stopping times that converges to the default time, and therefore `foretells' the event

of default.
2Merton's (1974) model is an exception. Under some very restrictive assumptions of his model, such that

a �rm has only one bond issue and does not default until the maturity of the bond, the remaining value of

a �rm upon default is stochastic.
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depend on the �rm's remaining value at default.

Another alternative approach, adopted by Du�e and Singleton (1994), Jarrow, Lando,

and Turnbull (1994), Jarrow and Turnbull (1995), Madan and Unal (1994), and others does

not consider the relation between default and �rm value in an explicit (or structural) way.

This approach is called the reduced-form approach. In contrast to the Merton-Black-Cox-

Longsta�-Schwartz's structural approach, the reduced-form approach treats default as an

unpredictable Poisson event involving a sudden loss in market value so default events can

never be expected.
3
For example, Du�e and Singleton (1994) assume that default occurs

at a risk-neutral hazard rate ht at any time t, meaning roughly that the conditional risk-

neutral probability at time t of default over a small time interval �t, given no default before

t is ht�t.

The attractive property of the above reduced-form approach is its tractability. How-

ever, it is not clear from the approach what the link or mechanism is between �rm value

and corporate default. For example, since the hazard rate of default in the reduced-form

approach is modeled as an exogenous process, nobody knows what determine the \mysteri-

ous" hazard rate from this approach. Also, the implication that �rms can only default \by

surprise" seems unrealistic.

In summary, a reduced-form approach is usually more 
exible to �t the observed credit

spreads, while a structural approach often generates more conceptual insights on default

behavior. Neither a default approach nor a structural approach (based on a di�usion pro-

cess) captures both expected and unexpected defaults. From a theoretical perspective, a

structural approach based on a di�usion process completely rules out the use of a hazard

default rate which is common in the reduced-form approaches, because any such hazard

rate would be zero before default and in�nity at default.
4

Can we have a model which not only has the 
exibility of the reduced-form approach to

�t the data but also provides the theoretical insights on the economic mechanism behind

default events of the traditional structural approach? Can we have a model which allows

3That is, the time of default is always an inaccessible stopping time.
4See Du�e and Singleton (1995) for a detailed discussion on this issue and the distinction between

expected defaults and unexpected defaults.
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for both expected and unexpected defaults in a single framework? How can we reconcile

the di�erent implications of the traditional reduced-form and structural approaches?

To answer these questions, this paper develops a simple yet 
exible structural approach

to valuing risky debt by modeling the evolution of �rm value as a jump-di�usion process.

Under a jump-di�usion process, a default can happen expectedly because of slow but steady

declines in �rm value. A default can also occur unexpectedly because of a sudden drop in

�rm value. This 
exibility has a number of interesting implications, including: 1) The term

structure of credit spreads can be upward sloping, 
at, hump-shaped, or downward sloping.

Some of these shapes (
at and downward-sloping) are not possible in structural models

based on di�usion processes unless a �rm is in �nancial distress. 2) Default probabilities

and credit spreads on very short-term bonds of good quality �rms can be larger than

zero. In particular, holding constant the total volatility of the dynamics of �rm value,

the existence of jump risks can substantially raise the credit spreads of bonds over a wide

maturity range. 3) The remaining value of a �rm at default is a random variable. Since

what bondholders receive upon default are mainly determined by the remaining value of

the �rm, the randomness of �rm value at default implies that a jump-di�usion model can

generate variations in recovery rates endogenously. 4) The recovery rate of a defaulted bond

is positively correlated with the credit quality of the bond before default. These implications

are consistent with a number of stylized empirical regularities detailed in Fons (1994), Sarig

and Warga (1989), Jones, Mason, and Rosenfeld (1984), Altman (1989), and many others.

The importance of jump processes in pricing risky bonds was also noticed by Mason

and Bhattacharya (1981). In Mason and Bhattacharya's model, the evolution of �rm value

follows a pure jump process with jump amplitude following a binomial distribution. Our

jump-di�usion model is more 
exible and more general. It is also more realistic. In our

model, the dynamics of �rm value have two random components: a continuous di�usion

component and a discontinuous jump component. The jump amplitude follows a log-normal

distribution rather than a binomial distribution.

The remainder of this paper is structured as follows. Section 1 presents the basic eco-

nomic framework. Section 2 provides closed-from solutions to simpli�ed models in which a

default can only occur at the maturity of the debt as in Merton (1974). Section 3 solves the

3



general models in which a default may occur at any time. The implications of the model

are are illustrated in Section 4. Section 5 gives a useful application of our general pricing

methodology, i.e., pricing credit default swaps. Section 6 extends our economic framework

to allowing for stochastic interest rates. Section 7 concludes.

1 The Basic Model

By extending Merton-Black-Cox-Longsta�-Schwartz approach and modeling the evolution

of �rm value as a jump-di�usion process, this section builds a continuous-time valuation

framework for risky debt. The basic assumptions are listed and discussed below. Some of

them parallel those of Merton (1974), Black and Cox (1976), and Longsta� and Schwartz

(1995).

Assumption 1: Let V denote the total market value of the assets of the �rm. The

dynamics of V are given by the following jump-di�usion process

dV=V = (�� ��)dt+ �dZ1 + (�� 1)dY (1)

where

�, �, �, and � are positive constants;

Z1 is a standard Brownian motion;

dY is a Poisson process with intensity parameter �;

� > 0 is the jump amplitude with expected value equal to � + 1, and

dZ1, dY , and � are mutually independent.

Because � equals the expected value of jump component (��1), � in the above equation

represents the expected instantaneous rate of change of �rm value.

We assume that � is an i.i.d. log-normal random variable, such that

ln(�) � N(��; �
2
�): (2)

This assumption implies that

� := E[�� 1] = exp(�� + �2�=2) � 1:
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The di�usion process in equation (1) characterizes the \normal" 
uctuation in �rm

value, due to gradual changes in economic conditions or the arrival of new information

which causes marginal changes in the �rm's value. The jump component describes the

sudden changes in �rm value due to the arrival of important new information which has

a large e�ect on �rm's market value. Given the fact that a �rm's value moves almost

continuously most of the time and that the market value of a �rm may drop dramatically in

the event of default, a jump-di�usion process for �rm value seems appropriate for modeling

a �rm's default risk. For a detailed discussion of jump-di�usion processes, see, for example,

Kushner (1967) and Merton (1974).

Assumption 2: The capital asset pricing model (CAPM) holds for equilibrium security

returns and the jump component of �rm's value equation (1) is purely �rm-speci�c and is

uncorrelated with the market.

The jump-di�usion process was introduced into the derivative pricing literature by Mer-

ton (1976). According to Merton, there generally does not exist a set of portfolio weights

that will eliminate the \jump" risk. A Black-Scholes hedge will not be riskless even in a

continuous-time setup. To validate the Black-Scholes \risk-neutral" argument, some extra

restrictions on the economy and the jump process must be imposed. If the jump component

represents nonsystematic risk, a portfolio which removes the risk of di�usion component

(i.e., dZ1 does not appear in the return process of the portfolio) will have a zero \beta." By

the CAPM, the expected return on that portfolio must equal the riskless rate. The jump

risk will therefore not receive a risk premium.

Assumption 3: The Modigliani-Miller theorem that the value of the �rm is invariant

to its capital structure obtains.

This is a standard assumption in the literature
5
, which requires that changes in capital

structure, such as debt/equity ratio and payments of coupons and principle, do not a�ect

the �rm's value V .

Assumption 4: We assume perfect, frictionless markets in which securities trade in

continuous time. Arbitrage opportunities do not exist.

According to Harrison and Pliska (1981), the nonexistence of arbitrage opportunities is

5See Merton (1974) and Longsta� and Schwartz (1995).
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equivalent to the existence of equivalent martingale measures. Most standard approaches

in the derivative pricing literature can then be used in valuing default-risky debt.

Assumption 5: There exists a positive threshold valueK for the �rm at which �nancial

distress occurs. The �rm continuous to operate and to be able to meet its contractual

obligations as long as V > K. However, if its value V falls to or below the threshold level

K, it defaults on all of its obligations immediately and some form of corporate restructuring

takes place.

This assumption follows Black and Cox (1976)
6
and Longsta� and Schwartz (1995).

However, in the Black-Cox-Longsta�-Schwartz framework, because the �rm's value V has a

continuous time path, V is always equal to K in the event of default. In our model, because

V has a jump component, in the event of default, it can be a random number distributed

in the whole interval of (0;K]. Because of this property, it is quite natural in our model to

randomize the recovery rate of debt issues and to link this rate to �rm's value if a default

occurs.

An important implication of the assumption is that default occurs for all debt contracts

simultaneously. Longsta� and Schwartz (1995) provide a detailed discussion of institutional

arrangement and corporate restructuring in the default.

Assumption 6: The �rm issues both equity and debt (bonds). If it defaults during

the life of a bond, the bond holder receives 1 � w(Xs) times the face value of the security

at maturity T .7 Here s = min(�; T ) with � being the time of default and X := V=K is the

ratio of �rm's value V to the threshold level K.

In practice, w is usually a non-increasing function of X, that is the inequality w0(X) � 0

holds. The factor w represents the percentage writedown on a bond if there is a reorgani-

zation of the �rm. When w = 0, there is no writedown and bondholders are not a�ected by

6Black and Cox (1976) assume that K is a deterministic function of time while we assume that K is a

constant here. Assuming that K is a deterministic function of time does not a�ect the basic structure of

our model.
7This assumption follows Longsta�-Schwartz (1995). The assumption that bondholders will be paid

at the maturity time even though a default may have occurred before that time is made for expositional

convenience. One can easily relax this assumption by assuming that bondholders get paid immediately at

default time if a default occurs in the life of the bond without a�ecting the basic structure of the model.
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the �rm's reorganization. When w = 1, bondholders receive nothing in a reorganization.

In general, w will di�er across various bond issues in the �rm's capital structure. For

example, Altman and Bencivenga (1995) �nd that the average recovery rate (1 � w) for

secured, senior, senior subordinated, cash-pay subordinated, and non-cash-pay subordinated

debt for a sample of defaulted bond issues during the 1985 to 1994 period is 0.593, 0.508,

0.365, 0.306, and 0.187, respectively. Similar results are also found by Altman (1992), Betker

(1992), and Franks and Torous (1994). It is important to note that even for the same class of

bond issues, the writedown w di�ers signi�cantly across di�erent time periods and di�erent

�rms. Altman and Bencivenga (1995) reports, for example, the average recovery rate for

the defaulted issues of secured debt is 0.827 in 1989 but is only 0.120 in 1987. A number

of factors may have contributed to this large disparity, but the �rm's value in the event

of default is certainly important. Most valuation models do not explain the variation in

writedown ratios for the same kind of bonds. A primary advantage of our model is that is

considers such variation in a natural way.

Note that even though we do not explicitly write w as a function of the �rm's capital

structure and the class of the debt issue for notational simplicity, w should be understood

as bond speci�c. For example, a senior bond will have a di�erent w function from a junior

bond.

Assumption 7: The short-term riskfree interest rate r is constant over time.

This assumption is made for convenience only and will be relaxed in Section 6.

Assumption 1 and the de�nition that X = V=K yield immediately

dX=X = (�� ��)dt+ �dZ1 + (�� 1)dY: (3)

Let H be the price of any derivative security with payo� at time T contingent on the

�rm's X. Using Merton's (1976) result, we know that under the assumption that the jump

risk is not systematic and that arbitrage opportunities are excluded, the derivative price H

must satisfy the following partial di�erential equation (PDE):

1

2

�2X2HXX + (r � ��)XHX � rH + �Et[H(X�; T ) �H(X;T )] = HT : (4)

The above equation depends on neither the risk-aversion coe�cient nor the physical drift

of the �rm's X, as we expected from standard no-arbitrage approach for pricing derivative
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securities. Theoretically, the value of any derivative security can be obtained by solving

equation (4) subject to appropriate boundary conditions. However, in practice, a closed-

form solution does not always exist, thus numerical approaches are sometimes necessary.

The above assumptions provide a general framework for valuing default-risky securities.

Analytical solutions to security prices are not easily found in such a general framework. To

make some technical preparation and to provide some intuition, we consider a simpli�ed

model with a closed-form solution before trying to solve the general valuation problem.

2 A Closed-form Solution to a Simpli�ed Model

This section presents a valuation formula for default-risky discount bonds in a simpli�ed

framework with a di�erent timing of default event. That is, Assumption 5 in the previous

section is replaced by

Assumption 5
0
: The �rm has two classes of claims: (a) discount bonds with a single

maturity T and (b) the residual claim, equity. The �rm promises to pay the face value of

each bond ($1) at the maturity date T . If the �rm's value at T is not greater than K (this

means that the �rm is not able to pay all of its debt), the �rm defaults and the bondholders

divide the �rm to recover the value of their bondholdings.

This assumption simpli�es the model because the possible default time is now given

rather than a stochastic stopping time. This assumption is similar to the one made by

Merton (1974).

Under Assumptions 5
0
, the price B(X;T ) of the bond with a promised �nal payment $1

at time T is characterized by PDE (4) subject to the condition at T = 0 that

B(X; 0) = IX>1 + [1� w(X)] � IX�1;

where X := V=K is de�ned as before and I represents the indicator function, that is

Isth =

8><
>:

1; if sth is true,

0; otherwise:

Lemma 1 Under Assumptions 1-4, 50, and 6-7, the bond price B(X;T ) is given by

B = exp(�rT )EQ
[IXT>1 + (1� w(XT ))IXT�1]
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= exp(�rT )� exp(�rT )EQ
[w(XT )jXT � 1]F

Q
T (1jX); (5)

where EQ represents the expectation under the equivalent martingale measure Q conditioning

on information currently available. Under this measure,

dX=X = (r � ��)dt+ �dZ1 + (�� 1)dY: (6)

Equation (6) can be rewritten as:

d ln(X) = (r � �2=2� ��)dt+ �dZ1 + ln(�)dY: (7)

The expression F
Q
T (�jX) is de�ned as the probability of event fXT � �g conditional on

current X under risk-adjusted probability measure Q, i.e., F
Q
T (�jX) := Q(XT � �jX).

Lemma 1 is based on a standard risk-neutrality approach in the derivative pricing liter-

ature. Its proof is provided in the appendix.

To evaluate the bond price B, a critical step is to calculate the default probability

F
Q
T (1jX). We can prove

Lemma 2 The probability F
Q
T (�jX) := Q(XT � �) is given by

F
Q
T (�jX) =

1X
i=0

exp(��T )(�T )i
i!

�N
 
ln(�)� ln(X) � (r � �2=2� ��)T � i��p

�2T + i � �2�

!
: (8)

Proof: See Appendix.

One case of particular interest is that the writedown of a defaulted bond is a linear

function of �rm value upon default, that is

w(X) = w0 � w1X:

For this important case, we have

Theorem 1 If w(X) = w0 � w1X, then

B(X;T ) = exp(�rT )f1� w0F
Q
T (1jX)

+w1X
P
1

i=0
exp(��T )(�T )i

i! � exp[�i + �2i =2][1 �N(
ln(X)+�i+�

2

i

�i
)]g; (9)
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where

�i = (r � �2=2� ��)T + i��;

and

�i :=
q
�2T + i � �2�:

F
Q
T (1jX) is the probability of default as given in Lemma 2.

The proof of the theorem is provided in the appendix.

The closed form expression of bond price B(X;T ) for the writedown w(X) = w0 �
w1X involves nothing more complicated than standard normal distribution functions. Its

structure is similar to that of European option prices when the underlying asset prices follow

jump-di�usion processes. (See Merton (1976).)

We can de�ne the recovery rate of a defaulted bond as q(X) = 1 � w(X). If w(X) =

w0�w1X, then q(X) = (1�w0)+w1X = q0+q1X. If q0 < 0 (i.e., w0 > 1), q(X) = q0+q1X

can be negative. For a limited-liability bond, a negative value of bond is precluded. A

reasonable assumption to avoid a negative value of q(X) is that

q(X) = max(0; q0 + q1X):

This is equivalent to

w(X) = min(1; w0 � w1X):

It is easy to see that w0(X) � 0 for X � 0 whenever w1 � 0.

Theorem 2 Assume w(X) = min(1; w0 � w1X). If w0 > 1 but w0 �w1 < 1, then

B(X;T ) = exp(�rT )
�
1� F

Q
T (1jX) + (1� w0)

�
F
Q
T (1jX) � F

Q
T

�
w0 � 1

w1

jX
��

+w1X
1X
i=0

exp(��T )(�T )i
i!

� exp[�i + �2i =2]

�
"
N

 
ln(X) + �i + �2i � ln((w0 � 1)=w1)

�i

!
�N

 
ln(X) + �i + �2i

�i

!#)
;(10)

where �i, �i and F
Q
T (:jX) are de�ned as in Theorem 1.

The proof of this theorem is similar to that of Theorem 1. See the appendix for details.

10



The bond price with the limited-liability restriction given in Theorem 2 involves no

more complicated mathematics than that given in Theorem 1 for the bonds without limited-

liability restriction, even though the price formula with the limited-liability restriction looks

longer and less attractive. One can easily prove that bond price B(X;T ) with limited-

liability is higher than that without limited-liability restriction, ceteris paribus. This is very

intuitive, with limited liability, bondholders do not have to pay anyone else even in the

worst cases.

Figure 1 shows the e�ect of limited-liability constraint on credit spreads. One can see

from the �gure that the impact of such a constraint may be very small under reasonable

parameter values. This is because the probability that 1�w becomes negative is relatively

low. For this reason, we will not impose this constraint in subsequent analyses so as to

simplify the exposition.

3 On the Solution to the General Model

In this section, we consider our general model (under Assumptions 1-7) in which a default

can occur at any point of time.
8

Let � represent the time when a default occurs. Mathematically,

� := infftjXt � 1; t � 0g;

that is, � is the �rst passage time for Xt to cross the lower bound 1. Explicit solutions for

�rst passage times are not known, except for some very special di�usion processes.
9

If a default occurs before or at the maturity of the bond, i.e., � � T , the payo�s to the

bondholders will be a�ected by the default. A bond will receive a value of 1 � w(X� ) at

the maturity T . If X is a continuous di�usion process as in Longsta� and Schwartz (1995),

X� will be always equal to 1. If X is discontinuous, X� will be a random number and its

distribution will generally depend on the stopping time � .

8In the following discussions, a general model will refer to a model in which a default occurs immediately

when the �rm's value reaches a lower bound, while a simpli�ed model will refer to a model in which a default

can only occur at the maturity of the bond.

9See Abrahams (1986) for a survey on the �rst passage time problem.
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Using the results in the previous section, we know that the bond price B(X;T ) satis�es

the partial di�erential equation (4)

1

2

�2X2BXX + (r � ��)XBX � rB + �Et[B(X�; T ) �B(X;T )] = BT ;

subject to

B(X; 0) = I�>T + [1� w(X� )]I��T

at T = 0.

A Feyman-Kac solution to the above PDE, similar to Lemma 1, can be expressed as

B(X;T ) = exp(�rT )� exp(�rT )EQ
[w(X� )I��T ]; (11)

where Q is the risk-adjusted probability measure under which X follows a jump-di�usion

process as described in equation (6).

The following theorem provides a tractable way to valuing the bond in the general

framework where a default can occur at any time.

Theorem 3 Assume X > 1. The bond price B(X;T ) given in equation (11) can be ex-

pressed as

B(X;T ) = exp(�rT )� exp(�rT ) lim
n!1

nX
i=1

EQ
[w(X�

ti
)j
i]Qi; (12)

where

ti =
i

n
T;


i = fX�

ti
� 1 and X�

tj
> 1; 8j < ig;

Qi = Q(
i);

and moreover, X�
ti
is de�ned recursively as

X�
t0
= X;

ln(X�

ti
)� ln(X�

ti�1
) = xi + yi � �i; i = 1; 2; � � � ; n:

Here xi, yi, and �i are mutually and serially independent random variables drawn from

xi � N((r � �2=2� ��)T=n; �2 � T=n);
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�i � N(��; �
2
�);

and

yi =

8><
>:

0; with prob. 1� � � T=n
1; with prob. � � T=n

Brie
y speaking, the theorem holds because in a very small time period, there is no more

than one jump can occur and the di�usion process can not move a large distance almost

surely. The proof of the theorem is outlined in the appendix.

One feature of Theorem 3 is that the writedown w(X) in the event of default can be any

continuous function. Another feature is that the movement of Xt is governed by two simple

probability distributions: normal distributions and two-point distributions. In particular,

a two-point distribution is generally much simpler than a multi-valued Poisson distribution

in both theoretical and numerical analyses.

We now describe a simple Monte Carlo approach to valuing B(X;T ) based on the

theorem.

Procedures to valuing the bond price B(X;T ):

� Step (1). Divide the time interval [0; T ] into n equal subperiods for su�ciently large

n, say n = 100 or n = 500. Denote ti := T � i=n.

� Step (2). Do Monte Carlo simulations by repeating the following sub-procedures for

M (j = 1; 2; � � � ;M) times. Typically, one can choose M between 10,000 and 100,000.

a) For each j, generate a series of mutually and serially independent random vectors

(xi; �i; yi) for i = 1; 2; � � � n according to distributions described in Theorem 3.

b) Let X�
t0
= X and calculate ln(X�

ti
) or X�

ti
according to the formula

ln(X�
ti
) = ln(X�

ti�1
) + xi + yi � �i

for i = 1; � � � ; n.

c) Find the smallest integer i � n such that ln(X�
ti
) � 0.

10
If such an i exists, let

Wj = w(X�
ti
). Otherwise, Wj = 0.

10Mathematically, ti obtained in this way is the �rst passage time of Xt to the lower bound 1 in a

discretized model.
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� Step (3). Let B(X;T ) = exp(�rT )(1 �PM
j=1Wj=M). B(X;T ) will be a numerical

solution to the bond price.

The above numerical procedure involves nothing more complex than generating 3n �M
random numbers based on the simplest probability distributions. It takes only several

minutes to value a bond with, for example, a SPARC 20 computer.

4 Empirical Implications of the Jump-Di�usion Model

The following numerical examples illustrate some of the rich implications of the jump-

di�usion model.

First, we show the e�ects of a jump component on the pricing of default-risky bonds.

To do this, we keep the instantaneous volatility of �rm's value (Var(d ln(X))=dt) constant

as we change the parameter values which govern the random components of dX, so that the

variations in bond prices are truly caused by the relative importance of the jump component

rather than by the changes in the overall volatility of �rm's value.

Equation (7) implies that

�2X := Var(d ln(X))=dt = �2 + � � �2� (13)

if �� = 0. We will keep �� = 0 and �2X = 0:035 in our numerical simulations so that the

results shown here are really driven by the change in the extent of \discontinuity" of the

�rm's value process rather than by the variation in the volatility of the �rm's value.

As is well known, a di�usion process has a continuous sample path and cannot cross

a boundary from somewhere else instantaneously. Therefore, under a di�usion process, if

a �rm is not currently in �nancial distress (X > 1), its probability of defaulting on very

short-term debt is zero and therefore the marginal default probability curve of the �rm is

upward-sloping at the beginning, as shown in Figure 2 with �2� = 0. In the real world, the

default probabilities of short-term bonds are often much larger than zero. If the evolution

of �rm value follows a jump-di�usion process, however, the story will be di�erent. Under

a jump-di�usion process, a default can happen instantaneously because of a sudden drop

in �rm value. As a result, a jump-di�usion model can generate many di�erent shapes of
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marginal default probability curves, including upward-sloping, downward-sloping, 
at, and

hump-shaped. This variety of shapes is consistent with those in Fons (1994).

As for cumulative default probabilities,
11

in accordance with Figure 2, Figure 3 shows

that holding constant the volatility of X and the jump intensity �, a �rm with a more

volatile jump component (i.e., a larger �2�) is more likely to default on its short-maturity

bonds than is a �rm with a more volatile di�usion component. Interestingly, Figure 3 also

illustrates the reverse relation at longer maturities. A �rm with a more volatile di�usion

component is more likely to default on its long-maturity bonds than is a �rm with a more

volatile jump component. Because this is a surprising result, we now outline the intuition

for it.

For a given T > 0 which is not very small in magnitude, an increase in the volatility of

a di�usion process can substantially increase the probability of default during period [0; T ].

However, for a jump process, the e�ect on default probability of the jump size volatility �2�

is largely limited by the jump intensity �. If � is very small such that �T is also a small

number, then the probability that there is at least one jump in period [0; T ] is approximately

�T . As a result, no matter how large the jump size volatility �2� is, the probability of default

in period [0; T ] caused by the jump process is always smaller than �T , even though �T is

already small. In this case, an increase in �2� mainly a�ects the remaining value of a �rm

upon default and has a very small e�ect on the default probability. This intuition is made

more rigorous in the following concrete example.

Consider two extreme X processes for illustration. The �rst one is a pure di�usion

process with the volatility �2 and the second one is a pure jump process with a small jump

intensity � and a large volatility of jump amplitude �2� := Var(ln(�)). We assume that

�2 = � � �2� = 0:035, same as the volatility of ln(X) used in Figure 3.

Denote F (T ) as the cumulative distribution function of the �rst passage time to default

for the pure di�usion process and J(T ) as the cumulative distribution function of the �rst

passage time to default for the pure jump process, where T is the maturity time and default

11Cumulative default probabilities reported in this paper are not annualized. They are calculated under

risk-adjusted probability measure Q. They often look higher than default probabilities of real bonds under

the physical probability measure. This is because the drift of a �rm's value under the risk-adjusted measure

is smaller than the corresponding real drift under the physical measure.
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occurs whenever X falls to or below 1. Using the result of Harrison (1990), we have

F (T ) = N

 
� ln(X) + (r � �2=2)T

�
p
T

!
+X

(1� 2r

�2
)
N

 
� ln(X)� (r � �2=2)T

�
p
T

!
: (14)

Assuming that X = 2 at time zero and r = 0:05 as in Figure 3, we obtain immediately

that F (1) = 0:0001 and F (10) = 0:116.

There is no explicit expression for J(T ). However, in a pure jump process with a positive

drift, default must be caused by jumps. Assume that � = 0:01 and that �2� = 0:035=0:01 =

3:50. If T = 1, then the probability of one jump in [0; T ] is about �T = 0:01 and the

probability of two or more jumps in [0; T ] is small enough to ignore. If a jump occurs at

time t < 1 and there are no other jumps before t, the probability that Xt falls to or below

1 is

N(� ln(X)=��) = N(� ln(2)=
p
3:5) = 0:36:

As a result, we have J(1) � 0:01� 0:36 = 0:0036.

Now let's consider T = 10. The probability that there is no jump in the time interval

[0; T ] is

exp(��T ) = exp(�0:01 � 10) = 0:90:

That is, the probability that there are one or more jumps in [0; T ] is 1�0:90 = 0:10. Denote

d as the conditional probability of a default if there are jumps. Then we have

J(10) = 0:10 � d� 0:10:

As a matter of fact, no matter how one increases the volatility �2�, J(10) is always much

smaller than 0.10.

From the above examples, we see that J(1) � F (1) and that J(10) � F (10). That is,

a jump process is more likely to cause a default over a short horizon but less likely to cause

a default over a long horizon than a di�usion process.

Straightforwardly, under a jump-di�usion process, a �rm's value V can jump below the

boundary K without hitting it. This implies that the remaining value of the �rm upon

default is random and is possibly less than K. If V is stochastic, it is very natural that the

recovery rate of a defaulted bond is also stochastic because what bondholders recover upon

default depends on the remaining value (V ) of the �rm. We see from Figure 4 that the
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volatility of writedown increases with the volatility of the jump component, �2�. Without a

jump component, the writedown is deterministic. The standard deviation of the writedown

is about 0:15 as �2� = 0:25 and rises to about 0:20 when �2� becomes 0.50. This result

reveals another attractive feature of the jump-di�usion model. That is, the model provides

a reasonable explanation about why the recovery rates of similar bonds are so volatile and

so unpredictable.

Generally, the larger the jump size volatility �2� is, the farther X is below 1 on average

upon default. (If X follows a pure di�usion process then upon default, X always equals to

one.) This implies that average writedowns of bonds are larger when the jump volatility is

larger. (Recall that a lowerX at default means a lower recovery rate, or a higher writedown.)

In the examples shown in Figure 5 (w0 = 1:4 and w1 = 1:0), the average writedown is 0.40

when �2� = 0:00 or there is no jump component. It rises to 0.50-0.55 when �2� = 0:25

and increases further to about 0.65 when �2� = 0:50. Figure 5 also shows that under a

jump-di�usion process, not only the ex post recovery of a bond is not a constant, the ex

ante recovery rate of a bond is not a constant either. Because a di�usion process is almost

unlikely to cause a default in a short period of time, the defaults of short-term bonds are

usually caused by the jump component of the dynamics of �rm value. As the maturity

gets longer, the probability that a default is caused by the di�usion process becomes larger.

If a default is caused by the di�usion component, then X = 1 upon default; while if a

default is caused by the jump component, upon default, X < 1 with probability one. As a

result, under a jump-di�usion process, short-maturity bonds are usually have lower expected

recovery rates (higher expected writedowns) than are long-maturity bonds.

Theoretically, default probability and expected recovery rate upon default determine

the credit spread on a bond. According to Figure 2, under a di�usion process, if a �rm is

not currently in �nancial distress (X > 1), its probability of defaulting on very short-term

debt is zero and therefore, its short-term debt should have zero credit spreads, as shown

in Figure 6 with �2� = 0. This strong implication of di�usion models for credit spreads is

not valid in the real world. Credit spreads on typical short term bonds are much larger

than zero. As mentioned before, Fons (1994) and Sarig and Warga (1989) even �nd that

the yield spread curves of certain kind of bonds (BB-rated or B-rated) are relatively 
at or

17



downward sloping.
12

As illustrated in Figure 6, these yield spread curves are captured by

a jump-di�usion model with non-trivial jump components.

Figure 6 shows that jump risks signi�cantly raise credit spreads, especially for bonds

with short- to middle-maturities, even holding constant the total volatility of the dynamics

of �rm value. For example, for a two-year discount bond, the annualized credit spread shown

in the �gure is only seven basis points when jump component does not exist (�2� = 0). The

spread rises to 32 basis points as �2� becomes 0.25 and rises further to 57 basis points

as �2� reaches 0.50. This result suggests that a misspeci�cation of stochastic processes

governing the dynamics of �rm value, i.e., falsely specifying a jump-di�usion process as a

continuous Brownian motion process, may substantially understate the credit spreads of

corporate bonds. The results here explain the stylized empirical regularities contained in

Jones, Mason, and Rosenfeld (1984).
13

The frequency of jump occurrences, �, is another important parameter in characterizing

the jump component. Given the volatility of the jump component, ��2�, the jump frequency

� determines how \discontinuous" the jump process �dY is. A larger � and a smaller �2�

mean that jumps occur more frequently but each jump may cause a smaller movement. In

other words, the path of the process with a larger � and a smaller �2� looks more \continuous"

than that of a process with a smaller � but a larger �2�. Figure 7 plots the relation between

credit spreads and the jump intensity parameter � based on a pure jump process in which

the instantaneous volatility of d ln(X) remains constant, i.e., �2X = � � �2� = 0:035. The

12Helwege and Turner (1995) argue that credit spread curves of many B-rated bonds are still upward-

sloping based on a particular data sample, but they cannot reject that some B-rated bonds really have

downward-sloping credit spread curves. Moreover, no one suspects that the credit spreads of most short-

term bonds are nonzero. Merton's (1974) model which is based on a di�usion approach can generate a

downward-sloping credit spread curve only if the �rm is exceptionally highly leveraged, that is, if the �rm's

debt-ratio is greater than one or in terms of my modeling assumptions, the current X is smaller than one.

However, according to Helwege and Turner (1995), the data from Standard and Poor's on median book

values of debt-to-capitalization ratios by rating indicate that B-rated and even many CCC-rated �rms do

not have debt ratios greater than one.
13The empirical literature has provided very favorable evidence that jumps are an important feature of

asset returns. See, for example, Bates (1996), Jorion (1988), Kon (1984), and Das, Foresi, and Sundaram

(1996) for details.
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�gure shows an interesting pattern between credit spreads and the parameters of the jump

process. That is, a large � and a small �2� are generally associated with low credit spreads

of short-term bonds but high credit spreads of long-term bonds. This pattern is driven by

the relation between default probabilities and the structure of jump process as shown in

Figure 8. Figure 8 looks similar to Figure 3 and shows that for short-maturity bonds, the

more continuous the path of X is, the lower the default probabilities are. This phenomenon

is reversed as the maturities of bonds get longer.

Figures 9, 10, and 11 illustrate the relations between �rm'sX and credit spreads, default

probabilities, and expected writedowns, respectively. It is not surprising to see from Figures

9 and 10 that credit spreads and default probabilities decrease with X. The farther is �rm's

value V from threshold levelK, the smaller is the likelihood of a default. What is interesting

here is the non-monotonic relation between X and the expected writedowns as shown in

Figure 11.

For bonds with very short maturities, a lower X generally implies a higher writedown

or a lower recovery rate. This is because a quick default is generally caused by a jump

in X. The higher is X before jump, the higher is the expected value of X after jump.

For bonds with middle maturities, if X is close to default threshold value, 1, the expected

writedown is low. This is because a default in this case is very likely caused by the di�usion

part of X and there is a good chance that X = 1 (the highest value of X upon default).

If current X is su�ciently far away from its threshold value, expected recovery rates will

be positively correlated with current X. This is because when the current X is su�ciently

large, the default of the �rm will be mainly caused by the jump component of X process

over the middle horizon. As mentioned earlier, the higher is X before jump, the higher is

the expected value of X after jump.

Because a �rm with a high credit rating usually has a large X before default, the results

of Figure 11 may explain why among various investment grade bond issues, the recovery

rates of defaulted bonds are positively correlated with bond ratings before defaults (Altman

1989).
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5 Application: Pricing Credit Default Swaps

The above theoretical framework for modeling default risks can be conveniently used to

price credit derivatives such as credit default swaps, credit spread derivatives, and total

return swaps. As an example, we consider the pricing of credit default swaps.

A plain vanilla credit default swap involves the exchange of 
oating rate payment (say,

LIBOR) for a payment contingent on default by a reference �rm. It is often used to hedge

the credit risk associated with various �nancial claims such as bank loan or trade credit.

As it is well known, the credit risk of a �nancial claim is usually characterized by two

risk-factors: the default probability and the recovery rate. In practice, the second factor is

at least as important as the �rst one. For example, the default of a large borrower may only

cause a small drop in the pro�t of the lending bank if the bank can recover 95% percent of

its loan to this borrower, but the default may cause a disaster to the bank if the recovery

rate is only 20%. The ability of a credit default swap to hedge the credit risk of a claim

depends on the relation, in the event of default, between the value of defaulted �nancial

claim and the value of the swap's contingent payment. Obviously, the assumption of a

constant recovery rate is not able to capture this relation. That's why an explicit modeling

of the recovery rate is interesting and necessary in many applications of credit risk analysis.

The contingent payment of a credit default swap can take on several possible forms.

The credit default swap pricing issue is virtually an issue of valuing contingent payments.

Assume that the payment contingent on default of a bond is G(X� ) made at time Ts,
14

where � is the time of default and Ts is the maturity time of the swap (� � Ts). Two

approaches can then be used to value this payment. The �rst approach values the payment

directly by using the valuation framework established in the previous sections. Denote

A(X;Ts) as the present value of contingent payment G(X� ). A(X;Ts) can be determined

by PDE (4) with the following terminal condition at Ts = 0:

A(X; 0) = G(X) � I��Ts :

Theorem 4 Assume that X > 1. Suppose that the bond defaults immediately at time �

14This assumption is made to let us apply the previous framework more straightforwardly. There is no

di�cult to price the swap if one assumes that the contingent payment is made at time � .
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when X� � 1. For any continuous function G(X), we have

A(X;Ts) = exp(�rTs) lim
n!1

nX
i=1

EQ
[G(X�

ti
)j
i] �Qi; (15)

where

ti =
i

n
Ts;


i = fX�

ti
� 1 and X�

tj
> 1; 8j < ig;

Qi = Q(
i);

and moreover, X�
ti
is de�ned recursively as

X�

t0 = X;

ln(X�

ti
)� ln(X�

ti�1
) = xi + yi � �i:

xi, yi, and �i are mutually and serially independent random variables drawn from

xi � N((r � �2=2� ��)Ts=n; �
2 � Ts=n);

�i � N(��; �
2
�);

and

yi =

8><
>:

0; with prob. 1� � � Ts=n
1; with prob. � � Ts=n

In particular, if G(X) = g is a constant, then

A(X;Ts) = exp(�rTs) � g lim
n!1

nX
i=1

Qi; (16)

Proof: See Appendix.

The swap price A(X;Ts) can be evaluated easily by the same numerical method as

described after Theorem 3.
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6 Extension: Stochastic Interest Rates

We assumed constant riskfree interest rates earlier. We now relax this assumption by

assuming that the instantaneous riskfree interest rates follow a di�usion process:

Assumption 7: The dynamics of short-term riskfree rates r are given by

dr = (� � �r)dt+ �dZ2; (17)

where �, �, and � are constants and dZ2 is a standard Brownian motion. The instantaneous

correlation between dZ1 in Assumption 1 and dZ2 is �dt. dZ2 is independent of dY and �.

This assumption about the short-term interest rate dynamics is proposed by Vasicek

(1977) in his well-known term structure model. It is a straightforward exercise to use other

interest rate processes like Cox, Ingersoll, Ross (CIR 1985).

The e�ect of the correlation between the interest rate movements and the changes in

�rm's value on credit spreads was �rst investigated by Longsta� and Schwartz (1995). We

now study this issue in a more general economic model. As an example, we will extend

the result of Theorem 3 to a setup with stochastic interest rates. All other results in the

previous sections can be extended similarly.

Under Assumption 7, the partial di�erential equation (4) for bond price B(X; r; T ) can

be rewritten as:

1

2

�2X2BXX + ���XBXr +
1

2

�2Brr + (r � ��)XBX

�rB + (�� �r)Hr + �Et[B(X�; r; T ) �B(X; r; T )] = BT ; (18)

where � represents the sum of parameter � and a constant representing the market price of

interest rate risk.

Suppose that Assumption 5 is e�ective. That is, the �rm defaults immediately when its

value V falls to or below the threshold level K (X � 1). Then B(X; r; T ) will satisfy the

following condition at T = 0:

B(X; r; 0) = I�>T + [1� w(X� )]I��T :

Similar to Lemma 1, a Feyman-Kac solution to the PDE can be expressed as:

B(X; r; T ) = EQ
[exp(�

Z T

0

rdt)(I�>T + (1 �w(X� ))I��T )]; (19)
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where Q is the risk-adjusted probability measure under which

d ln(X) = (r � �2

2

� ��)dt+ �dZ1 + ln(�)dY; (20)

dr = (�� � � r)dt+ �dZ2: (21)

The bond price formula given in equation (19) can be evaluated according to the fol-

lowing theorem.

Theorem 5 Denote D(r; T ) as the price of the riskfree discount bond which pays $1 at time

T . The bond price B(X; r; T ) given in equation (19) can then be expressed as

B(X; r; T ) = D(r; T ) � lim
n!1

nX
i=0

EQ
[exp(�

nX
j=0

r�tj � T=n)w(X
�

ti
))j
i] �Qi; (22)

where

ti =
i

n
T;


i = fX�

ti
� 1 and Xtj > 1; 8j < ig;

Qi = Q(
i);

and moreover, X�
ti
and r�ti are de�ned recursively as

r�t0 = r;

X�

t0 = X;

r�ti � r�ti�1 = �i:

ln(X�

ti
)� ln(X�

ti�1
) = xi + yi � �i:

Here xi, yi, �i, and �i are random variables drawn from2
64 �i

xi

3
75 � N

0
B@
2
64 �� � � r�ti�1
r�ti�1 � �2=2� ��

3
75 � T

n
;

2
64 �2 ���

��� �2

3
75 � T

n

1
CA ;

�i � N(��; �
2
�);

and

yi =

8><
>:

0; with prob. 1� � � T=n
1; with prob. � � T=n
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In the Vasicek term structure model, the riskfree bond price D(r; T ) is given by

D(r; T ) = exp(a(T )� b(T )r); (23)

where

a(T ) =

 
�2

2�2
� �

�

!
T +

 
�2

�3
� �

�2

!
(exp(��T )� 1)

�
 
�2

4�3

!
(exp(�2�T )� 1)

b(T ) =

1� exp(��T )
�

:

The intuition of this theorem is similar to that of Theorem 3. Its proof is outlined in

the appendix.

One can follow procedures similar to those described after Theorem 3 to evaluate bond

price B(X; r; T ) numerically.

Figure 12 graphs the relation between credit spreads and the correlation coe�cient

between the di�usion component of the changes in �rm's value and changes in short-term

interest rate. Similar to the results reported by Longsta� and Schwartz (1995), the impact

of the correlation coe�cient � is signi�cant. The reason why the credit spread increases

with � is that the risk-neutral distribution of future values of X depends on the movements

in r. Thus, the variance of changes in X depends on the correlation between changes in X

and changes in short-term interest rate. When � is positive, the covariance term adds to the

total variance of changes in X under the risk-adjusted probability measure, and therefore

increases the probability of a default, as shown in Figure 13.

7 Concluding remarks

This paper develops a tractable yet theoretically rigorous framework for valuing risky debt

and credit derivatives that incorporates both default risk and interest rate risk and allows

for both a continuous component and a jump component in the evolution of �rm value.

The paper has a number of important implications. It shows that the structural pricing

model with both a jump component and a continuous component is much richer in generat-

ing various shapes of the term structure of credit spreads than are other structural models
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and that a jump-di�usion model can explain a number of empirical regularities regarding

default probabilities, recovery rates, and credit spreads which are not captured by tradi-

tional di�usion models. It also provides a simple integrated framework in which expected

and unexpected defaults can coexist. The results of this paper suggest that both di�usion

process and jump process are potentially important components for a structural valuation

model for corporate debt.

The valuation framework of the paper can be easily extended to allow for more insti-

tutional details such as 
oating rate coupon payments and bond indenture provision that

may require a �rm repay its lenders recovered values at default time � if a default occurs

before the maturity of the bond.

Most structural approaches to modeling corporate debt do not provide practical tools

for valuing realistic types of default-risky securities, even though they may provide useful

conceptual insights on credit risk. Our model can be easily applied to valuing various

types of corporate debt securities and even credit derivatives. The model not only has the


exibility of the reduced-form approach for capturing the basic features of the obserevd

credit spreads but also provides the conceptual insights on the mechanism behind default

events of the traditional structural approach.
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8 Appendix

This appendix outlines the proofs of the theorems presented in the text.

Proof of Lemma 1: The proof is straightforward. From a standard risk-neutrality

argument, we know that

B(X;T ) = exp(�rT )EQ
[IXT>1 + (1� w(XT ))IXT�1]:

The lemma follows immediately from the equality

IXT>1 + IXT�1 = 1:

Proof of Lemma 2: By the de�nition,

F
Q
T (�jX) := Q(XT � �jX) = Q(ln(XT ) � ln(�)jX):

Let YT be the total number of jumps from time 0 to time T . We have

ln(XT )j(X;YT = i) � N(ln(X) + (r � �2=2� ��)T + i��; �
2T + i�2�): (24)

A tedious calculation yields

F
Q
T (�jX) = Q(ln(XT ) � ln(�)j ln(X))

=

1X
i=0

Q(YT = i) �Q(ln(XT ) � ln(�)jX;YT = i)

=

1X
i=0

exp(��T )(�T )i
i!

�N
 
ln(�)� ln(X)� (r � �2=2� ��)T � i��p

�2T + i � �2�

!
:(25)

Lemma 3 Assume ln(x) � N(�x; �
2
x). We have

E[xja < ln(x) � b]Prob(a < ln(x) � b)

=

Z b

ln(x)=a
exp[�x + �xz] exp(�z2=2)

dzp
2�

= exp[�x + �2x=2]

"
N

 
b� �x � �2x

�x

!
�N

 
a� �x � �2x

�x

!#
: (26)
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Proof of Lemma 3: Let ln(x) = �x + �x � z, where z � N(0; 1). The �rst equality

follows directly from the de�nition of conditional expectations. The second equality holds

because

Z b

ln(x)=a
exp[�x + �xz] exp(�z2=2)

dzp
2�

= exp[�x]

Z b

ln(x)=a
exp[�xz � z2=2]

dzp
2�

= exp[�x + �2x=2]

Z b

ln(x)=a
exp[�(z � �x)

2=2]
dzp
2�

= exp[�x + �2x=2]

Z (b��x)=�x

z=(a��x)=�x

exp[�(z � �x)
2=2]

dzp
2�

= exp[�x + �2x=2]

Z (b��x��2x)=�x

z=(a��x��2x)=�x

exp(�z2=2) dzp
2�

= exp[�x + �2x=2]

"
N

 
b� �x � �2x

�x

!
�N

 
a� �x � �2x

�x

!#
:

Proof of Theorem 1: By Lemma 1, if w(X) = w0 � w1X, then

B(X;T ) = exp(�rT )f1�EQ
[w(XT )jXT � 1]F

Q
T (1jX)g

= exp(�rT )f1� w0F
Q
T (1jX) + w1 � EQ

(XT jXT � 1)F
Q
T (1jX)g: (27)

To �nish the proof, we only need to calculate

EQ
(XT jXT � 1)F

Q
T (1jX):

De�ne

h := EQ
(XT jXT � 1)F

Q
T (1jX)

and

hi = EQ
(XT jXT � 1; YT = i)Q(XT � 1jYT = i;X);

where YT is the total number of jumps from time 0 to time T . We have

h =

1X
i=0

Q(YT = i)hi

=

1X
i=0

exp(��T )(�T )i
i!

hi: (28)
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Using the results of equation (24) and Lemma 3, we obtain

hi = X exp[(r � �2=2� ��)T + i�� + (�2T + i�2�)=2] �

N

 
� ln(X) + (r � �2=2� ��)T + i�� + (�2T + i�2�)p

�2T + i�2�

!
:

Proof of Theorem 2: Denote q(X) = 1�w(X), q0 = 1�w0, and q1 = w1. By Lemma

1,

B(X;T ) = exp(�rT )f1�EQ
[w(XT )jXT � 1] � FQ

T (1jX)g

= exp(�rT )f1�EQ
[1� q(XT )jXT � 1] � FQ

T (1jX)g

= exp(�rT )f1� F
Q
T (1jX) +EQ

[q(XT )jXT � 1] � FQ
T (1jX)g: (29)

The assumptionw(X) = min(1; w0�w1X) for 0 < X � 1 together with q(X) = 1�w(X)

implies that

q(XT ) =

8><
>:

q0 + q1XT ; if �q0=q1 < XT � 1,

0; if 0 < XT � �q0=q1.
(30)

Using equation (24) and Lemma 3, we have immediately

EQ
[q(XT )jXT � 1]F

Q
T (1jX)

= EQ

�
q0 + q1XT j �

q0

q1
< XT � 1

�
�Q

�
�q0
q1

< XT � 1jX
�

= q0 �
�
F
Q
T (1jX) � F

Q
T (�

q0

q1
jX)

�
+ q1

1X
i=0

Q(YT = i) �

EQ

�
XT j � ln

�
q0

q1

�
< ln(XT ) � 0; YT = i

�
�Q
�
� ln

�
q0

q1

�
< ln(XT ) � 0jYT = i;X

�

= q0 �
�
F
Q
T (1jX) � F

Q
T

�
�q0
q1
jX
��

+ q1X
1X
i=0

exp(��T )(�T )i
i!

� exp[�i + �2i =2] �
"
N

 
ln(X) + �i + �2i � ln(� q0

q1
)

�i

!
�N

 
ln(X) + �i + �2i

�i

!#
:

Theorem 2 follows directly from the above result.

Proof of Theorem 3: Dividing the time interval [0; T ] into n equal subperiods and

evaluating expected values on the right hand side of equation (11) gives

EQ
[w(X� )I��T ] =

nX
i=1

EQ
[w(X� )jti�1 < � � ti] �Q(ti�1 � � < ti); (31)
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Denote


̂i := fXti � 1 and Xtj > 1; j < ig)

and

Q̂i := Q(
̂i):

It is easy to show that

Q(ti�1 � � < ti) = Q̂i + o(T=n); (32)

EQ
[w(X� )jti�1 < � � ti] = EQ

[w(Xti )jti�1 � � < ti] +O(T=n)

= EQ
[w(Xti )j
̂i] +O(T=n): (33)

On the other hand, equation (7) implies that

ln(Xti)� ln(Xti�1) = xi +

�iX
j=0

�ij ; (34)

where

xi � N((r � �2=2� ��)T=n; �2 � T=n);

�ij � N(��; �
2
�);

and

�i = k; with prob. �k � exp(���T=n)
k!

� (T=n)k, k = 0; 1; � � � :

According to the de�nitions of X�
ti
and Qi, we have

Q̂i = Qi + o(T=n)

and

EQ
[w(Xti)j
̂i] = EQ

[w(X�

ti
)j
i] + o(1);

where X�
ti
, 
i and Qi are de�ned as before.

As a result, we obtain from equation (31)

EQ
[w(X� )I��T ] = lim

n!1

nX
i=1

EQ
[w(X�

ti
)j
i] �Qi: (35)

The theorem then establishes immediately.
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Proof of Theorem 4: Since the contingent payo� at maturity Ts of the credit default

swap is G(X� )I��Ts , we have

A(X;Ts) = exp(�rTs)EQ
[G(X� )I��Ts ]:

Using the same method as in the proof of Theorem 3, one obtains immediately

A(X;Ts) = exp(�rTs) lim
n!1

nX
i=1

EQ
[G(X�

ti
)j
i] �Qi: (36)

If G(X) = g, one has

A(X;Ts) = exp(�rTs) lim
n!1

nX
i=1

EQ
[gj
i] �Qi

= exp(�rTs) lim
n!1

nX
i=1

g �Qi: (37)

Proof of Theorem 5: We know that

B(X; r; T ) = EQ
[exp(�

Z T

0

rdt)I�>T + exp(�
Z T

0

rdt)(1� w(X� ))I��T ]

= EQ
[exp(�

Z T

0

rdt)]�EQ
[exp(�

Z T

0

rdt)w(X� )I��T ]

= D(r; T )�EQ
[exp(�

Z T

0

rdt)w(X� )I��T ]: (38)

Using the same method as in the proof of Theorem 3, we then obtain the theorem

immediately.
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Figure 1: The E�ect of Limited Liability Constraint on Credit Spreads. The

parameter values used are X = 2:0, r = 0:05, �2 = 0:0225, � = 0:05, �� = 0:0, �2� = 0:25,

w0 = 1:4, and w1 = 1:0.
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Figure 2: The Relationship between Marginal Default Probabilities and Jump

Size Volatility �2�. The parameter values used are X = 2:0, r = 0:05, � = 0:05, �� = 0:0,

�2X = 0:035, w0 = 1:4, w1 = 1:0, and �2 = �2X � � � �2�.

36



0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

Maturity

C
um

ul
at

iv
e 

D
ef

au
lt 

P
ro

ba
bi

lit
y

|: �2� = 0:00 { {: �2� = 0:25 � �: �2� = 0:50

Figure 3: The Relationship between Cumulative Default Probabilities and Jump

Size Volatility �2�. The parameter values used are X = 2:0, r = 0:05, � = 0:05, �� = 0:0,

�2X = 0:035, w0 = 1:4, w1 = 1:0, and �2 = �2X � � � �2�.
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Figure 4: The E�ect of Jump Size Volatility �2� on the Volatility of Writedown.

The parameter values used are X = 2:0, r = 0:05, � = 0:05, �� = 0:0, �2X = 0:035, w0 = 1:4,

w1 = 1:0, and �2 = �2X � � � �2�.
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Figure 5: The Relationship between Jump Size Volatility �2� and Expected Write-

down. The parameter values used are X = 2:0, r = 0:05, � = 0:05, �� = 0:0, �2X = 0:035,

w0 = 1:4, w1 = 1:0, and �2 = �2X � � � �2�.
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Figure 6: The Relationship between Credit Spreads and Jump Size Volatility

�2�. The parameter values used are X = 2:0, r = 0:05, � = 0:05, �� = 0:0, �2X = 0:035,

w0 = 1:4, w1 = 1:0, and �2 = �2X � � � �2�.
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Figure 7: The Relationship between Credit Spreads and Jump Intensity �. The

parameter values used are X = 2:0, r = 0:05, �� = 0:0, �2 = 0, w0 = 1:4, w1 = 1:0, and

�2X = �2 + � � �2� = 0:035.
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Figure 8: The Relationship between Cumulative Default Probabilities and Jump

Intensity �. The parameter values used are X = 2:0, r = 0:05, �� = 0:0, �2 = 0, w0 = 1:4,

w1 = 1:0, and �2X = �2 + � � �2� = 0:035.

42



0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

Maturity

Y
ie

ld
 S

pr
ea

d 
(B

as
is

 P
oi

nt
s)

|: X = 1:5 { {: X = 2:0 � �: X = 3:0

Figure 9: The Relationship between Credit Spreads and Current X. The parameter

values used are r = 0:05, � = 0:05, �2 = 0:0225, �� = 0:0, �2� = 0:25, w0 = 1:4, and

w1 = 1:0.
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Figure 10: The Relationship between Cumulative Default Probabilities and Cur-

rent X. The parameter values used are r = 0:05, � = 0:05, �2 = 0:0225, �� = 0:0,

�2� = 0:25, w0 = 1:4, and w1 = 1:0.
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Figure 11: The Relationship between Average Writedown and Current X. The

parameter values used are r = 0:05, � = 0:05, �2 = 0:0225, �� = 0:0, �2� = 0:25, w0 = 1:4,

and w1 = 1:0.
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Figure 12: The E�ect of Correlation � on Credit Spreads. The parameter values

used are X = 2:0, r = 0:06, �2 = 0:0225, � = 0:05, �� = 0:0, �2� = 0:25, �2X = 0:035,

w0 = 1:4, w1 = 1:0, � = 0:05, � = 1:00, and �2 = 0:001.
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Figure 13: The E�ect of Correlation � on Default Probabilities. The parameter

values used are X = 2:0, r = 0:06, �2 = 0:0225, � = 0:05, �� = 0:0, �2� = 0:25, �2X = 0:035,

w0 = 1:4, w1 = 1:0, � = 0:05, � = 1:00, and �2 = 0:001.

47


