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Abstract

This paper shows how to extract information from equilibrium trading volume. The analysis is �rst

carried out in a market-clearing framework with symmetrically (and later normally) distributed

demands, and is then extended to include market-making models. The conclusions of this paper

hence apply to the majority of the models developed in the noisy rational expectations literature.

If a random variable is symmetrically distributed with the traders' demands around zero and the

asset market clears, the volume-based conditional distribution of this variable is symmetric, and

consequently its conditional expectation based on volume is zero. The random variable under

consideration may be the true value of the asset, the price or, in a dynamic model, the price

di�erence. The paper further proves that the covariance between the absolute value of any variable

jointly normally distributed with the traders' demands and the equilibrium volume is positive,

which agrees with the empirical evidence of a positive covariance between the absolute value of the

price di�erence and volume. Furthermore, numerical examples indicate that, when the asset value

is jointly normally distributed with the traders' demands, the probability of extreme realizations

for the asset true value conditioned on volume is increasing in volume. The paper's proposition

hold in market-making frameworks as long as the price, the asset value and the traders' demands

are symmetrically (resp. jointly normally) distributed. Finally, the paper develops a simple static

model where transaction costs can induce a positive covariance between price and volume.



The objective of this paper is to study how to extract information from equilibrium trading

volume (de�ned here as the sum of buy orders) under very general assumptions, so that the propo-

sitions developed in the paper can apply to a broad class of models. The only assumptions are that

the random variable about which one wants to extract information and the traders' demands for

the asset be symmetrically distributed around zero (and later that this variable be jointly normally

distributed with the traders' demands), and that the market clears. The results can be extended

to most market-making environments, provided symmetry is preserved. The traders' utility func-

tions, their motives to trade and their rationality can be left unexamined. The statistical properties

described in the paper hold for any random variable symmetrically (and then jointly normally) dis-

tributed with the traders' demands. They hold in a static framework as well as in a dynamic one.

The random variable in question can be the value of the asset, its price, or in a dynamic model,

the price di�erence.

After a brief review of the recent empirical literature on the price-volume relation, 1 the major

propositions are introduced. It is then shown that the results developed in market-clearing situ-

ations can be extended to most market-making frameworks, as long as the price, the asset value

and the traders' demands are symmetrically (resp. jointly normally) distributed. Finally, a simple

static model is introduced where transaction costs (taxes) can induce a positive covariance between

price and volume. Proposition (1) shows that, if a mean-zero random variable is symmetrically

distributed with the traders' demands around zero, and the asset market clears, the conditional

distribution of this variable conditioned on volume is symmetric, and consequently its conditional

expectation based on volume is zero. This result is quite intuitive. For example, as volume is the

sum of the buy orders, a high volume indicates a large 
ow of executed buy orders. But as the

market clears, this strong in
ux of executed buy orders corresponds necessarily to a equally strong


ow of executed sell orders.

Proposition (4) shows that, if a mean-zero random variable is jointly normally distributed with

1For an extensive review of the literature before 1987, see Karpo� (1987).
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the traders' demands and the asset market clears, the covariance between the absolute value of this

variable and trading volume is positive, unless this random variable is independent of the traders'

demands, in which case the covariance is zero. Taken together, propositions (1) and (4) show that

a surge in volume could be associated with a large change in the asset value, without indicating the

direction of the change. Proposition (4) is quite general; any dynamic model where the price change

is jointly normally distributed with the traders' demands without being independent of them should

yield a positive correlation between the absolute value of price change and trading volume. Models

of trading volume in a market-clearing setup typically use normally distributed random variables.

For those, propositions (1), and (4) apply, independently of the particular assumptions of each

model. Furthermore, numerical examples based on normally distributed demands and asset values

indicate that the volume-based conditional distribution of the true asset value has fatter tails than

the unconditional distribution when volume is high, and thinner tails when volume is low, a �nding

that may help �ne-tune risk management systems.

Most of the models in the noisy rational expectation literature, either in a market-clearing

framework (as in Diamond and Verrechia (1981)), or in a market making (Kyle type frameworks),

as in Wang (1992), (1994), Foster and Viswanathan (1994), He and Wang (1995), Michaely, Vila

and Wang (1996), use normally distributed random variables. For them, propositions (1) and (4)

in the paper hold. Alternatively, Blume et al (1994) construct a model where the precision of

the signals observed by the traders are stochastic (hence the signals are not normally distributed).

Simulations based on their model show a positive relation between volume and the absolute value

of price change, and a symmetric relation between price change per se and volume (i.e., a large

volume is associated with a negative or a positive movement in the asset price). The V-shaped

form of the price-volume relation con�rms the positive correlation between the magnitude of the

price change and trading volume. This seems to indicate that properties similar to those shown

in proposition (4) may still be valid for non-normal distributions. Furthermore, the symmetry

argument behind proposition (1) also applies to some non-normal distribution, like the elliptically

contoured distributions used by Foster and Viswanathan (1993).
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1 Review of the recent empirical literature

In his extensive review of the literature, Karpo� (1987) points out that many empirical studies

have found a positive correlation between the absolute value of price change and trading volume.

Furthermore, Karpo� reports that price change per se and volume are found to be positively

correlated in equity markets but not in futures markets, a pattern he attributes to the existence

of short sale constraints in stock and bond markets. Recall that proposition (1), which implies a

zero covariance between volume and price change per se, rests on the assumption that the traders'

demands are symmetrically distributed. Short sale constraints would introduce asymmetries in the

demands and could hence create a positive correlation between price change and volume, despite

market clearing. Since 1987, many economists have studied the relation between trading volume

and the magnitude of the price change, and between volume and price change per se, on stock data

and futures data. These empirical studies tend to con�rm Karpo�'s conclusions. Let's review �rst

the studies based on stock data, and turn later to studies based on futures.

Using hourly New York Stock Exchange data between 1979 and 1983, Jain and Joh (1988) �nd

a signi�cant positive relation between daily trading volume and the absolute value of the Standard

& Poor 500 index returns. The relation between volume and returns is stronger for positive returns

than for negative returns, and the di�erence between the two is statistically signi�cant. Gallant

et al (1992) use daily New York Stock Exchange data between 1928 and 1987 to compute an

estimate of the joint density of current price change and volume conditional on past price changes

and volume. They �nd that \the direction of the daily change in the stock market is unrelated to

contemporaneous volume," (p. 223) and that price change are more volatile when volume is heavier.

Before computing the conditional density, they plot price changes against adjusted volumes and

point that unusually high volumes are associated with large price changes. Note that Gallant

et al, using very long sample and sophisticated econometric methods found no relation between

price change per se and trading volume, even though they study an equity market. Using daily

Helsinki Stock Exchange data between 1977 and 1988, Martikainen et al (1994) �nd some positive
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and statistically signi�cant cross-correlations between contemporaneous values of stock returns and

volume, and between contemporaneous values of one and lagged values of the other. Assogbavi et

al. (1995) study daily prices and trading volume for the Toronto Stock Exchange TOR35 composite

index, the futures contracts on it, and 33 out of the 35 stocks making out the index, between May

1987 and November 1988 (with 1987 crash related observations deleted). A positive relation between

price change per se and volume is found in 24 of the 33 stocks, but is statistically signi�cant only for

10 stocks, while 20 stocks have a non-signi�cant (positive or negative) relation. Their contribution

is to show that \the greater the ratio of short positions to the number of shares outstanding, the

greater the trading volume associated with price increases relative to that accompanying price

decreases." Goodman (1996) uses a random sample of 50 stocks traded on the New York and the

American stock exchanges between 1993 and 1994. His �ndings con�rms that the absolute value

of the price change is positively correlated with trading volume, and shows that strong volume is

associated with extreme price movements, both positive and negative.

As for futures markets, Karpo� uses daily data on futures contracts for 9 commodities and

3 �nancial instruments (also called commodities thereafter) between January 1972 to December

1979. Out of the 442 individual contracts (contracts with di�erent maturities are traded for each

commodity), 353 (80 percent) display a positive relation between the absolute value of the price

change and volume; this relation is statistically signi�cant for 224 contracts (51 percent). About

half of the contracts show a positive relation between price change per se and volume; this relation

is statistically signi�cant for only 25 contracts (6 percent). The analysis is repeated on 12 time

series (one for each commodity) constructed from the futures contracts data. The relation between

the magnitude of the price change and volume is positive for all the commodities, and statistically

signi�cant for 9 of them. None of the commodities shows a signi�cant relation between price change

per se and volume. Foster (1995) uses daily data on two oil futures contracts between January 1990

and June 1994, and one oil futures contract between January 1984 and June 1988. As in Gallant

et al (1992), volume data are detrended and expressed in logarithms, and are �rst grouped in

several classes per size. The relative price change is then plotted against the volume classes. The
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magnitude of the price change is an increasing function of volume, (except at the upper end of the

volume spectrum for the WTI contract between 1984 and 1988) but the direction of the change is

not related to trading volume. This conclusion still holds when actual volume data are used instead

of volume classes.

2 Trading volume-based conditional distribution

Let yi be trader's i demand for the asset (i = 1; : : : ; n) and z be the aggregate trading volume, that

is, the sum of the buy orders, z = �n
i=1y

+
i , with y

+
i = yi I[yi > 0] where I[ ] is indicator function.

The asset market clears, hence �n
i=1yi = 0. Let y = (yi)

n
i=1, y is assumed to have mean zero. The

objective is to compute the conditional distribution and mean, conditioned on the trading volume,

of random variables correlated with the traders' demands, such as the true value of the asset.

Proposition 1 Let y be a n-dimensional vector and u a random variable so that (u; y) is symmet-

rically distributed around zero and �n
i=1yi = 0. Let z = �n

i=1y
+
i , then the conditional distribution

of u given z is symmetric around zero , i.e., p(u < tjjz) = p(�u < tjjz), and E[ujjz] = 0.

The proof of proposition (1), done for three traders, is in the appendix . Although E[ujjz] = 0 is a

consequence of the symmetry of the conditional distribution, for expositional ease, we begin to deal

with the conditional expectation. Proving the symmetry of the conditional distribution uses a lot

of the same features with slightly heavier notations. The result in proposition (1) is quite intuitive.

For example, as z is the sum of the buy orders, a high volume indicates a large 
ow of executed buy

orders. But as the market clears, this strong in
ux of executed buy orders corresponds necessarily

to a equally strong 
ow of executed sell orders. Because of the symmetry of the mean-zero vector

constituted by u and the individual demands, one can not infer the value of u based on the aggregate

volume, i.e., E[ujjz] = 0. Proposition (1) implies that u and z are uncorrelated, for any random

variable u symmetrically distributed with y. Propositions (2), (3), and lemmas (1) and (2) serve to

introduce proposition (1). To see more easily the symmetric nature of aggregate volume in a market

clearing model, consider the case of three traders. Let z = y+1 +y
+
2 +y

+
3 with y1+y2+y3 = 0. Hence
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z = y+1 +y
+
2 �(y1+y2)� and z depends on the signs of y1, y2 and y1+y2. Table (1) gives the de�nition

of z in terms of y1, y2, and y3 in the six di�erent cases. z = �6
i=1I[v

i
1 > 0; vi2 > 0](vi1 + vi2), with

(v11 ; v
1
2) = (y1; y2), (v

2
1 ; v

2
2) = (�y2; y1 + y2), (v

3
1 ; v

3
2) = (y1;�(y1 + y2)), (v

4
1 ; v

4
2) = (�y1; y1 + y2),

(v51 ; v
5
2) = (y2;�(y1 + y2)), (v

6
1 ; v

6
2) = (�y1;�y2). From table (1), we get (v41 ; v

4
2) = �(v31 ; v32),

(v51 ; v
5
2) = �(v21 ; v22), and (v61 ; v

6
2) = �(v11 ; v12). The symmetry between cases 1 and 6, 2 and 5, and

3 and 4 plays a key role in propositions (1) and (4). Let u be a zero mean random variable so

that (u; y) is symmetrically distributed around zero. Before showing that E[ujjz] = 0, we show

that cov(u; z) = 0 because it is a much easier proof and uses the same basic market clearing-based

intuition. Of course, E[ujjz] = 0 implies cov(u; z) = 0. Table (1) shows that, for i = 1; : : : ; 6,

I[vi1 > 0; vi2 > 0] z] = I[vi1 > 0; vi2 > 0] (vi1+v
i
2)], and for i = 1; : : : ; 3,(vi1; v

i
2) = �(v7�i1 ; v7�i2 ). These

identities and the symmetric distribution of the vector (u; y) imply that, for i = 1; 2; 3,

E[ I[vi1 > 0; vi2 > 0]u z] = �E[ I[v7�i1 > 0; v7�i2 > 0]u z] (1)

We conclude that E[u z] = 0, which implies that cov(u; z) = 0 since E[u] = 0.

In the following, propositions (2) and (3) make it possible to compute the conditional expec-

tation of a random variable conditioned on a sum of truncated random variable. The fact that

�n
i=1yi = 0 is used in lemmas (1) and (3), and, together with propositions (2) and (3), will imply

that E[ujjz] = 0.

2.1 Conditioning on a sum of truncated random variables

Proposition 2 Let (
;F ;P) a probability space. Let x and z two random variables with z positive,

y a k-dimensional random vector, and A a k-dimensional Borel set. Note zA = I[y 2 A] z,

z �A = I[y 2 �A] z, and likewise for x. Let v be a random variable such that v coincides with z when

y 2 A, then

E[xjjzA] =

8>><
>>:

E[xAjjv]
p(y2Ajjv) if zA > 0

E[x �A]

p(y2 �A)
if zA = 0

(2)
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The proof is in the appendix.

Proposition 3 Using the same notations as in proposition (2), we have;

E[xjjz] = p(y 2 Ajjz)E[xjzA; zA > 0] + p(y 2 �Ajjz)E[xjz �A; z �A > 0] (3)

where E[xjzA; zA > 0] is the restriction of E[xjjzA] when zA > 0, and likewise for E[xjz �A; z �A]

Furthermore, if Ai, i = 1; : : : ; n, form a partition of 
, then;

E[xjjz] = �n
i=1p(y 2 Aijjz)E[xjzAi

; zAi
> 0] (4)

The proof is in the appendix. Proposition (2) can be used to compute the E[xjjzAi
]. Explicit

formulas for the p(y 2 Aijjz) are not necessary to prove proposition (1). Later in the paper,

studying the conditional distribution of a tail event conditioned on trading volume will call for

explicit formulas for the p(y 2 Aijjz), which are given in lemma (4). We will make use of the

following lemma

Lemma 1 Let y be a n-dimensional random vector symmetrically distributed around zero, 
 2 Rn,

v = 
0y and A a Borel set in Rn, then P (y 2 Ajjv)(t) = P (�y 2 Ajjv)(�t) and E[ I[y 2 A] yjjv](t) =

�E[ I[�y 2 A] yjjv](�t), where t is a realization of the random variable v.

Lemma (2) is taken from Billingsley's \Probability and measure", exercise 33.19.

Lemma 2 Let B(h; ") be the open ball with center h and radius ", then p(y 2 Ajjz) = lim"!0p(y 2

Ajjz 2 B(z(!); ")) In other words, p(y 2 Ajjz) = f(z(!)), with f(h) = lim�!0
p([y2A]\[z2(h��;h+�)])

p(z2(h��;h+�)) .

2.2 Using market clearing conditions

In table (1), call Ai the relevant set for y = (y1; y2) in case i, for example I[y 2 A1] = I[y1 > 0; y2 >

0], I[y 2 A2] = I[y1 > 0; y2 < 0; y1 + y2 > 0], . . . , I[y 2 A6] = I[y1 < 0; y2 < 0], and let u be a

random variable symmetrically distributed with y. Lemma (3) follows.
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Lemma 3

p(y 2 Aijjz) = p(y 2 A7�ijjz)
E[ I[y2Ai]ujjv

i
1
+vi

2
]

P (y2Aijjv
i
1
+vi

2
)

= �E[ I[y2A7�i]ujjv
7�i
1

+v7�i
2

]

P (y2A7�ijjv
7�i
1

+v7�i
2

)

(5)

The proof is in the appendix. Lemma (3) together with propositions (2) and (3) proves that

E[ujjz] = 0, for any mean zero random variable u for which (u; y) is symmetrically distributed. To

prove that the conditional distribution is symmetric, we note that p(u < tjjz) = E[ I[u < t] jjz] and

proceed as above. If Ai, i = 1; : : : ; n, form a partition of 
, then, with zAi
= I[ y 2 Ai]z,

E[ I[u < t] jjz] = �n
i=1p(y 2 Aijjz)E[ I[u < t] jzAi

; zAi
> 0]; (6)

with E[ I[u < t] jzA; zA > 0] =
E[ I[y2A]I[u<t] jjv]

p(y2Ajjv) , where the random variable v coincides with zA

when y 2 A. Using the fact that
E[ I[y2Ai]I[u<t] jjv]

p(y2Aijjv)
=

E[ I[y2A7�i]I[�u<t] jjv]
p(y2A7�ijjv)

, one concludes that

p(u < tjjz) = p(�u < tjjz).

3 Covariance between absolute value of a random variable and

trading volume

In the preceding section, one needed only to assume that (u; y) was symmetrically distributed

around a zero mean. With the added assumption that (u; y) is normally distributed, one obtains

that the covariance between u and z is positive, except only when u and y are independent, in

which case cov(juj; z) = 0.

Proposition 4 Assume y is a n-dimensional mean zero, normally distributed random vector,

�n
i=1yi = 0, and u is a mean-zero random variable jointly normally distributed with y. Let

z = �n
i=1y

+
i , where y+i = I[yi > 0] yi. Then, cov(juj; z) � 0, and cov(juj; z) = 0 if and only

if u and y are independent.
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4 Volume-based conditional distribution for normal distributions

Assuming that (u; y) is normally distributed, we can derive formulas for the conditional distribution

of u given z, and plot the conditional distribution as a function of the realized volume.

4.1 Computing the conditional distribution

Recall that, from equation (6) for any variable u, p(u < tjjz) is a weighted sum of E[I[u <

t]jjzAi
; zAi

> 0] where the the Ai, i = 1; : : : ; 6, correspond to the cases presented in table (1). The

weights are computed using lemma (4).

Lemma 4 Let f i be the density of the vector (vi1; v
i
2) de�ned in table (1); the conditional probability

of y being in Ai knowing that z = h is

p(y 2 Aijjz)(h) =

Z h

t=0
f i(t; h� t)dt

�6
j=1

Z h

t=0
f j(t; h� t)dt

.

4.2 Qualitative characteristics of the conditional distribution

Using the formulas developed in the preceding section, we can plot the conditional distribution

of the true asset value x given the volume z for various covariance structures. The upper panel

of �gure (1) displays the probability in the tail of the volume's distribution, p(z > t), with t on

the horizontal axis; the lower panel displays the volume-based conditional probability in the tails

of the distribution p(x > 1jjz), with z on the horizontal axis, the dotted line in the lower panel

corresponds to the unconditional probability p(x > 1). As x is a standard normal, p(x > 1) is

the probability that the true asset value be one standard deviation higher than its mean. Figure

(1) has been obtained using Dupont (1996) with two informed traders and one liquidity trader.

The signals observed by the traders are independent and each has a correlation of :5 with the true

value of the stock x. In this case, the mean volume is 0:678 and its standard deviation is 0:3717.
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Di�erent parameters values were tried without a�ecting the graph's overall form.

From �gure (1), the volume-based conditional probability of `large' realizations of the true asset

value is increasing and convex in z. Figure (1) indicates that in sixty eight percent of the time,

the conditional probability p(x > 1jjz) is inferior to the unconditional probability. 2 For the rare,

high-volume events, the conditional probability surges rapidly above the unconditional probability.

The volume mean exceeds its median, which reveals that the volume distribution is skewed by large

volumes occurring with low probability. To sum, for low and \normal" levels of trading volume, the

conditional probability of x given z is more concentrated around its mean than the unconditional

one, whereas for uncommonly high levels of trading volume, the conditional distribution exhibits

fat tails.

5 Market-making models

In the following section, propositions (1) and (4) are extended to market-clearing situations. Many

�nancial economists use models where a market maker determines the price at which asset are

exchanged. Trading volume is then de�ned as V = 1
2
�n
i=1jyij + 1

2
j�n

i=1yij, where yi is the trader

i's demand and n is the number of traders . The following shows that this is equivalent to the

de�nition of volume used in this paper. By de�ning the market maker's demand as yn+1 = ��n
i=1yi,

a market-making framework can always be recast into a market-clearing one. Using the de�nition

of trading volume z introduced earlier in paper, z = �n+1
i=1 y

+
i , since �

n+1
i=1 yi = 0, yi = y+i + y�i and

jyij = y+i � y�i , one gets V = 1
2
�n+1
i=1 jyij = �n+1

i=1 y
+
i = z.

5.1 Glosten and Milgrom type models

In Glosten and Milgrom (1985), a competitive risk-neutral market maker facing better informed

traders posts bid and ask prices. The equilibrium bid-ask spread re
ects the informational asym-

metry between the non-informed market maker and the traders. This structure was extended to a

2From the lower panel, for z < :81, p(x > 1jjz) < p(x > 1), from the upper panel p(z > :81) = :32.
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monopolistic marker maker by Glosten (1989). In a comparable framework, Dupont (1996) intro-

duces quantity limits, which are the maximum amounts the market maker is willing to exchange at

the posted prices. In this model, the informed trader, who observes a signal correlated with the true

value of the asset, buys (resp. sells) the asset if the quoted ask is below (resp. the bid is above) his

valuation. The liquidity trader's demand is price-sensitive and stochastic. The informed trader is

assumed to have a negative exponential utility function. Informed and liquidity traders' orders are

lumped together and passed on to the specialist, who cannot distinguish informed from liquidity

demand. Let a denote the ask price, za the ask quantity limit, b the bid price, zb the bid quantity

limit, x the true value of the traded asset, G the signal observed by the informed trader, v = E[xjG]

his valuation, var(xjG) the conditional variance of x observing G, I the indicator function, ~d(p) the

liquidity trader's demand at price p, ~d(p) = �p+ �, with � independent of x and G. The informed

trader's demand ~q(p) is Minfza; k(v � a)g if v > a, Maxfzb; k(v � b)g if v < b, and 0 if b � v � a,

with k = (
 var(xjG))�1. 3 To simplify notations, k is supposed to be equal to one. The vector

(x;G; �) is normally distributed, its mean is zero.

Under these conditions, the optimal prices and quantity limits on the bid and ask sides are

such that b = �a, zb = �za. De�ne the transaction price when both bid and ask sides are hit

by traders (see table (2) ) as the average of the bid and ask prices, or a random draw between

the two with probability 1=2. De�ne the market maker's demand as ~m = �(~q + ~d). Let z be the

trading volume. As b = �a and v is symmetric around zero, looking at the values of p(~q < p) and

p(~q > �p) shown for di�erent p in table (3), and using the symmetry between bid and ask prices

and quantity limits, one sees that ~q is symmetrically distributed around zero. So is the liquidity

demand ~d. The vector (x; p; ~q; ~d; ~m) is symmetrically distributed around zero. Hence, proposition

3Indeed, as shown below, the informed trader is always better o� choosing y > 0 when v > a, y < 0 when v < b

and y = 0 when b � v � a. Let � the informed trader's pro�ts. � = I[y > 0] y (x� a) + I[y < 0] y (x� b) = �1 + �2,

with �1 = I[y > 0] I[v > a] y (x� a) + I[y < 0] I[v < b] y (x� b) and �2 = I[y > 0] I[v < a] y (x� a) + I[y < 0] I[v >

b] y (x � b). �2 = �2;1 + �2;2, with �2;1 = I[y > 0] I[v < a] y (v � a) + I[y < 0] I[v > b] y (v � b) and �2;2 = I[y >

0] I[v < a] y (x � v) + I[y < 0] I[v > b] y (x � v). The informed trader chooses y to maximize E[� exp(�
 �)jG].

Since �2;1 is measurable with respect to G, E[� exp(�
 �)] = exp(�
 �2;1)E[� exp(�
(�1 + �2;2))]. As �2;1 � 0,

E[� exp(�
 �)] � E[� exp(�
(�1 + �2;2))], and E[� exp(�
 �)] = E[� exp(�
(�1 + �2;2))] if y � 0 when v > a

and y � 0 when v < b. In that case �2;2 = 0, and � can be replaced by I[v > a] y (x� a) + I[v < b] y (x� b) in the

maximization problem.
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(1) applies and E[xjz] = cov(x; z) = cov(p; z) = 0. Table (3) shows the values of p(~q < p) and

p(~q > �p) for di�erent p. Naturally, proposition (1) will apply to any market-making model which

preserves the symmetry in the transaction price and the traders' demands.

The results of proposition (1), extended to market-making models above, seem to contrast with

the models of Easley, Kiefer, and O'Hara (1996) and Easley, Kiefer, O'Hara and Paperman (1996),

where the specialist uses the order 
ow to draw inference about the possibility of informed trading.

In their model, the order 
ow is informative because the specialist takes into account the side on

which he is hit. A large number of incoming orders on the ask side (resp. the bid side) indicates

that the informed trader's valuation is superior to the ask (resp. inferior to the bid). But the

volume per se is less informative since it could have been generated by informed traders' sales

to the market maker or purchases from him. An outside observer can get more information in a

Glosten-Milgrom market-making framework than in a pure market-clearing framework if he can

separate sales to the specialist from purchases from him.

5.2 Kyle's type models

Kyle (1985) introduces a dynamic model of insider trading with a single risk-neutral informed

trader, a noise trader and a competitive risk-neutral market maker. In contrast to the Glosten and

Milgrom type models, there is no bid-ask spread and the price at which assets are exchanged is not

posted but is determined after the traders submit their market orders. In equilibrium the market

maker �xes the price to re
ect the observed order 
ow, which aggregates the informed trader's

and the liquidity demands (this could result from a unmodelled Bertrand game between multiple

market makers). Writing ~v the asset's liquidation value, observed only by the informed trader,

~u the noise trading, ~x = X(~v) the informed trader's demand, ~x + ~v the order 
ow, the price ~p

is such that ~p = P (~x + ~u) = E[~vj~x + ~u]. The vector (~v; ~u) is normally distributed. Under these

conditions, there is a unique linear Nash equilibrium where P and X are linear functions. The

framework is applied to dynamic games with linear recursive equilibria, where the di�erence in the

equilibrium price is a linear function of the di�erence in order 
ow. Kyle's framework, extended

12



to multiple informed traders in Holden and Subrahmanyam (1992), has been adapted and used by

many �nancial researchers. In these models, traders' demands, asset value and market prices are

jointly normally distributed. The mean demands are zero, and the asset value mean (and hence

the price mean) can be normalized to zero. Clearing the market by taking the market maker's net

demand into account, propositions (1) and (4) apply. Consequently, with t representing the level

or the �rst di�erence of the price or the value of the asset, E[tjz] = cov(t; z) = 0, cov(jtj; z) > 0

and p(t > tjz) is increasing in z (the last result being based on numerical examples).

Foster and Viswanathan (1993) extend Kyle's framework by using distributions of the elliptically

contoured class (ECC). Their framework includes multiple informed traders and some publicly

available information. As they point out, ECC includes the normal distributions and many other

interesting distributions, such as the multivariate t, the mixture of normals, and the multivariate

double exponential. The linearity of decisions rules is preserved and the model can investigate the

relations between price volatility and trading volume in a richer way. Demands, prices, and the

asset value also follow a ECC joint distribution, and hence are symmetrically distributed. As a

consequence, proposition (1) applies. Proposition (4) used the properties of the normal distribution

and might not extent to all elliptically contoured distributions.

6 Model with asymmetric demands

The following section presents a simple, static model where the market clears and the covariance

between price and volume can be positive. 4 Some models, like Eps (1975), rely on behavioral

distinctions between di�erent types of investors: optimistic traders (or \bulls") systematically

ignore unfavorable information, pessimistic traders (or \bears") systematically ignore favorable

information. These models deliver the positive volume-price change relation, but at the cost of

imposing irrationality on the traders. Karpo� (1988) constructs a model where the demand and

4The relation between price change and volume cannot be investigated in this static model, which should be seen

merely as a starting point.
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supply curves are subject to parallel random shifts. The covariance between price change per se

and trading volume has the same sign as the di�erence between the variance of the demand shift

and the variance of the supply shift. Karpo� provides some justi�cation for why costly short sales

may result in the variance of the supply shift being smaller than the variance of the demand shift

variance. However, one might prefer a more direct way of generating a positive volume-price change

relation than a di�erence in the variance of the intercepts of the supply and demand curves.

The covariance between price and trading volume is studied in the model below, which features

one noise trader, whose price-inelastic demand is ", and an informed trader, who observes a signal

G correlated with the liquidative value of the asset x. The vector (x;G; ") is normally distributed,

and E[x] = �, E[G] = E["] = 0. The informed trader must pay a proportional transaction tax

whose rate may vary according to the direction of his trade and the sign of the price. 5 The

equilibrium volume j"j is exogenous, and the equilibrium agents' demands (+" for the liquidity

trader and �" for the informed trader) are symmetrically distributed around their zero means.

However, the covariance between price and trading volume may be di�erent from zero because of

e�ect of taxes on the equilibrium price distribution.

The tax rate on purchases is �a when the price is positive and �d when it is negative; the tax

rate on sales is �b when the price is positive and �c when it is negative. The tax rates �a, �b, �c,

and �d are between zero and one. In each case, table (4) shows the after-tax prices the informed

trader faces as a factor of the pre-tax prices. The informed trader has a negative exponential utility

function with risk aversion coe�cient 
, and submits a demand schedule as a function of the market

clearing price p. Let v = E[xjG] be the informed trader's valuation of the asset, var(xjG) = 1��2

the conditional variance of x given G, where �2 = var(v), and write k = 
 var(xjG). To simplify

computations, we assume that the informed trader considers the market price p as �xed although it

is random. A rational agent should condition on p as well on G, but as the equilibrium price may not

5Given the distributional assumptions, the possibility of negative prices has to be considered. This is also the case

in many microstructures models. Note that one would be willing to pay to sell the asset if one thinks that the asset

price would slide further into the negative range.
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be normally distributed, having the informed trader condition on it would make the optimization

problem too di�cult to solve. With this simplifying assumption, the informed trader's demand for

the asset is

y =

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

k�1 (v � (1 + �a) p) if p > 0 and v > (1 + �a) p

k�1 (v � (1� �b) p) if p > 0 and v < (1� �b) p

0 if p > 0 and (1� �b) p � v � (1 + �a) p

k�1 (v � (1� �d) p) if p � 0 and v > (1� �d) p

k�1 (v � (1 + �c) p) if p � 0 and v < (1 + �c) p

0 if p � 0 and (1 + �c) p � v � (1� �d) p

(7)

The informed trader can buy (resp. sell) only if the liquidity demand " is negative (resp. positive).

Under these conditions, the market clearing price is p = h("; v)[k " + v], with

h("; v) =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(1 + �a)
�1 if " < 0 and v > �k "

(1� �b)
�1 if " > 0 and v > �k "

(1� �d)
�1 if " < 0 and v � �k "

(1 + �c)
�1 if " > 0 and v � �k "

1 if " = 0

(8)

In other words,

h("; v) = I[" < 0] fI[v + k " > 0](1 + �a)
�1 + I[v + k " � 0](1 � �d)

�1g

+ I[" > 0] fI[v + k " > 0](1 � �b)
�1 + I[v + k " � 0](1 + �c)

�1g+ I[" = 0]

(9)

To compute cov(p; z), recall that the trader's valuation v and the liquidity shock " are normally

and independently distributed, and E["] = 0, E[v] = �, var(") = 1, var(v) = �2. Let � and �

be the standard normal density and distribution functions. Let m("; v) = ((1 � �2) " + v) 1
�
�( v

�
).
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Then,

E[p "�] =

Z 0

�1

�
(1 + �a)

�1 '(") + (1� �d)
�1  (")

�
" �(") d"

E[p "+] =

Z +1

0

�
(1� �b)

�1 '(") + (1 + �c)
�1  (")

�
" �(") d"

(10)

with

'(") =

Z +1

�(1��2) "
m("; v) dv =

�
(1� �2) " + �

�
�(1��

2

�
"+ �

�
) + � �(1��

2

�
"+ �

�
)

 (") =

Z �(1��2) "

�1
m("; v) dv =

�
(1� �2) " + �

�
[1� �(1��

2

�
"+ �

�
)]� � �(1��

2

�
"+ �

�
)

(11)

Three cases are studied. In the �rst case, cash in
ows are taxed at �a and cash out
ows at �b.

Hence, as selling at a negative price created an out
ow, �c = �a; likewise, �d = �b In the second

case, no tax is levied when prices are negative: �c = �d = 0. In the third case, the informed trader's

purchases are taxed at �a and his sales at �b whatever the sign of the price, i.e., �c = �b and �d = �a.

In each case, we study the covariance between price and trading volume when the mean asset value

� is zero and when it is positive. Except when indicated, the stated results are based on numerical

examples and should be considered preliminary. When � = 0, the covariance between price and

trading volume is zero in the �rst case 6, positive in the second, negative if �a > �b and positive if

�a < �b in the third. When � > 0, the covariance is positive in the �rst two cases; in the third, it

can be negative if �a > �b and is positive if �a < �b. Note that in the second case, the covariance

is always positive, whatever �, �a and �b. In all cases, the covariance between price and trading

volume is an increasing function of �, so is the price.

When prices are positive, the intuition is immediate. When " is positive, the equilibrium price

must be such that the informed trader is willing to provide liquidity, but he sells at a discount,

hence the price has to be even higher than it would have been in the absence of transaction tax.

When " is negative, the equilibrium price must be such that the informed trader is willing to

absorb liquidity, but he buys at a premium, hence the price has to be even lower than it would

have been in the absence of transaction tax. In this case, imposing a cost on purchases creates a

6This result is derived analytically.
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positive covariance even without taxing the informed trader's sales. When prices are negative, the

intuition is less obvious, especially as the results depend on whether the tax rate is based on the

nature of the informed trader's transaction (sale or purchase) or the sign of the associated cash


ow. Increasing the mean value of the asset lowers the probability of negative market prices and

boosts the covariance between price and trading volume.

7 Conclusion and further research

The paper shows that the volume-based conditional expectation of any mean-zero random variable

is zero provided that this random variable and the traders' demands are symmetrically distributed

and the asset market clears. Furthermore, when the random variable and the traders' demands

are jointly normally distributed, the covariance between the random variable's absolute value and

volume is positive, and the tails of the volume-based conditional distribution seem to have fatter

tails when volume is high. One of the paper's implications is that the covariance between the

absolute value of price change and volume is positive (assuming normal distribution) whereas the

covariance between price change per se and volume is zero. The �rst implication has veri�ed in

many empirical studies. As for the second, empirical studies have found a positive covariance

between the price change per se and volume in equity markets but not in futures markets. Karpo�

(1987) points out that this di�erence may be due to a key di�erence in the micro-structures of

the two types of markets: short sale constraints. Di�erent costs in taking long and short positions

would introduce asymmetries in the demands, which could explain the positive covariance between

price change and volume. A simple, static model was developed where the covariance between

price and volume can be positive. Besides, the New York Stock Market (NYSE) is a complex

mixed type where each market-maker (or specialist) acts alternatively as dealer and auctioneer.

Moreover, specialists are required to maintain \a fair and orderly market in the securities assigned

to them" 7, a responsibility that includes some form of market stabilization. A market where some

7NYSE Fact Book 1995, p. 5
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agents are responsible for smoothing away short term imbalances may yield a non-zero covariance

between volume and price change, even if those agents' trades represent only a small fraction of the

activity. 8 Likewise, circuit breakers and other devices certainly a�ect the relation between price

and volume. The results in this paper can be seen as a starting point from which further research

taking into account the institutional features of each market can be developed.

8\The vast majority of NYSE volume is a result of public order meeting public orders" (NYSE Fact Book 1995).
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Appendix

Before going in more details, it is useful to present the intuition on which the proves are built.

Recall that for any given (x; y) random vector, E[x] = p(y > 0)E[xjy > 0] + p(y � 0)E[xjy � 0],

with E[xjy > 0] =
E[I[y>0]x]
p(y>0)

and E[xjy � 0] =
E[I[y�0]x]
p(y�0) , and

E[xj I[y > 0] ] =

8>><
>>:
E[xjy > 0] if y > 0

E[xjy � 0] if y � 0

(12)

The paper basically extends this intuition to E[xjjz], where z is a positive random variable. In the

remainder of the paper, call (
;F ; P ) a probability space, and for any Borel set A and random

variable y, write [y 2 A] the set f! 2 
; y(!) 2 Ag.

Proof of Proposition (2): To prove (2), we need only show that equations (13) and (14) hold.

E[xAjjz �A] =

8>><
>>:

E[xA]
p(y2A) if z �A = 0

0 if z �A > 0

(13)

E[xAjjzA] =

8>><
>>:

E[xAjjv]
p(y2Ajjv) if zA > 0

0 if zA = 0

(14)

proof that equation (13) holds: Call Ec[xAjjz �A] the candidate conditional expectation de�ned

by the right hand side of (13). Recall that, if G is a �-�eld in F , E[XjjG ] is a version of the

conditional expectation of X given G if the properties (i) and (ii) are met.

(i) E[XjjG ] is measurable with respect to G .

(ii)

Z
G

E[XjjG ] dP =

Z
G

X dP .

The candidate function is obviously measurable with respect to �(z �A). Note that this �-algebra

consists of the sets [z �A 2 H], with H a Borel set. Let G = [z �A 2 H] for a Borel set H. Recall that
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Ec[xAjjz �A] is zero on [y 2 �A]. Let's show that condition (ii) above is veri�ed 9. Two cases arise.

[1] 0 2 H, then [y 2 A] � [z �A 2 H], hence [z �A 2 H] \ [y 2 A] = [y 2 A].

Z
G

Ec[xAjjz �A] dP =

Z
G\[y2A]

Ec[xAjjz �A] dP =

Z
[y2A]

E[xA]

p(y 2 A) dP (15)

The integrand in the right hand side is a constant, and p(y 2 A) = E[I(y 2 A)], hence

Z
G

Ec[xAjjz �A] dP = E[xA]

=

Z
[y2A]

x dP

=

Z
[y2A]\G

x dP

=

Z
G
x I[y 2 A] dP

=

Z
G

xA dP:

(16)

[2] H does not contain 0. For all the ! 2 G, I[y 2 �A] 6= 0, i.e., y(!) 2 �A. This means that

G � [y 2 �A], hence G \ [y 2 A] is empty.

Z
G

Ec[xAjjz �A] dP = 0: (17)

On the other hand, Z
G

xA dP =

Z
G\[y2A]

x dP = 0 (18)

Hence

Z
G
Ec[xAjjz �A] dP =

Z
G
xA dP .

proof that equation (14) holds: The candidate function is obviously measurable with respect

to �(zA). Recall that zA = I[y 2 A]z,and z > 0. Also, v and z coincide on [y 2 A]. Note

G = [zA 2 H], for some Borelian H. Three cases arise.

9Note that [z �A = 0] = [zA > 0] = [y 2 A], and [z �A > 0] = [zA = 0] = [y 2 �A].

20



[1] H does not contain 0, then [zA 2 H] = [v 2 H] \ [y 2 A].

Z
G

Ec[xAjjzA] dP =

Z
[v2H]\[y2A]

1

p(y 2 Ajjv)E[xAjjv] dP

= Ef I[v 2 H] I[y 2 A] 1
p(y2Ajjv)E[xAjjv] g

= EfE[ I[v 2 H] I[y 2 A] 1
p(y2Ajjv)E[xAjjv] jjv] g

= Ef I[v 2 H] E[ I[y 2 A]jjv] 1
p(y2Ajjv)E[xAjjv] g

= Ef I[v 2 H] E[xAjjv] g

= EfE[ I[v 2 H] xAjjv] g

= Ef I[v 2 H] xA g

=

Z
[v2H]\[y2A]

xA dP

=

Z
G
xA dP:

(19)

[2] H = 0, then [y 2 �A] = [zA 2 H] = G.

Z
G

Ec[xAjjzA] dP =

Z
[y2 �A]

Ec[xAjjzA] dP = 0: (20)

On the other hand, Z
G

xA dP =

Z
[y2 �A]

xA dP = 0: (21)

Hence

Z
G
Ec[xAjjzA] dP =

Z
G
xA dP .

[3] H contains 0 but is not reduced to it. Let H = H+ [ 0, G = z�1A (H) = z�1A (H+) [ z�1A (0) =

[zA 2 H+] [ [y 2 �A]. Applying [1] and [2], we have

Z
G

Ec[xAjjzA] dP =

Z
G

xA dP .

Proof of Proposition (3): Let IA = I[y 2 A], �(z; IA) be the �-�eld generated by the random

vector (z; IA), and E[xjjz; IA] be the conditional expectation of x conditioned on �(z; IA). The

objective is to show that E[xjjz] = p(y 2 Ajjz)E[xjzA; zA > 0]+p(y 2 �Ajjz)E[xjjz �A; z �A > 0], where

E[xjzA; zA > 0] is the restriction of E[xjjzA] where zA > 0, and similarly for E[xjjz �A; z �A > 0].
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First, let's show that, for all G 2 �(z; IA), G \ [y 2 A] 2 �(zA). From theorem (20.1) in

Billingsley (1986), �(z; IA) consists exactly of the sets [(z; IA) 2 H], with H 2 R2, where R2 is the

set of two-dimensional Borel sets. 10 Hence, for all G 2 �(z; IA), G \ [y 2 A] = [z 2 B] \ [y 2 A],

where B 2 R. Let B+ = B \ (0;+1), since z > 0, [z 2 B] \ [y 2 A] = [z 2 B+] \ [y 2 A]. This

set is empty or equal to [zA 2 B+] \ [y 2 A], as z coincides with zA on [y 2 A]. As B+ � (0;+1),

[zA 2 B+] � [y 2 A] and [zA 2 B+] \ [y 2 A] = [zA 2 B+]. In all cases [z 2 B] \ [y 2 A] is an

element of �(zA).

Now, let's call Ec[xjjz; IA] = IAE[xjjzA] + I �AE[xjjz �A], and show that Ec[xjjz; IA] is the condi-

tional expectation of x conditioned on �(z; IA). E
c[xjjz; IA] is measurable with respect to �(z; IA)

since it is a function of z and IA. Now, let G 2 �(z; IA).

Z
G

Ec[xjjz; IA] dP =

Z
G\[y2A]

E[xjjzA] dP +

Z
G\[y2 �A]

E[xjjz �A] dP

=

Z
G\[y2A]

x dP +

Z
G\[y2 �A]

x dP

=

Z
G

x dP:

(22)

The second line of the equation comes from the fact that G \ [y 2 A] 2 �(zA) and that E[xjjzA] is

the conditional expectation of x on �(zA), and similarly for z �A. Hence E[xjjz; IA] = IAE[xjjzA] +

I �AE[xjjz �A]. From proposition (2)

E[xjjzA] =

8>><
>>:

E[xAjjv]
p(y2Ajjv) if zA > 0

E[x �A]

p(y2 �A)
if zA = 0

(23)

where v coincides with z when y 2 A. Let de�ne  A =
E[xAjjv]
p(y2Ajjv) ,  A is function of z and E[xjjzA] =

10Example (18.1) in Billingsley (1986) shows that R2 = R�R, where R is the set of one-dimensional Borel sets.
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 A on [y 2 A]. Hence, E[xjjz; IA] = IA  A(z) + I �A  �A(z). Iterating expectations, we get

E[xjjz] = E[E[xjjz; IA] jj z]

=  A(z)E[ I[y 2 A]jjz] +  �A(z)E[ I[y 2 �A]jjz]

=  A(z) p(y 2 Ajjz) +  �A(z) p([y 2 �A]jjz)

(24)

As  A and E[xjjzA] coincide on [zA > 0], writing E[xjzA; zA > 0] the restriction of E[xjjzA] to

[zA > 0], we have E[xjjz; IA] = p(y 2 Ajjz)E[xjjzA; zA > 0] + p([y 2 �A]jjz)E[xjjz �A; z �A > 0].

Proof of lemma (1) : Let P (y 2 Ajjv) be the conditional probability of y 2 A conditioned

on v. By de�nition, for all G 2 �(v),

Z
G

P (y 2 Ajjv) dP = P ([y 2 A] \ G) and P (y 2 Ajjv) is

measurable with respect to �(v), i.e., there exists a (non-random) function 'A so that for all ! 2 
,

P (y 2 Ajjv)(!) = 'A[v(!)]. Let A� the Borel set so that [y 2 A�] = [�y 2 A]. The objective is

to show that 'A � v = 'A� � (�v). For example, we want to prove that if (y1; y2) is symmetrically

distributed around zero, p(y1 < 0; y2 < 0jjy1 + y2)(�t) = p(y1 > 0; y2 > 0jjy1 + y2)(t) where t is an

observed value of y1 + y2.

Let G 2 �(v), then G = [v 2 B], for a Borel set B. Now, as v = 
0y and y are symmetrically

distributed around zero, P ([y 2 A] \ [v 2 B]) = P ([�y 2 A] \ [�v 2 B]). Besides, P (�y 2

Ajj � v) = P (�y 2 Ajjv). Hence,

Z
[v2B]

P (y 2 Ajjv) dP =

Z
[�v2B]

P (�y 2 Ajjv) dP , that isZ
[v2B]

('A �v) dP =

Z
[�v2B]

('A� �v) dP . Call F the distribution function of v and assume that F is

di�erentiable. Writing u the realization of the random variable v, we can write

Z
[�v2B]

('A��v) dP =Z
[�u2B]

'A�(u) dF (u). Applying the change of variable t = �u and using the symmetry of v, we

get

Z
[�u2B]

'A�(u) dF (u) =

Z
[t2B]

'A�(�t) dF (t) =
Z
[v2B]

('A� o (�v)) dP . Hence, for all G 2 �(v),Z
G
('A o v) dP =

Z
G
('A� o (�v)) dP ; as 'A o v and 'A� o (�v) are measurable with respect to �(v),

we conclude that 'A o v = 'A� o (�v) a.e. . The proof for E[ I[y 2 A] yjjv] is similar.

Proof of lemma (3): The last line of equation (5) follows from lemma (1), since v7�ij = �vij and
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[y 2 A7�i] = [�y 2 Ai], for j = 1; 2, and i = 1; 2; 3. Consider cases 1 and 6. From lemma (1), we

know that p(y1 < 0; y2 < 0jjy1 + y2)(�t) = p(y1 > 0; y2 > 0jjy1 + y2)(t), where t is a realization of

y1 + y2. As z = y+1 + y+2 + y+3 , the observed value for z is equal to t in case 1 and �t in case 6.

Similarly, E[I[y1 < 0; y2 < 0]ujjz; y1 + y2] = �E[I[y1 > 0; y2 > 0]ujjz; y1 + y2]. For the �rst line of

equation (5), Lemma (2) implies that p(y 2 Aijz 2 B(h; ")) = lim"!0
p(y2Ai;z2B(h;"))

p(z2B(h;"))
. Hence,

p(y 2 A1; z 2 B(h; ")) = p(y1 > 0; y2 > 0; z 2 B(h; "))

= p(y1 > 0; y2 > 0; y1 + y2 2 B(h; "))

= p(y1 < 0; y2 < 0;�(y1 + y2) 2 B(h; "))

= p(y1 < 0; y2 < 0; z 2 B(h; "))

= p(y 2 A6; z 2 B(h; "))

(25)

Proof of proposition (4): The number of traders, n, is assumed equal to 3. cov(juj; z) =

2 cov(u+; z), and z = �6
i=1I[v

i
2 > 0; vi3 > 0](vi2+ v

i
3), where v

i
2, v

i
3 replace v

i
1 and v

i
2 de�ned in table

(1). Noting (~vi2; ~v
i
3) = (v7�i2 ; v7�i3 ) = �(vi2; vi3), i = 1; 2; 3, one gets

z = �3
i=1

�
I[vi2 > 0; vi3 > 0](vi2 + vi3) + I[~vi2 > 0; ~vi3 > 0](~vi2 + ~vi3)

�
: (26)

Hence, with v1 = u, one need only compute cov ( I[v1 > 0]v1 ; I[v2 > 0; v3 > 0](v2 + v3) ) =

E [I[v1 > 0; v2 > 0; v3 > 0]v1 (v2 + v3)] � E [I[v1 > 0] v1] E [I[v2 > 0; v3 > 0] (v2 + v3)], where v =

(v1; v2; v3) is normally distributed with mean zero. If (y1; y2) is a normally distributed vector with

mean zero and variance S, noting si =
p
sii, E[I[y1 > 0] y1] =

s1p
2�

and E[I[y1 > 0; y2 > 0] y1] =

'(S), with '(S) = 1

2
p
2�
(s1 +

s12
s2
). Let G(v1; v2; v3) = v1f(v1; v2; v3) where f the is density func-

tion of v, G1(v) = v1f1(v) + f(v), then G2(v) = v1f2, G3 = v1f3. In the following, � = (�ij)
3
i;j=1,

��1 = (�ij)3i;j=1, �i =
p
�ii, �

i =
p
�ii. ��i is the matrix obtained by deleting the ith row and the

ith column of ��1, v = (v1; v2; v3). The �rst derivative of f with respect to v is �(��1:v) f(v),

24



hence . 8>>>>>><
>>>>>>:

(�11v21 + �12v1v2 + �13v1v3)f(v) = �G1(v) + f(v)

(�21v21 + �22v1v2 + �23v1v3)f(v) = �G2(v)

(�31v21 + �32v1v2 + �33v1v3)f(v) = �G3(v)

(27)

Now, take expectation through the system (27), beginning with the �rst row.

Z
t>0

G1(t)dt =

Z
t2>0;t3>0

[G(t)]+1t1=0dt2dt3 = 0: (28)

and Z
v>0

f(v)dv = p(v > 0) =
1

8
+

1

4�
(arcsin(�12) + arcsin(�13) + arcsin(�23)) (29)

Taking expectation through the second row, one gets equation (30).

Z
t>0

�G2dt =

Z
t1>0

Z
t3>0

�t1[f(t)]+1t2=0dt1dt3

=

Z
t1>0

Z
t3>0

t1
1

(2�)
3

2

1

j�j 12
exp(�1

2
(�11t21 + 2�13t1t3 + �33t23))dt1dt3

= (2�j��2jj�j)�
1

2

Z
t1>0

Z
t3>0

t1
1

2�
j��2j

1

2 exp(�1

2
(t1; t3)�

�
2

0
BB@
t1

t3

1
CCA)dt1dt3

= (2�j��2jj�j)�
1

2E[I[�1 > 0; �2 > 0]�1]

= 1

�2
p
2�
E[I[�1 > 0; �2 > 0]�1]

= 1

�2
p
2�
'(��2

�1)

(30)

where (�1; �2) is normally distributed with mean zero and variance ��2
�1. The last but one line

of (30) follows from the identity �22 =
j��

2
j

j��1j , the last line from E[I[�1 > 0; �2 > 0]�1] = '(��2
�1).

Likewise,

Z
t>0

�G3dt =
1

�3
p
2�
'(��3

�1). Let ��2 =
�13

�1�3
and ��3 =

�12

�1�2
. Using the de�nition of ��2

�1

25



and noting that �33

j��
2
j =

1
�11(1�(��

2
)2)
, one gets '(��2

�1) = 1

2�1
p
2�

r
1���

2

1+��
2

. Finally,

0
BBBBBB@

E[I[v > 0]v21 ]

E[I[v > 0]v1v2]

E[I[v > 0]v1v3]

1
CCCCCCA
= �

0
BBBBBB@

1
8 +

1
4� (arcsin(�12) + arcsin(�13) + arcsin(�23))

1
4�

1
�2

1
�1

r
1���

2

1+��
2

1
4�

1
�3

1
�1

r
1���

3

1+��
3

1
CCCCCCA
; (31)

and

E[I[v > 0]v1(v2 + v3)] = (�12 + �13)(
1
8
+ 1

4�
(arcsin(�12) + arcsin(�13) + arcsin(�23)))

+ 1
4��1

r
1���

2

1+��
2

(�2 +
�23
�2
) + 1

4��1

r
1���

3

1+��
3

(�3 +
�23
�3
):

(32)

Let ~v = (~v1; ~v2; ~v3) = (v1;�v2;�v3) and var(~v) = ~� = (~�ij)3i;j=1. Naturally, ~�12 = ��12, ~�13 =

��13, ~�23 = �23. Writing ~��1 = (~�ij)3i;j=1 and using the de�nition of the inverse, one also gets

~�ii = �ii, for i = 1; 2; 3, ~�12 = ��12, ~�13 = ��13, ~�23 = �23, and consequently ~��2 = ���2, ~��3 = ���3.

Hence,

E[I[~v > 0]~v1(~v2 + ~v3)] = �(�12 + �13)(
1
8 +

1
4� (�arcsin(�12)� arcsin(�13) + arcsin(�23)))

+ 1
4��1

r
1+��

2

1���
2

(�2 +
�23
�2
) + 1

4��1

r
1+��

3

1���
3

(�3 +
�23
�3
);

(33)

and

E[I[v > 0]v1(v2 + v3)] +E[I[~v > 0]~v1(~v2 + ~v3)] =

(�12 + �13)(
1
2�
(arcsin(�12) + arcsin(�13))+

1
4��1

(�2 +
�23
�2
)[

r
1���

2

1+��
2

+

r
1+��

2

1���
2

] + 1
4��1

(�3 +
�23
�3
)[

r
1���

3

1+��
3

+

r
1+��

3

1���
3

]:

(34)

1
2�1

�r
1���

2

1+��
2

+

r
1+��

2

1���
2

�
= 1

�1
p

1�(��
2
)2

=
q

�33

j��
2
j

=
q

�33j�j
�22

=

r
�11�22��212

�22

= �1

q
1� �212

(35)
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E[I[v > 0]v1(v2 + v3)] +E[I[~v > 0]~v1(~v2 + ~v3)] =

1
2� (�12 + �13)(arcsin(�12) + arcsin(�13)) +

1
2�
�1(�2 +

�23
�2
)
q
1� �212 +

1
2�
�1(�3 +

�23
�3
)
q
1� �213

(36)

Since

E[I[v1 > 0]v1] =
1p
2�
�1; (37)

and

E[I[v2 > 0; v3 > 0](v2 + v3)] = E[I[~v2 > 0; ~v3 > 0](~v2 + ~v3)] =
1

2
p
2�

[�2 +
�23

�3
+ �3 +

�23

�2
]; (38)

cov(I[v1 > 0]v1; I[v2 > 0; v3 > 0](v2+v3))+cov(I[v1 > 0]~v1; I[~v2 > 0; ~v3 > 0](~v2+~v3)) =
�1

2�
(H(�)+G(�));

(39)

with

H(�) = (
�12

�1
+
�13

�1
)(arcsin(�12) + arcsin(�13)) (40)

G(�) = (�2 +
�23

�2
)(
q
1� �212 � 1) + (�3 +

�23

�3
)(
q
1� �213 � 1) (41)

Let v1 = u, and (v2; v3) can take three values; in the �rst case (v2; v3) = (y1; y2), in the second

case, (v2; v3) = (�y2; y1 + y2), in the third case (v2; v3) = (y1;�(y1 + y2)). Call �i, the variance

matrix of v in case i, H = H(�1) + H(�2) + H(�3), and G = G(�1) + G(�2) + G(�3). Then

cov(u+; z) = �u
2� (H +G).

H = ��1u

�
cov(u; y1)arcsin(�u;y1) + cov(u; y2)arcsin(�u;y2) + cov(u; y1 + y2)arcsin(�u;(y1+y2))

�

(42)

This is because

�u H = cov(u; y1 + y2)[arcsin(�u;y1) + arcsin(�u;y2)]

+cov(u; y1)[�arcsin(�u;y2) + arcsin(�u;(y1+y2))]

�cov(u; y2)[�arcsin(�u;(y1+y2)) + arcsin(�u;y1)];

(43)
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which rearranging terms, is equal to

cov(u; y1)arcsin(�u;y1) + cov(u; y2)arcsin(�u;y2 + cov(u; y1 + y2)arcsin(�u;y1+y2) (44)

Likewise,

G = �y1(
q
1� �2u;y1 � 1) + �y2(

q
1� �2u;y2 � 1) + �y1+y2(

q
1� �2u;y1+y2 � 1) (45)

Finally,

cov(juj; z) = �u

�
(�y1h(�u;y1) + �y2h(�u;y2) + �y1+y2h(�u;y1+y2)) (46)

with h(t) = t arcsin(t) +
p
1� t2� 1. For all t 2 [�1; 1], h(t) � 0 and h(t) = 0 if and only if t = 0.

Consequently, cov(juj; z) is non-negative and is zero only if u is independent of (y1; y2).

Proof of lemma (4) Take the case i = 1 and let f1 = f . The other cases can be treated similarly.

We know that, for a realization h of the random variable z, p(y 2 A1jjz) = lim"!0p(y 2 A1jjz 2

B(h; ")), with B(h; ") being the open ball with center h > 0 and of radius " > 0, with " < h,

p(y 2 A1jjz 2 B(h; ") ) = p(y2A1;z2B(h;"))
p(z2B(h;"))

, and p(z 2 B(h; ")) = �6
i=1p(y 2 Ai; z 2 B(h; ")).

p(y 2 A1; z 2 B(h; ")) = p(y1 > 0; y2 > 0; jy1 + y2 � hj < ")

= p(y1 > 0; y2 > 0; h � " < y1 + y2 < h+ ")

= p(0 < y1 < h� "; h � "� y1 < y2 < h+ "� y1)

+ p(h� " < y1 < h+ "; 0 < y2 < h+ "� y1)

(47)

Divide now the numerator and the denominator of p(y 2 A1jjz 2 B(h; ") ) by 2", and take the limit

when "! 0. With f being the density function of (y1; y2), we obtain:

1
2"
p(0 < y1 < h� "; h� "� y1 < y2 < h+ "� y1) !

Z h

y1=0
f(y1; h� y1) dy1

1
2" p(h� " < y1 < h+ "; 0 < y2 < h+ "� y1) ! 0

(48)
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The �rst line of (48) comes from the fact that p(0 < y1 < h � "; h � " � y1 < y2 < h + " � y1) =Z h�"

y1=0

Z h+"�y1

y2=h�"�y1
f(y1; y2) dy1 dy2. For the second line of (48), consider that

1
2"p(h� " < y1 < h+ "; 0 < y2 < h+ "� y1) =

Z h+"

y1=h�"

1

2"

Z h+"�y1

y2=0
f(y1; y2) dy2 dy1

�
Z h+"

y1=h�"

1

2"

Z 2"

y2=0
f(y1; y2) dy2 dy1

(49)

By the mean value theorem, there exists a � 2 [0; 2"], so that 1
2"

Z 2"

y2=0
f(y1; y2) dy2 = f(y1; �).

Then, as f(y1; �) is bounded, when " ! 0,

Z h+"

y1=h�"
f(y1; �(")) dy1 ! 0. We conclude that 1

2"
p(y 2

A1; z 2 B(h; "))!
Z h

y1=0
f(y1; h� y1) dy1. Using table (1), the other cases are treated similarly.
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cases (i) sign of y1 sign of y2 sign of y1 + y2 z vi1 vi2
1 + + y1 + y2 y1 y2
2 + - + y1 �y2 y1 + y2
3 + - - �y2 y1 �(y1 + y2)

4 - + + y2 �y1 y1 + y2
5 - + - �y1 y2 �(y1 + y2)

6 - - �(y1 + y2) �y1 �y2

Table 1: Decomposition of trading volume

There are three traders; y1 is the �rst trader's demand, y2 is the second trader's demand, the last trader's demand is

y3 = �(y1 + y2). The trading volume is z = y+
1
+ y+

2
+ y+

3
. In each case i, i = 1; : : : ; 6, z can be written as vi1 + vi2.
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v < �a �a � v � a v > a

� < �a bid bid (bid, ask)

�a � � � a bid no trade ask

� > a (bid, ask) ask ask

Table 2: Sides where trading occurs

t t � �z �z < t � 0 0 < t � z t > z

p(~q < t) 0 p(v � t) p(v � b) + p(a � v � t+ a) 1

p(~q > �t) 0 p(v � �t) p(v � a) + p(t+ b � v � b) 1

Table 3: Symmetry of informed trader's demand

v is the informed trader's valuation of the asset, � is the liquidity shock, the informed trader's demand is v � p, he

liquidity trader's demand is � � p, a is the ask price, b is the bid price.

~q is the informed trader's demand, z is the maximum quantity the market maker is willing to sell at the ask price a

or buy at the bid price b, v is the informed trader's valuation of the asset.

34



p > 0 p � 0

purchase 1 + �a 1� �d
sale 1� �b 1 + �c

Table 4: Ratio of the after-tax price to the pre-tax price.

p is the market clearing price, the proportional tax is levied on the informed trader only. The tax rates �a, �b, �c,

and �d are between zero and one.
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Figure 1: Volume-based conditional probability P (x > 1jz).
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