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Abstract

In this paper, we embed the microeconomic decisions associated with in-

vestment under uncertainty, capacity utilization, and machine replacement in

a general equilibrium model based on putty-clay technology. We show that the

combination of log-normally distributed idiosyncratic productivity uncertainty

and Leontief utilization choice yields an aggregate production function that is

easily characterized in terms of hazard rates for the standard normal distribu-

tion. At low levels of idiosyncratic uncertainty, the short-run elasticity of supply

is substantially lower than the elasticity of supply obtained from a fully-
exible

Cobb-Douglas alternative. In the presence of irreversible factor proportions, an

increase in idiosyncratic uncertainty typically reduces investment at the micro

level but increases aggregate investment. Finally, we study the relationship

between growth and uncertainty on aggregate capacity utilization and rates of

machine replacement and investigate the factors that a�ect the magnitude of

replacement echoes.
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1 Introduction

A large body of research in macroeconomics, growth accounting, and production

theory is predicated on a Cobb-Douglas production function and a capital accumula-

tion process with exponential decay. This production structure is consistent with the

empirical observation that labor's share of output is approximately constant in the

long run despite steady declines in the relative price of investment goods. Although

the Cobb-Douglas speci�cation is able to deliver observed long-run balanced-growth

relationships, it is not well-suited to describe short-run production possibilities in

the context of heterogeneous capital goods. In particular, a key assumption needed

to achieve aggregation in this framework is that labor is equally 
exible in both

the short and long run. Such 
exibility allows marginal products of labor to be

equalized across capital goods. It also implies, in the absence of modi�cations such

as costs of operating capital, that all capital goods are used in production and that

the short-run elasticity of supply is constant and is a function only of the long-run

labor share of income.

In this paper, we develop an alternative description of production and capital

accumulation that is based on the putty-clay technology introduced by Johansen

(1959). The ex ante production technology is Cobb-Douglas, but for installed cap-

ital, the technology is Leontief with productivity determined by the initial choice

of capital intensity. We develop a general equilibrium model where aggregate re-

lationships are explicitly derived from the microeconomic decisions of investment,

capacity choice, and production. By adopting the putty-clay speci�cation of tech-

nology, we relax many of the constraints imposed by a Cobb-Douglas production

structure while preserving its desirable long-run properties. This approach provides

a natural framework for the study of a wide range of issues including the rela-

tionship between production and capacity utilization, the decision to invest under

uncertainty, and the implications of technological change for capital obsolescence

and machine replacement.2

Aggregation from microeconomic decisions to macroeconomic variables is a key

issue for models with heterogeneous capital goods. We show that under the assump-

2Putty-clay models have a long history in both the growth (Johansen (1959), Solow (1962),

Phelps (1963), Cass and Stiglitz (1969), Sheshinski (1967), and Calvo (1976)) and investment

literatures (Bischo� (1971) and Ando, Modigliani, Rasche and Turnovsky (1974)). Putty-clay

features are also found in more recent work on business cycles (Atkeson and Kehoe (1994), Benhabib

and Rustichini (1991), and Benhabib and Rustichini (1993)).
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tion of log-normally distributed idiosyncratic productivity, there exists a well-de�ned

aggregate production function with a short-run elasticity of output with respect to

labor strictly less than that of the Cobb-Douglas alternative. This result provides

a stark contrast to Houthakker (1953), who �nds that a Leontief microeconomic

structure aggregates to a Cobb-Douglas production function if the distribution of

idiosyncratic uncertainty is Pareto. We focus on the log-normal distribution because

its use facilitates the analysis of aggregate quantities while preserving the putty-clay

characteristics of the microeconomic structure. A key advantage of this framework is

that all relevant elasticities of production are functions of hazard rates for a standard

normal distribution, the properties of which can be exploited in deriving analytical

results.

We also consider the relationship between investment and uncertainty in both

partial and general equilibrium. The partial equilibrium analysis focuses on the

intensive margin where the decision is how much to invest per project, while the

general equilibrium analysis takes into account movements in relative prices and

investment on the extensive margin that occurs through new entry. We �nd that

an increase in idiosyncratic uncertainty reduces investment at the project level but

raises investment in the aggregate. The former result is broadly consistent with the

empirical evidence of a negative relationship between investment and uncertainty at

the �rm-level (Leahy and Whited 1996).

Our analysis contributes to the large theoretical literature that identi�es chan-

nels through which uncertainty may in
uence investment. Bernanke (1983) and

Pindyck (1991) stress the negative in
uence that uncertainty has in a model where

there exists an \option value" to waiting to invest. Because the uncertainty consid-

ered in this paper is resolved only after investment decisions are made, our work is

more directly related to the work of Hartman (1972) and Abel (1983). These au-

thors emphasize the positive e�ect that increased uncertainty may have on �rm-level

investment because expected pro�ts increase with uncertainty. In our framework,

increased uncertainty raises expected pro�ts but reduces the expected marginal re-

turn to capital, causing a reduction in capital intensity at the microeconomic level.

The increase in aggregate investment is a natural consequence of the reallocation

bene�ts associated with redistributing variable factors of production, such as labor,

across project outcomes that are embodied in �xed factors, such as capital. When

compared to the benchmark vintage capital model introduced by Solow (1962), we
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show that the additional irreversiblity of the capital-labor ratio associated with the

putty-clay framework limits such reallocation bene�ts. As a result, the expansionary

e�ects of increased uncertainty are lower in the putty-clay model vis-a-vis the putty-

putty alternative.

Finally, we consider the relationship between embodied technological change,

capital obsolescence, and machine replacement along a balanced growth path. Of

particular interest is the relationship between uncertainty and machine retirement:

with low variability in productivity outcomes machine retirement is entirely a func-

tion of machine age, and depreciation is \one-hoss-shay"; as the variance of project

outcomes increases, machine age and machine retirement become less correlated and

depreciation schedules begin to resemble exponential decay. This analysis comple-

ments the literature on the e�ects of technological lock-in that motivate the machine

replacement problem �rst addressed by Johansen (1959) and Calvo (1976), and more

recently formalized in a dynamic programming environment by Cooper and Halti-

wanger (1993) and Cooley, Greenwood and Yorukoglu (1994). We also consider the

factors that contribute to replacement echoes of the type studied by Boucekkine,

Germain and Licandro (1997). We show that two factors are essential to the presence

of replacement echoes: a high intertemporal elasticity of substitution of consumption

and a low degree of idiosyncratic uncertainty of investment productivity.

The remainder of this paper is divided as follows: Section 2 presents a description

of the model and equilibrium conditions. Section 3 shows the equilibrium determi-

nation of utilization rates within the analytically tractable case of the no-growth

economy and provides closed-form expressions for all economic variables as func-

tions of the equilibrium utilization rate. Section 4 considers the e�ect of increased

uncertainty on investment at both the project level and in the aggregate, and section

5 extends the analysis to an economy with positive growth.

2 The Model

In this section, we describe the putty-clay model and derive the equilibrium con-

ditions. Each capital good possesses two de�ning qualities: its level of embodied

technology and its capital intensity. The underlying ex ante production technol-

ogy is assumed to be Cobb-Douglas with constant returns to scale, but for capital

goods in place, production possibilities take the Leontief form: there is no ex post

substitutability of capital and labor at the microeconomic level. In addition to ag-
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gregate technological change, we allow for the existence of idiosyncratic uncertainty

regarding the productivity of investment projects. To characterize the equilibrium

allocation, we �rst discuss the optimization problem at the project level and then

describe aggregation from the project level to the aggregate allocation.3

2.1 The Investment Decision

Each period, a set of new investment \projects" becomes available. Constant returns

to scale implies an indeterminacy of scale at the level of projects, so without loss

of generality, we normalize all projects to employ one unit of labor at full capacity.

We refer to these projects as \machines." Capital goods require one period for

initial installation and then are productive for 1 �M �1 periods. The productive

e�ciency of machine i initiated at time t is a�ected by a random idiosyncratic

productivity term. In addition, we assume all machines, regardless of their relative

e�ciency, fail at an exogenously given rate that varies by the age of the machine. In

summary, capital goods are heterogeneous and are characterized by three attributes:

vintage (age and level of aggregate embodied technology), capital-intensity, and the

realized value of the idiosyncratic productivity term.

The productivity of each machine, initiated at time t, di�ers according to the

log-normally distributed random variable, �i;t, where

ln �i;t � N(ln �t �
1

2
�2; �2):

The aggregate index �t measures the mean level of embodied technology of vintage

t investment goods and �2 is the variance of the idiosyncratic shock. The mean

correction term �1
2
�2 implies E(�i;tj�t) = �t. We assume �t follows a non-stochastic

trend growth process with gross growth rate (1 + g)1��.

The idiosyncratic shock to individual machines is not observed until after the

investment decisions are made. We also assume that after the revelation of the id-

iosyncratic shock, further investments in existing machines are not possible. Subject

to the constraint that labor employed, Li;t+j , is nonnegative and less than or equal

to unity (capacity), �nal goods output produced in period t + j by machine i of

vintage t is

Yi;t+j = �i;tk
�
i;tLi;t+j;

3This section closely follows Gilchrist and Williams (1998).
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Figure 1: Steady-state Distribution of Labor Productivity
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where ki;t is the capital-labor ratio chosen at the time of installation. Denote the

labor productivity of a machine by

Xi;t � �i;tk
�
i;t:

The only variable cost to operating a machine is the wage rate, Wt. Idle machines

incur no variable costs and have the same capital costs as operating machines. Given

the Leontief structure of production, these assumptions imply a cuto� value for the

minimum e�ciency level of machines used in production: those with productivity

Xi;t �Wt are run at capacity, while those less productive are left idle.

To illustrate these ideas, Figure 1 shows the steady-state distribution of labor

productivity across machines. The height of the distribution measures the number

of machines at any given productivity level. The cuto� value for the wage is shown

as a vertical line. Capital goods with productivity lying to the right of the cuto�

are used in production, those to the left are idle. Capacity utilization is given by

the area in the shaded region divided by the total area under the distribution.

The �gure also shows the distribution of labor productivity for the most recent

vintage (right scale). Its position on the horizonal axis re
ects both the current level

5



of technology and the capital intensity of new machines. Owing to trend productivity

growth and relatively long-lived capital, the mean labor productivity of the most re-

cent vintage is substantially higher than that of all existing machines. Obsolescence

through embodied technical change implies that old vintages have lower average

utilization rates than new vintages. Note that trend growth in investment|due to

population growth and technological change|causes the aggregate distribution to

be skewed.

To derive the equilibrium allocation of labor, capital intensity, and investment,

we begin by analyzing the investment and utilization decision for a single machine.

De�ne the time t discount rate for time t+ j income by ~Rt;t+j �
Qj
s=1R

�1
t+s, where

Rt+s is the one period gross interest rate at time t+s. At the machine level, capital

intensity is chosen to maximize the present discounted value of pro�ts to the machine

max
ki;t;fLi;t+jg

M
j=1

E

�
�ki;t +

MX
j=1

~Rt;t+j(1� �j)(Xi;t �Wt+j)Li;t+j

�
; (1)

s:t: 0 � Li;t+j � 1; j = 1; : : : ;M;

0 < ki;t <1;

where �j is the probability a machine has failed exogenously by j periods and ex-

pectations are taken over the time t idiosyncratic shock, �i;t.

Because investment projects are identical ex ante, the optimal choice of the

capital-labor ratio is equal across all machines in a vintage; that is, ki;t = kt;8i.

Denote the mean productivity of vintage t capital by Xt = �tk
�
t . Capital utilization

for vintage s at time t is the ratio of labor employed to employment capacity of the

vintage, given by Pr(Xi;s > WtjWt; �t). Given the log-normal distribution for �i;t,

the expected labor requirement at time t for a machine built in period s is given by

Pr(Xi;s > WtjWt; �t) = 1� �(zst );

where � (�) is the c.d.f. of the standard normal and

zst �
1

�

�
lnWt � lnXs +

1

2
�2
�
:

Letting F (Xi;s) denote the c.d.f. of Xi;s, we can similarly compute expected output

to be Z
1

Xi;s>Wt

Xi;sdF (Xi;s) = (1� �(zst � �))Xs
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where the expression on the right hand side follows from the formula for the expec-

tation of a truncated log-normal random variable.4 Capacity utilization of vintage s

capital at time t|the ratio of actual output produced from the capital of a given vin-

tage to the level of output that could be produced at full capital utilization|equals

(1� �(zst � �)).

Expected net income in period t from a vintage s machine, �st , conditional on

Wt, is given by

�st = (1� �t�s)

�
(1� �(zst � �))Xs � (1� �(zst ))Wt

�
:

Substituting this expression for net income into equation 1 eliminates the future

choices of labor from the investment problem. The remaining choice variable is kt.

The choice of kt has a direct e�ect on pro�tability through its e�ect on the

expected value of output Xt. It also has a potential indirect e�ect through its

in
uence on utilization rates. For any given realization of �it, a higher choice of kt

raises the probability that a machine will be utilized in the future. This increase in

utilization raises both expected future output and expected future wage payments.

Because the marginal machine earns zero quasi-rents, this indirect e�ect has no

marginal e�ect on pro�tability however, that is,

@�st
@zst

=
1

�
�(zst � �)Xs �

1

�
�(zst )Wt = 0;

where �(�) denotes the p.d.f. for a standard normal random variable. The �rst-order

condition for an interior solution for kt is given by

kt = �
MX
j=1

~Rt;t+j(1� �j)
�
1� �(ztt+j � �)

�
Xt: (2)

New machines are put into place until the value of a new machine (the present

discounted value of net income) is equal to the cost of a machine, kt,

kt =
MX
j=1

~Rt;t+j(1� �j)
�
(1��(ztt+j � �))Xt � (1� �(ztt+j))Wt+j

�
: (3)

This is the free-entry or zero-pro�t condition. The �rst term on the right hand

side of equation 3 equals the expected present discounted value of output adjusted

for the probability that the machine's idiosyncratic productivity draw is too low to

4If ln(�) � N(�; �2), then E(�j� > �) =
(1��(
��))

(1��(
))
E(�) where 
 = (ln(�) � �)=� (Johnson,

Kotz and Balakrishnan 1994).
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pro�tably operate the machine in period t+j. The second term equals the expected

present value of the wage bill, adjusted for the probability of such a shutdown.

Equations 2 and 3 jointly imply that, in equilibrium, the expected present value of

the wage bill equals (1� �) times the expected present value of revenue.

2.2 Aggregation

Total labor employment, Lt, is equal to the sum of employment from all existing

vintages of capital

Lt =
MX
j=1

(1� �(zt�jt ))(1 � �j)Qt�j ; (4)

where Qt�j is the quantity of new machines started in period t� j. Aggregate �nal

output, Yt, is

Yt =
MX
j=1

(1� �(zt�jt � �))(1� �j)Qt�jXt�j : (5)

In the absence of government spending or other uses of output, aggregate consump-

tion, Ct, satis�es

Ct = Yt � ktQt; (6)

where ktQt is gross investment in new machines.

2.3 Preferences

The economy is made up of representative households whose preferences are given

by
1

1� 


1X
s=0

�s
�
Ct+s(Nt+s � Lt+s)

 

Nt+s

�1�

; (7)

where � 2 (0; 1);  > 0, 1=
 > 0 is the intertemporal elasticity of substitution, and

Nt = N0(1 + n)t is the household's growing time endowment. Households optimize

over these preferences subject to the standard intertemporal budget constraint. We

assume that claims on the pro�ts streams of individual machines are traded; in

equilibrium, households own a diversi�ed portfolio of all such claims.

The �rst-order condition with respect to consumption is given by

Uc;t =
�

1 + n
Rt;t+1Uc;t+1; (8)

where Uc;t+s denotes the marginal utility of consumption. The �rst-order condition

with respect to leisure/work is given by

Uc;tWt + UL;t = 0; (9)
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where UL;t denotes the marginal utility associated with an incremental increase in

work (decrease in leisure).

2.4 The Solow Vintage Model

By relaxing the restriction that ex post capital-labor ratios are �xed, the model de-

scribed above collapses to the neoclassical vintage capital model initially introduced

by Solow (1962). For the Solow vintage model, de�ne the capital aggregator, Kt, by

Kt �

MX
j=1

�
1=�
t�j (1� �j)It�j ; (10)

where It denotes gross aggregate capital investment. Aggregate production in period

t is given by

Yt = A1��K�
t L

1��
t ; (11)

where Lt denotes aggregate labor input and A = exp( �
2

2� ) is a scale correction that

results from aggregating across machines with di�ering levels of idiosycratic pro-

ductivity. In this economy, a mean-preserving spread to idiosyncratic productivity

causes an increase in disembodied productivity at the aggregate level. If we assume

that �j = 1� (1� �)j�1 and M =1, we obtain the following capital accumulation

equation

Kt = (1� �)Kt�1 + �
1=�
t�1It�1:

In the neoclassical vintage model, embodied technological change enters the model

through the capital accumulation equation and is equivalent to a reduction in the

economic cost of new capital goods.

3 The No-Growth Economy

In this section, we derive the conditions describing the steady state of the putty-clay

economy with no technological or population growth; the case of positive growth is

taken up in section 5. We �rst prove the uniqueness of the steady-state equilibrium

utilization rate. We then derive closed-form solutions for the steady-state values of

all variables as functions of the steady-state utilization rate. In so doing, we show

that the model has a well-de�ned aggregate production function and characterize

its properties.

The no-growth economy is obtained by setting g = n = 0. For further simplicity,

we assumeM =1 and �j = 1�(1��)j�1 for some depreciation rate � > 0. Letting
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lower case letters denote steady-state per capita quantities and suppressing time

subscripts we de�ne z = (1=�)[ln(w)� ln(�k�)+ 1
2�

2]. Equation 4 then implies that

steady-state labor equals the steady-state capital utilization rate times the total

stock of machines, q=� ,

l = (1��(z))(q=�); (12)

while equation 5 implies that steady-state output is equal to the steady-state ca-

pacity utilization rate times potental output

y = (1� �(z � �))�k�(q=�): (13)

For a given capital-labor ratio and stock of machines, labor and output are increasing

in the rate of utilization.

Equations 12 and 13 provide an implicit relationship between labor and out-

put that may be interpreted as the short-run production function for this economy

(holding capital �xed). Computing the ratio of these two equations, we obtain an

expression for the average product of labor (APL)

APL =
(1� �(z � �))

(1� �(z))
�k�:

Average labor productivity depends on overall machine e�ciency �k� adjusted for

both the rates of capacity utilization and capital utilization. Taking the ratio of

partial derivatives, @y
@z=

@l
@z ; we obtain an expression for the marginal product of

labor (MPL)

MPL =
�(z � �)

�(z)
�k�:

Taking second derivatives we obtain @MPL
@l = ��MPL ; which implies strict con-

cavity of the short-run production function.

Letting (1=w) denote the relative output price, we can obtain the short-run

elasticity of supply by taking logs and then di�erentiating equation 13 with respect

to lnw
@ ln y

@ ln(1=w)
=
h(z � �)

�
;

where h(x) � �(x)=(1 � �(x)), the hazard rate for the standard normal. In the

short run, an expansion of output is achieved through the utilization of marginal

machines. The hazard rate h(z��) measures machine e�ciency for machines in use,

relative to overall machine e�ciency. As output increases, the e�ciency of machines

in use falls, and the elasticity of supply falls.
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The elasticity of output with respect to labor is computed as the ratio of marginal

to average labor productivity; equivalently, it may be expressed in terms of hazard

rates

@ ln y

@ ln l
=
h(z � �)

h(z)
:

This ratio plays a key role in determining both the equilibrium rate of capital uti-

lization.

Combining equations 2, 12, and 13 and solving for the capital-labor ratio per

machine yields

k =

�
�

r + �
(1� �(z � �))�

� 1
1��

; (14)

where r = 1=� � 1 is the steady-state equilibrium real interest rate. Except for the

adjustment for capacity utilization (1 � �(z � �)), this is the standard expression

for the steady-state capital-labor ratio in a no-growth economy. The adjustment

factor implies that the optimal capital-labor ratio for new machines is increasing in

the capacity utilization rate.

In equilibrium, the wage rate equals the marginal product of labor, or, equiva-

lently, the e�ciency level of the marginal machine. The �rst-order condition for the

labor-leisure decision, equation 9, and the aggregate resource constraint, equation 6,

yield

w =  
c

1� l
; (15)

c = y � kq: (16)

To close the model and solve for the equilibrium rate of capital utilization, we �rst

express the zero-pro�t condition as a monotonic function of z. In steady state,

per-period pro�ts (net of capital expenditures) are given by

� = (1� �(z � �))�k� � (1� �(z))w � (r + �)k; (17)

where (r + �)k equals per-period capital expenditures. Using equation 14, we may

alternatively express per-period capital expenditures by �(1 � �(z � �))�k�. Net

pro�ts may then be written

� = (1� �(z))[(1 � �)
y

l
� w]:

The free-entry condition requires that expected net pro�ts equal zero, so that,

in equilibrium, labor's share of output equals the wage bill: (1 � �)y = wl, just

11



as in the neoclassical vintage model with Cobb-Douglas production. In the vintage

model, this equality is achieved by allocating more labor to high-e�ciency machines

and less to low-e�ciency machines so that the marginal product of labor is equal

across machines. Each factor (labor and capital) is paid its share of output so that

net pro�ts are zero. In the putty-clay model, marginal products are not equalized

across individual machines. Instead, a worker employed on a highly e�cient machine

is more productive than one employed on a low e�ciency machine. Free entry of

new machines then determines the utilization rate consistent with zero equilibrium

net pro�ts.

To see the link between free entry and utilization, we use the equilibrium condi-

tion that the wage rate equals the productivity of the marginal machine to obtain

wl

y
=
h(z � �)

h(z)
:

Free entry requires that the ratio of marginal to average machine e�ciencies equals

labor's share (1� �). This equilibrium condition determines the steady-state value

of z and thereby the steady-state capital utilization rate (1 � �(z)): We state this

result in the following proposition.

Proposition 1 For the no-growth economy, there exists a unique equilibrium value

of z that satis�es:

1� � =
h(z � �)

h(z)
(18)

where h(x) = �(x)=(1 � �(x)) is the hazard rate for the standard normal.

Proof: As shown in the appendix, for any given � > 0, h(z � �)=h(z) is monotoni-

cally increasing with limz!�1
h(z��)
h(z)

= 0 and limz!+1
h(z��)
h(z)

= 1. Hence, there is

a single value of z that satis�es equation 18.

To complete the description of the model, we combine equations 13, 14, 15, and

16 and use the free entry condition to solve for steady-state labor

l =
(1� �)

1� ��  (1 � ��=(r + �))
: (19)

Note that steady-state labor is independent of z and �2, the variance of idiosyncratic

shocks. As in the case of the Solow vintage model, a mean-preserving spread to

idiosyncratic productivity acts like an aggregate disembodied productivity shock

with respect to the labor allocation decision and thus has no e�ect on steady-state
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Figure 2: Equilibrium Utilization Rate
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labor. Equilibrium values for all remaining aggregate variables are then computed

from z and l.

Figure 2 provides a graphical depiction of the steady-state equilibrium. In this

�gure, we normalize �k� at unity and plot the ratio of marginal to average variable

cost (the inverse of MPL/APL) as a function of capital utilization for two values of �,

0.25 and 0.4. At low levels of utilization, the marginal machine is highly productive

and marginal cost is low. At high levels of utilization, the marginal machine is

relatively unproductive, and small increases in utilization cause sharp increases in

marginal cost. Average variable cost is concave and increasing in utilization with

average variable cost equaling unity at full capacity utilization. Because the ratio

of marginal to average variable cost is strictly increasing and asymptotes to in�nity

as the economy approaches full capacity utilization, we are guaranteed a unique

equilibrium rate of capital utilization.

The steady-state equilibrium condition that MC
AV C = 1

1�� is satis�ed for the two

cases of � at the points labeled CU� shown in the �gure. If capacity utilization

exceeds the equilibrium level, marginal cost is high relative to average variable cost,

implying that wages are low relative to labor productivity and pro�ts are positive.

Positive pro�ts induce new entry into the market which in turn increases the demand

for labor. Given the steady-state quantity of labor, new entry causes wages to rise.

Marginal machines are shut down, capacity utilization falls, and pro�ts decline to

13



Figure 3: Aggregate Supply Curve
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the point that new machines earn zero pro�ts.

The steeply rising MC
AV C

curve shown in �gure 2 translates into a short-run aggre-

gate supply curve with more curvature than that of the neoclassical vintage model,

for which the ratio of MC
AV C

is constant and equal to 1
1��

. To see this more directly,

�gure 3 plots the log of output versus the log of the relative output price 1=w for two

speci�cations of � of the putty-clay model and for the Solow vintage model. In each

case, the stock of capital goods is held �xed at its steady-state level. Each curve

traces out the increases in output obtained through increases in labor input, i.e.,

increased utilization in the putty-clay model, in response to higher output prices.

In log-terms, the slope of the supply curve is equal to the inverse of the elasticity of

supply. In the Solow vintage model, the elasticity of supply is constant and equal

to 1��
� and therefore the supply curve is log-linear. In the putty-clay model, the

elasticity of supply (h(z��)� ) is decreasing in utilization, implying that the slope of

the supply curve increases as output increases. As can be seen from �gure 3, for any

given �, the slope of the supply curve is increasing at an increasing rate as lower

and lower quality machines are brought on line.

We expect that increased idiosyncratic uncertainty produces a more 
exible econ-

omy which translates into a higher elasticity of supply and therefore a 
atter supply

curve. As can be seen from the tangency lines in �gure 3, at the steady-state equilib-
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rium, the slope of the short-run aggregate supply curve is indeed negatively related

to the degree of idiosyncratic uncertainty. At the steady-state equilibrium, it is

always greater than �
1�� , the slope for the Solow vintage model. These results are

formalized in the following proposition.

Proposition 2 For the no-growth putty-clay economy, the slope of the aggregate

supply curve holding capital �xed,
@ ln(1=w)
@ ln y

= �
h(z��)

, is increasing and convex in

ln y. Evaluated at the steady-state equilibrium, the slope of the aggregate supply

curve is decreasing in the level of idiosyncratic uncertainty and is bounded below by

�
1�� , the slope of the supply curve for the Solow vintage model.

Proof: Let � = @ ln y
@ ln(1=w)

= h(z��)
� denote the elasticity of supply. From Result 1 in

the appendix, we know that h(z) is log-concave which implies h(z��)� (z��) >

h(z) � z and h0 (z � �) < 1 . Using h0(z) = h(z)(h(z) � z); and taking partial

derivatives, we have:
@�
@ ln y

= �
�
h(z��)�(z��)

�

�
< 0 and

@2�

@(ln y)2
= (h0(z��)�1)

�h(z��)
< 0

implying that the slope of the supply curve, ��1 , is increasing and convex in ln(y).

To show ��1 is decreasing in �; we note that in equilibrium � = (1��)h(z)
� .

Taking derivatives we obtain

d�

d�
= (

h0(z)

h(z)

dz

d�
�

1

�
)�

and totally di�erentiating equation 18 we obtain
dz
d� = h(z��)�(z��)

h(z��)�h(z)+�
> 1 where the

inequality again follows from log-concavity of h(z) . Combining these expressions

we have

d�

d�
=

�
(h(z � �)� (z � �)) (h(z)� z)

h(z � �)� h(z) + �
�

1

�

�
�:

Result 5 in the appendix relies on convexity of h(z) to show that the term in brackets

is strictly positive for any � > 0 . This establishes that
d�
d�

> 0 , and the slope

of the supply curve is strictly decreasing in � at the steady-state equilibrium. To

establish the lower bound for the slope of the supply curve, in equilibrium, we note

that h(z��) = (1��)h(z) and h(z��)� (z��) > h(z)� z implies �h(z) < �

and therefore � = (1��)h(z)
�

< 1��
�

.

In summary, by varying � we vary the slope (and position) of the short-run

aggregate supply curve. Thus, the putty-clay aggregate production function e�ec-

tively embeds, depending on the degree of idiosyncratic uncertainty, the log-linear

and relatively 
at short-run aggregate supply curve traditionally associated with a
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Cobb-Douglas production structure up to the reverse L-shaped supply curve tradi-

tionally associated with the putty-clay framework.

4 Reallocation Bene�ts, Investment, and Uncertainty

We now consider the e�ect of an increase in idiosyncratic uncertainty on investment

at both the project level and the macroeconomic level. We show that increased

uncertainty typically reduces investment at the project level but unambiguously

increases aggregate investment. The expansionary e�ect of increased idiosyncratic

uncertainty on aggregate investment and output is, however, smaller in the putty-

clay model than the neoclassical vintage model owing to the constraint on labor

reallocation embedded in the ex post �xity of capital-labor ratios in the putty-clay

model.

We start by considering the e�ect of an increase in � on the steady-state of the

putty-clay model. The complete characterization of the e�ect of an increase in � on

the steady-state equilibrium is summarized in the following proposition.5

Proposition 3 For the no-growth economy,
dz
d� > 1, and the steady-state capital-

labor ratio per machine, k, and capacity utilization are strictly decreasing in �.

Output, consumption, total investment, and the wage rate are increasing in �, with

semi-elasticity
d ln y
d� = h(z). The investment share is invariant to �.

Proof: Equation 18 de�nes z as an implicit function of � with
dz
d� > 1 following

immediately from the increasing hazard property of the standard normal distribution

(see the proof of proposition 2). Di�erentiating the capital-labor ratio k with respect

to �, and using equation 18 we obtain
d ln k
d�

= �h(z)( dz
d�
� 1) < 0: Because steady-

state labor is independant of �, the 
ow of new machines is proportional to the

inverse of the capital utilization rate. Thus, an increase in � leads to a fall in the

steady-state capital utilization rate proportional to the increase in the number of new

machines:
d ln q
d� = h(z) dzd� > 0 : Combining d ln k

d� with
d ln q
d� , we obtain the result that

investment kq is increasing in �:
d ln(kq)
d�

= h(z) > 0. Equations 13 and 14 imply

that output is linear in investment: y = 1��(1��)
�� kq so that

d ln y
d� = h(z) > 0. Thus,

5In the case of positive growth, we still obtain the result that dz
d�

> 1 and dk
d�

< 0. With growth,

however, changes in � in
uence the e�ective depreciation rate. As a result, labor is not independant

of � and the aggregate output e�ects are much more di�cult to characterize analytically. Numerical

results indicate that the variation in l is economically inconsequential and that the results for the

no-growth model generalize to the case of positive growth for reasonable choices of �.
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output and investment rise by the identical h(z) percent in response to a unit increase

in �, and the investment share of output is invariant to the degree of idiosyncratic

uncertainty.

To provide intuition for these results, we �rst consider the partial equilibrium e�ect

of an increase in � on k, holding the wage rate �xed. We then analyze the general

equilibrium e�ect by allowing the wage rate to adjust to its new equilibrium level.

In the putty-clay model, project managers pay k and in e�ect buy an option

to produce in the future. The option is exercised (production occurs) if the ex

post realization of revenues exceeds wage costs.6 Ceteris paribus, an increase in

uncertainty raises the value of the option and increases expected pro�ts.7 This is

seen in the upper panel of �gure 4, which shows expected net pro�ts per machine as

a function of k, for a given degree of idiosyncratic uncertainty and level of the wage.

Holding the wage �xed at w1, an increase in � from �1 (solid line) to �2 (dotted

line) raises expected pro�ts per machine for all values of k.

In the putty-clay model, the relationship between k and pro�ts|given by equa-

tion 17|combines both the standard concave relationship owing to diminishing re-

turns to capital and the e�ect of k on expected utilization rates. If k is very high, uti-

lization is nearly 100% and net pro�ts are approximately equal to �k��w�(r+�)k,

which is strictly concave in k. For low values of k, however, expected utilization is

nearly zero and an incremental increase in k has virtually no e�ect on expected gross

pro�ts (revenues minus wages) despite having a large incremental e�ect on �k�. As

a result, for low values of k; net pro�ts are decreasing in k as the cost of capital

increases linearly in k. For intermediate values of k, utilization rates are su�ciently

high that pro�ts are increasing and concave in k.

Although expected pro�ts per machine increase with �, the partial equilibrium

e�ect on k is ambiguous and depends on the utilization rate. The expected marginal

product of capital (i.e. the derivative of gross pro�ts with respect to k) is given by

MPK = �(1 � �(z � �))k��1:

The derivative of the marginal product of capital with respect to �, holding wages

6Pindyck (1988) also considers the option value associated with machine shutdown. In his

framework, holding constant the option value associated with waiting to invest, an increase in

uncertainty raises investment. This result contrasts with that described below.
7Equivalently, one can think of �i;t as the relative output price for the good produced. The

convexity of the pro�t function with respect to the output price implies that an increase in � raises

expected pro�ts.
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Figure 4: The E�ects of Increased Uncertainty
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For z < 0, that is, at capital utilization rates exceeding 50%, a mean-preserving

spread reduces the capacity utilization rate, the marginal product of capital, and

k. If the capital utilization rate is less than 50%, utilization occurs on the convex

portion of (1��(z��)) and the partial equilibrium e�ect of an incremental increase

in � is to increase, rather than decrease, k.

The bottom panel of �gure 4 plots the expected marginal product of capital. In

equilibrium, the marginal product of capital equals the required return, r+�; for the
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case of � = �1 (solid line), the equilibrium capital-labor ratio equals k1. Holding the

wage rate �xed at w1, an increase in idiosyncratic uncertainty reduces the capacity

utilization rate and the marginal product of capital, as shown by the dotted line in

the �gure. For wage w1, k must fall to ~k to restore the equality of the marginal

product of capital to the required return.

In general equilibrium, higher pro�ts induce new entry. New entry drives up

the wage rate, thereby reducing utilization and eroding pro�ts. As shown in the

�gure, the increase in the wage rate from w1 to w2 causes a reduction in k to k2.

The additional investment that occurs through the extensive margin more than

o�sets any reduction in investment that occurs through the intensive margin and

aggregate investment unambiguously rises in response to an increase in idiosyncratic

uncertainty.

We now compare this result to that from the Solow vintage model, which we

state in the following proposition.

Proposition 4 De�ne the semi-elasticity of steady-state output with respect to �

by � � d ln y
d� . Then

�putty�clay = h(z) <
�

�
= �Solow:

Proof: We need to show that at the equilibrium, �h(z) < �; which is established in

the proof of proposition 2.

In the Solow vintage model, project-level capital expenditures are irreversibly tied

to a speci�c realization of idiosyncratic productivity �i;t but labor can be costlessly

reallocated across projects after the realization occurs. A mean-preserving spread

causes a reallocation of labor from low productivity to high productivity machines,

equalizing the marginal product of labor across machines. This reallocation increases

productivity in proportion to � and raises the return to capital, causing investment

and output to increase.

In the putty-clay model, labor reallocation is limited to moving workers from

machines in the lower tail of the e�ciency distribution to new machines, the mean

e�ciency of which equals average labor productivity. The term h(z) captures the

bene�ts from this reallocation of labor. Speci�cally, the elasticity of output with

respect to �, �h(z), equals the di�erence between average log-e�ciency of machines

in use relative to the log-e�ciency of all machines

�h(z) = E(ln(xi)jxi > w)�E ln(xi):
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Table 1: The Expansionary E�ect of Increased Uncertainty

Semi-elasticity Semi-elasticity
of Output w.r.t. � of k w.r.t. �

� Solow Vintage Putty-clay Putty-clay

0.10 0.28 0.00 -0.00
0.20 0.56 0.05 -0.53
0.30 0.83 0.24 -1.52
0.40 1.11 0.51 -2.36
0.50 1.39 0.81 -3.05
0.75 2.08 1.58 -4.48
1.00 2.78 2.35 -5.73

Notes: For these computations, � = 0:36.

At low levels of idiosyncratic uncertainty, the di�erence between the productivity of

machines in use to that of all machines produced is small, and reallocation provides

little bene�t. As � increases, this gap widens, and the bene�t from reallocation

rises.

To quantify the e�ect of variations in � on investment and output, Table 1 shows

the semi-elasticities of output with respect to �, for di�erent values of �, for the

putty-clay and Solow vintage models. These results are based on a 36% capital-

share (� = 0:36); no other model parameters enter into the computations. As seen

in the table, the output semi-elasticity of the putty-clay model lies well below that

of the Solow vintage model. For values of � of 0.2 and smaller, the expansionary

e�ect of increased uncertainty on output in the putty-clay model is trivial. Table 1

also shows d lnk
d� , the semi-elasticity of the capital-labor ratio k with respect to �.

Investment at the project level is much more sensitive than aggregate investment to

variations in �. In the putty-clay model, starting from a value of � of 0.2 or greater,

an increase in idiosyncratic uncertainty has a quantitatively large negative impact

on investment at the machine level.
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5 The Economy with Growth

The assumption of zero trend growth simpli�es the preceding analysis; however, in

order to study the timing of capital goods replacement we need to allow for positive

growth. We start by describing and proving existence of a deterministic balanced

growth equilibrium. We then analyze the replacement or \endogenous depreciation"

of capital goods and relate these �ndings to the potential for replacement echoes in

our model.

5.1 Equilibrium along the Balanced Growth Path

Along the balanced growth path, per capita output, consumption, and investment

grow at rate g, and labor and labor capacity grow at rate n. We use lower case letters

to indicate steady-state values of variables, normalized by appropriate time trends,

and ~k to indicate the normalized steady-state capital-labor ratio. We de�ne the

growth-adjusted discount rate ~� � 1
(1+n)(1+g)


�. Let z denote the di�erence between

the average e�ciency of the leading edge technology and the current wage rate in

steady state, z � (lnw � lnx+ 1
2�

2)=�, and let z(i) denote the di�erence between

the average e�ciency of vintage i and the current wage rate z(i) � z+(i=�) ln(1+g).

On the balanced growth path, the normalized levels of output, consumption,

labor, and the wage rate are given by

y = qx
MX
j=1

((1 + g)(1 + n))�j(1� �j)
�
1� �(z(j) � �)

�
; (20)

c = y � ~kq; (21)

l = q
MX
j=1

(1 + n)�j(1� �j)
�
1� �(z(j))

�
: (22)

w =
(1 + g)�jx�(z(j) � �)

�(z(j))
; j = 1; : : : ;M: (23)

Note that y=q, c=q, l=q, and w depend only on the values of ~k (directly and indirectly

through x = ~k�) and z. The �rst-order condition for k and the zero-pro�t condition

yield two equations in z and k

~k = �
MX
j=1

~�j(1� �j)

��
1� �(z(j)� �)

�
x

�
; (24)

~k =
MX
j=1

~�j(1� �j)

��
1� �(z(j) � �)

�
x� (1 + g)j

�
1��(z(j))

�
w

�
: (25)
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By combining these last three equations, we obtain the balanced growth equilibrium

condition for z.

As in the no-growth economy, an equilibrium value of z is determined by setting

utilization rates so that a weighted average of vintage labor shares equals 1 � �.

In the case of positive growth, however, these weights are not �xed constants as in

the no-growth case, but instead depend on z. As a result, with positive growth one

cannot rule out a priori the existence of multiple steady-state values of z without

additional assumptions, as stated in the following proposition.

Proposition 5 Let

v(z(j)) =
~�j(1� �j)(1� �(z(j) � �))PM
i=1

~�i(1� �i)(1� �(z(i)� �))
(26)

de�ne a set of weights such that
PM
j=1 v(z(j)) = 1; then there exists at least one

steady state value of z that satis�es

(1� �) =
MX
j=1

v(z(j))
h(z(j) � �)

h(z(j))
: (27)

A su�cient condition for uniqueness of the equilibrium is that the sum
PM
j=1

~�j(1�

�j)(1� �(z(j) � �)) be log-concave in z.

Proof: Let 	(z) �
PM
j=1

~�j(1��j)(1��(z(j)��))
h(z(j)��)
h(z(j))

, and �(z) �
PM
j=1

~�j(1�

�j)(1 � �(z(j) � �)): Then 	(z)
�(z)

=
PM
j=1 v(z(j))

h(z(j)��)
h(z(j))

and the balanced growth

equilibrium condition may be written

(1� �) =
	(z)

�(z)
:

Following the proof of result 2, it is straightforward to show that limz!�1
	(z)
�(z)

= 0

and limz!+1
	(z)
�(z)

= 1: Thus, by continuity of
	(z)
�(z)

, there exists at least one value

of z that satis�es the equilibrium condition.

To prove that log-concavity of �(z) implies uniqueness of the equilibrium we show

that
@2 ln �(z)
@z2

< 0 implies
	(z)
�(z)

is monotonically increasing in z. Taking derivatives

and using the facts that 	0(z) = �	(z)+�0(z); and �0(x) = �
PM
i=1

~�j(1��j)�(z(j)�

�); we obtain

@
	(z)
�(z)

@z
= �

	(z)

�(z)
+

�
1�

	(z)

�(z)

�
@ ln�(z)

@z
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Taking second derivatives we obtain

@2
	(z)
�(z)

@z2
=

�
� �

�0(z)

�(z)

� @	(z)
�(z)

@z
+

�
1�

	(z)

�(z)

�
@2 ln�(z)

@z2

If
@2 ln�(z)
@z2

< 0 the second term in this expression is negative. Given �0(x) < 0 we

have

�
� �

�0(z)
�(z)

�
> 0, so that

@
	(z)

�(z)

@z
< 0 implies that the �rst term is also negative.

Now suppose
@
	(z�)

�(z�)

@z < 0 for some z�. Then we have
@2

	(z�)

�(z�)

@z2
< 0 implying that

0 < 	(z�)
�(z�)

< 1 and
	(z)
�(z)

strictly decreasing on (z
�;1) , a result which contradicts

limz!+1
	(z)
�(z)

= 1.

Note that the possibility of multiple balanced growth equilibria exists only in

the case of non-zero trend technological growth. This potential for multiple steady

states distinguishes this model from its putty-putty counterpart. Nonetheless, nu-

merical analysis of the model suggests that multiple equilibria occur only in \un-

usual" regions of the parameter space, for example, when the trend growth rate of

technology is extremely large and the value of � lies in a limited range. Further

discussion of these issues appears in the appendix. In the following analysis, each

of the parameterized versions of the model used possesses a unique steady state.

5.2 Endogenous Depreciation and Echo E�ects

With positive growth in embodied technology, the real wage rises over time and

increasing shares of older vintages of capital become too costly to operate given

their labor requirements, with the result that they are mothballed or scrapped.

In steady state, the capital utilization rate of capital goods i periods old equals

(1��(z+(i=�) ln(1+g))). From this formula we see that the two key determinants

of the shape and location of the vintage utilization schedule are the long-run growth

rate of embodied technology and the degree of idiosyncratic uncertainty.

The primary direct e�ect of positive trend productivity growth on machine re-

placement is to shorten the useful life of capital goods. Owing to more rapid growth

in real wages, an increase in g speeds up the process of machine replacement, shifting

the utilization schedule forward in time. The degree of idiosyncratic uncertainty, on

the other hand, mainly a�ects the shape of the utilization schedule. First, consider

the extreme case of no idiosyncratic uncertainty, where all machines of the same

vintage are identical. In this case, machines of a given vintage are run at full ca-

pacity until the real wage exceeds the vintage's level of productivity, at which time

23



Figure 5: Steady-state Capacity Utilization
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they are retired all together. With a small degree of idiosyncratic uncertainty, the

replacement of capital goods follows the basic pattern of the case of no idiosyncratic

uncertainty, but relatively ine�cient machines are scrapped early and relatively ef-

�cient machines are scrapped later. Figure 5 shows steady-state capacity utilization

rates across vintages of capital for three values of �.8 As � increases, the link

between vintage age and machine productivity is weakened, resulting in reduced

utilization of recent vintages and increased utilization of older vintages. For low �,

the depreciation schedule is close to that of the one-hoss-shay, whereas for high �,

the depreciation schedule begins to resemble exponential decay.

The pattern of scrapping relates to the potential presence of \replacement echoes"

of the type studied by Boucekkine et al. (1997), where an initial investment surge

leads to recurring spikes in investment as successive vintages are retired. In the

context of our putty-clay model, pronounced replacement echoes occur only in the

absence of mechanisms which lead to the smoothing of capital goods replacement

over time. Speci�cally, necessary conditions for replacement echoes to exist in our

putty-clay model are (i) a low degree of idiosyncratic uncertainty and (ii) a high

intertemporal elasticity of consumption.

If the degree of idiosyncratic uncertainty is not su�ciently low, the resulting

8For the examples shown in �gures 5 and 6, we assume there is no \exogenous" capital depreci-

ation, i.e., � = 0.
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Figure 6: Replacement Echoes
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γ = 0.4 (left scale)
γ = 1.0 (right scale)

gradually declining utilization schedule shown in �gure 5 smooths the process of

machine replacement over time and signi�cantly dampens replacement echoes. The

need for a high intertemporal elasticity of consumption to generate replacement

echoes is demonstrated in �gure 6, which shows the response of aggregate investment

(shown as percentage point deviations from steady state) to an unanticipated shock

that destroys a portion of the stock of the most recent vintage of capital. This

arti�cial example generates the requisite initial spike in investment. The solid line

shows the response when � = 0:1 and the intertemporal elasticity of substitution for

consumption is 2.5 (
 = 0:4). With these preferences, the desire for consumption

smoothing is relatively weak. The shock elicits a sharp initial rise in investment

and a relatively strong and persistent pattern of replacement echoes. The dashed

line shows the simulated outcome with an intertemporal elasticity of substitution of

unity (log preferences). In response to the shock, households' desire for a smooth

consumption path causes investment to initially only rise by a small amount and

remain above steady state for an extended period as the capital stock is gradually

rebuilt. One small replacement echo occurs, but no further echo materializes.
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6 Conclusion

In this paper, we investigate the microeconomic and aggregate implications for in-

vestment and output that result from assuming ex post �xity of capital-labor ratios

in a putty-clay model of capital accumulation. The model that we develop provides a

set of microeconomic foundations for the analysis of investment under uncertainty,

capacity utilization, and machine retirement in a general equilibrium framework.

Aggregation over heterogeneous capital goods results in a well-de�ned aggregate

production function that preserves the putty-clay microeconomic structure and is

easily characterized in terms of hazard rates of the standard normal distribution.

The analysis yields a number of interesting results. First, we show that under the

assumptions of the model, the aggregate production function takes an intermediate

form between that of Cobb-Douglas and Leontief, depending on the degree of id-

iosyncratic uncertainty. Second, we �nd that an increase in idiosyncratic uncertainty

typically reduces investment at the micro level but raises aggregate investment. Fi-

nally, we �nd that two factors are key to the existence of replacement echoes: the

degree of idiosyncratic uncertainty and the intertemporal elasticity of substitution

of consumption.

An important question in macroeconomics is how the economy responds to fac-

tor price variation induced by changes in tax structure or embodied technological

change. The putty-clay framework developed in this paper is well suited for studying

the dynamic implications of factor price movements in the presence of irreversible

investment decisions re
ected in the ex post �xity of capital-labor ratios. In a com-

panion piece (Gilchrist and Williams 1998), we study the dynamic properties of the

one-sector growth model speci�ed in this paper. Our model may be easily extended

to a more general multi-sector or multi-country setting. It may also provide a useful

framework for studying the transition dynamics of developing economies that are

adopting new technology through the process of capital accumulation.
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Appendix

Results regarding the hazard rate of the standard normal distribu-

tion used for proofs in the text:

In the following, let h(x) denote the hazard rate for the standard normal distribution,

h(x) � �(x)=(1 � �(x)): From the de�nition of the hazard rate, we know h(x) =

E(yjy > x); y � N(0; 1), which implies that h(x) > 0 and h(x) > x, for all x.

Result 1: h(x) is monotonically increasing in x, with limx!�1 h0(x) = 0 and

limx!+1 h0(x) = 1.

Proof Taking the derivative of h(x), we have h0(x) = h(x)(h(x) � x) > 0, where

the inequality follows directly from the de�nition of the hazard rate of the standard

normal. To establish the lower limit of h0(x), �rst note that limx!�1 h(x) = 0.

Then, limx!�1 h0(x) = � limx!�1 xh(x) = � limx!�1 x�(x) = 0, where the �nal

equality results from applying l'Hopital's rule. To establish the upper limit, note that

application of l'Hopital's rule yields limx!+1 h0(x) = limx!+1 h(x)=x. Applying

l'Hopital's rule yields limx!+1
h(x)
x = limx!+1(1 +

1
x2
) = 1, which establishes the

result.

Result 2: h(x) is log-concave, that is, ln(h(x)) is strictly concave in x.9

Proof To prove log-concavity, we need to show that
@ ln(h(x))

@x
= h0(x)

h(x)
is decreasing

in x, which is true if h0(x) < 1. Consider h00(x)

h00(x) = h(x)[(h(x) � x)2 + (h0 (x)� 1)]

which is strictly positive if h0(x) � 1: Suppose h0(x�) � 1 for some x�. Then, h0(x)

is increasing at x�, implying h0(x) > 1 and h00(x) > 0 for all x > x�, a result

which contradicts limx!+1 h0(x) = 1, established in Result 1. Alternatively, it is

straightforward to show that for the standard normal distribution Var(yjy > x) =

1� h0(x), which implies h0(x) < 1 for all x.

Result 3: h(x) is strictly convex in x.

Proof Let g(x) = [(h(x)�x)2+(h0 (x)�1)]; then, h00(x) > 0 i� g(x) > 0. Given the

limiting results established above, it is straightforward to obtain limx!�1 g(x) =1

9Bagnoli and Bergstom (1989) provide some results on properties of log-concave distribution

functions, including a proof that the reliability function 1��(x) is log-concave. We require however

that the hazard rate itself be log-concave.
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and limz!+1 g(x) = 0. Now, consider g0(x)

g0(x) = 2(h(x) � x)(h0(x)� 1) + h(x)g(x)

which is strictly negative if g(x) � 0. Suppose g(x�) � 0 for some x�, implying that

g0(x�) < 0. This then implies that g(x) < 0 and g0(x) < 0 for all x > x�, a result

which contradicts limx!+1 g(x) = 0.

Result 4: For a given constant c > 0, h(x�c)
h(x)

is monotonically increasing in x with

limx!�1
h(x�c)
h(x)

= 0 and limx!+1
h(x�c)
h(x)

= 1.

Proof To prove that h(x� c)=h(x) is monotonically increasing in x we compute

@(h(x� c)=h(x))

@x
=
h(x� c)

h(x)

n
h(x� c)� (x� c)� (h(x)� x)

o
:

which is positive if the term in brackets is positive. We therefore need to show

that h(y) � y > h(x) � x for y < x which is true if h0(x) < 1, i.e., if h(x) is log

concave, which is proven in Result 2 above. To show the lower limit we note that

h(x�c)
h(x)

=
�
e(2xc�c

2)=2
��

1��(x)
1��(x�c)

�
and take limits. To establish the upper limit, we

use the mean value theorem to obtain h(x) = h(x� c) + ch0(x�) for x� c < x� < x.

We then use x� < x and h00(x) > 0 to obtain the bounds 1 > h(x�c)
h(x)

> 1 � h0(x)
h(x)

c.

Result 1 implies limx!+1
h0(x)
h(x)

= 0, which establishes the result.

Result 5: For a given constant c > 0, c (h(x� c)� (x� c)) (h(x) � x) > h(x �

c)� h(x) + c.

Proof Let

f(x) = c[!(x� c)!(x)] + [!(x)� !(x� c)]:

where !(x) = h(x) � x > 0. Taking limits we obtain limx!�1 !(x) = 1 ,

limx!+1 !(x) = 0, implying limx!�1 f(x) = 1 and limx!+1 f(x) = 0. Tak-

ing derivatives we have: !0(x) = h0(x)� 1 < 0 and !00(x) = h00(x) > 0. Since !(x)

is decreasing and strictly convex in z, we have !0(x) < !0(x� c) and

f 0(x) = c[!0(x� c)!(x) + !(x� c)!0(x)] + [!0(x)� !0(x� c)] < 0:

Given that limx!�1 f(x) =1 and limx!+1 f(x) = 0, f 0(x) < 0 implies f(x) > 0

for all x.
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Multiple Equilibria in the Economy with Growth

We �rst provide some analysis of the conditions needed to guarantee the log-concavity

of �(z) �
PM
j=1

~�j(1� �j)(1��(z(j)��)) and hence a unique steady-state equilib-

rium. We then consider what set of parameter values may lead to multiple equilibria.

To begin, consider the function �00(z)�(z)��0(z)2 which, if negative, guarantees

log-concavity of �(z) and hence uniqueness of the equilibrium. We know that the

reliability function (1 � �(x)) is log-concave and �(z) is the weighted sum of such

functions, which, while not su�cient to guarantee log-concavity, suggests that it

may be di�cult to produce circumstances under which it does not obtain. Let

!j = ~�j(1� �j) and zj = z(j) � �. After some manipulation we obtain

�00(z)�(z) � �0(z)2 =
MX
j=1

MX
k=1

!j!k�(zj)[(zj)(1 � �(zk)� �(zk)]

=
MX
j=1

MX
k=1

!j!k�(zj)�(zk)

�
zj

h(zk)
� 1

�

=
MX
j=1

MX
k=1

!j!k�(zj)�(zk)

�
zk

h(zk)
� 1

�

+
MX
j=1

MX
k=1

!j!k�(zj)�(zk)

�
zj � zk

h(zk)

�
:

The �rst term in this expression is clearly negative. The second term may be positive

if for some j; k we have large productivity di�erentials between vintages j and k.

Because zj is linearly increasing in machine age, a large productivity di�erential

is likely to occur when vintage j is substantially older and less productive than

vintage k. In this case, however, the contribution of this term to the sum is relatively

small owing to discounting, both explicitly through the term ~�j(1��j) and implicitly

through a low value of �(zj). Furthermore, for any positive term (zj�zk)=h(zk) > 0

there is an equally weighted negative term (zk � zj)=h(zj) < 0. This suggests that

only under extreme parameterizations can we have large productivity di�erentials

that yield positive values of any magnitude for

!j!k�(zj)�(zk)

 
(zj � zk)

h(zk)
+
(zk � zj)

h(zj)

!
;

the weighted sum of these components. In turn, these positive values must be large

enough to o�set the negative sum in the �rst component of �00(z)�(z) � �0(z)2.
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Note that log-concavity of �(z) is a su�cient, not necessary, condition for a

unique steady-state value of z. Indeed, it is not necessary that 	(z)=�(z) be mono-

tonically increasing, as long as it crosses (1 � �) only once. Numerical experi-

ments suggest that multiple equilibria only occur when both the trend productivity

growth rate is exorbitantly high, so that productivity di�erentials across vintages

are large, and when discounting through the real interest rate and depreciation is

very low. For example, we obtain multiple equilibria in the model when � = 0:1,

�j = 0; j = 1; : : : ;M , 
 = 0:1, g = 0:6 (60% per annum), and � = 0:999. These

parameter values imply that z2 � z1 > 5. Relatively small adjustments in param-

eter values result in the number of equilibria to collapsing to one. We have found

no evidence of multiple equilibria using more conventional parameterizations that

would typically characterize the capital accumulation process in a general equilib-

rium model calibrated based on empirical moments of industrialized economies.
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