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ABSTRACT

In this paper 1 generélize the standard simultaneous equations model by
allowing the innovations of the structural equations to exhibit Generalized
Autoregressi§e Conditional Heteroskedasticity (GARCH). I refer to this new
specification as the SEM-GARCH model. I develop two estimation strategies:
LIM-GARCH, a limited information estimator, and FIM-GARCH, a full
informaticn estimator. I show that these estimators are consistent and
asymptotically normal. Following Weiss (1986) I show that when the errors
in the SEM-GARCH process are incorrectly assumed to be conditionally normal
the likelihood function is still maximized at the true parameters, given
certain regularity coﬁditions. This results in the asymptotic

variance-covariance matrix being more complex than the usual inverse of the

information matrix.



THE SIMULTANEOUS EQUATIONS MODEL WITH
GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY:
THE SEM-GARCH MODEL

*
Richard Harmon

In this paper I generalizekthe standard simultaneous equations model
(SEM) by allowing the innovations of the structural equations to exhibit
Generalized Autoregressive Conditional Heteroskedasticity (GARCH). A
GARCH(p,q) process is a process whose conditional variance at time t is a
function of the information available at time t—1. Specifically, it is a
function of variances of past innovations and of the squared realizations
of past innovations. Unconditionally, the current innovation reverts to
the standard specification: white noise with fixed variances over time. I
refer to this new specification.as the SEM-GARCH model. I develbp two
éstimation strategies: LIM-GARCH, a limited information estimator, and
FIM-GARCH, a full information estimator. 1 show that these estimators are
consistent and asymptotically normal.

The outline of the paper is as follows. Section I presents the
unrestricted and diagonal SEM-GARCH(p,q) models. Sections II and III
derive the LiH-GARCH estimator and its asymptotic properties. Sections IV

and V develop the FIM-GARCH estimator and its asymptotic properties.

*I am grateful to James Albrecht, Dale W. Henderson, and especially Dan
Westbrook for their patience and guidance throughout the course of research
embodied in this paper. Helpful suggestions are also appreciated from Frank
Diebold, Neil Ericsson, David Howard, Ralph Tryon and the participants of a
seminar at the Federal Reserve Board. This work was completed while I was an
intern in the International Finance Division of the Federal Reserve Board.
This paper represents the views of the author and should not be interpreted
as reflecting the view of the Board of Governors of the Federal Reserve
System. Unfortunately, any remaining errors are my responsibility.



Finally in Section VI the Information Matrix Test of White (1982) is used
to ascertain the correct form of the variance-covariance matrix and test

for misspecification. This is followed by some concluding remarks.

I. THE SEM-GARCH(p,q) MODEL

The Autoregressive Conditional Heteroskedastic model (ARCH) developed
by Engle (1982) and its generalization, the GARCH model, developed by
Bollerslev >(1986) specifies the conditional variance of the current
innovation as a function of the available information set; specifically,
the conditional variance is a function of the squared realizations of past
innovations and of wvariances of past innovations. In the GARCH(p,q)

model, the conditional "variance, denoted hi, has the following

specification
q P
(1.1) h2 = w + I a.e2 .+ 3 6.h2 .
t o it-1 . it—i
i=1 — i=1

Kraft and Engle (1982) extend the ARCH model into a multivariate time
series framework. Extensions with respect to multivariate GARCH models
are given by Bollerslev, Engle, and Wooldridge (1985). The SEM-GARCH
model, to be specified below, generalizes the standard SEM by allowing the
innovations of the structural equations to exhibit GARCH processes. This
type of specification has many potential applications. For e%ample, in
models of foreign exchange rate determination it can be used to model the
joint determination of the foreign exéhange rate with domestic and foreign

interest rates.



The standard SEM consists of M linear equations:

(1.2) YT + XB = e, | t=1,...,T,

where I' is a M x M matrix of coefficients of current endogenous variables,
B is a K x M matrix of coefficients of predetermined variables, € is a
row vector consisting of M innovations at time t, and Yt and Xt are row
vectors consisting of observations on M endogenous variabies and K
predetermined variables, respectively, at time t. It is assumed that the

vector of innovations, ¢ is given by

tl

(1.3) €.~ N(0,Z) ,

where Z is nonsingular. The likelihood function for the sample Y Y

100 Yp
conditicnal on X is given by

(1.4) LY, .Y 0 = o Y2 T2

T

exp[— 1 T (YT +X.8= 1(Y r + X ﬂ)']

2 t t t t
i=1

Leaving aside the variance-covariance matrix %, which has M(M+1)/2

distinct elements, the likelihood function defined by (1.4) has M2 + MK

parameters. Clearly, without a priori restrictions on I', 8, or Z, none of

the parameters of the structural model are identified.



For now I restrict my attention to a model whose predeternined
variables are exogenous; dynamic linear SEM remain a topic for future
research. Following Kraft and Engle’'s multivariate ARCH specification,

the SEM-GARCH(p,q) model is given by

(1.5)' YT + XB = ¢,
(1.6) (e lT.y) ~ N(OH) ,
where
Hip e Hioe oo Hiye
(1.7) H - Hzi’t H H

22, °° 2M, t

-Hr;u,c Hyo e "mu:

= W + [IM ® et—l]cl[IM ® et—l] 4+ .- 4+ [IM ® et—q]cq[IM ® e:‘q]

’ ’

+ [IM ® hc—1]°1 [IM ® ht—l] + e+ [IM ® ht—p]Dp[IM ® ht_]?] ,

where € g and ht—i are M-element row vectors consisting of ith lagged
innovations and ith lagged conditional standard deviations. Yt and Xt are
row vectors consisting of M endogenous variables and K exogsnous
variables, respectively. Hij,t (i,j=1,...,M) is a scalar and represents
the conditional variance of the ith equation when i=j and the conditional

covariance between the ith and jth equations when ixj. The primary



restriction imposed on Ht is that it must be bounded and
positive-definite. C and D are M2 X M2 symmetric matrices with M x M
symmetric blocks of Cij and Dij’ respect:‘l\.rely. W, a M x M scalar matrix,
nests the hypothesis of homoskedastic € within the SEM-GARCH
specification and allows the conditional variance-covariance matrix to
exist when all C and D are zero.

While I explicitly assume that the conditional distribution of the
innovations is normal, in many circumstances this may not be the. case. If
the conditional probability model is non-normal, then the estimators
proposec. here are quasi-maximum 1likelihood estimators (QMLE). White
(1982) rotes that the asymptotic variance-covariance matrix of the QMLE no
longer equals the inverse of Fisher's Information matrix, but can be
consistently ‘estimated by a m;>re _compvlex form. For expository purposes I
will continue to assume that the conditional probability model is
correctly specified and explore the consequences of it being incorrectly
specified when the asymptotic properties of the estimates are derived.

The following assumptions will be made throughout:

X'X

(i) - plim o Q , where Q is a finite and nonsingular matrix,
- 'e-
(iD) plim | =0,




where = is a bounded and positive-definite unconditional
variance-covariance matrix.

A alternative parameterization of the SEM-GARCH(p,q) model
facilitates estimation and highlights the alternative variance-covarlance
specifications available. Let h: be the M(M+1l)/2 column vector whose
components are the unique elements in Ht’ taken by vectorizing the lower

triangle of Ht' For expository purposes 1 will focus on the

SEM-GARCH(1,1) model in a two equation system (M=2). Here the conditional

variance-covariance matrix is defined to be

Hy e Hioe
(1.8) H = :

Hope Haoe

’

L}

+ [IM ® ht_l]DlLIM ® ht_l] ,

where C1 and D1 are 4 x 4 parameter matrices given by

An excellent discussion of Central Limit Theory for the non-i.i.d. case
is provided in White (1984) Ch.5.:
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Note that the symmetry of C and D require that 021 - C12, 023 - 014’ 041 -

C3p» CO43 = C340 Dyp = Dypr Doy = Dyyr Dyy = D3y and Dyy = Dy, The

alternative parameterization consists of vectorizing the lower triangle of

*
Ht’ denoted ht’

Hi,e
*
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which in matrix notation can be written as

1.12)  h + A + Bh
(1.12) e T e-1 -1

where Neq = vec(et—let—l) and €1 ™ (el,t—l’ 62,t—1)' This setup will
be referred to as the "unrestricted" SEM-GARCH(1,1) model since no
restrictions are imposed on matrices A and B except those required to
ensure the positive definiteness of Ht. Expansion of K (1.11) highlights

why this specification is referred to as "unrestricted”,

2
(L.13)  Hyp oo o= Wy * Ape) g F Apple 16, e0)
+ A 52 + B..H + B._.H
132, -1 11911 11 12121 e11
* Bigtyg e o
(1.14) H - w.. + A + A
: 21t 21 2161, t-1 22¢€2 11, ¢-1).
+Ae2 + B,..H + B..H
23€2 t-1 21911, 1 29M21 1
+

B3ty ¢



2
(1.15)  Hyp ¢ = Wyy *+ Agjey g ¥ Agpley g€ )
+ AL.e2 + B..H.. + B..H
332, -1 31711, t-1 32721, t-1
+ BagHoyy 1 -

As shown in Table 1, the conditional variance-covariance matrix of a
two equation SEM-GARCH(1l,1) model has 21 free parameters. Wﬁile there
should bte no problem estimating the parameters of this small system, the
number of parameters rapidly increases as the system gets larger. Table 1
shows that a five equation SEM-GARCH(1,1) model has 465 parameters. Many
time series data sets do not have enough observations for estimation;
clearly a mofe parsimonious séecification is required.

One such specification models the conditional variance of each
equatiori as a function of its own lagged squared innovations and lagged
conditicnal variancés. Similarly, the conditional covariancés can be
modelled as functions of the 1lagged cross-innovations and 1lagged
conditional covariances. Imposing this structure on the SEM-GARCH(1,1)

model yields: (1.8) with C1 and D1 given by

11 14
o o0 :¢, 0

(1.16) ¢ = DUUUUREE SOt - SO
0 Gyt 0O 0

(G O 10 ¢




Table 1

THE SEM-GARCH MODE

The Conditional Variance-Covariance Matrix

Number Of Parameters To Be Estimated

GARCH Number Of

Model Equations Unrestricted? Diagonal**

(1,1) 2 21 9
3 78 18
4 210 30
5 465 45

(2,2) 2 - 39 .15
3 150 30
4 410 50
5. 915 75

(3,3) 2 | 57 21
3 - 222 42
4 610 70
5 , 1365 105

* Unrestricted Var-Cov: § = [M(M+l)/2]2(p+q) + [M(M+1)/2]

M
** Diagonal Var-Cov: # = (l+p+q) £Z i where M is the
i=1
number of equations in the system.
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Dy O 0 Dy
0 0 °bD 0
111 = [ 23 .
0 Dy, : 0 o0
| Dy O ;0 D, |

where symmetry implies C23 - C14’ 041 - 032, D23 - D14, and D41
*
Under the more parsimonious parameterization, ht becomes
H1,e
1.18) k. H
(1.18) t 21,t
| Hao ¢
[ A, 0 0 [ 2
“11 11 ‘1,t-1
S fvaf Y] 9 A2 O] 201,00
2
| ¥22 0 0 A5 9
Bp 0 0 {fHy e
L0 By 0 ] Hy e
0 0 Byy || Hyp e
Expanding (1.18) yields
(1.19)  H,, . = w,. + A,_e> . + B, H
‘ 11,¢t 11 11°1,¢t1 11711,¢-1

32°
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(1.20)  Hyy o = wyy + Byley e a,e-1) * Baotlyy 1
(1.21) H - w.. + A, € + B..H
: 22t 22 332, t-1 33H99 -1 -

Specification (1.18) is referred to as the "diagonal" SEM-GARCH(1,1)
model. Table 1 summarizes the parametric requirements of the full and
diagonal SEM-GARCH(1,1) model. For the SEM-GARCH(1,1) model in a two
equation system the number of parameters is reduced from 21 to 9. For a
five equation system the number of parameters is reduced from 465 to only

45.

As stated earlier, Ht is required to be bounded and positive

definite. For the SEH-GARGH(I,I) model this requires that

(1.22) Hll,t >0, : H >0,

and

.. >0 .

(1.23)  Hyy (Hop o —Hy o

Clearly, a sufficient condition for Ht to be positive definite is
having every term in w, A, and B be positive definite. A less stringent
sufficient condition is established by setting A=B=0 which from (1.22) and

(1.23) implies
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, » )
(1.24) vy >0, v, >0 and ©i1%p ~ vy >0 .
Similarly, setting w=B=0 yields
2
(1.25) A11 >0, A22.>~O and A11A22 - A21 >0
Alternatively, setting w=A=0 yields
2
(1.26) Bl1 >0, 322 >0 and B11B22 - B21 >0 .

For higher order SEM-GARCH models the parameter constraints to ensure
the positive definiteness of Ht are extremely complicated. In those
cases, one might impose penalty functions to ensure that Ht is positive

definite.

II. THE LIM-GARCH ESTIMATOR

Since the reduced form innovations involve linear combinations of all
the structural 1nnova£ions, my focus is on structural form estimation to
facilitate the conditional heteroskedasticity specification. I develop
two estimation strategies for the SEM-GARCH(p,q) model. The first is a
limited information approach that concentrates upon a single equation of
the simultaneous gquations system while disregarding the parametric
restrictions that bind the system as a whole. The second is a full system

estimation that makes efficient use of all available information. The
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limited information approach is useful when the full model is too complex
to be estimated by a full information technique or when one suspects
specification errors in equations other than the equation of primary
. 2
lnterest.

As described in Section I, the structural model consists of M

equations with a single equation, say the first, given by

(2.1) YL, + XB, = ¢

.1 t=1,...,T

1t

where P-l' ﬁ_l, and ¢ are the first columns of I, B, and e,

1t

respectively. The variables are afranged so that the usual identifying

restrictions may be shown by the following partitions:

and

The number of included and excluded endogenous variables in the first

2The LIM-GARCH estimator can be viewed as a particular case of FIM-GARCH
where the other M-1 equations are just identified and have non-ARCH
innovations. '
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equation are denoted by m, and m: (=M - ml), respectively. The numbers
of included and excluded exogenous variables are kl and k:.(- K - kl)'
Hence, a and bo are column vectors with ﬁl and kl elements, respectively.
The matrices of endogeneous and exogenous variables are partitioned in
(2.3) to correspond to the pa:titioning of the coefficient wvectors in

(2.2). The usual order and rank conditions for identification of the

first equation are given by

*
(Order Condition): k1 = m - 1
(Rank Condition): Rank(¢1A1) -M-1

where ¢1 is a R X kM+K) seleétion m#trix composed of zeros and ones, and
Al = (Pfl, ﬁfl) - (a; E 0’ E b; E 0')' is a (M+K)—element column vector
composed of all the parameters of the system.

The limited information approach to estimation of the SEM-GARCH(p,q)
model is referred to as the LIM-GARCH estimator. Following the standard
derivation of the LIﬁL estimator, [c.f. Koopmans, Rubin, and Leipnik
(1950), Dhrymes (1970):328-357 and Schmidt (1976):184-195], I begin with
the conditional log-likelihood function of the LIM-GARCH estimator for the

structural equation defined in (2.1):

(2.4) L(a_,b v ,a,6|T ;) = ¢
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1

2 1 ,
(2.5) It = C1 21og(h1t) + 21°g(aowll,tao)
I + X b )(Y + X, b Yh_2
7| (F1edo + X1ePo) (Fpe2o + X1¢Pe/ M1t
where
(2.6) Wii.e < e Pe¥ie)
(2.7) P = (1-X_(X'X )_1x')
) t ; tVtt t ’
oy 1
(2.8) C, = - —5—[ 1In(2x) + 1 ] + 5[ 1- ln|Wt| ] ,
(2.9) W o= (Y[RY),
(2.10) ey |1 ) ~ N, n2)
: 1t -1 » Ml o
2 g 2 P 2
(2.11) h1t = w, o+ -E aiel,t—i + X sihl,t—i ,
i=1 i=1
(2.12) e1p = Yi.8, + X b,

Note that It—l denotes information available at time t—1, including Yt and
Xt. The innovations are assumed to be conditionally normal distributed
with the conditional variance, hit’ following the GARCH(p,q) specification

of Bollerslev (1986). Pt is a symmetric and idempotent projection matrix,
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Wt is the second moment matrix of residuals of the least squares estimate
of the reduced form of the entire system and wll,t is the sub-matrix of Wt
pertaining to the included endogenous variables,‘Ylt.

It should be.noted that the standard LIML and 2SLS estimators are
consistent due to the conditions (i) — (iii) provided in Section I. The
.primary benefit of the LIM-GARCH estimator, as with the ARCH and GARCH
models, is in terms of efficiency.

Since the conditional 1og-11keliﬁood function L depends on the

parameters a_, bo, v, a and § in a nonlinear fashion, maximization of
L(ao,bo,ﬁo,a,6|1t_1) requires an iterative technique. Maximum Likelihood
(ML) estimates of the parameters a_, bo, v, a and § are derived from the
firsf order conditions of (2,4). These derivatives, given in the
Appendix, ha?e a complex recu;sive structure making it extremeiy difficult
to derive compact analytic expressions. While analytic expressions are in
general the desired path to pursue, they are very inflexible to changes in

specification and computationally extremely burdensome. Therefore, I rely

on numerical derivatives in the actual estimation procedure.

III. ASYMPTOTIC PROPERTIES OF THE LIM-GARCH ESTIMATOR

This section explores the behavior of the LIM-GARCH estimator in
large samples.3 In the previous sections conditional normality was
explicity assumed. But now, following White (1982) and Weiss (1986), this

assumption is relaxed. As with most QMLE, the likelihood function is

. ,

“This section is based on Weiss (1986) who derives the asymptotic
properties of an extended ARCH model in the context of a dynamic
linear regression model with moving average errors.,
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derived as though the innovations are, in fact, conditionally normal. 1In
Theorem I it is shown that in the limit the conditional log-likelihood
function is maximized at the true parameters even though the assumption of
normality may not be valid. Theorems II and III verify the corsistency
and asymptotic normality properties of the LIM-GARCH estimates,
respectively.

As de;cribed in Section II, the LIM-GARCH specification involves
maximizing the conditional log-likelihood function given by equation
(2.4). Throughout this section let # to be an s-element column vector

(s = m1+k1+p+q+1) containing all the parameters of the LIM-GARCH

specification, that is,

(3.1) 8" = @@, v) = (a, b, v, a’, §)

where 6 is partitioned such that m is the parameter vector corresponding
to the structural equation under investigation, and v is the parameter
vector of the conditional variance specification, given by equation
(2.11). Furthermore, I assume # € E, where E is a compact sutispace of
Euclidean space, and let 80 represent the true parameter vector.

First, a set of lemmas is required to provide the foundation for the
ensuing theorems. Lemmas I and II require that certain matrices of

partial derivatives be well defined and positive definite.
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LEMMA T:
For all @ € E, there exists a constant ltl < o , not depending on

8 such that

de de
(3.2) z[—l'i i] <M
om Im’

de de
(3.3) pet E|—t 1t 5 o .
im  om’

Proof: See Appendix.

An equivalent requirement for the conditional wvariance hit is given

by Lemma II.

LEMMA I1:

Assume that the fourth moment of €1t exists and is bounded.

Then for all 0 € E, there exists a constant H2 < o , not depending

on. 8, such that

- de de
@4  E|[ELEH < ow,
av av'
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de de

(3.5) pet E|—LE 1| 5 o .
av  ov'

Proof: See Appendix.

Lemmas I and II imply that the negative expected value of the matrix

of second -derivatives of the conditional log-likelihood function is

positive definite:

LEMMA III:
Under the same conditions as Lemma II, there exists a constant

H3 < @ not depending on 6 such that

‘ T .2
(3.6) A = —g|F9L | < M,
3098°

and
3.7) Det A > 0 .
Proof: See Appendix.

These results provide the basis for the following theorems.
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THEOREM 1:

For the LIM-GARCH specification given by equations (2.4) to

(2.9) and under the same conditions as Lemha I1

(3.8) L = 1im L(6) ; (exists a.s. for all § € &)

T-

and the lim L(0) is uniquely maximized at f,-
Proof: See Appendix.

Thus, in the 1limit the conditional log-likelihdbd function is
maximized at the true parameters even though the assumption of normality

may not be valid.

THEOREM I1: (Consistency)
For the LIM-GARCH specification given by equations (2.4) to

(2.9), the maximum likelihood estimate @ is consistent for 00

provided 0, is interior to E.
Proof: See Appendix.

Note that the condition that 00 is interior te E ensures that, for T
large enough, the first derivatives of L(§) are "well-behaved" at 00.

To consider the asymptotic distribution of the LIM-GARCH estimates,
first, define Ao and Bo to be the information matrix in Hessian and outer

product form, respectively.
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)
(3.9) A, = —E aL |
3036
(3.100) B, = E oL L
30 36"

As will be shown, both A  and B_ appear in the variance-covariance matrix
of the asymptotic distribution of the LIM-GARCH estimates and are

therefore required to be invertible.

THEOREM III: (Asymptotic Normality)
For the LIM-GARCH specification under the same conditions as

Theorem I, with the requirement that det(Bo) > 0, then

(3.11) 3"1/2A°T1/2<3 - 8,) ~ N(O,I)

Furthermore, consistent estimates of Al and B are given by

2 .2 o . o
A T dh; a8 T de de
(3.12) A - @D 1x hzi Pie Pae 13 hIi T1e "1t
t=1 a0 a0’ -1 a0 a9’

and

= >
1
=
™

(3.13)

with all derivatives evaluated at 0 = 00
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Proof: See Appendix.

A

Thus the asymptotic variance-covariance matrix of 4 has the following

general form

(3.14) Asymptotic Var-Cov(f8) = A:]'BOA:]'

since the conditional 1log-likelihood function may mnot be correctly
specified. When the conditional distribution Of'eit is normal then Ao -

B, and the standard form for the asymptotic variance-covariance matrix is

appropriate, that is

{3.15) Asymptotic Var-Cov(4) = A;1

To determine which form of the wvariance-covariance matrix is

appropriate I rely on White's (1982) information matrix test which is

derived in Section VI.

IV. [THE FIM-GARCH ESTIMATOR

An estimator for the complete SEM-GARCH(p,q) model requires»a more
complex specification than the LIM-GARCH estimator. The full system
estimator will be referred to as the Full Information Model with
Generalized Autoregressive Conditional Heteroskedastic error processes, or

the FIM-GARCH estimator. The derivation of the FIM-GARCH estimator will
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focus on the two equation diagonal SEM-GARCH(1,1) model, defiined in
Section I, since this is the most tractable model and can easily be
generalized.

The alternative parameterization of the diagonal SEM-GARCH(1,1)
model, given by (1.18), &efines a vector h: consisting of all the unique
elements of the conditional variance-covariance matrix. In matrix

notation, this can be written as

4.1 h h'
(4.1) c v + Aqt_l + B —1 °
where
2
]
‘1,t-1
(4.2) Te1 ~ €2,t-1%1,t-1 | °
62 |
2,t-1
Hij e
4.3 h .
(4.3) t-1 21,t-1
| H92, 61

FIM-GARCH estimation of the diagonal SEM-GARCH(l,1) model requires

maximizing the conditional log-likelihood function
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T
(4.4) L -5
t=1
where
(4.5) v |1, ) = -Yogen) + 1og|IT|| - Lioglm |
: t el e 2 °8 & 2-%81%

- %Tr[(YtI‘ + X B)" (YT + xtﬂ)H?]

where lHtI denotes the determinate of H_, and |IT]| is the absolute value
of the determinate of I'. For estimation purposes, Ht is constructed from
its unique elements, defined by h: in equation (1.18).

Since the conditional log-likelihood function L depends on the
parameters I', 8, w, A, and B. in a highly nonlinear fashion, maximization
of L requires iterative techniques. The FIM-GARCH estimator is derived
from the first order conditions of (4.4).

As with the LIM-GARCH estimator, the derivatives of Ht with respect
to T and B are a function of past derivatives of € and Ht' As a result,
the analytic derivatives of the FIM-GARCH estimator have a cémplex
recursive structure which are difficult to calculate. Therefore, I will
rely on numerical derivatives for actual estimation.

The difficulties involved in deriving the analytical derivatives can
be highlighted by examining the partial derivative of the conditional
log-likelihood function .with respect ‘to the unrestricted structural

parameters, F”. The superscript p denotes a selection operator, as

defined by Hendry (1976), to choose only the unrestricted elements of a
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matrix. This is necessary since only the derivatives with respect to the

unknown elements are equated to zero.

4.6) 3L _ gdlog||r _ §a1oglﬂl alu|||sH
ar# a(rt) a|H| 8H ||ar*
Hgiilil - e'egg—
_ 1| er# ar¥ 0
2 - -
H'H

This can be simplified to yield

w.7y 8L Ly Ll [SH |y (4B HRE)| 'Y _
. ar" . 2 ar"‘ H H

But the partial derivative of the conditional variance-covariance matrix,
H, with respect to T is also a function of derivatives of lagged residual
variances and covariances as well as derivatives of lagged conditional
variances and covariances. Similar recursive structures arise with
respect to the other parameters of the system.

In estimation, as with the LIM-GARCH estimator, numerical derivatives
are used. As explained in Section III, when the model 1is correctly
specified and the conditional distribution Of‘elt is correctly assumed to
be normal, then the information matrix can be equivalently expressed in
either Hessian or outer product form. In this case, the Berndt, Hall,

Hall, Hausman (BHHH) (1974) algorithm, based on the outer product fcrm of
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the information matrix, can be wused to maximize the conditional
log-likelihood functions for the LIM-GARCH and FIM-GARCH estimators. The
BHHH method is an iterative method for calculating the optimal parameters,

§. Let § denote the parameter estimates after the ith iteration. 01+1

is then calculated from,

. T 84’ 94.1-1 T 84
(4.8) pitl . (,vi+)\i 2 ——5| = —
t=1 a0t 36t| -1 a0

where Ai: is a variable step length chosen to maximize the 1likelihood
function in the given direction.

An alternative algorithm is the Newton-Raphson method which is based
on the Hessian form of the information matrix. vAs mentioned earlier, both
methods are equivalent when the conditional log-likelihood function is
éorrectly specified. The asymptotic variance-covariance matrix is given
by (3.15) where A = B . Alternatively, if the conditional distribution
is incorrectly specified to be normal, then under certain regularity

conditions the asymptotic variance-covariance matrix has the form given in

(3.14).

V. ASYMPTOTIC PROPERTIES OF THE FIM-GARCH ESTIMATOR

The derivation of the asymptotic properties of the FIM-GARCH
estimator closely follows that of the LIM-GARCH estimator. As with the
LIM-GARCH estimator, if the conditional distribution is non-normal then
the FIM-GARCH estimator is a QMLE. For the FIM-GARCH estimator of the

diagonal SEM-GARCH(p,q) model let § now be a S—element column vector
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M
(5.1) ' = (m', v' with S =M + K + (1+p+q)Z 1 .
i=1

where #, as in Section III, is partitioned such that m is the parameter
vector corresponding to the unrestricted parameters of all the structural

equations of the system, that is

(5.2) m = PmCGﬁﬂﬂ” )

where vec denotes that the matrices are vectorized by column stacking
operations and u denotes a selection operator that chooses only the a
priori unrestricted structural parameters. Similarly, v is the parameter

vector of the conditional variance specification, given by equation (4.5),
(5.3) v = [vec.(w,A,B)]”.

As before, 1 assume § € E,‘where E 1s a compact subspace of Euclidean
space, and let 00 represent the true parameter vector. Theorems IV and V
are the FIM-GARCH equivelent to Theorems II and III which verify the

consistency and asymptotic normality properties of the estimator.

THEOREM IV: (Consistency)
For the FIM-GARCH specification given by equations (4.1) to
A

(4.5), the maximum likelihood estimate 8 is consistent for 00

provided 8 is interior to E..
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Prooi: See Appendix.

THEOREM V: (Asymptotic Normality)

Assuming that det(B°)>0, the FIM-GARCH specification is distributed

asymptotically normal,
(5.4) B:1/2A°T1/2(0 - 0_) ~ N(0,I)

where corisistent estimates of Al and B, are given by

A

T dH_ oH T de_ de

(5.%) A = ('z'r)‘1 p> (u‘l)'(n'"l)—E —tirlz (H—l)'(n—l)—t- -~
t=1- 30 ae’ t=1 30 a0’
and
N T 32, a2
(5.6) B = Tly —= %

t-=1 390 a0’

with all derivatives evaluated at 0 = 00

Proof: See Appendix.

A

Thus the asymptotic variance-covariance matrix of # has the following

general form

1 1

(5.7) Asymptotic Var-Cov(§) = Ao Bvo ,
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since the conditional log-likelihood function may not be correctly
specified. When the conditional distribution of € is truly normal then
A = B, and the standard form for the asymptotic variance-covariance

matrix is appropriate, that is

(5.8) Asymptotic Var-Cov(§) = A:l

As with the LIM-GARCH estimator, White’s Information Matrix Test can be
used to determine the correct form for the asymptotic variance-covariance

matrix.

VI. THE INFORMATION MATRIX TEST

A well known test for misspecification associated with maximum
likelihood estimation is the information matrix test of White (1982). The
test is based on his information matrix equivalence theorem. This theorem
essentially says that when the model is correctly specified and the

conditional distribution of e; is correctly assumed to be normal, then

t

the information matrix can be expressed either in Hessian form, A(Oo), or

in outer product form, B(ﬂo). White shows that under these conditioms
(6.1) A(Oo) - B(Oo) = 0 .

Thus a test for the null hypothesis of conditional normality and
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correct model specification is based on the difference between consistent

A A
estimates of Ao and Bo' denoted AT and BT, respectively. For the

LIM-GARCH estimator # 1is a s-element parametér vector, following White

(1982) and Weiss (1986), I define q [= s(s+l)/2] vectors dt(o) such that

dt(0) has kth element

a2, a1 azzt k=1,...,q
(6.2) d () = + 1,j=1,...,s
30, 36, 80,99, 1<

The test is based on what White refers to as the "indicators"

_..1T
(6.3) D.(4) = T =d.(0),
T T ot

which ar: the elements of AT - BT. Next, define V(8) as
(6.4) V() = E[dt(o) dt(a)']

V(8) turns out to be the asymptotic variance-covariance matrix of
Tl/zDT(;). ' Two additional assumptions are required to meet the
precgﬁditions for the test to be valid. First, V(§) must be nonsingular.
Secondly, for cases when e;t is not normally distributed it is necessary

to assumne that
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_— It—l] < o for all ¢ € E.

Based on these conditions, White proves that

(6.6) ™/%p_(6) * N[0,V(8)]

and
~. a.s. A

(6.7) Vp(8) — V@, ,
where VT(G) is the estimate of V(oo). Then it follows that the
information test statistic, TT’ is given by

. . A A _1 A A 2
(6.8) TT - TDT(G)[VT(O)] DT(B) ~ xq .

To carry out the Information Matrix Test, one computes TT and compares it
to the critical value of fhe xz distribution for a given size of test. 1If
TT does not exceed this value, then one can not reject the null hypcthesis
that the model 1is correctly specified and A:l may be wused as the
variance-covariance matrix of the LIM-GARCH estimates. This applies
equally well to the FIM-GARCH estimafor
VII. ‘CONCLU ION:

In this paper I have extended the GARCH(p,q) model of Bollerslev

(1986) into a simultaneous equations framework and derived two estimation



32

strategies: LIM-GARCH and FIM-GARCH. Furthermore, it has been shown that
these two estimation strategies have the desireable asymptotic properties,
consistency and asymptotic normality, of Maximum Likelihood estimators.
Alternative specifications of conditional variances and covariances that
are heteroskedastic remain to be explored. My approach has exclusively
focused on the ARCH specification originally developed by Engle (1982) and
generalized by Bollerslev (1986). Future research will focus on extending
the SIIM-GARCH(p,q) model to a dynamic framework by including lagged
endogenous variables. 1In Harmon (1988) I extend the SEM-GARCH model by
incorporating the conditional variances and covariances as variables in
the structural equations themselves. This 1is referred to as the
SEM-GARCH-M model. It is a logical extension of the ARCH(q)—inMean model
(c.£f., Engle', Lilien, and Rob‘ins~(19t.37)) and the GARCH(p,q)—in—Hean model

(c.f., Bollerslev, Engle, and Wooldridge (1985)).
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APPENDIX

Note: All expectations are conditional on I, _, unless otherwise stated.

First. Order Conditions For The LIM-GARCH Estimator:
Differentiating the conditional log-likelihoodr function, given by

equation (2.4), with respect to a yields

2
T a'w dh
an L | Lz -{m-t ] - ;[ 1t]
: 8a° A t=1 a;wll,tao | 2hlt 8ao
a =3
o o
3(e! e..) ah2
h2 e 1e” _ ., , 1t
1 1t Jda 1t 1t|da
[+ [+]
-3 = 0,

When simplified this can bhe written as

T a'w ey
(A.2) aL_ - 3 _[°11.t }_ 1t21t
da, R t=1 a¥y) .a, 22
a =a
[+ o
2 ’
1 | |1ec1e
= 7~ 1 - 0,
2h1t aao hlt

where



A2

2 2 2
dh q Jdey p dhy _ .
(A.3) 1t - a 1,t—-1i + 3 61 1,t—1i
da i=1 da i=1 aao
. L ah% t—i
- Z a,e! Y + = 2
=l i71,t-171,t-1 =1 i 8a°

Similarly, differentiating the conditional log-likelihood function

with respect to bo yields

2
T e! X dh €! ¢
(A.4) aL - z|- 1t21t + ; [ lt][ 1; 1t _ lh - 0
b A t=1 2h1t 2h1t abo hlt j
b =b
o [+
where
2 2 2
dh q Jde; p d&hy
(A.5) 1t _ > ai——lis—l + 3 51__1LE_£
db i=1 © b - i=1 © 8b
[+ (] [+]
) a P ahi t—1
- Z a.,€ X . + T 6 .
ju1 1 1,t-171, -1 =1 i ab

Now, differentiating with respect to the parameters v, hj’ and 6j
that comprise the conditional variance, hit’ yields
T 6h2 €l €
a6y & - z|- ;[ 1‘:}[1‘2: 1"—1] -0
Bwo A t=1 2h1t w hlt
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but noizice that

2 2
dhZ . p dh
(A.7) Lt h+ 3 siﬁ'—i
dw i=1 dw

o

It is clear from (A.7) that a complex recursive structure exists, which

requires expansions in order to derive an analytic expression for (A.6).

Differentiating with respect to aj yields
aL T 6h2 € €
(A.8) — = = ;[ lt][lglt—l] - 0,
aaj t=1 2hlt aaj h1t
where
2 2
dh p dhy _ .
(A.9) e ei oy *Z si#f—l
da A N | day

Then, differentiating with respect to 6j yields the following first order

conditiion

| ) |
dL T dh €! €
(A.10) — = % ;[ 1tH1§1t—1] -0,
1t

88j t=1|2h 86j h1t

where in this case
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2 2
dh q Jdey .
@11 2 - |2+ sa bt
3, A 1 36

The expressions for the first order conditions derived in equations
(A.6) through (A.11) clearly show their complex recursive nature. The

remaining first order conditions require differentiating L with respect to

the conditional variance, hit.

aL T €! €
(a.12) —5 = = ——%—[—1—;—1—9—1] - 0.
)¢ e=112hy L by,

It is not possible to derive general compact analytic expressions due

to the recursive structure of these first order conditions .

Proof of LEMMA I1:

Expressions for aelt/am, where m’' = (a;, b;), are given by

de
1t
(A.13) 8a° - Ylt ,
de
1t
(A.14) 8b° - Xlt .

Then for bounded constant vectors A < «, one has
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. de
(A.15)  A'—2E _ iz

dnm

where Z!

e = [Ylt’ xlt]' Now, one can write

de de

a.16)  E|xv—Lt €51 - E|larz zr

1t%1e
om dm’

where thZit is the cross product matrix and the right hand side is thus a

scalar. Hence there exists a constant M, < «» such that

1
de Jde
(a.17)  E|ar—E 1t < M, for all § € B
om om’
Next, to shoﬁ that
de de
(A.18)  det E|—t 1t 5 o
, | dm  9m’
is equivalent to showing that
de de
A.19)  E|xa—=Lt Lt > o for all A = 0.
ém om’

Following Weiss (1986), proof is by contradiction. First, assume there

exists A # 0 such that (A.19) equals zero. Then it must true that

de
7A.20) Al—— = 0 a.s. for all t.
dm
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This implies from (A.15) that A'th = 0 a.s. for all t. Now let Y1t

represent the forecast of Ylt given information available at time t-1,

that is

>

(a.21) Y, - E[Y1t|1t_1]

Then specify Ylt to be

° A
(A.22) Y1t = €, t Y1t ,
where e;t denotes the true errors. Furthermore, using a mean value
expansion one can specify €1¢ to be
o de
(A.23) €1e ~ 1 + '(m - mo)
dm

*
where the derivative 1is evaluated at m , which lies between m and m .

Equations (A.22) and (A.23) imply that e;t is a function of It—l and th,

since aelt/am' =-Z If that is the case then

1t’

o
(A.24) E[elt I

t—l'zlt]

But the LIM-GARCH specification assumes that

(A.25) E[eltllt_l] =0

and therefore it must be the case that
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. o
(A.26) E[elt

It_l,zlt] - 0.

This jimplies that e;t = 0 a.s. for all t, which contradicts the fact that

E[(e;r)2] - af > 0 (i.e., the unconditional variance is greater than

~zero). Therefore, no such A exists and

de de
(Aa.27)  Ejar—LE 1,1 5 a.s.
dm om’
as required. O
Proof of 1LEMMA 1I:

IExpressions for ahit/av, where v’ = (wo, a', §'), are given by

(A.28) — = 1

(A.29) -

(A.30) , -

For constant vectors A < =, write (A.28), (A.29), and (A.30) as
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ahit
(A.31) A v " A Wt
where
2 2
dh dh
2 2 1,1-1 - _1,tp
(A.32) Wé - [1 s el,t-l yeoay el,t-q , 361 s eees BSP

o

2
Thus, the first part of the lemma is straightforward.

Since by assumption E[(e;t)a] < o then E[Eit] < M, <o, for all § €

For the second part of Lemma II, apply the same method of proof as in

Lemma I. As before, to show that

- 2 2
dh;_ dh
1t 1t > 0
av av'

(A:33) det E[———— —_

is equivalent to showing that

ahit ahit
(A.36) E[a—=—=FE3] > o for all A » 0.

Assume there exists a A»0 such that (A.34) equals zero. Then, as in
Lemma I, this implies that A’Wt - 0 a.s. for all t. Using a similar

expression to (A.23), which is derived from the mean value theorem, yields

an expression for eit

2 o 2 o 9€1¢ d¢1p 9€q¢

(A.35) e ™ (elt) + 2€1t —(v — vo) + (v - vo)'{
av v’

(v=-v)

av
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°

This is a Quadratic function in €1 which yields two solutions,

] v
(A.36) e ™ fl(t) or fz(t)
These solutions are functions of It—l and Xlt' But e;t having two values
ocnditional on It—l and xlt is not permitted. Therefore, no such X exists

and (A.34) holds. a

Proof of LEMMA TII:
Differentiating the conditional log-likelihood function with respect

to 6 yields

2 40 2
T € de éh €
.3 & -z ———;t[ lt} + ;[ ltH ;t—l] -0
30, e=1| ni | a6, 2n2 ae, || b2,

where the derivatives with respect to 01 are evaluated at their true
values 9,- ~Second order derivatives can be shown to have the following

general form

2 .
ad € de de
(A 38) d L - 5 _ ;t{ lt] _ % [ 1t}[ lt]
80160j t=1 h 80i80j h1t 801 80j
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2 2 2.2

€1e{%€1¢| |1 1| €1 ahy,
A Y v

hy L o0,]1 o6, 2n; | nf, 30,90

2 2 2 2

€¢|M1e| [2¢1¢ 1 {€1¢e]|%P1e]|%P1e
3 S WY

ny L a0,]1 a6, hy (7 )L a0 ]L a0,

2 2
. 1 [ahlt}[ahlt}
4
2nt | a0,]1 a6,

Expressions for aelt/ami and ahit/avi are given by (A.15) and (A.31),

respectively. For ahit/amj_one has

2 2
dh q de _ P oh; _
(A.39) L - 2%ae —btl o, 3, L.ed
amj j=1 ’ 3mj i=1 dm

where mj is the jth elemént of m. From Lemma II and (A.39) it is easy to
see that 8h§t/601 have bounded second moments.

R . 2 2.2 ] 2

Since every term in ahlt/aoi and 34 hlt/aoiaoj also appears in h1t

itself, the expressions

2 2.2
dh d"h
(840 L[__ls} and _;_[__1}
: h

1t aoiaoj
are uniformily bounded froﬁ above. Hence, evaluating equation (A.29) at
the true parameter values 00 implies that the first, third, fourth, and

fifth terms are zero, with the sixth term being
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It—l] < o

NN

(A.41) E
h

2 9 2 2

“1e||P1e| [P 1 |9Py¢e] |90y,
Teal = Bl

RENIETAIET) | hy L a0, ]| a0,

since E(e%tllt_l) - hit. Similarly, the second term of (A.38), evaluated

=

at 00, is bounded

de de
h1t 801 80j

Therefore, the matrix A is defined to be

It—l] < o

1 {%€1e)|%€1¢
I, +E|l5
h1t ae a8

where the derivatives are evaluated at 00.

To show the Det A > 0, I follow the method utilized in Lemmas I and

II. For any A » 0, one can transform A such that

It—l]
It—l]

: 2 2
ah%_][sh
(A.44)  A'AA = %E[x' 1 [ ltH lt]x
h
t

’
1 ad as

de de
hlt aé ae’
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Both terms on the right hand side are nonnegative. What remains to be
shown is that these are both greater than zero. First, partition X’

= (A',Aé) to conform with 4’ = (m',v’'). Now, since aelt/av = 0 the second
term in (A.44) is equal to

. de de de de
h1t a0 as’ h1t a9 ae

From Lemma I this is clearly positive unless X2 = 0. If Az = 0, then

A, # 0 and the first term of (A.44) becomes

1
" 2
t-1 i M1
1h1t a0 || ae

which is positive because of Lemma II. O

272
3h* 1[ah
(A.46)  E|x’ 1 1ep| 1ty
nt | a8 || a6’

1t

It—l]

Proof of THEOREM 1:

From the ergodic theorem, for any 4 € E,

(A.47) L(#) = 1lim £t

-0

_ _ 1 21 _ 1 '
= E(Cl) 2E[log hlt] 2E[1og(aowll,tao)]

1 2 .2
- fE[elt/hlt] a.s.
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if the expectations exist. From Jensen'’s Inequality it follows that
(A.48) logE(X) = E[log(x)] ,

for all positive random variables X, with equality only when X is a

constant. a.s. This implies that

2 2
(A.49) 1ogE[h1t] = E[log hlt]

Since, by definition, E[ﬁit] < o then from (A.47) it must be true that

E[log(h;t)] < o, From Lemma I it was shown that E(eit) < o, for all 4 €

E. Then since

2 .2 2
(A.50)v E[elt/hlt] < E[elt] ,
then clearly
2 .2 »
(A.51) E[elt/hlt] <o,
Since Wll t.is the second moment matrix of residuals from the regression

of Ylt on xlt’ the vector of all exogenous variables, it is equal to zero

when evaluated at the true parameter values.

Next, following Weiss (1986), make the following transformations,
2 2 -2, o o 2
(A.52) E[elt/hlt] - E[hlt(elt +oe elt) ]

-2, 0 .2 -2, . o 2
= E[hlt(elt) ] + E[hlt(elt T ) ]
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. - 0
Since h — €

2
1c¢€1¢e 1¢)
and E(E;tllt—l) = 0. From (A.52) it is clear that

2 depends only on information available at time t-1

(]

(A.53) E[eit/hit]- > E[(elt)z/hit]

This holds  with equality when € ~ e;.t’ for all t a.s. Taking
expectations of an expression for e:]"_t similar to (A.55) and based on Lemma

I, yields

de de
(A.54) E[eit] - E[(e;t)z] + (m— mo)'E[ 1t 1t](m -m) > E[(e;t)?']

dm dm’ °

with equality only at m = m . Thus from (A.54) one can see that €1

o
€1e for all t a.s., only when m = m,.

. : 1 2] 1 ,
(A.55) L(§) = E(Cl) - -Z-E[log hlt_ - iE[log(aowll’tao)]

1 2 .2
- 5_'108'[1':[611: h t] ,

1 2 1 ,
< E(Cl) - EE[log hlt] - EE[1°5(30W11,1;3°?]

- %1og|:E[(e;t)2 h-]-:tz:]} ,

[since E[(e;t)? hlﬂ - E[(e;t)z hl2 (hy )’ (h;t)"z]}



- E(C ) -

1
- Elog

[since log

2

Al5

1 1 ,
[log hlt] -3 [log(a wll 2 )]

52 050

2

° 1 -2 o .2
E[(‘lt) (h) )" ” §1°8[E[h1t (hye) ” '

1)

1 1
< E(Cl) - EE[log hlt] -3 [log(a° 11 2 o)]

- %E[log[(e;t)2 (h;t)—zj] - %E[log[ (hlt) ]] ,

1

-1 log[(e;t)z (h{t)‘z]

1

< E(Cl) - EE log(hlt) ] E[log

with equality only at § = f,-

L()

Note that

(A.56) log[ [ (hy ) ]] - E[log[hﬁ (h;t)zﬂ

only when (hd 2

0 =90 . a

]

1t ) lt' But based on Lemma II,

-

1
E(Gl?,f EE log(hlt) EE[log(a W11 2 °)]

(7007 (y)” ]} ,

this can only occur at
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Proof of THEOREM II:

This proof follows closely the proofs of Weiss (1986) and Basawa,
Feigin, and Heyde (1976). I begin by first applying a Taylor series
expansion to the first order derivatives for the conditional

log-likelihood function. This expansion can be written as

2. . 3. .
a.s7y & . &, 8L 5 _ o) + %3_~L_(0 -4,
aé aé ag ae!’ ‘ aé
o o o
where |¢ — 0 | > |7 - 0°| , which requires that § lie between 8, and 4.

The third term can be considered as a remainder term on the Taylor series

expansion. Equétion (A.57) can be rewritten, based on (2.4), as

oL T a2, . T 8%g n T a3£t
(A.58) = = I — + (8 - 00) z + (8 - 00) Z —
36 t=1 30, o t=1 30 26" t=1 37

Basawa, Feigin, and Heyde derive a set of sufficient conditions for

the existence of a consistent root of the log-likelihood equation

dL
L
ad

(A.59) = 0.

These sufficient conditions consists of

| T a2 .
(1) 1yt 2 4.

T t=1 34
o
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(11) There exists a nonrandom matrix M(Oo) > 0 such that for all

e >0,

T 822
Pr[— 1 5 £ > M) ] > 1-—e

T t=1 36 36!
o (4]

for all T > Tl(e).

(111) There exists a constant M < « such that
83£t
E|/—] < M for all ¢ € E .
80180j80k

Then it follows that § —E» 4 .
The method of proof is to show that these three conditions are

satisfied. I begin by focusing on the parameters of the current

endogenous variables a .

Condition (I): From equation (A.l), one has

T a'w e! Y
(a.50) & - s|- [ 0'11,t ] _ 1t21t
5 Rl I e B I 20y,
ao-ao
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When this derivative is evaluated at the true a_, the first term is zero
since wll t is the second moment matrix of residuals from the regression
’

of Y1t on Xt' Then, following Weiss (1986), it can be shown that

(A.61) E{QL—I ] -0
t-1
. da
o
since E(e, _|I, ;) = 0 and E(e2 [I ) = h2 The ergodic theorem, see
1t! "t-1 1t' " t-1 1t° ’

White (1984), then implies that

T al
a6y Lz —f& B o,
T t=1 aao

Condition (II): By the ergodic theorem, for any constant vector X 0,

1 T a'zzt azlzt
(A.63) =z 3z A — E|[x' A a.s.

T t=1 da da' da da’
o (o] o o
- —A'A A
(]

where Ao is defined to be

.
(A.64) A, - —E[al‘ ]

da da’
(] (o]

This second order derivative, after some simplification, has the following
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form,

2
2 T W a'w a Y'Yy
a6y 2L _ 3 e _ o, ellto le 1¢
! - ’
da da t=1 aowll,tao (aowll,tao) 2n]

T-1 a €l €
i-1 , 1 |+, _ o, 1lt1t
* 15:1 51 €11:—13,[11:—1[ iy {Yltelt * 2[1 2 12 ]
’ 1t 1t
T-1
i-1
z 6 Y €
oy 1 Tl 1t—1] ]
Taking negative expectations of (A.65) yields
2 T Y. .Y
(A.66) —E[——"-L—] - 3 &1 5 o,
da da; t=-1 2h1t
since E(e, |I, ) ;- E(e 1. 0 and 1~:(e2 1, ) = h2 Now
1t! " e-1 1t—i' "t-1 1t 71" 1t” ’

following Weiss (1986), let
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| 1 ot
(A.67) 0 < 6§()) < 5 ME b
- Tl(e) such that

< 6 } > 1 - ¢

for all T > Tl' Thus, condition (II) is verified by defining M(ao) to be

for a given A.Then, for all ¢ > 0, there exists T1

LT azxt azzt
1 sy A — Elx’ A

T t=1 da da’ da da’
[+ [+ [} [+]

(A.68) Pr{

1 azzt
(A.69) M(a) = -FE

da da’
[] [+}
Then
LT azzt
(A.70) Prf = T \V—m ) > A'M(ao)A > 1 — ¢
T t=1 aaoaa;

for all T > Tl.

Condition (III): The third condition to be verified requires that the
third order derivatives, which can be interpreted to be the remainder term
of the Taylor series expansion, be bounded inlabsolute value. The third
order derivative is derived by differentiating equation (A.GS) with
respect to a . It 1; clear that the only terms that cannot be dealt with
as above are those terms wh;ch contain third order derivatives of hit ard
€e Following Weiss (1986), one is able to show that an extension of the
methods applied to the first and second derivatives implies that terms

containing 33h§t/8a2 are bounded and that terms containing 83elt/8a2 have
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bounded second moments. 0O

The proof of consistency for the remaining parameters follows as

above.

Proof of THEOREM III:
Bssawa, Feigin, and Heyde (1976) again provide a set of sufficient

conditions for asymptotic normality. These verifiable conditions are

T a4
D T 1/2 = _t A N(O0,B ) for nonrandom B > 0.
o . [}
t=1 a6
o
1 T 822t
(I1) - T pX - : —A, for nonrandom A > 0.
t=1 34 a6’
o o
(I1I) Condition (III) of Theorem II.

The method of proof, as before, is to show that these three conditions are

satisfied.
Condition (I): Following Weiss (1986), assume that Bo > 0. Then
from Condition (I) of the proof of Theorem I, it follows that

a2
(A.71)  E| =&
a0

Weiss shows that if



and

A22

[ 92, 34
a.72) E|l L —t] < =
30 38’
(o]
@73 gt | g < e,
a0 0'

then a Martingale central limit theorem is applicable. Furthermore, Weiss

shows that when (A.71) is true then (A.72) and (A.73) are equivalent.

Thus, all that is required is to show that (A.72) holds.

To show that (A.72) is true I follow the method in Lemma III used to

show A < », From (A.37) one has

L, a4 € de
(a.76)y  E| —f£ Lt - g|- ;t el
2h

’
ag ae h1t ae

)
——
Q

(% o
Y ;IQ
SR
——
=2 ™
H NP N
ct ct

|

[
)

N
[y
Q

Q =y
@ (=N
ct
)
———
=5 ™
NN
(a4 (a3

|

[
—

elt[aelt]
-T2 +
hlt al 2h t

2 2
- E elt[aelt} [aelt] . elt[aelt} [ahlt}
4 4 ,

hlt a8 || a8’ hlt ae - 86

2 2 2 2 2
‘1t 1 ||| €1e

2 1] + 7 5~ 1
hlt Ahlt ab al hlt

where the derivatives are evaluated at .- Taking expectations yields
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a0 a2 de. 1[ae
.75y E| —£—t| - E 1 lefi_1ep |
YRTL nt | a0 || a0

1t

which from Lemma III is clearly bounded.

Condition (II): Since by definition

It—-l]

then Lemma III verifies condition II. (u]

622

(p.76) A = —E|—&
30 30"
(] (]

Proof pof THEOREM 1V:

This proof is nearly identical to Theorem II. Again, one must verify
the three sufficient conditions derived by Basawa, Feigin, and Heyde
(1976) and given in the proof of Theorem II. I begin by focusing on the
parameters of the endogenous variables, T.

Condition I: From equation (4.8), the first order condition is given

by

T |- dH_||ele€ €'Y
(A.77) L s (r_l)f + ity _ 1| - £t .
att -1 2|ar* H, H |

t

2 2
Clearly, since E(eltllt_l) = () and E(eltllt_l) h1t ,



(A.78) E[aL

——‘: I t—l:l = 0

ar

Then, the ergodic theorem implies that

|
™M

:
o

(A.79)

-3
ct
]
i
Q
e |

Condition (II): By the ergodic theorem, for any constant vector A= 0,

L, T azzt azzt
(A.80) sal—E | 2 — Elp—L5 2] = A

where A; is defined to be

, 2
a.81) A, = -E|—2Lo
|artar#

This second order derivative for the conditional log-likelihood Function

is given by

2 T Yie, [oH ele an_] [oH
a.82) —2L __ 3 |-yt e 2EE| - 1 €efe]f 1 el |t

2
r ’ [
B l[lA_ etet}[ a°H_ } _ Yy, ~ eth{ 1 ][aﬂt ]]
) p I-" “'
2 H jlor ar H H H ar

t

Taking negative expectations conditional on information available at time
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t-1 of (A.82) yields

2
(a.83) -g[—%L_
artar#

T a4 _|[an Y'Y
|- = a2 =5 - 2 s o
t=1 2| u Jlor¥[lor* | m

t

As in Theorem II, for a given X, let § be bounded by

azzt
AME|l——|x .
artar#

Then, for all € > 0, there exists T

(A.84) 0 < §(\) <

N

1= Tl(e) such that

LT azzt azzt
2 s a—L A —Elar—L_

(A.85)  Pr .
T t=1 artar# artar#

< 8] >1 - ¢

for all T > Tl'

Thus, condition (II) is verified by defining M(T) to be

1 32‘c
artar#
Then
1 T azﬂt ' '
(A.87) Pr| = S A'——— 2 > A'M(DA| > 1 -«
T t=1 ar¥sr#

for all T> T, .

Condition (III): See Theorem II, condition III. (m]



The proof of consistency for the remaining parameters follows as above.

Proof of THEOREM V:

As with Theorem IV, this proof 1s nearly identical to its single
equation counterpart, Theorem III. The proof requires verifying the three
sufficient conditions for asymptotic normality outlines by Basawa, Feigin,
and Heyde (1976) and given in the proof of Theorem ITII. As before, I will
focus on the parameters of the endogenous variables, T.

Condition I: Since it is assumed that B°>0, then from Condition I

from the proof of Theorem IV, it follows that

(A.90) E[aL

_pIt—]] =0

ar

As explained in Theorem III, given the (A.90) is true, all that is

required to verify Condition I is to show that

32 34
(A.91) E{——E ——E-] <

’
ar* ar¥

From (A.77) condition (A.91) can be written as

(A.92) E[ifE ifET - E (F—l)' + EEE eéet 4 - eéYt '
otk ar® | or*{| H H




s e

A27

Y'e €'Y 1{6H €'e
- E[(I‘_l)'(r—l)+ tttt__[ t][tt_l}
HH 4lar* H,
€'e '16H JH €'e
H_ 3 ar# H_
€'Y
— o Lyt t]
Ht

vhere the derivatives are evaluated at the true I'. Taking expectations
yields
a4_ a4 Y'e €'Y

ar ar¥ | HIH,

Condition II: By definition

2
a lt

It—l]

An argument identical to Lemma III verifies Condition II.

(A.94) A, = - E|l——
artar#

Condition III: Similar to Theorem II, Condition III. O
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