Board of Governors of the Federal Reserve System
International Finance Discussion Papers
Number 462

March 1994

WHEN DO LONG-RUN IDENTIFYING RESTRICTIONS GIVE
RELIABLE RESULTS?

Jon Faust and Eric M. Leeper

NOTE: International Finance Discussion Papers are preliminary materials
circulated to stimulate discussion and critical comment. References to Inter-
national Finance Discussion Papers (other than an acknowledgment that the
writer has had access to unpublished material) should be cleared with the
author or authors.



Abstract

Many recent papers have tried to identify behavioral disturbances in vector
autoregressions (VAR’s) by imposing restrictions on the long-run effects of
shocks. This paper argues that this approach will support reliable struc-
turel inferences only if the underlying economy satisfies strong restrictions.
Absent restrictions linking long-run and short-run dynamics, every decompo-
siticn of a VAR is essentially equally consistent with any long-run restriction.
Further, dynamic common factor restrictions must hold if the scheme is to
work properly in small models estimated using time-aggregated data. The
paper illustrates possible consequences of failure of these assumptions using

bivariate models to identify aggregate supply and demand disturbances.



When do long-run identifying restrictions give reliable results?
Jon Faust and Eric M. Leeper!

Vector autoregressions have become an increasingly popular empirical tool since
Sims [1980a] labelled the identifying assumptions of large structural econometric
models as “incredible.” He argued that many empirical questions could be answered
with vector autoregressions (VAR’s), which impose weaker restrictions on dynamic
interactions among time series than are typically applied in traditional structural
models. VAR’s cannot sidestep the identification issue, however, and much recent
work on VAR methodology focuses on finding credible restrictions that are minimally
sufficient to identify economically interpretable shocks.

Sims [1980b] initially proposed identifying a VAR by assuming that contempo-
raneous interactions among variables are recursive. In this approach, one chooses
an ordering for the variables and assumes that at each date, variables higher in the
o-dering are determined before any variable lower in the ordering. This approach
rules out rich simultaneity in the determination of variables and is at odds with
most plausible accounts of the macroeconomy.

Bernanke [1986], Blanchard and Watson [1986], and Sims [1986] retained the
approach of imposing restrictions only on contemporaneous interactions, but broke
away from the recursive structure. They impose only economically meaningful con-
temporaneous restrictions, allowing for more realistic simultaneity in the model.
While this approach has proved quite useful, economic theory often does not pro-
vide enough contemporaneous restrictions to identify quantities of interest.

The search for additional identifying restrictions led Blanchard and Quah [1989],
King et al. [1991], and Shapiro and Watson [1988] to base restrictions on long-run
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neutrality properties. For example, in some widely accepted models a shock to the
level of the money supply has no long-run effect on output, while a shock to output
may affect the long-tun level of money. In a VAR, neutrality properties imply zero
restrictions on the long-run effects of shocks. Because such restrictions are plausible
a priori and easy to implement, use of long-tun restrictions has grown very rapidly.
Long-run restrictions have been used to study, for example, the sources of business
cycles [Bayoumi and Eichengreen, 1992a,1992b; Moreno, 1992; Rogers and Wang,
1992], money supply and demand shocks [Lastrapes and Selgin, 1993], and the
international transmission of shocks [Hutchison and Walsh, 1992; Hutchison, 1992;
Ahmed et al., 1993].

The long-run scheme rests on the view that if certain economically plausible
long-run neutrality assumptions are imposed, then reliable inferences can be drawn
about the short-run dynamics of behavioral disturbances in the economy. This paper
argues that the explicit assumptions of the scheme will generally not be sufficient to
draw reliable structural inferences.? A small VAR model estimated under the scteme
must be viewed as an approximation to a part of a larger underlying struc:ure.
We show that the long-run scheme will reliably identify the economic quantities of
interest only under three sets of strong restrictions on the underlying structure.

First, the long-run neutrality property must be tied to a restriction on finite-
horizon dynamics. Without such a tie, structural conclusions derived under the
long-run scheme are not robust in any sample size to changes in the parsimonious
functional form used to fit the data.

A second set of restrictions must be satisfied for a VAR with a small number
of variables to capture economically interpretable features of the larger underlying
economy. The third set of restrictions is required for the identifying scheme fo be
appropriate for time-aggregated data. The identification problems that give rise to
the need for vthe‘ée restrictioné are quite farhiliér, stemmiﬁg from prob\lé;ms in.aggre-

gating across variables and across timé. The paper lays out sufficient restrictions for

2 Hendry [1993] made this point in a more general context. This paper works out the strgent
conditions under which the approach may be fruitful.



the long-run scheme to function properly given these generic aggregation problems
and provides some informal means for assessing the plausibility of these restrictions.

The paper illustrates the potential importance of these theoretical results by
comparing the results from identifying aggregate supply and demand shocks in three
bivariate models. We find that the structural conclusions from these models are
mutually inconsistent and that there is little a priori reason to expect that the
required restrictions hold in one model and not the others. Thus, we conclude that
the long-run scheme as applied in this exercise does not support reliable conclusions

about the underlying structure of the economy.

1. Identifying VAR’s using long-run restrictions

This section lays out the basic issues of identification in VAR'’s and describes the
long-run identification scheme. If X, = (X4, ... » Xnt)' is covariance stationary, then

ignoring deterministic components it will have a Wold representation,
Xt = F(L)u. (1)

The disturbance term, u;, has mean zero, is serially uncorrelated and has a fixed
covariance matrix, Elusu,] = ¥ for all t. The term F(L) is an (n x n) ma-
trix whose typical element, fi;(L), is a polynomial in the lag operator, L, where
fi(L) = 3320 fiselF, and LF X, = Xi—k. The matrix polynomial will also be writ-
ten Y 72 FyL* where F} is the (n X n) matrix with typical element fijk. In the
Wold representation Fy = I by convention.

If F(L) is invertible,® there will also be a VAR representation,
R(L)X: = uy, ; (2)

where R(L) = F(L)™', and Ry = I. Since this VAR expresses each variable at

t in terms of predetermined variables and the current disturbances, it is a reduced

3 There is a familiar case when F(L) will not be invertible: if some Xt 1s the first difference of
a stationary variable, or if X;¢ and X, are the first differences of cointegrated variables, then F(L)
will not be invertible. In both of these cases, the variables have in some sense been over-differenced
to arrive at X,. That is, some linear combination of the variables was stationary before differencing.
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form. Throughout the paper, we limit ourselves to structures with invertible moving
average representations; thus, none of our results stem from problems caused by

nonfundamental representations that are the focus of Lippi and Reichlin [1993].

1.1 The identification problem

There are many observationally equivalent representations of the process for X;.

Taking any non-singular matrix Ag, such representations can be written
X, ="F(L)AoAG uy = A(L)ey, (3)

where A(L) = F(L)Ap and ¢, = Ay'u;. Since Fy = I, the lead matrix of A(L)
will be Ag. Each Ag produces a structure consistent with the reduced form anc the
resulting disturbances, €4, are called structural shocks. Of course, each structure has

a VAR representation that can be written
B(L)X, = &,

with B(L) = A(L)71.

Identifying a VAR can be seen as a matter of choosing a unique Ag. This cloice
determines the nature of contemporaneous interactions among the variables. For
example, if Ag is lower triangular, as in the recursive scheme proposed by Sims
[1980a], the first variable affects all other variables contemporaneously, but not vice
versa. The choice of Ag can also be seen as choosing the covariance matrix of

structural shocks. Since ¢; = Aalut, we have
Elesel) = AF1mAZY.

Identification requires choosing n? elements of Ay. Almost all VAR approaches
begin with n(n 4 1)/2 restrictions on the covariance matrix. The first n restric-
tions are normalizations that choose the units for the shocks; typically the standard
deviations of the shocks are normalized to one. Another n(n — 1)/2 restrictions
come from the assumption that the structural shocks of interest are mutually un-

correlated. This assumption is consistent with the view that the structural shocks
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originate in behaviorally distinct sectors of the economy. Together, these restrictions
on Ap imply,
Ag'EAGY =

where I is the identity matrix.

1.2 The long-run identification scheme

We need n(n — 1)/2 more restrlctlons to 1dent1fy the model. Blanchard and Quah,
ng et al and Shaplro and Watson suggested that some (or posmbly all) of these
restrictions could come from long-run neutrality propertles suggested by economic
theory. These long run neutrality propertles have 1mpllcat10ns for the long run
effects of structural shocks in a VAR. For example suppose that one belleves that a
nominal shock should have no long-run effect on output. If output is the gtk variable
in a VAR and the nominal shock is the‘ gth shock, then the restriction on Ag ca,Il be

written, a;;(1) = 3220 aiix = 0, or,
[F(1)Aoli; = 0. 4 - - (4

Some authors hévé used long-run restrictions for all of the required n(n —-1)/2
restrictions [Blanchard and Quah, Ahrrled et al., Lastrapes and Selgin], while others
have combined long-run restrictions with other restrictions to complete the identi-
fication [King et al., Shapiro and Watson, Gali 1992].* If only long-run festrictions

are used, the equations can be ordered such that the long-run Veﬂ"ects matrix,
A(1) = F(1)Ay,

is lower triangular (with zeros above the main diagonal) so the structure is recursive
in the long run. ‘ ‘

The restrictions discussed so far pick out the magnitude of the elements of Ao,
but not the signs of the elements on the main diagonal. Multiplying a shock and

the corresponding polynorma.ls by minus one leaves the emerlcal 1mplxcat10ns of the

¢ Typically the models are Just identified. Shaplro and Watson s model, however, is overidentified
by their assumption that oil prices are exogenous



model unchanged. Generally, we have a priori views about the sign of the impact
or the long-run effect of shocks to certain variables, and this information can be

used to complete the identification.

1.3 Tlustration: The Blanchard-Quah model

To illustrate the use of the long-run scheme, we consider the bivariate model of Blan-
chard and Quah, which includes the growth rate of output and the unemployment
rate. Thus, X; = (Y, U;) is a vector of quarterly observations on the growth rate
of GDP and the unemployment rate.> In a two-variable system, four identifying re-
strictions are needed; three come from normalizing and orthogonalizing the shocks.
Blanchard and Quah identify real (aggregate supply) and nominal (aggregate de-
mand) shocks by applying the assumption that nominal shocks have no long-run
effect on the level of output. Taking the second shock as the nominal disturbance,
this implies a;2(1) = 0.6 Finally, the signs of the shocks are determined by assuming
that positive demand and supply shocks increase output on impact.

The economic interpretation of Blanchard and Quah’s identifying assumptions
is straightforward. The restriction that identifies the demand shock implies that the
long-run aggregate supply function is vertical. Neither disturbance has a long-run
effect on unemployment, so the structure is consistent with there being a natural
rate of unemployment. From an initial position of full employment, an aggregate
demand shock moves the economy up the original short-run supply function. Over
time, as behavior adjusts to the demand shock and the resulting increase in prices,

the short-run supply function shifts back along the new demand curve. The economy

® Following Blanchard and Quah, output growth has had means extracted for the periods 1948:2
10 1973:4 and 1974:1 to 1992:4, and unemployment has been linearly detrended. The unemployment
series is unemployment among males 20 years or older. The VAR analogous to equation (2) is
estimated with eight Jags and no constant term over the period 1950:2 to 1992:4, using 1948:2 to
1950:1 as initial conditions.

6 Blanchard and Quah’s work can be viewed simply as a decomposition of output into a per-
manent and transistory component. Of course, there are arbitrarily many ways to perform such
a decomposition, and noue is inherently more interesting than another. The problems arise only
when one attempts to place an economic interpretation on the results. This paper focuses on the
robustness of structural economic interpretations of VAR’s.



reacnes thé lbng run and édjusts fully to tile demand shock when the(vprice level rises
sufficiently that outbﬁf has returned to the level consistent with the natural rate of
unemployment.q R

The point estimatés wé obtained for the dynamic effects of supply and demand
shocks are nearly identical to those reported by'Blanchérd and Quah (Figure 1).7
Shocks that shift aggregate demand outward have a hump-shape(d’efféét on the level
of GDP that peaks after 'a few quarters and dies out in five years. The ﬁath of
unemployment is the mirror image of output. The effect of supply .shocks on output' '
cumulates to réach a peak after two years before stébilizing at a permanéntlAy :high:er
level. The unemployment rate, if anything, increases initially after a positive supbiy
shock, but the response is not strongly positive for more“th"anva few quarters.

The ifnpﬁflse 're'spoh\gé ﬁimctihon's a;ld‘:“irrﬁpliéd‘forecast errdf variaﬁce‘decomposi-
tions suggest that demand shocks are the dominarit source of output fluctuations
in the short-run, and their effects are quite persistent (Table 1). By conéfructi'on;
supply shocks dominate output in the long run. At impact, demand and supply ‘
shocks appear to be equally important sources of unemployment fluctuations, while
demand shoc“ks’domin’ate at longer horizons.

The validity of the inferences drawn about the relative importance of demand
and supply shocks for output fluctuations rests on three aspects of the identification
scheme: (1) whether the economic intuition underlying the long-run restriction acty-
ally restricts the data; (2) whether the identification correctly aggregates the many
underlying beh(avio;al disturbances into demand and supply shocks; (3) whether the
identifying assumption that the behavioral disturbances are uncorrelated is valid *
when data are aggregated over time. The approach in the next three sections is the

same: lay out a maintained model that is consistent with all assumptions of the

" The vertical axes measure the log of real GDP .and the rate of unemployment, ‘while the
horizontal axes denote quarters following the shock. The point estimates of the dynamic responses

the RATS manual, which takes random draws from the estimated asymptotic distributions of the
VAR innovations and the VAR coefficients. This procedure is standard when the model is just
identified. After 10,000 draws from the distributions, the impulse response functions are ordered
and the £** and 95t» percentile responses are extracted. ';



long-run scheme and investigate what additional restrictions on this general model

are needed for the long-run scheme to support reliable structural inferences.

2 Long-run restrictions and finite-horizon implications

Meaningful estimation of the infinite-horizon effect éf shocks with a finite span of
data requires smoothness assumptions linking aspects of the process observable in
the given finite sample to the long-run properties of the process. Under the explicit
smoothness assumptions generally used, the long-run restriction provides no reliable
basis for selecting among the many structural forms consistent with any estimated

reduced form.

2.1 Absent short-run restrictions, long-run restrictions are sterile

Begin with a maintained model that embodies all the restrictions of the long-run
scheme. The model includes all covariance stationary n-dimensional vector time
series,

X: = A(L)gq,

satisfying Efeie;] = I, A(1) finite, and satisfying n(n — 1)/2 Speciﬁed zero restﬁc-
tions. Assume that the lag polynomial, A(L), is invertible.

The scheme uses long-run restrictions to ident‘ikfy other, finite-horizon, aspects of
the economic system. We assume that the features of interest are the sorts of things
usually reported in VAR work. In particular, assumé that the parametér of interest
in the econometric exercise, 6, is a finite-dimensional vector containing any collection
of VAR coefficients, impulse responses, autocorrelations, or cross correlations. ‘

The estimation of § begins with estimating a reduced form for the data and
then the identifying restriciions pick out a uniqhe parameter of interest, 8*, con-
sistent with the reduced form. Under the long-run scheme, one estimates a VAR,
reduéed form for the data. Of course, there are arbitrarily many flexible models
one might have chosen—for example, moving average models, Almon lag models,

or flexible forms in the frequency domain. The choice of the VAR functional form
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is a pragmatic one based largely on ease of estimation. Ordinary least squares is
typically used, which under the assumption of normal disturbances, is the maxi-
mum likelihood estimator conditional on the initial values of the lagged variables.
The following proposition shows that the choice of 8* over any other parameter of
interest consistent with the estimated reduced form is almost strictly an artifact of
the choice of the VAR functional form.

Proposition 1 Take any sample X of size T. Suppose that the Gaussian mazimum
likelihood estimator selects an m-parameter VAR with likelihood L* and that the
wdentification scheme picks out a (pX 1) parameter of interest 6*. Let © be the set of
all 8’s consistent with the reduced-form VAR. For every 6 € © and everyer,eg > 0,
there exists an m-parameter functional form containing a structure satisfying all
restrictions of the maintained model with likelihood 1, and parameter of interest ¢’
such that

i) |L'— L*| < er, and
i) d(0',0) < ey, where d is any continuous metric on RP.

Proof: see the appendix.

Suppose that given the choice of an m-parameter VAR functional form, the OLS
estimation procedure leads to a reduced form with likelihood L*, and the long-
run scheme picks out 6* from among all parameters of interest consistent with the
reduced form.® The Proposition shows that there is another m-parameter functional
form including a structure with likelihood arbitrarily close to L*, but for which the
long-run scheme chooses a structure arbitrarily similar to 6. Thus, the economic
interpretation we put on the reduced form——the choice of 6% over §—is almost strictly
an artifact of the chosen functional form. This would not be a problem if economic
theory provided us a reason to suppose that low-order VAR’s were the appbropriate
riodel. It is difficult to imagine the a priori reasoning about macroeconomic systems

“that would jusfify such a VAR preference. | '

The intuition ‘for the result is as follows. Suppose the reduced form is estimated

using, say, 50 years 6f data. There is essentially no direct information in a 50-

’ ‘year sample about the infinite horizon. Any inference about the infinite horizon

® The Appendix proof holds for likelihood-based estimation pfocedﬁres, and, more generally, for
criterion functions with certain continuity properties. See the Appendix proof.
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rests on extrapolating to the infinite horizon based on the given finite span of cata.
The particular nature of the extrapolation is imposed by the functional form. I'wo
functional forms that fit the information in the sample equally well may extrapolate
to the infinite horizon in very different ways, giving very different reduced “orm
long-run effect matrices, F'(1). Thus, when the long-run scheme is imposed based
on the estimated F(1), as in (4), the two forms will suggest very different structural
interpretations of the data.

The spirit of the constructive proof is easy to illustrate. Consider the m-
parameter VAR structure B(L)X; = &4, with corresponding moving average rep-
resentation X; = A(L)e;, where X; is (2 x 1) and Eei; = I. Suppose that this
structure is not consistent with the long-run scheme because @;2(1) equals some
arbitrary £, whereas the theory implies a12(1) = 0. Proposition 1 says that there is
an m-parameter model containing a particular structure that fits the data as well
as that parameterized by /i(L) and that has nearly the same parameter of interest
as that implied by A(L), but which satisfies the long-run restriction. Form this new
model by transforming each m-parameter VAR structure by subtracting £/k from
the first k coefficients of the implied (1,2) element in the moving average reprasen-
tation polynomial. Corresponding to B(L) in the original VAR model there is a
transformed structure, B()(L), with moving average representation AR)(L), which
satisfies the long-run restriction. For large k, A¥)(L) is the same as A(L) except
that k coefficients of @12( L) have been altered by a tiny amount. When £ is large rel-
ative to the sample size, the reduced form of the structure based on AR)(L) will be
arbitrarily close to that of A(L) in a likelihood sense, and the parameter of interest
associated with A(®)(L) will be arbitrarily close to that for A(L). This can be sum-
marized as showing that we can alter the infinite-horizon properties of a structure
without compromising the fit to the data and without altering the finite-horizon
economic properties captured in the parameter of interest.

The claims of this section are unrelated to Blanchard and Quah’s point that

the long-run scheme should work equally well whether or not the true underlying
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structure ezactly satisfies the long-run restriction. The analysis here assumes the
ideal case where the restriction is satisfied exactly and shows that the scheme wil]
not yield reliable results even in the ideal case. In short, unless there is some
argument in favor of the particular way that the VAR model extrapolates from
the sample information to the infinite horizon, there is little reason to prefer the
economic interpretation suggested by 6* over any other interpretation consistent

with the reduced form.

2.2 Short-run implications of long-run neutrality

If we wish to exploit economic theory’s assertions about long-run neutrality proper-
ties, we need more than infinite horizon implications. To understand more about the
problem and its potential solution, return to the output-unemployment VAR. Sup-
pose one asserts that the long-run scheme has simply mislabelled the two shocks: the
estimated supply shock should have been labelled demand and vice versa. This new
structural interpretation would seem to be inconsistent with the long-run scheme
since the new demand shock has a permanent effect on output. A slight adjustment
to the structure can reconcile it with the long-run restriction, however. Suppose
tha, the demand shock’s effect on output is the same as that labelled supply in
Figure 1, but that the new demand shock’s effect decays at some horizon beyond
that shown in Figure 1. Such a structure can be constructed following the proof of
Prooosition 1 and cannot be ruled out based on any explicit assumption of the long-
run scheme. Such structures also cannot be ruled out based on arguments about
relarive likelihood or based on an appeal to parsimony.

One can reject such structures, however, by claiming that the implied persistence
of the demand shock is implausible. To rule out structures in which demand effects
do not begin to die out for 10, 20, 30 years or more, one must impose restrictions
on short-run—that is, finite horizon-—dynamics. If economic theory or a priori
reasoning provide a basis for such restrictions, then the problems of this section

can be solved. Suppose one believed, say. that 90-percent of the real effects of any
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demand shock disappears in the first 10 years.® Any decomposition of the VAR
satisfying this restriction would be equally plausible under such a restriction. Tte
exercise of simply re-labelling the shocks in the output-unemployment exercise would
no longer be consistent with the restrictions, however.

One might wonder whether the long-run scheme as generally implemented implic-
itly embeds a reasonable set of restrictions about short-run dynamics. For example,
the set of structures satisfying a 90 percent decay rule might be adequately captured
by considering only " along with conventional standard errors. Unfortunately, the
finite-order VAR embeds its own set of implicit short-run restrictions. There is no
reason to believe that these implicit restrictions coincide with the short-run restric-
tions that might emerge from economic theory. Indeed, nothing guarantees that 6*
will satisfy any restriction on short-run dynamics. Hence, 6*, and a confidence re-
gion around it need not bear any special relation to the class of structures satisfyin:
any short-run restriction.

Overall, any preference for 8~ over other decompositions of the estimated reduced
form rests on a strong implicit assumption ~—loosely speaking, a belief in the primacy
of the VAR functional form. Without exploring the implications and plausibility
of this assumption, there arc no grounds for supposing that the long-run scheme
provides a reliable basis for structural interpretations of data. One solution to this
problem would be to add explicit assumptions about finite-horizon dynamics. This
approach is straightforward to implement— specify restrictions and impose them—-
but it requires abandoning the view that no explicit restrictions should be imposec

on finite-horizon dynarmics.

3 The problem posed by maultiple shocks

So far we have considered identifying n shocks in an n-shock model. Of course.

the VAR methodology is usunally applied in a low-dimensional model that must

More generally, some probablistic restriction on the degree of decay at any horizon might be
mmposed. In practice, this wouid take the form of a Bayesian prior over the persistence of shocks.

ot
-
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be viewed as an approximation to a larger structure with many more sources of
uncertainty. Thus, the n shocks identified must be viewed as aggregates of a larger
number of underlying shocks. In the output-unemployment model, for example,
the estimated supply shock must combine all real disturbances such as oil shocks,
labor supply shocks, and productivity shocks. This section follows Blanchard and
Quah [theorem, p.670] in considering the conditions under which an n-variable VAR
system that is a subset of a larger underlying model driven by m > n shocks will

correctly aggregate and classify the multiple shocks.

3.1 Necessary and sufficient conditions for aggregation

‘Take an n-variable invertible structure driven by m shocks, (m > n):
Xg = /i([z)é:t, (5)

where X; is an (n X 1) vector of data, /i(L) is an (n X m) matrix polynomial in the
lag operator, and &, is an (m x 1) vector of shocks, E&é) =1

Suppose that there are n shock categories of interest and that each of the m
underlying shocks falls into one of these categories. There are p; shocks in category
J, and the shocks are arranged by category. Partition A(L) conformably with the

shock categories, so that

An(L) ... An(L)
/i(L): .
Ani(L) ... Apa(L)

where A;;(L) is a row vector of Pj scalar polynomials.

Assume that economic theory provides enough long-run restrictions on this
model to make fi(l) block lower triangular. In the output-unemployment model,
fer examplé, this amounts to assuming that no demand shock in the underlying
model] has a long-run effect on output. If there were just one shock per category,

this restriction would be enough to identify the model. The question of this section
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is whether under these conditions, one can apply the long-run scheme to estimate
correctly one aggregate shock per category when there are multiple shocks.

Write down the n-shock model implied by (5) and apply the long-run scheme.
The covariance stationary system in (5) has n-shock a Wold representation, say,
X¢ = F(L)u;. Applying the long-run scheme by choosing A(1) lower triangular
gives,

Xi = 14(L)€t, (6)

with Fle,e}] = 1.

Even when A(L) is block lower triangular in (5), each aggregate shock in the
n-shock model, (6), generally will commingle the m Vunderly‘ing shocké at var ous
points in time. Part (i) of the Proposition, which is a variant on and generalization
of Blanchard and Quah’s theorem [p.670], states when the shock categories but not
the timing of shocks will be preserved. Part (it) states when the shock categcries

and timing of shocks will be preserved.

Proposition 2 Given the structure (5) and the n-shock representation (6),
i) The shock ¢j; will be a linear function of the underlying category j shocks at
time t and before if and only if

A(L) = T(L)D(L)

where T'(L) is (n x n) and D(L) is (n X m) and block diagonal when partitioned
conformably with the shock categories.

i) The shock €;; will be a linear function of the underlying category j shocks at
t if and only if part (1) holds and D(L) = D, a block diagonal matriz of scalars.

Proof: see the appendix.

The part (i¢) conditions, which ensure both the categories and the timing of
shocks will be preserved, are very strong‘: every category j shock must affect variable
A k in exactly the same way up to a scale factor. This restriction rules out any
meaningful sense of multiple shocks in each category.

Part (i) gives a common factor restriction under which the shock categories will
be correctly sorted out by the identification scheme, but the timing of the underlying

shocks will be distorted in the aggregate shock. While the restriction is compliceted
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to interpret, the conclusion of the proof is little more than a re-statement of the
asstmptions. To prove necessity of the restriction, equate the two representations
(5) and (6):

Xi = A(L)é; = A(L)e,.

feach g5 is alinear combination of the underlying category 5 shocks at ¢ and before,

then there must be some D(L) that is block diagonal when partitioned conformably

with the shock categories such that ¢; = D(L)é;. Substituting, gives
X, = A(L)é, = A(L)D(L)é,.

which is the essence of the required result.

3.2  Appraising the theoretical plausibility of the restrictions

Proposition 2 states that the usefulness of the long-run scheme rests implicitly on
stror g dynamic restrictions on the underlying model. To see how the common
factor restriction in part (i) limits differences in the behavior of two shocks from the
same category, return to the case of the output-unemployment model, in which the
aggregate shocks are supply and demand. Consider shutting down all the shocks
in the model except the kth supply shock. If Proposition 2 holds, and assuming

category 1 is supply, we can write,

Yo = yu(L)dik(L)ér
Ug = 721(L)d1k(L)5kt
_ya(L)
U= @

Since dy(L) drops out of (7), the expression holds for every supply shock. Under
the restriction, the response of U to every supply shock can be expressed as a single
distributed lag on V. The analogous result holds for the demand shock. In many

cases this will be implausible.
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Suppose the lead coefficient of the lag polynomial in (7) is negative. Equation
(7) states that every supply shock that increases output growth on impact must also
decrease the unemployment rate. Many models do not satisfy this restriction. For
example, under standard assumptions, a positive productivity shock leads initially
to an increase in output growth and a decrease in the unemployment rate. An
exogenous increase in female participation in the labor force, however, might lead
to an increase in the overall labor force, which initially increases employment, but
not by as much as the increase in the labor force. At impact, output growth and
the unemployment rate rise.

In general, Proposition 2 provides a basis for bringing theory to bear in assessing
when a small VAR model identified under the long-run scheme will provide a reliable
basis for inference. Of course, it would also be useful to have some way to evaluate

the empirical importance of any violation of Proposition 2.

3.3 Appraising the empirical plausibility of the part (?) restrictions

The conditions in Proposition 2 require that the lag polynomial for the underly-
ing model can be factored in a particular way. One way to test this would be to
specify the larger model and use standard approaches to test the implied common
factor restrictions [Hendry and Mizon, 1978]. Of course, this would require aban-
doning many of the practical advantages of using a small model.!® We propose an
alternative approach in thé form of a simple robustness check.

Often there will be several different variables upon which a given analysis could
be based. For example, while Blanchard and Quah used output and unemployment,
output and prices might seem a more natural and directly interpretable choice since
this quantity-price pair is the standard one used to analyze aggregate demand and
supply. Alternatively, output and a nominal interest rate would fit into a traditional
IS-LM framework. It is difficult on a priori grounds to choose a two-variable system

that will best decompose output fluctuations into aggregate demand and supply

10 Gjven a specification for the larger model and data for the added variables, one migth avoid
some of the burden of estimating the full restricted model by using LM tests.
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shocks.

The aggregation theorem may hold in none of these systems, it may hold for
one system but not others, or it may hold for multiple systems. If the aggregation
theorem holds for multiple systems, however, the supply shocks estimated in the
models will be uncorrelated asymptotically with the demand shocks in the models.!!
If the supply shock from one model is correlated with the demand shocks from other
models, there is clear evidence that one or all of the models have commingled the
many underlying supply and demand shocks.

We explore the robustness of the results obtained from the output-unemployment
(YU) model by estimating two other bivariate systems: output and inflation (YP)
and output and a short-term nominal interest rate (YR).}2 The contemporaneous
correlations among the estimated demand and supply shocks from the three models
suggest the models fail to satisfy the shock aggregation theorem.

Demand shocks are moderately positively correlated across the models; supply
shocks are weakly correlated (Table 2).}* The YP and YR supply shocks, however,
are more highly correlated with the YU demand shock (.56 and .54) than with
the YU supply shock (.20 and .23). Supply shocks for the YP model are equally
correlated with the supply and demand shocks from the model with interest rates.
The pattern of large correlations between demand and supply shocks across models

implies that each model aggregates the underlying shocks differently.

' Even if the aggregation assumptions hold for two different models, the models need not produce
the same shocks: the two could alter the timing of the underlying shocks in a different manner.

2 Bayoumi and Eichengreen also estimate YP systems for the United States and several European
countries using annual data. The YR model is of independent interest because of the sizeable VAR
literasure that has explored the dynamic correlations between the two variables. In this literature,
interest rate innovations have been variously interpreted as arising from technology (supply shocks)
and f:om monetary policy (demand shocks). See, for example, Sims [1980b] and Novales [1990].
The YP model is estimated using quarterly growth rates in output and the GDP deflator; the YR
model uses the quarterly growth rate in output and the level of the three-month Treasury bill rate.
To be consistent with the specification of the YU model, each VAR is estimated over the same
sample period with eight lags and no constant term. Means for the pre- and post-1974 periods
were extracted from each data series. In YP and YR models we make the additional identifying
assumptions that transitory disturbances that increase output at impact are positive demand shocks
and pzrmanent disturbances that increase output are positive supply shocks.

* The correlations are based on 171 observations, so ignoring the fact that the shocks are
estimated, the typical formula implies a standard error of the correlations of about 1/\/1—7T = .08.
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The impulse response functions (Figures 2 and 3) and forecast error variance
decompositions (Tables 3 and 4) for the YP and YR models reveal further differences
in how the three systems aggregate underlying supply and demand shocks. In tha
YP and YR models, demand shocks produce a hump-shaped response in the level
of output, but their influence dies out quickly. Qutput is determined largely by
supply. Supply shocks increase output immediately and the long-run response cf
output is twice that estimated in the YU model. The YP and YR models attributz
substantially less of output’s forecast error variance to demand shocks at all horizons
than does the YU model.

A closer look at the data and the models’ estimated shocks underscores how
the interpretation of historical episodes can vary with the bivariate system and
helps to explain the differences across the three models. With the Korean War in
1950 and the price controls beginning in 1951 came wide swings in inflation, but no
corresponding large changes in unemployment and the interest rate. The YP systera
decomposes the swings into a mixture of large positive and negative demand and
supply shocks (Table 5). For example, in 1951:1, a modest drop in GDP coincided
with a big spike in inflation, which the YP model attributes to a combination of a
large outward shift in demand and an inward shift in supply. The other two models
do not have to account for inflation fluctuations and report nothing extraordinary.

Different interpretations of the 1957-1958 recession also emerge from the three
models. The YU model tells an exclusively demand-side story, with large negative
demand shocks occurring immediately before the peak in 1957:3 and during the
recession. The YP and YR models attribute the recession to both demand and
supply shocks. The dramatic oil price increases in early 1974 and 1979 are identified
as big negative supply shocks in the YP model and as a mixture of negative supply
and demand shocks in the YR and YU models.'*

The strong correlations between demand and supply shocks across the models

imply that the three models have sorted the underlying behavioral disturbances into

' The supply shocks in the YP model occur about three quarters after the oil shocks hit. This
lag 1s consistent with Hamilton’s [1983] estimates of the effects of oil shocks on output.
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aggregate supply and demand categories differently. We see no q priori grounds
for selecting among the three models: the models are based on the same long-
run restriction and none of the models identifies short-run behavior that might
otherwise be used as a criterion for preferring a model. Likewise there seems to be
no theoretical basis for supposing that the Proposition 2 restrictions are more likely
to hold in one model than another. Thus, we are left to conclude that none of these

models provides a basis for reliable structural inference.

4 Restrictions implied by assuming contemporaneously uncorre-

lated shocks

In VAR modelling, long-run restrictions typically are coupled with the assumption
that structural shocks are orthogonal. The orthogonality assumption is often treated
more as a normalization than as an essential part of the identification scheme.!® In
this section, we show that the reliability of inferences under the orthogonality as-
sumption turns crucially on the frequency of observation of the data. Even if the
orthogonality assumption is appropriate in sufficiently high frequency data, feed-
backs among economic variables at higher frequency than that of the measured
data can invalidate the orthogonality restriction. Following the form of the previ-
ous s2ction, we derive the restrictions on an underlying high frequency model that
would allow the long-run scheme to get the correct answer in data measured at lower
frequency.

Identification in time-aggregated models is an issue that has been discussed
before in the context of traditional models of supply and demand [Hendry, 1992] and
in the more general time series literature. Telser [1967] showed that an underlying
discrete-time AR structure is identified in lower frequency data when the order of the
AR model is known. Phillips [1973] provided restrictions under which a continuous-

time structure is identified in discrete data. Hansen and Sargent [1991] discussed

'* Almed et al. [p. 336] say that their identification relies “exclusively on long-run restrictions”
and Blanchard and Quah [p. 659] call the orthogonality restrictions a “nonissue.”
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when the cross-equation restrictions of rational expectations models would identify
a continuous-time structure.

Most VAR modelling using the long-run scheme runs counter to the spirit in
the general time series literature. In particular, the goal in the VAR literature
is to specify a minimal set of assumptions that might be consistent with a broad
range of theories and underlying structures. Thus, nothing is interpreted as a deep
parameter, and no cross equation restrictions are imposed. This section examines
when some of these general features remain identified in data sampled at some lower

frequency than the underlying model.

4.1 Time aggregation and identification

Consider an n-variable structure driven by n shocks:
X, = A(L)é,, (8)

with A(1) lower triangular and E[££)] = I, t = 1,...,Tp. Now consider a time-
aggregated version of the model in which there is an observation only every p periods.
If the original model involves quarterly data, p = 4 produces an annual model.
The low frequency data might be end-of-period, or an average over the period.
We suppose, generally, that the observed data are some linear function of the p

observations making up the courser time period:'6
X, = M(L)X,, t=p2p,...,Tp,
where M (L) is diagonal, of order p— 1, and known. The model for X; can be written
X, = M(L)A(L)E,, t=p,2p,...,Tp.

This expresses X; in terms of all the underlying shocks at the higher frequency; the

lag operator operates on t, which is in the higher frequency units. There will also

6 Linear time aggregation does not cover some interesting cases. If the quarterly data are
logarithms of some underlying series and the annual data are logarithms of the annual average
of the underlying series, then the time aggregation is nonlinear. The results of this section may
approximately apply under a linear approximation to the aggregation scheme, however. In the
examples here, the quarterly output numbers are the first difference of logs and the annual data
are the fourth quarter over fourth quarter log growth rates, which do involve linear aggregation.
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be a Wold representation for the X: with only one shock per coarser period that

can be written,

Xy = F(LP)uy, t=p,2p,...,Tp.

Application of the long-run scheme leads to,
Xe=A(LP)ey, t=p,2p,...,Tp, (9)

with Efe,ei] = I and A(1) lower triangular.

When will €, be an aggregate of the higher frequency &;’s in the p-periods
underlying the coarser observation, or in all periods before t? The necessary and
sufficient conditions for these outcomes can be stated in terms of a factorization of

A(L); the reasoning follows that in the previous section:

Proposition 3 Given the structure (8) and the representation for the data sampled
every p periods, (9), with time averaging M(L),
i) The shocks ¢;; will be a linear function only of &;5, s = t,1 — 1,..., for all 7,
if and only if,
M(L)A(L) = T(17)D(L),

where D' L) is diagonal, and there ezists a diagonal D(LP) such that ﬁ(LP)_ID(L)Et,
t=p,2p,...,Tp, is white noise.

i1) The shocks €, will be a linear function only of £;,, s = t,t —1,... yt—p+1f
and only if part (i) holds, and the diagonal elements of D(L) are of order less than
.

Proof: see the appendix.

4.2 Appraising the time aggregation conditions theoretically

The simplest case when Proposition 3 is met is when /i(L) is block diagonal, implying
that no variable Granger causes any other variable in the system. In this case,
since M(L) is diagonal, the common factor restriction holds trivially. In general
equilibrium macroeconomic models, however, high frequency feedbacks may be of
central iriportance. For example, when stock prices plummeted in October 1987,
the Federal Reserve provided added reserves within a day of the initial shock. If

the stock price movement were due to a supply shock, the high frequency feedback

21



to a nominal variable such as the money supply could easily induce the type of
correlations in quarterly or monthly data that would violate Proposition 3.
Proposition 3 does not rule out feedbacks at high frequency, but the types of feed-
back allowed are quite limited. Return to the quarterly YU model and consider when
an annual model would properly sort out the supply and demand shocks. Suppose
that the aggregation scheme for the two variables is the same (3M;;(L) = Ao(L)).
Following the argument of the multiple shock section, Proposition 3 implies that,

for the supply (first) shock,

L4
Utzlz—lg—)yt t=1,2,...,41.

’711([/4)

The response of quarterly U; to a supply shock must be expressible simnply in terms
Y:,Yi_4,.... There is no strong reason to believe that this sort of periodic behavior
is present in economic data. One might hope that feedbacks at frequencies highor
than the measured data are sufficiently small that the restrictions approximately

hold, however, so some way of assessing the likely magnitude of violations wonld be

helpful:

4.3 Assessing the empirical relevance of Proposition 3

We estimate annual versions of the YU and YP models presented in the previons
section, using annual average data.!” The annual YP model is similar to the one
used extensively by Bayoﬁmi and Eichengreen to study supply and demand shocxs
in the OECD.'® Many of the broad features of the quarterly models carry over o
the annual model. In the YU system, much of the forecast error variance in outpit
is attributed to demand, while the YP model gives much less precedence to demand.

One way to characterize how similarly the quarterly and annual models separate
supply and demand is to assume that the estimated quarterly models are correct

and to ask how the annual models aggregate the quarterly ones. Given a quarterly

17 We also estimated the YR model in this case, but its inclusion added little.

% Annual averaging of the quarterly models implies that output and inflation were measured in
fourth-quarter-over-fourth-quarter log growth raies. The unemployment rate is simply an average.
Two lags were allowed in each model. The same mecans were taken out as in the quarterly models.
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odel based on A(L) and a finjte VAR approximation to an annual aggregation
cf the quarterly data, A(LP), there is a simple expression showing how the annual

model aggregates the shocks from the quarterly model:
= C(L)é,
b=4,8,...,C(L) = A(LP)"' M(L)A(L), or
it = cip (L) + cia(L)ég,.

The annual supply shock will generally be a distributed lag of the underlylng supply
and demand shocks, and similarly for the annual demand shock Given the pomt
estimates for the annual and quarterly models, we can compute the imp 1ed (’(L)
‘ard plot the lag polynomials illustrating how the two quarterly shocks are weighted
in creating the annual shocks (Figure 4).

The annual YP model involves almost no commingling of the quarterly shocks.
Thus, for the U.S. data, it appears that Bayoumi and Eichengreen’s application
of the long-run scheme in annual data did not lead to a different categorization of
supply and demand shocks than the quarterly model. This result emerges because
there are few feedbacks from Y to P (Y does not Granger cause P in the quarterly
data) and the feedbacks from P to Y approximately satisfy the restriction of the
prcposition. In the YU model over one- quarter of the variance of the annuyal supply
shccek is accounted for by the quarterly demand shock (Table 6). The YU demand
shock is somewhat less confounded, with about ten percent of the variance of the
annual demand shock accounted for by quarterly supply shocks

The annual models may also distort the timing of the underlymg shocks For
three of the shocks over 80 percent of the variance of the annual shock is accounted
for by shocks in quarters constltutlng the annual observatlon For the YU supply
shock about half the variance comes from quarterly shocks in the previous year.

Overall, this exercise provides a basis for limited optimism regarding time ag-
gregation problems in the cases examined. Given the ubiquitous feedbacks present

In most theoretical models and the tight restrictions imposed by Proposition 3, it
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might seem likely that time aggregation would greatly muddle the results. The sub-
stantial absence of feedbacks in the quarterly YP model led to little comming ing in
the annual model. The quarterly YU model had larger feedbacks and showed more

time aggregation bias.

5 Comments

The explicit assumptions of the long-run identifying scheme have been viewed as few
in number and innocuoﬁs in content. Ahmed et al. [p. 342] note that they “cannot
imagine an alternative set of restrictions that would be less restrictive” and still be
sufficient for addreésing the questions at hand. From this perspective, the long-run
scheme may represent an extreme in the search for identifying assumptions that are
protected from the z‘ﬁéredible label stamped on earlier approaches.

This paper shows that structural inference under the long-run scheme will be
reliable only if the underlying structure being approximated by the small VAR sat-
isfies strong dynamic restrictions. In providing an explicit characterization of those
restrictions, the paper provides a basis for evaluating whether heretofore iraplicit
restrictions are consistent with the economic reasoning underlying the econometric
exercise.

The results of this paper do not suggest that the long-run scheme should be
abandoned. The results do not even provide a clear ranking of the scheme against
other VAR approaches, or against structural modelling in the Cowles tradition, or
against real business cycle modelling. We take the results as further evidence that
identification in macroeconomics is a dirty business. Perhaps the most important
issue in structural inference is assessing the robustness of inferences to changes in
the unappealing aspects of the identification scheme. We hope this paper provides

some insights to help in this assessment when using the long-run scheme.
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Appendix

Proof of Proposition 1 Parameterize the n-variable VAR structures under
cons:deration by 4 = {a, 4} where o = {4} is the sequence of (n X n) coefficient
matrices of the lag polynomial, A(L), and ¥ describes the parameters of the shock
process.

Suppose that the VAR model is being estimated by maximizing a likelihood
function L(8]XT) where 4 is (m x 1). Take the structure parameterized by g* =
{a”,¥*} which is consistent with the maintained model and which has parameter of
interest 8. Let § = {&12} be the parameter of some VAR with the same reduced
form as that parameterized by 8*. The parameter of interest for § is 4.

Let @ be the (n x n) matrix with Qi; = 0if the 4, j element of A(1) is consistent
with long-run restrictions of the maintained model, and Q; ; = [A(1)]; ; else. Define
a sequence of m-parameter models indexed by k: map each 8 = {a, ¥} consistent
with the VAR model into a parameter %) — {a(k),1/)} in the new model, where
a®) is defined according to, Afk) = A4 -Q/kif0 < i<k and Al(k) = A; else.
Let 4(¥) = {a®), 4} be the k** model’s structure corresponding to 4 in the original
model. Note that A*)(1) satisfies the long-run restriction for all £ > 0.

Part 4. A sufficient condition for part (7) is that L(BR|XT) L(BIXT) for all
XT. This condition will be met if each linear combination of the random variables
parameterized by 3(*) converge in mean square to the corresponding linear combina-
tion of those parameterized by ﬁ.(Convergence in mean square implies convergence
in distribution, which, under the assumption of continuous likelihoods, implies con-
vergence of the likelihood.) Since X7 and X®T have the same shock process, we

can write samples of size T for each structure as:

X, = A(L),
th = /i(k)(L)Et
t=1,2,....T. Take the mean squared difference of an arbitrary linear combination
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of the random variables:
T
EQ Y wi(Xej — Xijx))? (10)

Since each random variable has mean zero, the double sum is a variance. The double
sum can be re-stated as a weighted sum of terms Z;;u = (a;;(L) — &E;C)(L))Ejt wlere
the number of terms, call it M, is fixed by T and n and the weights are fixed
by T, n, and the wy;’s. The variance of such a term is bounded by M? times
the maximum weight squared times the maximum variance of any Z term. S'nce
M and the maximum weight are fixed independently of k, it is sufficient to shrow
that the variance of all the Z terms goes to zero with k. The term var(Z;;;x) =
var(e)||éi; — &E?Hg. By construction this term goes to zero with k.

Note: The key feature of the sequence of models used in this proof is that ~ (k)

goes to & with k in the [? norm:
© n n
(0 3 2 = A2 =0
h=0i=1j=1
The proof shows that the likelihood function is continuous in the o parameter in the
[? sense. The proof could be repeated for any criterion function with this continuity
property.

Part 7z. A sufficent condition is that éfk) — 0; for all i. The elements of # are
moving average or VAR coefficients, correlations, or forecast error variances. [t is
straightforward to verify that each of these is an [? continuous function of tte a
parameter in the sense discussed above. Thus, the required condition is satisied.
Q.E.D.

Proof of Proposition 2: Part ¢. Necessity can be proven following the dis-
cussion in the text. Consider sufficiency. Suppose A(L) = I'(L)D(L). Factor
D(L) = Q(L)D(L) where Q(L) is diagonal, (n x n), and Q;;(L) contains any fac-
tors common to all scalar polynomials in the j** block diagonal element of D(L).
Form &; = lj(L)ét. FEach £;; is a function only of the shocks in category j, and no £;;

has a unit root: each is a linear function of uncorrelated variables with no com:mon
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unit roots. Thus, there is a d;(L) such that d;(L)™'¢;; is white noise with stan-
dard deviation one. Form the diagonal matrix, D(L) with d;(L) in the jtt diagonal

eloment. We can now write the system,
X = I(L)Q(L)D(L)D(L)™* D(L ).

Defining A(L) = T(L)Q(L)D(L) and &, = D(L)"'D(L)é,, we have X, = A(L)ey,
Since A(1) is lower triangular, and D(1)~'D(1) has all elements non-zero by con-
struction, the implied A(1) is lower triangular.

Part 4i. Repeat the proof of part 7 with D(L)=D. Q.E.D.

Proof of Proposition 3: Part i. Necessity: From the two representations of

X; and assuming the conclusion we have,
M(L)A(L)E, = A(LP)e, = A(LP)Z(L)E,

for some diagonal Z(L). Thus, M(L)A(L) = A(LP)Z(L), proving the point.

Sufficiency. By assumption,
M(L)A(L)é, = D(LP)D(L)é,

By assumption, there is a matrix polynomial D(LP) such that D(LP)"'D(L)é,,

t = p,2p,...is white noise. Write
M(L)A(L)é; = T(LP)D(L?) D(LP)"' D(L)z,

Tase A(LP) = T'(L?)D(LP) and ¢, = f)(Lp)—lD(L)e"t. The matrix, A(1) is lower
triangular since D(l)“lD(l) has all elements non-zero.

Part i:. Repeat the proof of part 7 with the order of D(L) limited. Q.E.D.
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Table 1: Percent of forecast error variance due to demand in the YU

system
Y error U error

quarter lower point est. upper lower point est. upper
1 52.8 99.9 100.0 2.4 43.9 93.6
2 51.3 99.4 99.6 - 5.8 53.8 96.3
3 52.2 99.5 99.4 11.1 63.3 97.2
4 52.0 99.0 199.2 16.6 71.0 96.7
8 36.4 84.7 94.9 34.1 82.9 93.4
12 27.1 73.2 91.5 38.7 84.1 924
24 17.7 55.3 80.8 40.1 84.3 92.3
40 12.5 42.6 67.6 40.1 84.3 92.3

Bounds are the 5" and 95" percentile based on the simulations

described in the text.

Table 2: Contemporaneous correlation among the shocks

in the three models

Demand Shocks

Supply Shocks

YU-D YP-D YR-D YUS YP-S YRS
YU-D 1.00 0.65 0.67 0.00 0.56 0.54
YP-D 1.00 0.48 -0.13 0.00 0.41
YR-D 1.00  -0.13 045 0.00
YU-S 1.00  0.20 0.23
YP-S 1.00 0.43
YR-S 1.00
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Table 3: Percent of forecast error variance due to demand in the YP
system

Y error ‘ P error
quarter lower point est. upper ~ lower point est. upper
| 1.9 46.4 96.8 3.7 56.5 98.5
2 2.7 50.2 97.5 5.8 162.2 98.6
3 3.0 51.0 97.5 7.1 66.3 98.8
4 3.0 50.9 97.5 8.0 68.3 98.9
8 3.3 37.2 90.4 8.3 69.4 990
12 2.8 27.6 80.5 8.6 70.2 99 0
24 " 1.6 15.7 57.4 9.0 71.6 99 2
40 1.0 9.4 36.6 9.2 72:2 99 3

Bounds are the 5 and 95" percentile based on the simulations
described in the text. ‘

Table 4: Percent of forecast error variance due to demand in the YR
system

Y error R error

quarter lower point est. upper lower point est. upper
1 2.5 53.6 98.4 10.2 77.2 99.7
2 2.2 50.7 97.9 12.2 80.3 99.6
3 2.0 43.9 96.1 16.6 84.4 98.4
4 23 - 377 93.9 19.1 87.3 98.1
8 5.6 19.6 76.5 20.1 88.9 98.2
12 6.9 13.2 59.8 19.9 88.5 97.7
24 3.7 6.5 40.4 18.3 87.7 974
40 2.1 3.9 25.0 17.7 87.6 974

Bounds are the 5% and 95" percentile based on the simulaticns
described in the text.
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Table 5: Identified demand and supply shocks in three
Models for selected periods

date  YU-D YP-D YR-D YU.S YP-S YR-S
51:1  -0.0 3.0 -0.7 -0.9 -3.3 -0.0
91:2 1.5 -1.6 1.1 1.1 4.6 2.1
51:3 1.3 -1.4 0.3 3.6 3.3 1.0
514  -14 0.5 -1.3 0.8 -0.5 -1.0

57:2  -1.3 -1.7 -0.3 -0.7 -0.2 -1.2
o973 1.3 0.3 0.5 0.2 0.6 0.5
57:4 2.3 -2.5 -1.0 0.8 -0.7 -2.1
58:1  -2.6 -1.8 -3.0 0.7 -2.7 -1.2
58:2 0.8 1.0 0.5 2.2 0.9 1.1

74:1  -1.0 -1.8 -3.3 -0.3 0.2 2.8
74:2 0.7 0.6 1.0 -1.9 0.4 -0.6
74:3 -1.4 1.0 -2.4 -0.5 -24 -0.3
74:4 0.1 0.2 0.9 2.0 -0.4 -1.2
75:1 2.0 -0.1 -2.6 2.7 -24 -1.1
75:2 2.3 -0.7 1.4 1.2 2.6 -0.5

79:1  -0.6 -0.5 0.7 0.0 -0.2 -1.1
79:2  -0.2 0.1 0.6 -1.5 -0.2 0.1
79:3 0.1 1.7 1.0 0.5 -0.1 0.4
79:4 0.4 -0.4 1.6 0.3 -04 -2.2
80:1  -0.1 0.6 1.3 2.0 -0.3 -0.6
80:2  -3.0 -1.7 -4.0 1.7 -2.7 1.1

Table 6: Decomposition of annual shock variances for the YU
and YP models

Share of annual shock variance due to

quarterly both quarterly shocks, horizon
annual shock supply shock 4 quarters 8 quarters
YU-S 0.73 0.51 0.96
YP-S 0.96 0.88 0.97
YU-D 0.09 0.86 0.97
YP-D 0.05 0.80 0.94
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Figure 1

Y Responses to Demand U Responses to Demand
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Figure 2

Y Responses to Demand
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Figure 3

Y Responses to Demand R Responses to Demand
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Figure 4

Anriual YU model. supply shock
as a distributed lag of quarterly shocks
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