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1. Introduction

While asset returns generally appear to be close to a martingale difference sequence,
there i1s overwhelming evidence that asset returns are not independently distributed
over time, because of volatility clustering. Serial correlation in the volatility of asset
returns has been documented in an enormous number of papers, going back to Man-
delbrot (1963) and Fama (1965), and, more recently, the ARCH literature pioneered
by Engle (1982). Recent survey articles include Bollerslev, Chou and Kroner (1992),
Bollerslev, Engle and Nelson (1994) and Diebold and Lopez (1995). Many parametric
models have been proposed for modeling this persistence of volatility in asset returns.
These include the ARCH and GARCH models (Engle (1982) and Bollerslev (1986)),
the EGARCH model (Nelson (1991)) and stochastic volatility models (Taylor (1986)
and Andersen (1994)). Some researchers have proposed models with long memory
in the volatility process (including Baillie, Bollerslev and Mikkelsen (1996), Breidt,
Crato and de Lima (1998), Harvey (1998) and Robinson (1991)). Other authors,
such as Engle and Lee (1993) have proposed models in which the volatility process
has two components: one of which is nearly nonstationary, while the other is much
less persistent. A number of papers have considered nonparametric approaches to
representing time varying conditional heteroskedasticity (Pagan and Schwert (1990),
Gallant, Rossi and Tauchen (1992, 1993)). In these models, squared asset returns

are modeled as a nonparametric function of lagged returns. However, in practice it




1s necessary to choose a relatively small number of lags, because of the well known
problems in applying nonparametric methods to high dimensional models. When
working with high frequency data, there are also important intradaily patterns in
volatility (Andersen and Bollerslev (1997)). So, while it is clear that the volatility
of asset returns is highly persistent, there is no consensus as to the best model for
representing these volatility dynamics. This is especially true with high frequency
data.

A different approach to modeling volatility dynamics is proposed in this paper,
explicitly utilizing the additional information in high frequency data. The idea is to
model volatility dynamics by fitting a long AR representation to log-squared, squared
or absolute high frequency asset returns. This can be implemented by first estimating
the spectrum of log-squared, squared or absolute returns and then using a numerical
method, sometimes known as the Wiener-Kolmogorov filter, to solve for the coefi-
cients in the corresponding AR representation. Alternatively, the AR representation
may simply be estimated by the usual time domain method. These approaches are
not nonparametric, but may allow for flexible dynamics. We emphasize that they
are appropriate only in the presence of a very large sample of high frequency data,
so that fitting very long autoregressions is both feasible and necessary to reasonably
approximate the observed patterns of volatility clustering. Indeed, these methods

fare poorly with a sample of daily returns, as shall be demonstrated below. In a re-



lated context, Andersen and Bollerslev (1998) showed that intradaily data was vitally
important in the meaningful ex-post evaluation of daily volatility forecasts. More-
over, Andersen, Bollerslev and Lange (1999) have recently shown that while the gains
in forecast error accuracy from correctly specified high frequency GARCH volatility
models can be very large from a theoretical perspective, the standard models tend to
perform very poorly when applied directly to high frequency data. This paper shows
how the high frequency data may easily be used to construct superior daily volatility
forecasts.

The plan for the remainder of the paper is as follows. The proposed method
for modeling volatility is introduced in the next section. In section 3, it is used to
predict future values of the volatility of the Deutschemark-U.S. Dollar spot exchange

rate based on a ten year sample of 5-minute returns. Section 4 concludes.

2. Estimation of Volatility Dynamics

2.1 The Assumed Model

We begin by making a high level primitive assumption that an appropriate proxy for
the time series of volatilities, such as the log-squared returns, has an AR representa-
tion. Specifically, we assume that {y,}!_, is a martingale difference sequence of asset

returns such that

Assumption A1l: a(L)(log(y?) — py) = &.
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Here and throughout, a(L) = 1 — a;L — ayL?... denotes a (possibly infinite order)

lag polynomial such that %52 |a;|j/? < oo', L is the lag operator, and & is an

independently and identically distributed sequence with mean zero, variance o2, and
finite fourth moment. As alternatives to assumption A1, we could instead specify
that the squared or absolute returns have an AR representation, modified so that the
2.

squared or absolute returns cannot be negative?. To accommodate this we introduce

alternative assumptions Al and A1
Assumption A1": a(L)(z — py) = &, and y? = max(z, 0).
Assumption A1": a(L)(z — py) = &, and |y,| = max(z, 0).

Assumption Al nests some standard models of stochastic volatility as special
cases. For example, the standard autoregressive stochastic volatility (ARSV) model

specifies that

ye = exp(h/2) oy

(1= 6L)h = outy

where u; and v, are ii.d. N(0,1) and |¢| < 1. This implies that log(y?) = h; +

log(c2) +log(u?) which has a representation as an ARMA(1,1) reduced form (see e.g.

1%—Summability of these coeflicients is required to enable the spectrum of the log-squared data

to be uniformly consistently estimable.

21t is of course an advantage of assumption Al that no such modification is required.



Harvey, Ruiz and Shephard (1994)) and assumption Al is satisfied?.

One approach to estimating a(L) is simply to fit an AR(p) to the observed
sample, where the order of the estimated autoregression, p, goes to infinity but at a
rate slower than T3 as the sample size T' goes to infinity'. Let the resulting esti-
mates for ay, as, .... be denoted by ay, as, ..... The Wiener-Kolmogorov filter provides
an alternative approach to estimating these coefficients, which may potentially work

better when a(L) is not in fact a small order autoregressive polynomial.

2.2 The Wiener-Kolmogorov Filter

Suppose that assumption A1 holds and that the spectrum of log(y#) —p, is known. Call
this spectrum f(A). Of course, the spectrum of any time series contains, in principle,
the same information as its AR representation, and going from the AR representation
to the spectrum is numerically straightforward, as f(\) = fz’—;||a((zi’\)||"'2. Inverting this
transformation is harder, but there is a standard result (see, for example, Brillinger

(1981) p.79) which provides a closed form representation for the autoregressive coef-

ficients in terms of the spectrum of a univariate time series. Specifically,

a 1/” B\~ exp(ijA)dx (1)

J 27 -

where

3The fractionally integrated stochastic volatility model of Breidt, Crato and de Lima (1998)
likewise yields an AR representation, but does not satisfy the requirement that $52|a;| V% < .

1see Berk (1974).
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B(\) = exp(%c(()) + 257 ¢(v) exp(—iv)) (2)

and

c(v) = 51; [: log(f(\)) exp(iv\)dA. (3)

This algorithm is sometimes referred to as the Wiener-Kolimogorov filter (Bhansali and
Karavellas (1983)). Naturally, in empirical applications, no researcher ever knows the
true spectrum of the log-squared returns. However, the spectrum may be estimated
by smoothing the periodogram and the estimated spectrum may then be substituted
into the Wiener-Kolmogorov filter. In particular, define the periodogram of the log-
squared data as

1

IO = —

%ﬂJZLAbﬂwﬁ—ﬁJd“Wv (4)

where fi; denotes the sample average of log(y?). The associated smoothed estimate

of the spectrum is then given by

¢ 1 n A=A =
fA) = ﬁ}‘k:—nK(——h_k)I()‘k) ()
where n = [T'/2], Ay = 2, K(.) is a kernel function and £ is a bandwidth parameter

which converges to zero but at a rate slower than O(T~!). In this paper, we use the
Epanechnikov kernel which sets

K(w) =0.75(1 — w)1(jw| < 1) (6)



Under the given conditions, f()) is consistent for f(A) uniformly on [—, 7| (Brillinger
(1981)).

Let the resulting estimates for ay, as, .... obtained by substituting this estimated
spectrum into the Wiener-Kolmogorov filter in equations (1), (2) and (3) be denoted
by ay,as, ..... Because each of these coefficients is a continuous function of f(\), it
follows, that if f()) is uniformly consistent for f()), then each a; is consistent for
a;. Under assumptions Al or A1", exactly the same approach may be used to solve
for the AR coefficients of squared returns or absolute returns from the estimated
spectrum of squared or absolute returns, respectively. The approach of estimating
the spectrum by smoothing the periodogram and then backing out the implied AR
coefficients has previously been used by Bhansali (1973, 1974, 1977) among others.
More recently a similar idea has also been applied by Wright (1999) in the context
of impulse response analysis. The present paper shows how this frequency domain

approach may be applied to modeling the volatility of asset returns®.

SOther kernels will, of course, also guarantee the uniform consistency of f (A), as discussed by
Brillinger (1981).

%As previously noted, long-memory in the volatility process is not strictly speaking allowed for,
as we have assumed that the coefficients in a(L) are $-summable. Concretely, if f(A) is not bounded
away from zero at the origin, then f (A) is not uniformly consistent, and even if we knew the true
spectrum, the integral in (3) is not defined. Nevertheless, from a practical empirical perspective,

the estimated a(L) coefficients may get arbitrarily close to a true long-memory process.




2.3 The Modified Log-Squared Transformation

Assumption Al applies to log-squared asset returns. An 4nlier problem often arises
when dealing with the log-squared transformation; if the asset return is very close to
zero, then the log-squared transformation yields a large negative number. Such an
observation can then greatly affect the results of subsequent data analysis. In the
extreme case, if the asset return is equal to zero, then the log-squared transformation
is not even defined. Consequently, Fuller (1996) proposes a slight modification of the
log-squared transformation, which does not converge to minus infinity as the argument

converges to zero. This specifies that the transformed series of asset returns is

Ts2
yf+rsz

y; = log(y; + 75%) —

9 . . - ..
where s° i1s the sample variance of y, and 7 is a small constant. In all empirical
work in this paper, we use y; with 7 = 0.02, instead of the log-squared returns’. For
convenience, we however adopt the shorthand of referring to y; as the log-squared

returns.

"The choice of 7 follows Fuller (1996) and Breidt and Carriquiry (1996).




3. Forecasting Integrated Volatility

3.1 Integrated Volatility and Alternative Volatility Measures

A leading motivation for studying models of time-varying conditional heteroskedas-
ticity 1s to be able to forecast future volatility. One common measure of the quality of
a forecast of an arbitrary variable, z;, is the R-squared in a regression of the ex-post
realized values of z; on its forecast values (and a constant). We refer to this procedure
as the Mincer-Zarnowitz method (Mincer and Zarnowitz (1969)). The R-squared in
the Mincer-Zarnowitz regression indicates that GARCH and other standard volatil-
ity models provide poor forecasts of future squared returns (see, e.g. Jorion (1995),
Andersen and Bollerslev (1998)).

However, the squared one-period return is generally a very noisy measure of
the true latent volatility and is, as such, virtually unforecastable. Meanwhile if the
researcher is interested in the volatility of the return of an asset over any fixed time
period from ty to ¢; (such as a day, or the life of an option) and if the researcher
has access to high frequency intradaily data on the asset returns, then the squared
high frequency returns, summed over the period from ¢, to ¢;, constitute a much
more accurate estimate of the true ex-post volatility of the returns over that fixed

time period®. We refer to this measure as the integrated volatility. In a related

¥As discussed more formally in Andersen, Bollerslev, Diebold and Labys (1999), if the returns
follow a special semimartingale, the quadratic variation of the process constitutes a natural measure
of the ex-post realized volatility.



context, Andersen and Bollerslev (1998) point out that standard GARCH models
provide good forecasts of future values of integrated volatility. In particular they
show that the R-squared in the Mincer-Zarnowitz regression is quite high, for some
standard datasets of asset returns. In addition to allowing for more meaningful ex-
post volatility forecast evaluation, this integrated volatility measure also corresponds
directly to the theoretical notion of volatility entertained in the diffusion models
proposed by Barndorff-Nielsen and Shephard (1998). This same measure also figures
prominently in the stochastic volatility option pricing literature (e.g. Hull and White
(1987)) and its formal estimation has recently been explored by Gallant, Hsu and
Tauchen (1998).

In this section, we consequently focus on forecasting integrated volatility. For
concreteness, and to tie in with the dataset analyzed below, let vy, denote a 5-minute
return series. With 24 hour markets, there are 288 5-minute observations in a day. It
1s also convenient to use the notation y;,, to refer to the nth 5-minute return on day
s,s=1,...8n=1,..288. Clearly, y, = ys, with ¢t = 288(s — 1) +n. The integrated
volatility over the day s is then defined as Vi(s) = zz 5o yz2,,.

3.2 The data
The spot Deutschemark-U.S. Dollar exchange rate data were collected and provided
by Olsen and Associates in Ziirich, Switzerland. The full sample spans the period

from December 1, 1986 through December 1, 1996. The returns are calculated as the
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difference between the linearly interpolated average of the mid-point of the logarithmic
bid and ask for the two nearest quotes, resulting in a total of 288 5-minute return
observations per day”. Although the foreign exchange market is officially open 24
hours a day and 365 days a year, the trading activity slows decidedly during the
weekend period. In order to avoid confounding the evidence by such weekend patterns,
we simply excluded all returns from Friday 21:00 Greenwich Mean Time (GMT)
through Sunday 21:00 GMT; a similar weekend no-trade convention was adopted
by Andersen and Bollerslev (1997). Furthermore, the market slows decidedly over
certain holiday periods. Excluding the most important of these days'’, leaves us
with a sample of 2,445 complete days, for a total of T' = 2,445x288=704,160 5-minute
Y, return observations.

Consistent with the notion of efficient markets, the 5-minute returns are approx-
imately mean zero and serially uncorrelated. At the same time, the evidence for
volatility clustering is overwhelming. For instance, the lag-1 sample autocorrelation
coefficient for the squared 5-minute returns equals 0.195, which is overwhelmingly
significant at any level. The autocorrelograms of the squared, log-squared and ab-

solute returns, in Figure 1, all show a rapid initial decay but then decay only slowly.

9See Dacorogna et al. (1993) and Miiller et al. (1990) for a more detailed description of the
activity patterns in the foreign exchange market and the method of data capturing and filtering that
underlie the return calculations.

WFor further discussion of the specific exclusions, we refer to Andersen, Bollerslev, Diebold and
Labys (1999), where the same data is analyzed from a different perspective.
) ) Yy
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Additionally, these autocorrelograms have a distinct seasonal pattern. Similar peri-
odic autocorrelograms for other speculative returns and time periods have previously
been reported in the literature by Dacorogna et al. (1993) and Andersen and Boller-
slev (1997) among others, who attribute the periodicities to the existence of strong
intradaily volatility patterns associated with the opening and closing of the various

financial centers around the world.

3.3 Volatility forecasts with daily data
Arguably, the most common approach to volatility forecasting is based on the esti-
mation of daily GARCH models. Specifically, let y(?) = %28 ¢ denote the daily

return for day s. The GARCH(p,q) model then specifies that

) = o,

2 _ P 2,2 q 2
Oy =w+ D qos s+ 200,05

13

where 7, is serially uncorrelated with mean zero and variance one, w > 0, o; > 0
and 3; > 0, and the parameters satisfy the conditions in Nelson and Cao (1992) for
02 to be positive (almost surely). The quasi-maximum likelihood estimates of these
parameters, obtained under the auxiliary assumption of conditional normality, may
be calculated and the associated one day ahead forecast of volatility on day s can
be viewed as a forecast of V;(s). This forecast can then be evaluated in terms of its

mean square prediction error, or in terms of the R-squared, coefficient estimates and
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their standard errors in the Mincer-Zarnowitz regression.

Table 1 shows the resulting quasi-maximum likelihood estimates of the para-
meters of GARCH(1,1), GARCH(1,2), GARCH(2,1) and GARCH(2,2) models, esti-
mated using the full sample of 2,445 days''. Table 2 shows the out-of-sample forecast
evaluation criteria for these specifications, estimating the model parameters with the
first half of the data and evaluating the forecasts over the remainder of the sample.
In Table 2, we also report the forecast evaluation criteria for an EGARCH(1,1) model
and for forecasts constructed by simply fitting an AR(10) to daily squared returns. In
Table 2, we can see that the GARCH(1,1) and EGARCH(1,1) models'? provide the
best forecasts. The GARCH(1,1) forecasts of integrated volatility have an R-squared
in the Mincer-Zarnowitz regression similar to that found by Andersen and Bollerslev
(1998). Meanwhile, simply fitting an AR(10) to the daily squared returns produces
very poor out-of-sample forecasts'®. Thus, it is clear that simple parametric GARCH
models produce better forecasts than just fitting an autoregression to the squared

returns, when working with daily data.

' Among all GARCH(p,q) models for daily data with p, ¢ < 3, the Akaike and Schwartz informa-
tion criteria both selected the GARCH(2,1) specification.

2Results for some higher EGARCH models are not shown, but these generate less good forecasts,
especially out-of-sample.

13 This result is not sensitive to the order of the autoregression that is fitted.
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3.4 Volatility Forecasts using the Intradaily Data

We now turn to volatility forecasts, explicitly constructed from the 5-minute returns.
One forecasting strategy is to start with assumption Al’, estimate the spectrum of
v, = y? — 1, (where f1, denotes the sample mean of y?) and then use the Wiener-
Kolmogorov filter to calculate {a,}, the associated estimates of {a;}. Let 9,44 denote
the resulting forecast of vy, given v, and lagged values, as given by the recursions

. o~
Dppre = Y2450 (7)
and
Duprye = Sh Lt b jie + Y0200k (8)
t+klt — Hj=1U5Vt+k—j|t j=k%iVt+k—3
The integrated volatility at date s, V(s), conditional on returns from day s — 1 and
earlier may then be forecast!* as
- 1

Vi(s) = %Zigjl max(fly + Vags(s—1)+nj288(s—1), 0) 9)

Forecasts of V(s) may equally be formed using {a;}, the estimates of the AR co-
efficients obtained from the usual time domain autoregression. Let this forecast be
denoted V;(s).

Table 3 shows the forecast evaluation criteria for V;(s) and V;(s) in the out-

of-sample forecasting exercise!®. In constructing these forecasts, the spectrum of

"1n the empirical work, we truncated the infinite sum in (7) after 10,000 terms; though the results
are virtually identical using just 5,000 terms.

15 Counterparts of Tables 2 and 3 for in-sample forecasts and for the Japanese Yen - U.S. Dollar
exchange rate are similar, and are available on request.
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the squared returns was estimated using a bandwidth h=0.0009, while the fitted
time domain autoregression was of order 2,050. These parameters were chosen so as
to minimize the out-of-sample mean square prediction error. This leaves open the
question of how a researcher should select these parameters in practice, but ensures
that we can make a fair comparison between V;(s) and V;(s).

Assumption A1’ is the natural starting point for forecasting integrated volatility
as it relates directly to the squared returns. Alternatively, assumption Al or A1” can
be used to justify the corresponding forecasts of the future log-squared or absolute 5-
minute returns. These forecasts may then in turn be transformed into ad hoc forecasts
of the future squared 5-minute returns by exponentiating or squaring the forecasts,
followed by multiplication by a scaling factor!®. In the case of assumption Al, the
scaling factor is the ratio of the mean of the squared returns to the exponent of the
mean of the log-squared returns. In the case of assumption A1”, it is the ratio of the
mean of the squared returns to the square of the mean of the absolute returns. The
forecasts of future squared 5-minute returns can be summed up to obtain forecasts of
future integrated volatility, based on assumptions Al or A1”. These forecasts are ad

hoc, but their practical usefulness is an empirical question. Of course, these forecasts

could alternatively be based on fitting a long autoregression to the log-squared or the

16The scaling factor is a simple attempt to correct for the fact that the expectation of a nonlinear
function of a random variable is not equal to the nonlinear function of the expectation of that random
variable.
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absolute returns in the time domain. Table 3 also shows the results for these forecasts,
which we refer to (in obvious notation) as V;*?¢%9(s), V;*9¢59(s), VABS(s) and
V]ABS(S).

Table 3 also shows the results for the forecasts of daily integrated volatility ob-
tained by fitting an AR(10) model directly to the daily integrated volatility, V;(s).
This is still a forecast based on high frequency data in the sense that it cannot be
constructed by a researcher who only has access to daily data. As a final comparison,
we also used GARCH models fitted directly to the high frequency 5-minute returns
to construct the daily volatility forecasts. However, to conserve space, we omit these
results, as they yielded very unreasonable forecasts. Consistent with the earlier find-
ings in Andersen, Bollerslev and Lange (1999), a small order GARCH model is grossly
underparameterized as a model of intradaily asset returns!”.  For each forecast in
Tables 2 and 3, we also tested the significance of the difference in the mean square
prediction error between that forecast and the forecast obtained from the commonly
employed daily GARCH(1,1) model using the procedure described in Diebold and
Mariano (1995).

The forecast evaluation criteria for V;(s) and V;(s) are very similar, though the

frequency domain forecasts give a slightly higher R-squared in the Mincer-Zarnowitz

For instance, fitting a GARCH(1,1) model to 5-minute returns, the sum of the GARCH co-
efficients was 1.04 and the in-sample mean square prediction error of the associated forecasts was

2.4x106!
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regressions. Meanwhile, both work much better than any of the forecasts in Table
2, based on daily data alone. The out-of-sample mean square prediction error of
Vi(s) is 19% below that of the standard GARCH(1,1) forecast; this improvement in
forecasting performance is highly significant. Among the forecasts based on fitting
autoregressions to log-squared and absolute returns, the frequency domain forecasts
consistently have a slight edge over the time domain forecasts. Also IA/,‘OG_‘SVQ(S),
/O975R (5) do less well than Vi(s) and V;(s), while VABS(s), VABS(s) do better
than V;(s) and V;(s) (notwithstanding their more ad hoe justification'®). The out-of-
sample mean square prediction error of V/‘BS (s), the best of all the forecasts, is 20%
below that of the standard daily GARCH(1,1) forecast. Simply fitting an autore-
gression to Vi (s) produces forecasts which are clearly superior to any of the forecasts

in Table 2, though yields a lower R-squared in the Mincer-Zarnowitz regression than

any of the other forecasts using intradaily data in Table 3.

18We attribute the good performance of the forecasts based on 5-minute absolute returns to the
fact that absolute returns are relatively outlier-resistant.
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4. Concluding Remarks

In this paper, we have proposed modeling volatility dynamics with high frequency
data by simply fitting an autoregression to log-squared, squared or absolute returns.
This autoregression can be estimated in the usual way, or can be backed out from a
nonparametric smoothed periodogram estimate of the spectrum. We conclude that,
when working with high frequency intradaily data, these simple autoregressions tend
to work better in forecasting future volatility than standard GARCH and EGARCH
models, fitted either to daily or intradaily data. Overall, this general conclusion is not
very sensitive to whether the autoregressions are estimated in the time domain or in
the frequency domain, although the latter procedure results in the lowest mean square
prediction error. In sum, Andersen and Bollerslev (1998) showed that intradaily data
was vitally important in the meaningful ex-post evaluation of daily volatility forecasts;
this paper shows how the high frequency data may easily be used to construct superior
daily volatility forecasts. Meanwhile, the approach to modeling volatility dynamics
advocated here can of course be used in applications other than volatility forecasting;
for example, it could be used to construct bootstrap distributions for test statistics.

It will be interesting to further explore these issues in future research.
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Table 1

Quasi Maximum Likelihood GARCH Parameter Estimates with Daily Data
(standard errors in parenthesis)

Parameter GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2)

w 0.0069 0.0049 0.0072 0.0125
(0.0017) (0.0021) (0.0017) (0.0034)

o 0.0449 0.0313 0.0313 0.0472
(0.0054) (0.0119) (0.0158) (0.0053)

ay 0.0151 0.0424
(0.0165) (0.0054)

4 0.9414 1.2819 0.9395 -0.0564
(0.0075) (0.2709) (0.0077) (0.0075)

Ba -0.3229 0.9423
(0.2560) (0.0072)

AIC 2.0579 2.0584 2.0585 2.0561

SIC 2.0650 2.0679 2.0680 2.0679

Notes: This table reports the quasi maximum likelihood estimates of the GARCH parame-
ters using the full 2,445 days of daily data, along with the associated standard errors. The
Akaike and Schwartz information criteria (AIC' and SIC) are also included.




Table 2

Out-of-sample Properties of Alternative Estimates of V;(s) using daily data

Forecasting Method IA)() by MSE R?
GARCH(1,1) -0.322 1.758 0.180 39.5
(0.033) (0.062)

GARCH(1,2) -0.145 1.379 0.1971 27 .4
(0.034) (0.064)

GARCH(2,1) -0.249 1.606 0.189f 33.3
(0.034) (0.065)

GARCH(2,2) -0.013 1.125 0.188 29.1
(0.028) (0.050)

EGARCH(1,1) -0.219 1.571 0.190t 32.7
(0.033) (0.064)

, . (D)2 anE . . -
AR(10) fitted to y, -0.305 1.690 0.218t 20.7

(0.049) (0.095)

Notes: The table reports the estimated intercept and slope coefficients from the Mincer-
Zarnowitz regression, lA)O and 1}1, respectively, along with their estimated standard errors
(in parentheses), for all of the alternative forecasting procedures. The table also reports
the mean square prediction error for each of these forecasts and the percentage R-squared
from the Mincer-Zarnowitz regression. The superscript * indicates that the mean square
prediction error is significantly lower than that of the GARCH(1,1) forecast, while the
superscript 1 indicates that it is significantly higher (at the 5% level, using the test of
Diebold and Mariano (1995)). The details of the construction of these alternative volatility
forecasts are provided in the text. The GARCH and EGARCH models are all estimated
using the daily data yt(D). All parameters are estimated using the first 1,222 days of data,
while the forecasts are evaluated using the remaining 1,223 days in the sample.



Table 3

Out-of-sample Properties of Alternative Estimates of V;(s) using 5-minute data

Forecasting Method l;() l;l MSE R*

Vi(s) -0.131 1.257 0.145* 46.5

(time domain) (0.023) (0.039)

V0689 ) -0.158 0.954 0.179 45.7

(time domain) (0.024) (0.030)

VABS (s) -0.042 0.900 0.148* 48.1

(time domain) (0.020) (0.027)

Vi(s) -0.182 1.356 0.146* 47.2

(frequency domain) (0.024) (0.041)

/S ) -0.216 1.059 0.171 46.3

(frequency domain) (0.026) (0.033)

VABS (s) -0.066 0.955 0.144* 48.5

(frequency domain) (0.021) (0.028)

AR(10) fitted to V;(s) -0.122 1.241 0.156* 45.9
(0.023) (0.039)

Notes: As for Table 2.



Figure 1: Autocorrelogram of Volatility Measures for DM-Dollar Returns
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Notes: This figure gives the autocorrelogram of the squared, log-squared and absolute 5-minute

demeaned DM-$ returns, as described in the text.




