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1. Introduction.

While asset returns appear to be close to being a martingale difference sequence, they
are nevertheless characterized by a high degree of volatility clustering and so are not
even close to being independently and identically distributed (iid). Persistence in the
volatility of asset returns has been documented in papers going back to Fama (1965),
in the enormous ARCH/GARCH literature pioneered by Engle (1982) and surveyed
by Bollerslev, Engle and Nelson (1994), and in the closely related stochastic volatility
literature (see, for example, Taylor (1994)). Recently, a number of papers have noted
that the autocorrelation functions of squared, log-squared and absolute returns are
best characterized by a slowly mean-reverting hyperbolic rate of decay. These papers
include Andersen and Bollerslev (1997), Bollerslev and Wright (2000), Dacorogna et
al. (1993), Ding, Granger and Engle (1993), Granger and Ding (1996), Lobato and
Savin (1998) and Robinson (1991). This property of the autocorrelation function of
squared, log-squared and absolute returns has been found in many exchange rate and
stock returns, but is not consistent with the standard ARCH/GARCH or stochastic
volatility models.

Long memory models are designed to represent time series with autocorrela-
tions functions exhibiting a slow hyperbolic rate of decay. The leading long memory
time series model is the fractionally integrated ARMA (ARFIMA) model (Granger

and Joyeux (1980) and Hosking (1981)). Models with long memory in the volatil-



ity process have been proposed and found to match the autocorrelation functions
of squared, log-squared and absolute asset returns. These include the long memory
ARCH model in Robinson (1991), the fractionally integrated GARCH, or FIGARCH,
model in Bollerslev and Mikkelsen (1996) and Baillie, Bollerslev and Mikkelsen (1996)
and the fractionally integrated stochastic volatility model in Breidt, Crato and de
Lima (1998). These models can imply that the autocorrelation functions of squared,
log-squared and/or absolute returns have the same hyperbolic rate of decay as the
volatility process. Many papers have sought to estimate the long memory parameter
in the volatility process without specifying a particular parametric model by applying
a semiparametric estimator to one or more of these volatility measures. These papers
include Bollerslev and Wright (2000), Breidt, Crato and de Lima (1998), Granger and
Ding (1996), Lobato and Robinson (1998) and Lobato and Savin (1998).

The precise estimates of the long memory parameter can however be sensitive
to the choice of volatility measure. In this paper I show that for daily U.S. stock
return data, there is considerable sensitivity to the choice of volatility measure and
that using squared returns gives much lower estimates of the long memory parameter
than the other alternatives. 1 report the results of a Monte-Carlo simulation in
which the data is generated from various long memory volatility models, and different
volatility measures are used in the log-periodogram regression to estimate the degree

of fractional integration. If the returns are Gaussian, conditional on the volatility



process, then the results are insensitive to the choice of volatility measure. But
it is widely agreed that asset return data is not even conditionally Gaussian, so I
also simulate data which is conditionally heavy tailed (t distributed on v degrees
of freedom). In this case, the simulated bias is sensitive to the choice of volatility
measure. In particular, if squared data is used, there is a large downward bias in the
estimated degree of fractional integration. This ties in with the empirical findings.
The plan for the remainder of this paper is as follows. Section 2 describes some
long memory volatility models and semiparametric estimators. The empirical work

is in Section 3. Section 4 contains the Monte-Carlo results. Section 5 concludes.

2. Long Memory in Volatility

2.1 Long Memory and Fractional Integration

The ideas of fractional integration and long memory were introduced to econometrics
by papers including Granger and Joyeux (1980) and Mandelbrot (1971). Recent
and comprehensive reviews of this topic are provided by Baillie (1996) and Robinson
(1994). Long memory time series are characterized by a slow rate of decay of the
autocovariance function. A time series {h;};_; is said to exhibit long memory if it

2d—1

has a covariance function (j) that is of the same order as j (as j — 0), and a

spectrum f()) that is of the same order as A™** (as A\ — 0), for 0 < d < 0.5. The



definition of long memory can be extended to the case d > 0.5 or d < 0 (negative long
memory). The ARFIMA model is the leading parametric long memory time series

model. Define {h;}_; to be an ARFIMA(p,d, q) process if

a(L)(1 — L)%hy = b(L)u, (1)

where u; is ii.d. with mean zero and variance o2, L is the lag operator, the lag
polynomials a(L) and b(L) (of orders p and ¢, respectively) are assumed to have all
of their roots outside the unit circle, d is any number on the real line and (1 — L)?
is defined by the usual binomial expansion. For d < 0.5, {h;} is stationary, and its

covariance function and spectrum have the required rates of decay.

2.2 Fractionally Integrated Stochastic Volatility

The slow rate of decay of the autocorrelations of log-squared, squared and absolute re-
turns motivates the construction of models with long memory in the volatility process.
The fractionally integrated stochastic volatility (FISV) model is one such specifica-
tion, proposed by Breidt, Crato and de Lima (1998). This specifies that {y,;}/_; is a

time series of asset returns such that
Yt = €$p(ht/2)(755t7 (2)

where h; is an ARFIMA process, as defined in equation (1) and &; is an i.i.d. sequence

with unit variance that is independent of u;. It is further assumed that wu, is Gaussian



and that E'log(?) < oo (but &, is not generally assumed to be Gaussian in this paper).
The log-squared returns have the same persistence properties as the latent volatility
process, hy, since log(y?) = log(o?)+ E log(e?) + hy+&,, where £, = log(e?) — E log(¢?),

and so, for d < 0.5,
Cov(log(y7), log(y;_;)) « 7, (3)

1

as j — oo'. If, furthermore, ¢, is Gaussian then Andersen and Bollerslev (1997) and

Robinson (1999) show that

Cov(y, yi—;) -« >, (4)

and

Cov(lwl, [y—s]) « 7271, (5)

as j — oo, for d<0.5. Equations 3-5 form the basis for applying semiparametric esti-
mators of the long memory parameter to log-squared, squared or absolute returns so
as to estimate the degree of long memory in the latent volatility process®. I conjecture
that equations (4) and (5) continue to hold with some nonnormal specifications for

Et.

! Throughout this paper, the «~ notation means that the limit of the ratio of the quantities on the
left and right hand sides of the symbol is a finite positive constant.

2The results in Robinson (1999) also apply to the autocovariance function of |y;|*
A, a transformation considered by Ding, Granger and Engle (1993).

, for noninteger



2.3 The FIGARCH and FIEGARCH Models
Fractional integration can also be introduced into models in the ARCH/GARCH

family. These models specify that {y;}]_; is a time series of asset returns such that
Yt = O¢&y, (6)

where £; is an i.i.d. sequence with unit variance. The FIGARCH(1,d,1) model,

proposed by Bollerslev and Mikkelsen (1996) specifies that

of =w+ foi_ + 1= BL— (1 - L) (1 - L)y}, (7)

where the parameters satisfy restrictions which ensure that o2 is positive almost surely
for all ¢ (Bollerslev and Mikkelsen provide explicit sufficient conditions). For d = 0,
this reduces to the standard GARCH(1,1) specification, as 02 = w+£0? |+(6—0B)y? ;.
Higher order FIGARCH models can, of course, be constructed in the same way.
Stock return volatility appears to be negatively correlated with lagged returns.
This so-called leverage effect was first noted by Black (1976) and is not generated
by the GARCH or FIGARCH models. This motivated Nelson (1991) to propose the
exponential GARCH, or EGARCH model. This can also be generalized to incorporate
fractional integration in the FIEGARCH(1,d,1) model, proposed by Bollerslev and

Mikkelsen (1996), which specifies that

In(07) = w(l = ) + dIn(of_y) + (1 + L)1 — L) (01 + yllees| = Eler-al]). (8)



These FIGARCH and FIEGARCH models may easily be estimated by a quasi-
maximum-likelihood estimator. For a number of stock and exchange rate returns
Bollerslev and Mikkelsen (1996) and Baillie, Bollerslev and Mikkelsen (1996) find
that d is significantly different both from 0 and from 1. These models can also be
used to motivate semiparametric estimation of the long memory volatility dependen-

2d—1

cies, since Cov(yf,y; ;) «~ j*4~! and Cov(log(y7),log(y;_;)) «~ j**7', as j — oo, if

d < 0.5, in the FIGARCH and FIEGARCH models, respectively.

2.4 Semiparametric Estimators of the Long Memory Parameter
The fully efficient estimation of any long memory time series model naturally requires
that the model be completely specified. But if the researcher is interested mainly in
the long memory parameter d, this may be estimated by semiparametric methods. Of
these, the log-periodogram regression estimator is the most widely used. It was first
proposed by Geweke and Porter-Hudak (1983), but the formal proofs of its consistency
and asymptotic normality were elusive until these were provided by Robinson (1995a),
in the Gaussian case.

Let I();) denote the sample periodogram of an arbitrary long memory time
series, z;, where \; = 27j /T denotes the jth Fourier frequency. The log-periodogram
regression (GPH) estimator of d, or cZ, is then given by minus the estimate of 3, in

the regression equation



log(I()\;)) = By + B1 log[dsin®()\;/2)] + Cjy J=1,..m. (9)

Robinson (1995a) showed that if z; is Gaussian, —0.5 < d < 0.5, the bandwidth para-
meter m converges to infinity but is o(T'), and mild additional conditions are satisfied?,
then /m(d —d) — N(0, g—i) The log-periodogram estimate is therefore consistent
and asymptotically normal, but converges at a rate slower than the usual 7. Al-
ternatively, the variance of d may be consistently estimated by the conventional OLS
variance estimate from the regression in equation (9). Some recent literature has
extended Robinson’s results. Deo and Hurvich (1999) proved the consistency and
asymptotic normality of d for certain nonnormal time series. Velasco (1999) proved
the consistency of d in the case 0.5< d <1 and its asymptotic normality in the case
0.5< d <0.75.

Robinson (1995b) proposed an alternative semiparametric estimator of d, which
is asymptotically more efficient and the properties of which can be established under
milder conditions (Robinson (1995b), Robinson and Henry (1999)). This estimator,

called the Gaussian semiparametric (GSP) estimator, is d = argming R(d), where

R(d) = log(2Xm A1 ()))) — 225™  log A;. Robinson (1995b) proved that vm(d

3Strictly, the proofs in Robinson (1995a) required some of the very lowest frequencies to be omit-
ted from the regression in equation (9). Subsequently, Hurvich, Deo and Brodsky (1998) provided
a version of this proof which does not require any such trimming.



—d) — N(0, %), under conditions given in that paper.

The models of subsections 2.2 and 2.3 can imply that the autocovariance func-
tions of squared, log-squared and absolute returns have the same long memory prop-
erty as the underlying volatility process. This motivates researchers to apply semi-
parametric methods such as d and d to the squared, log-squared or absolute returns
in a bid to estimate the long memory in the volatility dependencies without having to
specify a complete parametric model. There is little theoretical reason to prefer one
volatility measure over any of the others. Lobato and Robinson (1998) and Lobato
and Savin (1998) use squared returns, Granger and Ding (1996) use absolute returns,
Breidt, Crato and de Lima (1998) use log-squared returns and Bollerslev and Wright
(2000) use all three of these volatility measures. The focus of the present paper is
on examining which is the appropriate volatility measure to use in practice, when

estimating long memory in the volatility of asset returns.

3. Empirical Results with U.S. Stock Market Data

In this section, I apply the log-periodogram regression to volatility measures con-
structed from the demeaned continuously compounded total returns on the value-
weighted and equal-weighted daily stock indices, obtained from the Center for Re-
search in Securities Prices (CRSP). The data covers the period July 3 1962 to De-
cember 31 1998, for a total of 9190 observations.

9



3.1 The Modified Log-Squared Transformation

An inlier problem often arises when dealing with log-squared returns; if the asset
return is very close to zero, then the log-squared transformation yields a large negative
number. Such an observation can then greatly affect the results of subsequent data
analysis. In the extreme case, if the asset return is equal to zero, then the log-squared
transformation is not even defined (though this does not arise in the present context
because the returns are demeaned). Fuller (1996) proposed a slight modification
of the log-squared transformation, which does not converge to minus infinity as the
argument converges to zero. This specifies that the transformed series of asset returns
is

’7'82

yi = log(y; +75%) — (10)

y? + 752
where s? is the sample variance of ¢, and 7 is a small constant. In this paper, I use

four volatility measures: squared, log-squared and absolute returns, and the modified

log-squared returns, as defined in equation (10) (with 7 set to 0.02, following Fuller).

3.2 Results

The sample autocorrelations of each of the four volatility measures applied to the
equal-weighted returns are shown in Figure 1. They all exhibit the slow rate of decay
that is the defining characteristic of a long memory model. Table 1 reports the log-

periodogram estimate, d, using all four volatility measures, for both equal-weighted

10



and value-weighted returns. Results using the GSP estimator, d, instead are given in
Table 2. In both tables, results are reported for four choices of the bandwidth, m=50,
100, 150 and 200. Two key things can be noticed in Tables 1 and 2. Firstly, there is
strong and consistent evidence for long memory volatility dependencies (d>0). The
results are not too sensitive to the bandwidth (which can often be a problem (Geweke
(1998)), nor are they too sensitive to the choice of estimator. But secondly, much
lower estimates of d are obtained with squared returns than with the other volatility
measures. This is true across all bandwidths, and with both d and d. In some cases
with squared returns, the estimate of d is not significantly different from zero (at the
5% level). Meanwhile d is significantly positive at all conventional significance levels

for all the other volatility measures.

4. Monte-Carlo Results

The main goal of this paper is to compare the properties of the semiparametric
estimators d and J, using the different volatility measures to determine which are
good/bad choices and to account for some of the results reported in Table 1. Theory
gives us little guidance as to which measure should be used, and so, in this section I
report the results of a Monte-Carlo simulation using three data generating processes,

calibrated to the CRSP equal-weighted returns:

11



(1) The FISV model given by equations (1) and (2), where h; is an ARFIMA(1,d,0)
time series, so that (1 — aL)(1 — L)%h; = usand v, is Gaussian. 1 set a =0.52,
d=0.475 and 0%=0.118. These were the estimated values from fitting the FISV model
to the CRSP equal-weighted returns (as in section 3 above) by the frequency-domain
maximum-likelihood procedure of Breidt, Crato and de Lima (1998). I set 0% =1,

without loss of generality?.

(2) The FIGARCH model given by equations (6) and (7). I set w=0.022, 3=0.436, ¢=0.309
and d=0.473. These were the estimated values from fitting the FIGARCH model
to the CRSP equal-weighted returns by maximum-likelihood (as in Bollerslev and

Mikkelsen (1996)).

(3) The FIEGARCH model given by equations (6) and (8). Iset w=-0.65, §=0.463, v=-
0.14, ¥=-0.661, $=0.833 and d=0.382. These were the estimated values from fitting

the FIEGARCH model to the CRSP equal-weighted returns by maximum-likelihood.

In each model, it is further specified that &; is t-distributed on v degrees of freedom,
v=2,3,5,7,00, so that £; has v — 1 finite moments. The case v = oo corresponds to
normality. The sample size T is 22=4096 or 2'3=8192; the latter is a typical sample

size for daily U.S. stock return data. In the FISV model, the Gaussian ARFIMA

*Changing 02 amounts to multiplying y? or |y;| by a constant, or adding a constant to log(y?);
the log-periodogram regression is numerically invariant to these transformations.

12



series were generated by the algorithm of Davies and Harte (1987); the FIGARCH and
FIEGARCH series were simulated exactly as described in Bollerslev and Mikkelsen
(1996). For each simulation, 1000 replications were conducted. Results in which the
Monte-Carlo experiment is instead calibrated to the CRSP value-weighted returns
are similar and are available from the author on request, but are not shown, so as to
conserve space.

The simulated biases of the GPH and GSP estimators using the four different
volatility measures, in the alternative models, are shown in Figures 2-5. The simulated
standard deviations are in Figures 6-9. In all cases, the bias and standard deviation
is plotted against the bandwidth m, for values of m between 30 and 300. The key

points to note are:

(1) The estimators generally exhibit some downward bias. This is consistent with
findings in a number of other papers, including Bollerslev and Wright (2000), where
solutions to the bias using high frequency data were discussed. In the present paper,
it is assumed that no such data is available. Accordingly, temporal aggregation is

not an issue.

(2) The choice of volatility measure has little to do with the magnitude of the bias,

provided that the data is conditionally Gaussian (v = 00).

(3) However, using squared returns gives much more downward bias than any of the

13



other three volatility measures, if the data is conditionally leptokurtic. This is true
in the FISV, FIGARCH and FIEGARCH models. Squared returns give the worst
bias even for v = 7 (not very heavy tails). The bias using squared returns continues
to worsen as v falls, and is enormous for v = 2 or v = 3. The other volatility
measures yield comparable bias and show little tendency to become more biased as
the tail thickness increases, except that using absolute returns gives more bias than
log-squared or modified log-squared returns if v = 2 (a rather extreme specification).
Even with v = 2, although the bias using absolute returns is large, it is substantially

smaller than the bias using squared returns.

(4) The choice of estimator (d or d) and the sample size both have little to do with
the magnitude of the bias. In the FISV and FIEGARCH models, increasing the

bandwidth makes the bias somewhat worse.

(5) The standard deviation of the estimators is not greatly affected by the choice of
volatility measure, but is typically somewhat higher using squared returns, except in

the case v = 2.

Overall, in these simulations, there is little difference between the performance of the
semiparametric estimators of d using alternative volatility measures, except that less
reliable results are obtained with the squared returns (point (4)). This observation

is the main focus of this paper and is consistent with the empirical results of the
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previous section. It is clear that asset returns have heavy tails, and perhaps even have
infinite kurtosis (Loretan and Phillips (1994)). Volatility clustering with conditional
Gaussianity can account for some of this leptokurtosis, but it is widely agreed that &,
must have heavier tails to approximate the actual tail behavior of stock market and
exchange rate returns (see e.g. Bollerslev (1987), Bollerslev, Engle and Nelson (1994),
Fridman and Harris (1998), Gallant, Hsieh and Tauchen (1997), Geweke (1998) and
Liesenfeld and Jung (1997)°). While ¢ is unlikely to be t-distributed on 2 degrees
of freedom, it seems very reasonable to think of it as being t-distributed on 7 or 5
(or even fewer) degrees of freedom. Accordingly, the downward bias using squared
returns found in these simulations can be expected to be an empirically relevant
phenomenon. So, squared returns should not be used as the volatility measure in the
log-periodogram regression estimation of long memory volatility dependencies.

In the FISV, FIGARCH and FIEGARCH models, if the mth moment of &; is
infinite, then the mth unconditional moment of y; must also be infinite. Davis and
Mikosch (1998) show that the sample autocorrelation function of a general stationary
infinite variance process has a random limit. They also show that the sample auto-

correlation function of a general stationary process with finite variance but infinite

SFor example, Fridman and Harris (1998) and Liesenfeld and Jung (1997) both consider the
parametric estimation of a short memory autoregressive stochastic volatility model, by simulated
maximum likelihood, allowing for conditional nonnormality. Both papers find evidence of significant
conditional nonnormality in stock returns.

15



fourth moment converges to its population counterpart, but at a rate slower than the
usual 7%/2 rate. The nonstandard asymptotics of sample autocorrelation functions
of heavy-tailed processes are relevant to the results I find in these Monte-Carlo sim-
ulations. If the fourth moment of &, is finite, but its eighth moment is infinite, then
y? must have an infinite fourth moment, but |y;| may have a finite fourth moment.
Similarly, if &; has finite variance but an infinite fourth moment, then y? must have
infinite variance, but |y;| may have finite variance. The squared returns are most
likely to be more vulnerable to the difficulties that arise with heavy-tailed variables.

A possible intuition for the downward bias when using squared returns with
conditionally leptokurtic data is as follows’. The denominator of the sample auto-
correlation of |y|P will involve extremely large terms if y; does not have 2p finite
moments. Meanwhile, the numerator of the sample autocorrelation at lag 7 will
involve large terms only if |y;|? and |y;—;|” are both large. Hence the sample autocor-
relations of |y |P shrink towards zero and the associated semiparametric estimator of
d is biased downwards. This problem is worse for squared returns than for absolute

returns, because absolute returns will always have more finite moments than squared

returns.

6T am grateful to an anonymous referee for suggesting this intuition.

16



5. Conclusion

Researchers use a variety of volatility measures to estimate the long memory parame-
ter in the volatility of asset returns. For daily U.S. stock returns, using squared

returns gives the lowest estimates. In Monte-Carlo simulations, I have found that
using squared returns causes a large downward bias, if the returns are sufficiently

leptokurtic, conditional on the volatility process. Since conditional leptokurtosis is
a widely accepted property of asset returns, I conclude that researchers should avoid
using squared returns as the volatility measure in semiparametric estimation of long

memory volatility dependencies.
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Log-Periodogram Estimates of Long Memory in the Volatility of U.S. Stock Returns

Table 1

(Standard Errors in Parentheses)

Volatility Measure m =50 m=100 m =150 m = 200
Squared VW returns 0.138 0.161 0.158 0.132
(0.054) (0.034) (0.026) (0.021)
Log-Squared VW returns  0.578 0.425 0.407 0.444
(0.096) (0.066) (0.048) (0.042)
MLSQ VW returns 0.582 0.456 0.437 0.467
(0.104) (0.068) (0.050) (0.045)
Absolute VW returns 0.389 0.402 0.427 0.411
(0.082) (0.065) (0.050) (0.042)
Squared EW returns 0.066 0.092 0.114 0.111
(0.069) (0.050) (0.038) (0.031)
Log-Squared EW returns 0.409 0.353 0.394 0.388
(0.093) (0.063) (0.054) (0.047)
MLSQ EW returns 0.424 0.333 0.382 0.379
(0.096) (0.064) (0.052) (0.046)
Absolute EW returns 0.311 0.234 0.319 0.340
(0.093) (0.058) (0.050) (0.047)

Notes: This table reports the log-periodogram estimates of the long memory parameter in four measures
of the volatility of value weighted (VW) and equal weighted (EW) stock returns.
the demeaned, total continuously compounded index returns, from CRSP. The standard errors are the

conventional asymptotic standard errors (Robinson (1995a)).

3 1962 to December 31 1998, for a total of 9190 observations.
transformed by the modified log-squared transformation, as in equation (10). The bandwidth parameter

is m.

The data is daily, covering the period July
The returns labelled MLSQ have been

These returns are



Gaussian Semiparametric Estimates of Long Memory in the Volatility of U.S. Stock Returns

Table 2

(Standard Errors in Parentheses)

Volatility Measure m =50 m=100 m =150 m = 200
Squared VW returns 0.129 0.167 0.171 0.149
(0.071) (0.050) (0.041) (0.035)
Log-Squared VW returns  0.493 0.423 0.436 0.457
(0.071) (0.050) (0.041) (0.035)
MLSQ VW returns 0.491 0.442 0.462 0.474
(0.071) (0.050) (0.041) (0.035)
Absolute VW returns 0.369 0.400 0.438 0.426
(0.071) (0.050) (0.041) (0.035)
Squared EW returns 0.077 0.089 0.123 0.127
(0.071) (0.050) (0.041) (0.035)
Log-Squared EW returns 0.351 0.334 0.378 0.366
(0.071) (0.050) (0.041) (0.035)
MLSQ EW returns 0.370 0.336 0.384 0.370
(0.071) (0.050) (0.041) (0.035)
Absolute EW returns 0.290 0.250 0.313 0.304
(0.071) (0.050) (0.041) (0.035)

Notes: This table reports the Gaussian semiparametric estimator (Robinson (1995b)) of the long memory
parameter in four measures of the volatility of value weighted (VW) and equal weighted (EW) stock returns.
These returns are the demeaned, total continuously compounded index returns, from CRSP. The data is
daily, covering the period July 3 1962 to December 31 1998, for a total of 9190 observations. The returns
labelled MLSQ have been transformed by the modified log-squared transformation, as in equation (10).

The bandwidth parameter is m.



