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1. Introduction.

One of the key assumptions of the standard linear instrumental variables (IV) model
is that the instruments and endogenous variables are correlated. This is the identi-
fication assumption, on which the conventional asymptotic theory for the IV model
depends. Indeed even if the correlation between the instruments and the endogenous
variables is nonzero, but slight, then the conventional Gaussian asymptotic theory can
nevertheless provide a very poor approximation to the actual sampling distribution of
estimators and test statistics (see, for example, Bound, Jaeger and Baker (1995)). A
large literature has considered the exact sampling distribution of the two stage least
squares (TSLS) and limited information maximum likelihood (LIML) estimators in
models with nonstochastic instruments and Gaussian innovations. These exact dis-
tributions are far from the limits obtained from conventional asymptotic theory when
the instruments are weak. TSLS is severely biased in the direction of the probability
limit of OLS and the associated t-statistic is highly nonnormal and can even be bi-
modal. Recently, alternative asymptotic nestings have been proposed, which provide
much better approximations to the actual sampling distribution of estimators and
test statistics in the IV model. Bekker (1994) models the number of instruments as
being an increasing function of the sample size. Staiger and Stock (1997) model the
correlation between the instruments and endogenous variables as being local to zero.

The generalized method of moments (GMM) model (Hansen (1982)) nests the



linear IV model as a special case. It is not surprising that analogous issues arise in
this model. Many researchers have found that, in a wide variety of contexts, the con-
ventional Gaussian asymptotic theory provides a poor approximation to the sampling
distribution of GMM estimators and test statistics. There are many possible reasons
why this could happen, but they include identification problems. The identification
condition in the GMM model requires the moment condition to have a unique zero
at the true parameter value and to have a full rank gradient and is crucial, just as it
is in the linear IV special case.

Fortunately, approaches to inference are available that are robust to failure or
near-failure of the identification condition. These robust approaches to inference do
not permit precise inference on a structural coefficient that is not well identified - that
is of course impossible. Robust approaches to inference consist of hypothesis tests
and confidence sets that correctly reflect the lack of identification. If the instruments
are completely irrelevant then a robust confidence set should contain the whole pa-
rameter space (or at least any point in it with probability equal to the coverage of
the confidence set). In the context of the linear IV model with fixed instruments and
Gaussian errors, Anderson and Rubin (1949) proposed an exact test of the hypothesis
that the entire vector of structural coefficients takes on a specified value. An exact
confidence set for the entire vector of structural coefficients can be computed as the

set of hypothesized coefficient vectors for which this test does not reject. This confi-



dence set has coverage close to the nominal level with stochastic instruments and/or
nonnormal errors, even if the instruments are weak (Staiger and Stock (1997)). It is
thus a robust confidence set. Stock and Wright (2000) construct a nonlinear analog
of the Anderson-Rubin confidence set applicable in a general GMM model with pos-
sible identification difficulties. Other robust confidence sets were proposed by Wang
and Zivot (1998), Kleibergen (2001, 2002) and Moreira (2002), and are discussed by
Stock, Yogo and Wright (2002).

All of these robust confidence sets that control coverage whether the model is
identified or not are formed by inverting the acceptance region of a test statistic.
None of them give us point estimates - consistent point estimation is impossible
without identification. There is a strong case to be made for saying that researchers
should always report only robust confidence sets. However, practitioners are fond of
reporting point estimates and associated standard errors. Part of this attachment
may be force of habit and part of it may be that there is real value in a point
estimate. In addition, robust confidence sets do not generally give us confidence
sets for individual elements of the whole parameter vector, other than conservative
confidence sets obtained by projection methods. Point estimates and conventional
standard errors of course yield confidence intervals for individual elements of the
parameter vector. For these reasons, it seems important to provide a diagnostic

so as to indicate whether there is an identification problem or not. If the diagnostic



indicates identification difficulties, the researcher should be warned to use only robust
confidence sets. Otherwise, the researcher may rely on conventional point estimates
and confidence sets.

In the linear IV model, the first-stage F-test involves running a regression of
the endogenous variables on the instruments and testing the null hypothesis of the
joint insignificance of the slope coefficients. The null hypothesis is one of a lack of
identification. Although an important and useful diagnostic, a significant first-stage
F-statistic by no means implies that issues of weak instruments can be ignored (see, for
example, Hall, Rudebusch and Wilcox (1996), Staiger and Stock (1997) and Stock and
Yogo (2001)). A computationally intensive and asymptotically conservative analog
of this test for the GMM model was developed by Wright (2002): this is the only
extant test for identification or lack of identification in the nonlinear-in-parameters
context that I am aware of.

The first-stage F-test tests the hypothesis that the model is not identified.
Recently, Hahn and Hausman (2002) proposed a test of the hypothesis that the linear
IV model is identified. In the case of a single right hand side endogenous variable,
the idea is to compare the forward and reverse TSLS regressions. I am not aware of
any existing test of the hypothesis that the model is identified that is applicable in
the nonlinear-in-parameters context.

In this paper, I propose a new test of the hypothesis that the model s identified,



applicable in the general GMM model provided that the model has more moment
conditions than parameters. The idea is to compare the volume of a Wald confidence
set (not robust to identification difficulties) with the volume of a robust S-set. Under
the null that the model is identified, this ratio is O,(1). Under the alternative, the
robust confidence set has high probability of being unbounded.

I argue that for a test of either the null of identification or of a lack of identifica-
tion to be useful, it must indicate a lack of identification not only when the model is
completely unidentified but also when the identification is so weak that conventional
Gaussian asymptotics works very poorly. Comparing the first-stage F-statistic with
X3 /k critical values, where k denotes the number of instruments, does not satisfy this
requirement. In the context of the linear IV model, Stock and Yogo (2001), using
the weak instrument asymptotics of Staiger and Stock (1997), show how to solve for
the critical value of a first-stage F-statistic that ensures that the weak instrument
asymptotic coverage of the TSLS Wald confidence set is no smaller than some bound,
or that the asymptotic bias of TSLS is no greater than some bound. These critical
values are much higher than the x%/k critical values with which the first-stage F-
statistic is usually compared. Although the test of a null of identification in GMM
that I propose in this paper does not have any weak identification asymptotic motiva-
tion along the lines provided by Stock and Yogo in the linear IV model, the proposed

test focuses directly on the comparison of robust and non-robust confidence sets and



rejects the null of proper identification whenever robust and non-robust confidence
sets are very different. As such, it might be hoped that the proposed test will indi-
cate circumstances in which identification is so weak that conventional asymptotics
are seriously misleading and that a strategy of using the robust confidence set when
the proposed test rejects, but using the regular Wald confidence set otherwise will
control coverage quite well (while also indicating circumstances in which a researcher
may safely use point estimates and conventional standard errors). This will of course
be demonstrated in the Monte-Carlo simulations below.

The plan for the remainder of this paper is as follows. The GMM model is intro-
duced in section 2. Section 3 describes the proposed test and derives its asymptotic
distribution. Section 4 contains a Monte-Carlo simulation evaluating the properties of

the proposed test. Section 5 contains two empirical applications. Section 6 concludes.

2. The GMM Model.

The GMM model specifies that {Y;}L | is an observed time series and 6 is an nx1

parameter vector with a true value 6, in the interior of a compact space O, such that
E(¢(Yz,00)) =0
where ¢(.,.) is a k-dimensional function, k¥ > n. The GMM estimator of 0 is

f = argming S(6)



where

5(0) = ¢*(0) Wre™(0),
¢*(0) = [T7V25L 1 ¢(Y;,0)] and Wy is a symmetric positive definite kxk weighting
matrix which converges almost surely to a symmetric nonstochastic O(1) positive

definite matrix W. Here are the standard assumptions for the GMM model:

Assumption Al: ¢*(0) is twice continuously differentiable, for all 6 in ©.

Assumption A2: T7'ST ¢(Y;,0) —as E($(Y;,0)) and 7718 2000, - p[detid))
uniformly in 6.

Assumption A3: T1/25T  ¢(Y;,00) —a N(0, A), where A is 27-times the zero-frequency
spectral density matrix of ¢(Y;, 6y).

Assumption A4: The kxn matrix B = E [W] has rank n.

Assumption A5: E(¢(Y;,0)) has a unique zero at 0 = 6.

Assumption A6: Vi (0) is an estimator of 27-times the zero-frequency spectral density

matrix of ¢(Y;, 0) that is consistent, uniformly in 6.

Assumptions A2 and A3 are high level convergence assumptions. Assumption A4
is the local identification assumption. Assumption A5 is the global identification

assumption (Hsiao (1983)). Under these assumptions, § —, 6 and

VT (0 —0) —4 N(0,(BWB)~"'B'WAW B(B'WB)™1)



The asymptotically efficient estimator is obtained by choosing a weighting matrix such
that W = A™!; the variance of this asymptotic distribution is then (B’A"'B)"1.
One possible choice of the weighting matrix is the identity matrix. This yields

the objective function
Sos(0) = [T72SL,6(Y, O)] [T V/?SL16(Y:, 0))]

Denote the resulting estimator by Oos = arg ming Spg(#). This estimator is not
asymptotically efficient. A feasible asymptotically efficient estimator can be obtained

by setting the weighting matrix equal to Vi (6ps) ™!, yielding the objective function
Srs(0) = TS0, 0) Vi (Bos) TS, 6(Y:, 0).

Denote the resulting estimator, called the two-step estimator, by Org = arg ming Sys(0).
Another feasible asymptotically efficient estimator can be obtained by setting the

weighting matrix equal to Vr(6), yielding the objective function
Scu(0) = [T?2L16(Ye, )] Vi (0) [T /*SE, (Y2, 0)].

Denote the resulting estimator, called the continuous-updating estimator, by Oy =
arg ming Scy(#). This estimator was proposed by Hansen, Heaton and Yaron (1996).

If k = n, the two-step and continuous-updating estimators are numerically equivalent.



2.1 Problems with Standard Gaussian Asymptotics for GMM.

The above asymptotic theory often works poorly in practice. Often, in empirically
relevant sample sizes, éTS and éCU are biased and have sampling distributions far
from those predicted by this asymptotic theory, and the associated t- and F-statistics
have erratic rejection rates. These problems, documented in numerous Monte-Carlo
studies, could arise because T~/2%1" ¢(Y;, 0p) fails to converge to normality, or con-
verges only very slowly. Alternatively, it could be that E(¢(Y3,0)) is zero, or close to
zero, even for 6 # 6 - in violation of assumptions A4 and A5.

The focus of this paper is on problems with the asymptotic theory underlying
GMM which arise from this latter source: an identification problem. Stock and
Wright (2000) proposed an alternative asymptotic nesting in which E(¢(Y;,0)) =
O(T~'/?), uniformly in §. They derive an alternative asymptotic theory which nests
the completely unidentified model (E(¢(Y:,6)) = 0, uniformly in 6) as a special case.
This alternative asymptotic theory works much better than the conventional Gaussian
asymptotic theory in providing an approximation to the finite sample distributions
of GMM estimators and test statistics when identification is weak. In the linear IV

model, it reduces to the nesting proposed by Staiger and Stock (1997).

2.2 S-sets.
The weak identification problem in GMM may be effectively circumvented by the use

of S-sets, as proposed in Stock and Wright (2000). The approach dispenses with point



estimation and instead forms a confidence set for § directly from an objective function,
using a nonlinear analog of the Anderson-Rubin confidence set. If assumption A3
holds, and if V(0g) —, A, then the continuous-updating objective function evaluated
at the true parameter vector, Scy(6p), converges to a x? distribution on k degrees of
freedom. No identification assumption (assumption A4 or A5) is required for this to
hold. The confidence set for 6 is formed as the inverse of the acceptance region of
this test, i.e. the confidence set of coverage 1-a is Sj(a) = {6 : Scu(0) < Fy2(k,a)}
where F,2(a,b) is the 100b percentile of a x? distribution on a degrees of freedom.
In a completely unidentified model (E(¢(Y;,0)) = 0, uniformly in #) or a locally
asymptotically underidentified model (E(¢(Y;,0)) = O(T~%/2), uniformly in 6), such
a confidence set will have infinite expected volume. But this is the correct statement
of our uncertainty about 6 in the presence of weak identification. More formally,
under these circumstances, any confidence set that is valid (i.e. controls coverage)

must have infinite expected volume (Dufour (1997)).

2.3 The Homoskedastic Linear IV Model

The linear IV model with iid errors specifies that

y=XG+u

X=/I1+w

where y and X are Tx1 and T'xn matrices of endogenous variables, Z is a T'xk matrix

10



of instruments (k > n), and u and v are conformable matrices of errors such that
w; = (ug,v;)" has variance-covariance matrix 2 (the ¢ subscript on any matrix denotes
the ¢th observation for that variable). The first of these equations is the structural
equation of interest, and the researcher wants to do inference on the coefficient vector
B. Without loss of generality, there are no included exogenous variables in this
equation. If they were present, they would just be projected out. Because u; and v,
are correlated, OLS is biased.

This model is a special case of the general GMM model with ¢(Y;,0) = (y; —
X,8)Z, 0 = Band Vp(0) = TS, 2,2, T7'SL (y,— X, 8)%. Since B = F[220u0)] —
E[Z:X,] = E[Z,Z,]11, the local identification condition reduces to requiring that the
matrix IT has rank n. If this condition is satisfied, assumption A5 is satisfied too.

The TSLS estimator is
Brops = (X' Z(Z'2) 2 X))\ X' Z(Z' Z) 2"y

which is the two-step GMM estimator. The continuous-updating GMM estimator

reduces to LIML. The S-set reduces to

XP3) Py (y—Xp
18 =St < Pelk.o)}

where P, = Z(Z'Z) 'Z'. This is the Anderson-Rubin confidence set (Anderson and
Rubin (1949)). If n = 1 (a single right hand side endogenous variable), the confidence
set can be written as

11



(B (X'P,x — 520 xrxy g2 4 o By py X384+ {y Py — 22y < 0}

This is a quadratic inequality the solution to which is a confidence set for 3 that
must be an interval, the whole real line, the complement of an interval or an empty
confidence set. The Anderson-Rubin confidence set is robust to weak instruments.
Staiger and Stock (1997) show that it controls coverage in their weak instrument
asymptotics. The test is indeed an exact test, if the instruments are fixed and errors
are Gaussian (after replacing x? critical values with F' critical values).

The first-stage F-test tests the hypothesis that II = 0. A rejection of this
hypothesis by no means implies that there are no identification difficulties. The
identification may not be strong enough for conventional asymptotic theory to work
well, as discussed in the introduction. There is an additional issue if n > 1. The
identification condition requires Il to have rank n, which is a stronger requirement
than II # 0 if n > 1. The case in which II has nonzero rank, smaller than n, can
be called partial identification and also leads to failure of conventional asymptotic
theory, as discussed by Choi and Phillips (1992). Cragg and Donald (1993) extend
the first-stage F-test to test the hypothesis that II has a specified rank smaller than
n. It is a convenient feature of testing the null hypothesis of identification, as I do
in this paper, that the test is consistent against the alternative that II has any rank

smaller than n (or that B has any rank smaller than n, in the general GMM case).

12



2.4 Identification Problems in Other Cases.
The linear IV model with iid errors is only one special case of the general GMM model.
The GMM model can accommodate heteroskedastic and /or dependent errors. Indeed,
any maximum likelihood estimator is a special case of GMM in which the moment
condition is the score function.

A leading application of the GMM model is the consumption capital asset pric-
ing model (CAPM) of Lucas (1978). With constant relative risk aversion (CRRA)

preferences, the consumption CAPM Euler equation implies the GMM moment con-

dition E(Z; ® [6 Ryt (552

&+)7 —1]) = 0 where Cy; and R;y; denote consumption and

a vector of gross asset returns, respectively, ¢ is the discount factor, v is the coeffi-
cient of relative risk aversion and Z; is any variable in the information set at time
t. This can be interpreted as a nonlinear-in-parameters instrumental variables model
with Z; as the instrument vector. However, consumption growth and asset returns
are notoriously hard to predict - meanwhile the identification assumptions (A4 and
A5) require nonlinear functions of these to be forecastable. Weak identification is
thus a prime issue in this context (see Stock and Wright (2000), Wright (2002) and
Stock, Wright and Yogo (2002)). The first-stage F-statistic does not apply in the
nonlinear-in-parameters GMM model.

Identification in GMM essentially requires that the objective function be locally

quadratic (assumption A4) and that it does not have multiple local minima which

13



give the same value of the population objective function (assumption A5). These
conditions apply even where there are no instrumental variables. For example, a logit
or probit model in which most of the dependent variables are zeros (or in which most
of the dependent variables are one) will have a likelihood that is flat around the true
parameter value, causing an identification problem. Likewise, the pseudo-Gaussian
likelihood function for a ratio of two parameters will be flat if the denominator is
close to zero. Pagan and Robertson (1998) argue that weak identification problems
can arise in the structural VAR literature.

This motivates the construction of a test of the identification conditions in the

general GMM model (assumptions A4 and A5).

3. The Proposed Test.

As discussed above, identification is a key requirement for conventional asymptotic
theory. I am however only aware of one extant test for the null hypothesis that
the model is identified. That is the test proposed by Hahn and Hausman (2002)
that compares forward and reverse T'SLS estimators. It applies only in the linear IV
model.

This paper proposes a new test of the null that the model is identified, which
applies in the general GMM context so long as k£ > n. Define W; as the maximum
distance between any two points in the robust S-set, i.e. W} = supy, 4, ||01 — 62|| such

14



that Scu(0;) < Fy2(k,a) for i = 1,2, where ||.|| denotes the Ly-norm. If the robust
S-set is empty, define W; to be zero.

Likewise define W5 as the maximum distance between any two points in the
usual two-step Wald confidence set for 0, i.e Wy = supy, 4, ||01—0|| such that T' (@TS—
0,)B' A 1B(0r5—0;) < F,2(n, ) fori = 1,2, where A and B are consistent estimators
of A and B, respectively.

. . . . F , N
The numerical computation of W5 is simple, as W, = % XQ(; a), where A

denotes the smallest eigenvalue of B'A'B. The numerical computation of Wi is
harder, but simplifies in the linear IV model with n = 1. In this case, there exists
a closed form expression for the robust S-set, which is the solution to a quadratic
equation, equation (1). If the confidence set is an interval, W is the width of this
interval. If the confidence set is empty, W7 = 0. If the confidence set is the whole
real line or is the complement of an interval, W is infinite. Computation of W; in
other cases is discussed in the Monte-Carlo simulations below.

I refer to W7 and W5 as the volumes of the robust S-set and usual two-step Wald
confidence set respectively. The test statistic that I propose is the ratio of these two

volumes,
L=W;/W,

The limiting distributions of L under the null of identification (assumptions A4
and Ab) is provided in Theorem 1, the proof of which is given in the appendix. It

15



involves consideration of the behavior of the two-step and continuous-updating GMM

objective functions in a T~ '/2-neighborhood of the true parameter value.

Theorem 1: Under assumptions A1-A6, if & > n,

I ¢/ G(G'G) G/ p—¢/ ¢+ F, 2 (h,c)
—d FXZ (n,@)

FG(GC) 6~ § + Fyalk,0) > 0
where ¢ is a N (0, I) kx1 vector and G = A~'/2B, a matrix of order kxn.

The null limiting distribution in Theorem 1 can easily be simulated, given a consistent
estimate of G (which is consitently estimable under the null of identification). The
proposed test is a one-sided test which rejects the null of identification for large values
of L. In the linear IV model, if the rank of IT is less than n, (or, more generally, if there
exist two distinct zeros of the equation Ef(Y;,0) = 0 that are infinitely far apart),
then Dufour (1997) shows that W; is unbounded with probability of at least 2a-1,
asymptotically. Meanwhile, W; is O,(1), and so the test rejects with an asymptotic
probability of at least 2a-1. While the test is not necessarily consistent against this
alternative, its rejection rate is guaranteed to asymptote above a certain point. For
example, if a = 0.95, i.e. the robust and Wald confidence sets have 95% nominal
coverage, then the rejection rate of the test under this alternative is guaranteed to
asymptote above 90% (and could of course be higher).

The null limiting distribution of L is degenerate, equal to 1, if £ = n. But the
statement of Theorem 1 ruled out this case. If k = n, the robust S-set is asymptoti-

16



cally equivalent to the Wald confidence set. This is not so in the case & > n, where
the robust S-set wastes power relative to the Wald set, if the model really is identified.
Alternative confidence sets have been proposed that are robust to weak identification.
Some of these have the additional feature that they are asymptotically equivalent to
the Wald confidence set if the model really is identified and k& > n (Kleibergen (2001)
in the linear IV model and Kleibergen (2002) in the general GMM context). A test
for a null of identification could be conducted by comparing the volume of a Wald
and a robust confidence set in cases where these two are first-order asymptotically
equivalent. This would however be harder as the test would be based on the second-
order asymptotic difference between the two confidence sets. The fact that the robust
S-set wastes power if k > n greatly simplifies the derivation of an expression for the
relative volume of the robust and non-robust confidence sets.

The proposed test works for any coverage rate of the Wald and S-sets, o. For
all numerical work in this paper, I set o = 0.95.

It would actually be possible to do two-tailed tests based on L as well. If the
robust S-set is empty, or excessively small (relative to the Wald set), this indicates
a specification problem. A two-tailed test would be a joint test of identification and
specification that would have power against both lack of identification and model
misspecification. Many important papers, including Bound, Jaeger and Baker (1995)

have been concerned simultaneously about identification and specification. But, in

17



this paper, I focus exclusively on testing for identification problems, and so adopt a
one-tailed test.

Although the test as defined here uses the Wald confidence set based on the
two-step estimator as the non-robust confidence set, the same asymptotic distribution
theory would apply if the Wald confidence set associated with the continuous updating
estimator were used instead!.

Zivot, Startz and Nelson (1998) prove that, in the linear IV model with n =1,
the S-set (which is just the Anderson-Rubin confidence set) of nominal coverage «
must be unbounded in any sample in which the first-stage F-test statistic is below

2. Tt follows that the rejection rate of my

the « critical value of a x2/k distribution
test of the null of identification must (numerically) be no less than the acceptance
rate of the usual first-stage F-test which is testing the null of a lack of identification.

As shall be seen in Monte-Carlo simulations below, in the linear IV mdel with n = 1,

the rejection rate of the proposed test is often much greater than the acceptance rate

!There are two reasons for focussing on the two-step estimator. Firstly, practitioners using
a non-robust estimator use the two-step estimator (TSLS) far more frequently than they use the
continuous-updating estimator (LIML). Secondly, the continuous-updating estimator is not robust to
lack of identification, but still works somewhat better than the two-step estimator when identification
is weak. Accordingly, it might be expected (and it turns out in simulations to be true) that a test
for a lack of identification that compares the S-set with the two-step Wald confidence set is more
powerful in the sense that it has a higher rejection rate than the test that compares the S-set with
the continuous-updating Wald confidence set when identification is weak.

2In the linear IV model for general n, Dufour and Taamouti (2002) show that a necessary and
sufficient condition for the Anderson-Rubin confidence set to be bounded is that a certain matrix is
positive definite. Whenever this matrix is not positive definite, the Anderson-Rubin confidence set
will be unbounded, and the proposed test statistic will necessarily reject.

18



of the usual first-stage F-test.

The proposed test is similar in spirit to a Hausman specification test. Any test
that compares two estimators one of which is consistent under the null and alternative
hypotheses and the other of which is consistent under the null hypothesis alone is
a Hausman specification test (Hausman (1978)). Consistent estimation is however
impossible in a model that is not identified®. The test that I am proposing instead
compares the volume of two confidence sets, which are of the same order under the

null, but not under the alternative.

4. Monte-Carlo Results.

4.1 The Linear IV Model with a Single Included Endogenous Regressor.
In my first set of Monte-Carlo results, I focus on the linear IV model with n = 1. The
experimental design follows Hahn and Hausman (2002). I normalize 3 to zero. The

instruments are k independent standard normal random variables. The errors w; are

1
Gaussian with 2 = - the parameter p governs the endogeneity of x;. I set

p 1
II = (¢,...¢). The population R? in the first-stage regression is R]% = k¢?/(k¢* + 1),

S0 ¢ = \/ R? J(k(1— Rrj;)) I use the following parameter combinations:

3This does not necessarily prevent one from constructing a test based on the difference between
two estimators neither of which is consistent under the underidentified alternative. The test of Hahn
and Hausman (2002) is such a test. A test based on the difference between the continuous-updating
and two-step GMM estimators would be too.
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T=100, 250, 1000

p=-0.9, -0.5, 0.5, 0.9

k=5, 10, 30

Results are reported for f%?:(), 0.01, 0.1, 0.3 and 0.5 in Tables 1-5, respectively. In
each experiment, I do 1,000 replications. I calculate (i) the coverage of the usual
Wald confidence interval (which is 1 minus the size of the TSLS t-test testing the
hypothesis that 5 = 0), (ii) the coverage of the Anderson-Rubin confidence set, (iii)
the rejection rate of the proposed test L, (iv) the coverage of the confidence set that
is the Anderson-Rubin confidence set if L rejects and the Wald otherwise, (v) the
acceptance rate of the first-stage F-test, (vi) the coverage of the confidence set that
is the Wald confidence set if the first-stage F-test rejects and the Anderson-Rubin
otherwise, (vii) the acceptance rate of the test comparing the first-stage F-test with
the weak identification asymptotic critical values of Stock and Yogo (2001)* and (viii)
the coverage of the confidence set that is the Wald confidence set if the first-stage
F-test rejects using these latter critical values and the Anderson-Rubin otherwise.
All confidence intervals have 95% nominal coverage and all tests have 5% nominal
size. I report the acceptance rate for the first-stage F-test but the rejection rate for

my proposed test. This gives some comparability, since the first-stage F-test tests a

4Specifically these are the critical values to ensure that the effective size of a TSLS Wald test is
no greater than 25% under the weak identification asymptotics of Staiger and Stock (1997).

20



null hypothesis of underidentification while the proposed test tests a null hypothesis
of identification. However, these tests are conceptually quite distinct.

The model is formally identified in all the experiments except those for which
R]% = 0. But we would want the test L to reject if the identification is so weak
that the TSLS t-statistic exhibits severe size distortions. The potential practical
usefulness of the proposed test is as a pretest as in (iv). The hope, to be evaluated in
these experiments, is that the effective coverage of the confidence set that is robust
if the test rejects and non-robust otherwise will generally be reasonably close to the
nominal level. The researcher is however better off with this strategy than simply
using the robust confidence set always in the sense that the researcher will sometimes
be allowed to use point estimates and standard errors, which may be preferable for
reasons discussed in the introduction.

The effective coverage rate of the Wald confidence interval can be far below the
nominal level when p > 0, as is well known. In extreme cases, its simulated effective
coverage is under 1 percent. The Anderson-Rubin confidence set effectively circum-
vents this problem. The proposed tests have low rejection rates when conventional
asymptotic theory works well, but high rejection rates when it works poorly.

The rejection rate of the proposed test is above 99% in all cases where Rfc =0.
Although I do not have a formal proof of the test’s consistency, this indicates that the

test rejects with probability very close to 1 when instruments are totally irrelevant.
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The rejection rate of the proposed test is consistently above 90% in the case
R]% = 0.01. The test of Hahn and Hausman (2002) has rejection rates of around
10% in many of these simulations (their Table 3). While it is true that the model
is formally identified with Rfc = 0.01, the model cannot be said to be well identified
with such a low theoretical first-stage R-squared in a sample size of 1,000 or less.
Since I am thinking of the test as testing for the adequacy of conventional asymptotic
theory, I believe that it is a useful feature of the proposed test that it rejects in such
cases’.

The coverage rate of the confidence set that conditions on the result of the
pretest proposed in this paper is never below 73% and is typically quite a bit higher
than this. The coverage rate of the confidence set that conditions on the result of the
first-stage F-test can be as low as 8%. It seems intuitive that the test proposed in this
paper works relatively well as a pretest because it is based on the direct comparison
of robust and non-robust confidence sets and only allows the researcher to use the
non-robust approach when this gives results that are close to the robust approach.

The coverage rates of the confidence set that conditions on the comparison of

the first-stage F-statistic with the critical values of Stock and Yogo (2001) is never

°In fact, the problem of testing the composite null that R?c > 0 against the point alternative
R2 =0 is not well defined, in the sense that such a test must either have power equal to the size, or
must fail to control the size uniformly in the parameter space under the null.
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below 83%°. There are however several cases in which the test of a null of identifica-
tion accepts the null hypothesis more than 50% of the time (allowing the researcher
to use conventional point estimates and standard errors), while the test that com-
pares the first-stage F-statistic with the critical values of Stock and Yogo accepts the
null of underidentification in all simulations (preventing the researcher from using
conventional point estimates and standard errors).

Of course, the researcher who never wants effective coverage to be appreciably

different from the nominal level should just always use the robust confidence sets.

4.2 The Consumption CAPM with CRRA Preferences.
An important feature of the proposed test is that it is applicable in all GMM models,
not just in the linear IV model, unlike the first-stage F-test or the test of a null of
identification proposed by Hahn and Hausman (2002). My second set of Monte-Carlo
results evaluate the proposed test in the context of the consumption CAPM Euler
equation with CRRA preferences.

To simulate data from the consumption CAPM, I follow the approach of Tauchen

and Hussey (1991) (also used in Tauchen (1986), Kocherlakota (1990), Hansen, Heaton

6This is not surprising, since these critical values are designed to ensure that the effective coverage
of the TSLS Wald confidence set is bounded below by 75% under weak instrument asymptotics. Stock
and Yogo provide critical values for different maximal biases or size distortions. I picked the critical
values that bound the effective size at 25% because the effective coverage rates of the confidence
set for B obtained with them are comparable with the effective coverage rates of the confidence sets
that condition on the results of the test for identification proposed in this paper.
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and Yaron (1996) and Stock and Wright (2000)). This involves fitting a 16-state
Markov chain to consumption and stock-market dividend growth (the state variables)

calibrated so as to approximate the first-order VAR:

log(%5) o log(5:=2) |
= p
log(5,5) log(5=2) Uds

where Dy is the stock-market dividend at date t and (e, ug)’ is iid normal with mean
zero and variance A. I use the same values of p, ® and A as Kocherlakota (1990),
who chose these by fitting a bivariate VAR(1) to historical US annual real dividend
growth and real consumption growth data’. I set the discount factor, &, to 0.97 and
the coefficient of relative risk aversion, v, to 1.3. Taking random draws of consumption
growth and dividend growth from this Markov chain, numerical quadrature is then
used to calculate the prices of a stock and a riskfree asset in each period implied by the
consumption CAPM with intertemporally separable CRRA preferences. In this way,
time series of consumption growth, stock returns and bond returns may be simulated®.
I then consider GMM estimation of the parameters ¢ and ~, using both stock and
bond returns as the elements of R; i, using as instruments either instrument set A:

a constant, one lag of stock and bond returns and one lag of consumption growth or

0.021 —0.161 0.017 0.0012  0.00177
7 _ _ —
These are 1 = < 0.004 ) e = < 0414 0117 ) and A = < 0.00177 0.014 )

8] am grateful to George Tauchen for his Gauss code for implementing this.
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instrument set B: a constant and one lag of consumption growth?. These instrument
sets were used by Hansen, Heaton and Yaron (1996). I use sample sizes of 100
(mirroring the available sample sizes for U.S. annual data) and 250 and 1,000 (to see
the effects of hypothetical larger sample sizes).

For these simulations, I report the coverage rate of a Wald confidence set and
an S-set for § = (8,7v)". Note that computing the coverage rate of the S-set just
involves comparing the continuous-updating objective function with the x2 critical
value at the true parameter value. I also report the rejection rate of the proposed
test, L. Lastly, I report the coverage rate of the confidence set for 6 that is the S-set
if L rejects and the Wald set otherwise.

Computing the numerator of the proposed test statistic, W7, is harder than in
the linear IV model with a single endogenous right hand side variable. I adopt the
following algorithm. I first bound the parameter space to be the wider of two possible
bounds: (i) a bound for § between 0.5 and 1.5 and 7 between -5 and 60, and (ii) the
two-step estimate +/- 30 standard errors. Next I take random points, uniformly from
within this parameter space, evaluate the continuous updating objective function at
each of these points, and save the first 1,000 points for which the objective function is

below the x? critical value. These points are all in the robust S-set!’. I then compute

9In GMM estimation of the consumption CAPM, I set Vi (0) = T~ 1SL | (Yy, 0)é(Yy, )" in this
paper (heteroskedasticity-robust).

107f after taking 100,000 random points from the bounded parameter space, none of them is
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the maximum distance (Lo-norm) between all pairs of these 1,000 points, and take this
as W;. Note that taking wider bounds, or drawing more points, can only ever increase
W1, and so make the test statstic L = W /W, more likely to reject. In the case n = 2
(such as in this example), this algorithm is not too computationally burdensome, and
is likely to provide a good approximation to Wj. The algorithm could in principle
work for any n, but for large n computing an accurate approximation to W; in this
way would be computationally extremely costly.

The results are given in Table 6. In a sample size of 100, the effective coverage
rates of the Wald confidence set are far below the nominal level for both instrument
sets (beween 40 and 50%), mirroring the inadequacy of conventional asymptotic ap-
proximations in this case, as documented by Hansen, Heaton and Yaron (1996). The
effective coverage rate rises with the sample size. The proposed tests have rejection
rates over 90% in the sample size of 100, but have lower rejection rates in the larger
sample sizes. The rejection rate for L can fall to under 15% in the sample size of 1000
when the conventional asymptotic approximation is not too bad. The confidence set
that is the S-set if L rejects and the Wald set otherwise yields coverage of above 78%

in all cases.

5. Empirical Applications.

included in the robust S-set, I conclude that it is empty and set W7 = 0.
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5.1 Financial Intermediation and Growth using Legal Origin Dummies as Instruments.
One of the applications of instrumental variables methods that has received con-
siderable attention recently has been the regression of growth rates on measures of
financial development. There is a clear problem of endogeneity in this regression.
Recognizing this, authors such as Levine, Loayza and Beck (2000) have used legal
origin dummies as instruments. The legal system in each country can usually be un-
ambiguously traced to one of four origins: English Common Law, French Napoleonic
Law, German law, or Scandanavian law. It is hoped that the legal origin dummies
are correlated with financial development, but do not affect growth rates other than
through financial development.

Following Levine, Loayza and Beck (2000), I ran a cross-country regression of
real GDP per capita growth rates over the years 1960-1995 on an index of financial
development and on three other sets of control variables, treating financial devel-
opment as endogenous and the controls as included exogenous variables. Financial
development was measured by the log of the total value of credits issued by financial
intermediaries to the private sector, divided by GDP (the measure of financial in-
termediation preferred by Levine, Loayza and Beck). Following Levine, Loayza and
Beck, the three sets of control variables are (i) the simple conditioning information
set: schooling and 1960 real GDP per capita, in logs, (ii) the policy conditioning infor-

mation set: the simple information set plus the government share in GDP, the trade
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share in GDP, inflation and the black market premium, and (iii) the full information
set: the policy information set plus indicators of revolutions, coups and ethnic frac-
tionalization. T used TSLS, with English, French and German legal origin dummies
as instruments!!. The first-stage F-statistic for this regression is 5.63 with the simple
conditioning information set, 5.43 with the policy conditioning information set and
5.80 with the full conditioning information set. Meanwhile, the 1% critical value in
the test that compares this to a x2/k distribution is 3.78, so this test clearly rejects
in all three cases. The values of the test statistic L, and the 5% critical values are
reported in Table 7. For all three sets of controls, the null of identification is re-
jected. I conclude that even if these instruments are uncorrelated with the error term
in the structural equation, their correlation with the endogenous regressor is not high
enough to allow a researcher to conduct inference in the conventional way. For the
simple conditioning information set, the regular Wald confidence set for the effect of
financial innovation on growth is 2.344+1.20. The Anderson-Rubin confidence set for
this parameter goes from 0.51 to 5.77, which, though quite different, is still an interval
containing only strictly positive values. Results with the other sets of controls are

similar.

5.2 The Consumption CAPM with CRRA Preferences.

1T am grateful to Ross Levine for providing me with these data. A more detailed description of
the data can be found in Levine, Loayza and Beck.
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In this application, I use US annual data from Campbell and Shiller (1987), updated
to cover the years 1889-1999. The data consist of stock returns, bond returns and
consumption growth, all in real terms, as described by Campbell and Shiller. T then
consider GMM estimation of the parameters 6 and 7, using both stock and bond
returns as the elements of Ry, 1, using instrument sets A and B (as defined the Monte-
Carlo simulation above). The values of the test statistic L (computed as described in
the Monte-Carlo simulation above) and the 5% critical values are reported in Table 8.
For both instrument sets, the null of identification is rejected. The two-step estimator
indicates precisely identified parameters with small risk aversion but the robust S-
sets are large and indicate high risk aversion, a pattern that was found by Stock and

Wright (2000) with an earlier dataset.

6. Conclusion.

In this paper, I have proposed a test of the null hypothesis of identification, that allows
for the detection of a local or global underidentification, and of underidentification in
some or all directions. It applies in any GMM model with more moment conditions
than parameters. The test is conceptually simple, working by comparing the volume
of confidence sets that are robust to underidentification with the volume of the non-
robust Wald confidence set. When the test rejects, inference should be conducted
only by methods that are robust to underidentification.
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Appendix: Proof of Theorem 1.

Let b = TY/?(6 — 6y) where 6y denotes the true parameter value. The continuous-

updating GMM objective function can be written as

Scv(0) = [T7V2SL 1 6(Y,, 0))'Vir(0) M [T-V/2S1, ¢(Y,,0)] =
(T8 (Yy, 00)+T 1L LOLEN 1y () 1T 128 (Vs 0p)+T 5T 2200

where 0" is on the line segment between 6 and 6,. So

Scu(8) = [Ve(0) /2 T=V25L §(Y;, 00) + Vip(6) /2 Tl 408 )py

[Vir(0) 22T 12T 6(Y;,00) + V() V2T 1L 400y

which converges to
(¢ +Gb)(p+Gb) = o+ (b+ (G'G)'G'9)G'G(b+ (G'G)'G'¢) — ¢ G(G'G) G ¢.
The value of b that minimizes (¢ + Gb)'(¢ + Gb) is (G'G)~'G'¢. So,
T'PW =4 1(6+ G(G'G)T'G'9) (¢ + G(G'G) 7' G'¢) < Fra(k, a)]supy, y, |[b1 — ba|
such that

¢o+ (b + (G'G) GGG + (G'G)'G'9) — ¢'G(G'G)G'd < Fye(k, a),
for i« = 1,2, which is equal to

HHG(G'G) G — ¢¢ + Fra(k, ) = 0] supy,, y, |[b1 — bo]

such that
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b'G'Gh; < $G(G'G)"'G'd — ' + Fra(k, ),

for i = 1,2. So TY2W, —y4 2\/¢’G(G'G)_1GI¢/)\—¢/¢+FX2(k,a)1[¢/G(G/G)71G/¢ — b+

F(k,a) > 0], where X is the smallest eigenvalue of G'G = B’A™'B. Mean-

while, Wy = % e (;’a) W, recalling that ) is defined as the smallest eigenvalue of

B'A1B, which is consistent for \, so that TV/2W, —, 2 FXQ(;”O‘),

Combining these, under assumptions A1 — A6,

TV2Ws F2(n,a)

[ TV ~, \/¢'G(GIG)—1G'¢¢’¢+FX2 (k,a) 1¢'G(G'G)'G"p — ¢'p + Fya(k, ) > 0],

as required. |
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Table 1: Monte-Carlo Results: Linear IV Model R?c =0

Coverage Rej Rate  Accept Rate Pretest Coverage
T p k' Wald AR L Il Py L I Fy

100 -0.9 5 1000 96.1 100.0 96.0 100.0 96.1 983 96.1
100 -0.9 10 100.0 96.1 99.9 94.1 100.0 96.2 98.7 96.1
100  -0.9 30 100.0 97.2 100.0 89.1 100.0 97.2 99.6 97.2
100 -0.5 5 100.0 96.1 100.0 94.3 100.0 96.1 96.7 96.1

100  -0.5 10 100.0 96.1 99.8 93.9 100.0 96.2 96.8 96.1
100  -0.5 30 100.0 97.2 100.0 88.9 100.0 972 979 97.2
100 05 5 823 96.1 99.8 94.1 100.0 96.1 934 96.1

100 05 10 56.2 96.1 100.0 91.1 100.0 96.1 91.3 96.1
100 0.5 30 157 97.2 100.0 90.9 100.0 972 894 97.2
100 09 5 121 96.1 99.9 93.8 100.0 96.1 924 96.1
100 09 10 0.8 96.1 100.0 93.1 100.0 96.1 92.1 96.1
100 09 30 0.0 97.2 100.0 89.0 100.0 97.2 884 97.2

250  -09 5 100.0 956 99.9 95.8 100.0 95.6 97.8 95.6
250 -09 10 100.0 94.6 99.7 94.4 100.0 949 978 94.6
250  -0.9 30 100.0 96.3 100.0 93.0 100.0 96.3 99.2 96.3
250  -0.5 5 100.0 95.6 99.9 94.3 100.0 956 96.1 95.6
250  -0.5 10 100.0 94.6 99.9 94.9 100.0 94.7 954 94.6
250  -0.5 30 100.0 96.3 100.0 94.7 100.0 96.3 96.6 96.3
250 05 &5 817 956 99.9 94.2 100.0 955 934 95.6

250 05 10 53.1 94.6 100.0 92.8 100.0 94.6 89.8 94.6
250 0.5 30 156 96.3 100.0 92.7 100.0 96.3 90.0 96.3
250 09 &5 104 95.6 100.0 95.0 100.0 95.6 92.7 95.6
250 09 10 0.7 94.6 100.0 92.5 100.0 94.6 905 94.6
250 09 30 0.0 96.3 100.0 944 100.0 96.3 93.0 96.3

1000 -0.9 5 100.0 94.9 99.8 94.4 100.0 951 983 949
1000 -0.9 10 100.0 95.7 99.9 95.8 100.0 95.8 979 95.7
1000 -0.9 30 100.0 95.1 99.8 94.7 100.0 953 976 95.1
1000 -0.5 5 100.0 94.9 99.9 93.6 100.0 95.0 95.7 949
1000 -0.5 10 100.0 95.7 99.8 95.7 100.0 95.8 96.0 95.7
1000 -0.5 30 100.0 95.1 99.8 93.9 100.0 953 95.8 95.1
1000 0.5 5 831 949 99.6 94.2 100.0 949 925 949
1000 0.5 10 554  95.7 99.9 94.8 100.0 95.7 925 95.7
1000 0.5 30 13.8 95.1 99.6 94.7 100.0 951 91.2 95.1
1000 09 5 11.7 949 99.6 94.9 100.0 949 921 949
1000 0.9 10 1.2 95.7 99.8 95.2 100.0 95.7 934 95.7
1000 0.9 30 0.0 95.1 99.6 94.3 100.0 951 926 95.1

Notes: The coverage columns give the coverage rates of Wald and AR confidence sets. The reject rate
column gives the rejection rate of the proposed test. The accept rate columns give the rejections rates of
the tests based on comparing the first-stage F-statistic with X% /k critical values and the critical values of
Stock and Yogo (2001), designed to ensure that the TSLS Wald test size is no larger than 25%. For these
columns, I report an acceptance rate, rather than a rejection rate because the null hypothesis is that the
model is not identified, whereas for my test the null hypothesis is that the model is identified. The last
four columns report the effective coverage rate of the confidence set that is the Wald or AR confidence set
depending on the results of each identification/underidentification test.



Table 2: Monte-Carlo Results: Linear IV Model R?c =0.01

Coverage Rej Rate  Accept Rate Pretest Coverage
T p k' Wald AR L Il Py L I Fy
100  -0.9 5 100.0 96.1 994 91.4 100.0 96.7 98.2 96.1
100 -0.9 10 100.0 96.1 99.1 89.2 100.0 97.0 99.0 96.1
100  -0.9 30 100.0 97.2 100.0 86.3 100.0 97.2 99.7 97.2
100  -0.5 5 100.0 96.1 99.8 89.1 100.0 96.2 96.6 96.1
100  -0.5 10 100.0 96.1 99.6 89.0 100.0 96.4 974 96.1
100 -0.5 30 100.0 97.2 100.0 86.3 100.0 97.2 978 97.2
100 05 5 823 96.1 99.8 88.4 100.0 96.1 924 96.1
100 0.5 10 574  96.1 99.6 87.9 100.0 96.0 89.4 96.1
100 0.5 30 176 97.2 100.0 87.3 100.0 97.2 86.3 97.2
100 09 5 241 96.1 99.3 89.2 100.0 96.1 884 96.1
100 09 10 2.2 96.1 99.5 88.2 100.0 96.1 87.1 96.1
100 0.9 30 0.0 97.2  100.0 85.5 100.0 97.2 85.1 97.2
250 -09 5 100.0 95.6 98.3 80.2 100.0 97.2 99.0 95.6
250  -0.9 10 100.0 94.6 97.8 85.2 100.0 96.8 98.0 94.6
250 -0.9 30 100.0 96.3 99.4 88.2 100.0 96.9 99.0 96.3
250 -0.5 5 100.0 95.6 99.2 78.5 100.0 96.0 97.3 95.6
250 -0.5 10 100.0 94.6 99.3 85.4 100.0 952 96.4 94.6
250 -0.5 30 100.0 96.3 100.0 88.7 100.0 96.3 97.0 96.3
250 0.5 5 848 956 99.0 79.9 100.0 95.8 91.2 95.6
250 0.5 10 61.6 94.6 99.4 81.4 100.0 94.3 84.9 94.6
250 0.5 30 189 96.3 100.0 87.3 100.0 96.3 85.1 96.3
250 0.9 5 328 956 97.9 80.7 100.0 954 79.6 95.6
250 0.9 10 5.5 94.6 97.9 81.8 100.0 94.5 80.8 94.6
250 0.9 30 0.0 96.3 99.6 90.2 100.0 96.3 89.3 96.3
1000 -0.9 5 100.0 949 944 31.8 99.9 98.4 99.2 95.0
1000 -0.9 10 100.0 95.7 95.9 45.9 100.0 98.8 99.3 95.7
1000 -0.9 30 100.0 95.1 95.6 68.4 100.0 99.0 99.5 95.1
1000 -0.5 5 100.0 949 924 30.5 100.0 974 988 949
1000 -0.5 10 100.0 95.7 95.8 47.0 100.0 976 98.5 95.7
1000 -0.5 30 100.0 95.1 97.6 66.2 100.0 96.8 98.1 95.1
1000 0.5 5 86.8 949 935 30.8 100.0 949 86.5 94.9
1000 0.5 10 744  95.7 94.8 43.7 100.0 94.0 80.0 95.7
1000 0.5 30 27.2 951 97.3 67.1 100.0 94.6 69.6 95.1
1000 09 5 63.7 949 944 30.7  99.7 93.4 65.5 94.8
1000 0.9 10 26.7 95.7 96.0 43.2 100.0 94.7 48.2 95.7
1000 0.9 30 0.0 95.1 95.9 65.6 100.0 949 65.2 95.1

See notes to Table 1.



Table 3: Monte-Carlo Results: Linear IV Model R% =0.1

Coverage Rej Rate Accept Rate Pretest Coverage

T P k. Wald AR L I Fy L I Fy

100  -0.9 5 1000 96.1 96.1 30.8  99.5 98.8 99.3 96.2
100 -0.9 10 100.0 96.1 96.0 43.4 100.0 99.0 994 96.1
100 -0.9 30 100.0 97.2 97.8 57.8 100.0 994 999 97.2
100 -0.5 5 100.0 96.1 95.9 31.5  99.8 97.9 98.7 96.1
100 -0.5 10 100.0 96.1 95.0 39.9 100.0 983 98.8 96.1
100  -0.5 30 100.0 97.2 99.8 56.6 100.0 974  98.7 97.2
100 05 5 89.0 96.1 95.1 29.2  99.4 95.8 89.1 959
100 0.5 10 733 96.1 95.1 40.0 100.0 952 795 96.1
100 05 30 295 972 99.8 56.7 100.0 972 63.6 97.2
100 09 5 700 96.1 94.9 28.5  99.3 93.9 71.8 95.6
100 09 10 269 96.1 954 37.5 100.0 94.4 445 96.1
100 09 30 0.1 97.2 98.1 57.9 100.0 97.1 579 97.2
250 -09 5 100.0 95.6 84.2 0.3 828 99.5 100.0 97.6
250 -0.9 10 100.0 94.6 86.1 3.5 100.0 99.0 99.7 94.6
250 -0.9 30 100.0 96.3 95.2 15.2 100.0 99.0 100.0 96.3
250 -0.5 5 100.0 95.6 76.2 1.1 80.0 99.7 100.0 96.8
250 -0.5 10 100.0 94.6 78.6 2.7 99.9 98.8 99.2 946
250 -0.5 30 100.0 96.3 94.5 14.1 100.0 98.3 99.5 96.3
250 0.5 5 937 956 75.8 0.6  80.7 95.8 93.7 938
250 0.5 10 826 94.6 78.6 2.1 100.0 90.7 825 94.6
250 0.5 30 43.7 96.3 94.3 15.5 100.0 934 494  96.3
250 0.9 5 830 95.6 84.5 0.8 83.0 90.2 829 86.6
250 0.9 10 54.8 94.6 87.9 2.2 100.0 86.9 549 94.6
250 0.9 30 1.2 96.3 95.5 16.5 100.0 95.0 16.4 96.3
1000 -0.9 5 998 949 40.2 0.0 0.0 100.0 99.8  99.8
1000 -0.9 10 100.0 95.7 48.8 0.0 41.3 99.9  100.0 98.6
1000 -0.9 30 100.0 95.1 724 0.0 100.0 100.0 100.0 95.1
1000 -0.5 5 989 949 29.3 0.0 0.0 99.5 98.9 989
1000 -0.5 10 99.6 95.7 33.5 0.0 41.1 99.9 99.6 98.6
1000 -0.5 30 100.0 95.1 55.5 0.0 100.0 100.0 100.0 95.1
1000 0.5 5 93.6 949 29.3 0.0 0.0 94.8 93.6 93.6
1000 0.5 10 924  95.7 334 0.0 39.3 94.0 924 922
1000 0.5 30 71.1 95.1 55.2 0.0 100.0 81.0 71.1 95.1
1000 0.9 5 90.0 949 38.2 0.0 0.0 92.1  90.0 90.0
1000 0.9 10 84.5 95.7 46.9 0.0 41.1 88.0 84.5 833
1000 0.9 30 296 95.1 73.0 0.0 100.0 739 296 95.1

See notes to Table 1.



Table 4: Monte-Carlo Results: Linear IV Model R% =0.3

Coverage Rej Rate Accept Rate Pretest Coverage

T P k. Wald AR L P F L I Fy

100  -0.9 5 100.0 96.1 824 0.0 445 99.7  100.0 98.8
100 -0.9 10 100.0 96.1 844 0.6 99.7 99.4 99.9 964
100  -0.9 30 100.0 97.2 95.3 4.3 100.0 99.9 100.0 97.2
100 -0.5 5 997 96.1 73.8 0.1 44.7 99.6  99.7 98.7
100  -0.5 10 99.8 96.1 76.2 0.6 99.7 99.7  99.8 96.1
100  -0.5 30 100.0 972 944 4.6 100.0 99.4 100.0 97.2
100 05 5 932 96.1 74.1 0.3 42.1 95.7 93.2 928
100 0.5 10 86.3 96.1 74.3 0.5 99.7 942 86.3 959
100 0.5 30 528 97.2 94.3 4.9 100.0 94.1 539 97.2
100 09 5 87.0 96.1 834 0.2 415 934 87.0 86.5
100 0.9 10 66.7 96.1 83.2 0.3 99.6 87.3 66.7 959
100 09 30 5.1 97.2 95.2 4.2 100.0 95.1 8.1 97.2
250 -09 5 999 95.6 43.2 0.0 0.0 100.0 99.9  99.9
250 -0.9 10 100.0 94.6 52.7 0.0 47.9 99.7 100.0 978
250 -0.9 30 100.0 96.3 80.3 0.0 100.0 100.0 100.0 96.3
250 -0.5 5 997 95.6 32.8 0.0 0.0 99.9 99.7 99.7
250  -0.5 10 994 946 39.2 0.0 46.1 99.6 99.4 972
250 -0.5 30 100.0 96.3 67.7 0.0 100.0 100.0 100.0 96.3
250 0.5 5 969 95.6 34.3 0.0 0.1 97.6 96.9 96.9
250 0.5 10 90.6 94.6 39.1 0.0 44.2 92.4 90.6 90.5
250 0.5 30 729 96.3 68.6 0.0 100.0 86.3 729 96.3
250 0.9 5 936 95.6 45.8 0.0 0.0 945 93.6 93.6
250 0.9 10 81.7 94.6 49.5 0.0 43.1 86.1 81.7 81.1
250 0.9 30 276 96.3 80.7 0.0 100.0 80.9 27.6 96.3
1000 -0.9 5 988 949 149 0.0 0.0 99.1 98.8 988
1000 -0.9 10 99.5 95.7 15.2 0.0 0.0 99.6 99.5 995
1000 -0.9 30 100.0 95.1 26.1 0.0 100.0 100.0 100.0 95.1
1000 -0.5 5 984 949 125 0.0 0.0 98.6 98.4 984
1000 -0.5 10 99.1 95.7 12.2 0.0 0.0 99.4 99.1 99.1
1000 -0.5 30 99.5 95.1 18.2 0.0 100.0 99.8 99.5 95.1
1000 0.5 5 953 949 121 0.0 0.0 95.6 95.3 95.3
1000 0.5 10 95.8 95.7 12.3 0.0 0.0 96.2 95.8 958
1000 0.5 30 889 951 18.8 0.0 100.0 90.4 889 95.1
1000 0.9 5 93.6 949 148 0.0 0.0 942 93.6 93.6
1000 0.9 10 93.7 95.7 15.0 0.0 0.0 94.2  93.7 93.7
1000 0.9 30 713 95.1 26.5 0.0 99.9 75.1 713 95.1

See notes to Table 1.



Table 5: Monte-Carlo Results: Linear IV Model R% =05

Coverage Rej Rate Accept Rate Pretest Coverage

T P k. Wald AR L P F L I Fy

100 -09 5 998 96.1 62.9 0.0 0.2 100.0 99.8  99.8
100  -0.9 10 999 96.1 66.5 0.0 58.2 99.9 99.9 98.7
100  -0.9 30 100.0 97.2 89.0 0.0 100.0 100.0 100.0 97.2
100 -0.5 5 992 96.1 52.3 0.0 0.0 99.8 99.2 99.2
100  -0.5 10 99.0 96.1 57.2 0.0 574 99.9 99.0 983
100 -0.5 30 100.0 97.2 85.6 0.0 100.0 100.0 100.0 97.2
100 05 5 952 96.1 52.8 0.0 0.6 96.8 95.2 952
100 0.5 10 909 96.1 55.8 0.0 56.6 949 90.9 917
100 05 30 719 972 85.1 0.0 100.0 92.7 719 972
100 09 5 919 96.1 63.3 0.0 04 945 919 919
100 0.9 10 814 96.1 65.0 0.0 56.8 89.6 81.4 84.6
100 09 30 25.0 972 88.7 0.0 100.0 88.9 25.0 972
250 -09 5 999 95.6 24.6 0.0 0.0 100.0 99.9  99.9
250 -09 10 99.7 946 31.1 0.0 0.0 99.9 99.7 99.7
250 -0.9 30 100.0 96.3 56.4 0.0 100.0 100.0 100.0 96.3
250 -0.5 5 993 956 19.0 0.0 0.0 99.5 99.3 99.3
250 -0.5 10 984 946 24.6 0.0 0.0 98.7 984 984
250  -0.5 30 999 96.3 44.8 0.0 100.0 100.0 99.9  96.3
250 0.5 5 972 956 19.3 0.0 0.0 97.6 972 972
250 0.5 10 934 94.6 245 0.0 0.0 93.9 934 934
250 0.5 30 834 96.3 454 0.0 100.0 88.7 834 96.3
250 0.9 5 965 95.6 25.1 0.0 0.0 97.1  96.5 96.5
250 0.9 10 89.0 94.6 29.9 0.0 0.0 90.5 89.0 89.0
250 0.9 30 588 96.3 57.5 0.0 100.0 76.9 58.8  96.3
1000 -0.9 5 984 949 99 0.0 0.0 98.5 984 984
1000 -0.9 10 99.0 95.7 10.0 0.0 0.0 99.4  99.0 99.0
1000 -0.9 30 99.8 95.1 14.2 0.0 0.0 100.0 99.8  99.8
1000 -0.5 5 981 949 8.7 0.0 0.0 98.2 981 98.1
1000 -0.5 10 98.7 95.7 9.0 0.0 0.0 99.1 98.7 98.7
1000 -0.5 30 99.3 95.1 11.8 0.0 0.0 99.6 99.3 99.3
1000 0.5 5 96.1 949 85 0.0 0.0 96.4 96.1 96.1
1000 0.5 10 96.3 95.7 9.2 0.0 0.0 96.7 96.3 96.3
1000 0.5 30 93.5 95.1 11.9 0.0 0.0 94.2 93.5 935
1000 09 5 945 949 10.1 0.0 0.0 95.0 94.5 945
1000 0.9 10 95.2 95.7 10.2 0.0 0.0 95.6 95.2 952
1000 0.9 30 85.0 95.1 14.2 0.0 0.0 86.4 85.0 85.0

See notes to Table 1.



Table 6: Monte-Carlo Results: Consumption CAPM

Coverage Rej Rate Pretest Coverage

Inst. Set T Wald S L L

A 100 41.8 90.9 93.7 89.2
A 250 52.1 93.2 83.2 85.6
A 1000 74.3 95.1 19.0 78.4
B 100 456 93.3 97.1 91.7
B 250  59.2 946 799 86.8
B 1000 75.8 95.6 13.1 78.4

Notes: The coverage columns give the coverage rates of Wald and S sets. The rejection rate column give
the rejection rate of the proposed test. The pretest coverage column reporta the effective coverage rate of
the confidence set that is the Wald or S set depending on the result of the proposed identification test.

Table 7: Growth Regression
Controls Test StatisticL 5 % Critical Values

Simple 2.20 1.42
Policy 2.29 1.42
Full 2.12 1.42

Notes: This table reports the proposed identification test statistic and associated critical values in three
specifications of the cross-country growth regression using legal origin dummies as instruments, as discussed
in the text.

Table 8: Consumption CAPM with Annual US Data
Inst. Set Test Statistic L 5 % Critical Values

A 5.58 1.52
B 2.16 1.25

Notes: This table reports the proposed identification test statistic and associated critical values in nonlinear
GMM Euler equation estimation of the consumption CAPM for stock returns and bond returns with annual
US data, using two alternative sets of instruments, as discussed in the text.





