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Abstract : This paper discusses the econometric methodology of general-to-specific
modeling, in which the modeler simplifies an initially general model that adequately
characterizes the empirical evidence within his or her theoretical framework. Central
aspects of this approach include the theory of reduction, dynamic specification, model
selection procedures, model selection criteria, model comparison, encompassing, com-
puter automation, and empirical implementation. This paper thus reviews the theory
of reduction, summarizes the approach of general-to-specific modeling, and discusses
the econometrics of model selection, noting that general-to-specific modeling is the
practical embodiment of reduction. This paper then summarizes fifty-seven articles
key to the development of general-to-specific modeling.
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1 Motivation and Overview

This paper focuses on a central method for selecting useful empirical models, called
general-to-specific modeling. In this method, the modeler simplifies an initially general
model that adequately characterizes the empirical evidence within his or her theo-
retical framework. While the methodological, statistical, and empirical foundations
for general-to-specific modeling have been laid down over the last several decades, a
burst of activity has occurred in the last half-dozen years, stimulated in fair part by
Hoover and Perez’s (1999a) development and analysis of a computer algorithm for
general-to-specific modeling. The papers discussed herein detail how the subject has
advanced to its present stage of success and convey the promise of these developments
for future empirical research. The remainder of this overview motivates the interest in
general-to-specific modeling and summarizes the structure of the subsequent sections
(Sections 2—5).
Economists have long sought to develop quantitative models of economic behavior

by blending economic theory with data evidence. The task has proved an arduous
one because of the nature of the economy modeled, the economic theory, and the
data evidence. The economy is a complicated, dynamic, nonlinear, simultaneous,
high-dimensional, and evolving entity; social systems alter over time; laws change;
and technological innovations occur. Thus, the target is not only a moving one; it be-
haves in a distinctly nonstationary manner, both evolving over time and being subject
to sudden and unanticipated shifts. Economic theories are highly abstract and sim-
plified; and they also change over time, with conflicting rival explanations sometimes
coexisting. The data evidence is tarnished: economic magnitudes are inaccurately
measured and subject to substantive revisions, and many important variables are not
even observable. The data themselves are often time series where samples are short,
highly aggregated, heterogeneous, time-dependent, and inter-dependent. Economet-
ric modeling of economic time series has nevertheless strived to discover sustainable
and interpretable relationships between observed economic variables. This paper
focuses on general-to-specific modeling, in which the modeler simplifies an initially
general model that adequately characterizes the empirical evidence within his or her
theoretical framework. This method has proved useful in practice for selecting em-
pirical economic models.
The difficulties of empirical modeling are well reflected in the slowness of empirical

progress, providing plenty of ammunition for critics. However, part of the problem
may be internal to the discipline, deriving from inappropriate modeling methods.
The “conventional” approach insists on a complete theoretical model of the phe-
nomena of interest prior to data analysis, leaving the empirical evidence as little
more than quantitative clothing. Unfortunately, the complexity and nonstationar-
ity of economies makes it improbable than anyone–however brilliant–could deduce
a priori the multitude of quantitative equations characterizing the behavior of mil-
lions of disparate and competing agents. Without a radical change in the discipline’s
methodology, empirical progress seems doomed to remain slow.
The situation is not as bleak as just described, for two reasons. First, the accu-

mulation of knowledge is progressive, implying that one does not need to know all
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the answers at the start. Otherwise, no science could have advanced. Although the
best empirical model at any given time may be supplanted later, it can provide a
springboard for further discovery. Data-based model selection need not raise serious
concerns: this implication is established below and is demonstrated by the actual
behavior of model selection algorithms.
Second, inconsistencies between the implications of any conjectured model and

the observed data are often easy to detect. The ease of model rejection worries some
economists, yet it is also a powerful advantage by helping sort out which models are
empirically adequate and which are not. Constructive progress may still be difficult
because “we don’t know what we don’t know, and so we cannot know how best to
find out what we don’t know”. The dichotomy between model destruction and model
construction is an old one in the philosophy of science. While critical evaluation
of empirical evidence is a destructive use of econometrics, it can also establish a
legitimate basis for empirical models.
To undertake empirical modeling, one must begin by assuming a probability struc-

ture for the data, which is tantamount to conjecturing the data generating process.
Because the economic mechanism is itself unknown, the relevant probability struc-
ture is also unknown, so one must proceed iteratively: conjecture the data generation
process (DGP), develop the associated probability theory, use that theory for model-
ing empirical evidence, and revise the starting point when the results do not match
consistently. The development of econometric theory highlights this iterative pro-
gression: from stationarity assumptions, through integrated-cointegrated systems, to
general nonstationary mixing processes, as empirical evidence revealed the inadequacy
of each earlier step. Further developments will undoubtedly occur, leading to a still
more useful foundation for empirical modeling. See Hendry (1995a) for an extensive
treatment of progressive research strategies.
Having postulated a reasonable probability basis for the DGP, including the pro-

cedures used for data measurement and its collection, the next issue concerns what
classes of model might be useful. The theory of reduction (discussed in Section 2)
explains how empirical models arise and what their status is, noting that they are
not facsimiles of the DGP. Specifically, empirical models describe the behavior of a
relatively small set of variables–often from one to several hundred–and never the
many millions of distinct variables present in most economies.
A key concept here is that of the local DGP, which is the probability mechanism

in the space of those variables under analysis. The theory of reduction shows how
the local DGP arises as a simplification of a vastly more general DGP involving
millions of variables. The usefulness of a given local DGP depends on it capturing
sustainable links, which in turn depends partly on the theoretical framework and
partly on data accuracy. An econometric model cannot do better than capture the
salient characteristics of its corresponding local DGP. The extent to which the model
does capture those characteristics depends both on its specification at least embedding
the local DGP and on the goodness of its selection.
There are thus two distinct conceptual steps in modeling, albeit ones closely re-

lated in practice. First, specify a useful information set for a “well-behaved” local
DGP. Second, select a “good” empirical model of that local DGP.
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A viable methodology for empirical modeling is an integral component of achieving
the second step. Despite the controversy surrounding every aspect of econometric
methodology, the “LSE” (or London School of Economics) approach has emerged as
a leading methodology for empirical modeling; see Hendry (1993) for an overview.
One of the LSE approach’s main tenets is general-to-specific modeling, sometimes
abbreviated as Gets. In general-to-specific modeling, empirical analysis starts with a
general statistical model that captures the essential characteristics of the underlying
dataset, i.e., that general model is congruent. Then, that general model is reduced in
complexity by eliminating statistically insignificant variables, checking the validity of
the reductions at every stage to ensure congruence of the finally selected model.
The papers discussed below articulate many reasons for adopting a general-to-

specific approach. First amongst these reasons is that general-to-specific modeling
implements the theory of reduction in an empirical context. Section 2 summarizes
the theory of reduction, and Section 3 discusses general-to-specific modeling as the
empirical analogue of reduction.
General-to-specific modeling also has excellent characteristics for model selection,

as documented in Monte Carlo studies of automatic general-to-specific modeling al-
gorithms. Hoover and Perez (1999a) were the first to evaluate the performance of
general-to-specific modeling as a general approach to econometric model building. To
analyze the general-to-specific approach systematically, Hoover and Perez mechanized
the decisions in general-to-specific modeling by coding them in a computer algorithm.
In doing so, Hoover and Perez also made important advances in practical modeling.
To appreciate Hoover and Perez’s contributions to general-to-specific modeling,

consider the most basic steps that such an algorithm follows.

1. Ascertain that the general statistical model is congruent.
2. Eliminate a variable (or variables) that satisfies the selection (i.e., simplification)
criteria.

3. Check that the simplified model remains congruent.
4. Continue steps 2 and 3 until none of the remaining variables can be eliminated.

Pagan (1987) and other critics have argued that the outcome of general-to-specific
modeling may depend on the simplification path chosen–that is, on the order in
which variables are eliminated and on the data transformations adopted–and so the
selected model might vary with the investigator. Many reduction paths certainly
could be considered from an initial general model.
Hoover and Perez (1999a) turned this potential drawback into a virtue by explor-

ing many feasible paths and seeing which models result. When searches do lead to
different model selections, encompassing tests can be used to discriminate between
these models, with only the surviving (possibly non-nested) specifications retained. If
multiple models are found that are both congruent and encompassing, a new general
model can be formed from their union, and the simplification process is then re-
applied. If that union model re-occurs, a final selection among the competing models
can be made by using (say) information criteria. Otherwise, a unique, congruent,
encompassing reduction has been located.
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Hoover and Perez (1999a) re-analyzed the Monte Carlo experiments in Lovell
(1983) and found that their (Hoover and Perez’s) general-to-specific algorithm per-
formed much better than any method investigated by Lovell. Hendry and Krolzig
(1999) demonstrated improvements on Hoover and Perez’s general-to-specific algo-
rithm, and Hoover and Perez (2004) showed how their algorithm could be successfully
modified for analyzing cross-section data; see also Hendry and Krolzig (2004).
Automating the general-to-specific approach throws light on several methodologi-

cal issues and prompts many new ideas, several of which are discussed in Section 3.1.
Three common concerns with the general-to-specific approach are repeated testing,
recursive procedures, and selection of variables.
First, critics such as Ed Leamer have worried about the interpretation of mis-

specification tests that are repeatedly applied during simplification; see Hendry,
Leamer, and Poirier (1990). Automation of the general-to-specific approach reveals
two distinct roles for mis-specification tests: their initial application to test the con-
gruence of the general model, and their subsequent use to guard against invalid re-
ductions during simplification. The mis-specification tests are thus applied only once
as statistical mis-specification tests–to the general model–so no doubts of interpre-
tation arise. Their subsequent role in diagnostic checking during reduction does not
alter their statistical properties as applied to the general model.
Second, recursive procedures such as subsample estimation play two roles. Recur-

sive procedures help investigate parameter constancy, which is essential for congruence
and for any practical use of the resulting model. Recursive procedures also assist in
checking that estimated effects are significant over subsamples, and not just over the
whole sample. Specifically, if a variable is only occasionally significant over various
subsamples, that occasional significance may reflect chance rather than substance,
especially if the variable’s significance does not increase as the sample size grows.
Eliminating such occasionally significant variables may be useful for parsimony.
Third, model selection procedures that use diagnostic testing and are based on

multiple criteria have eluded most attempts at theoretical analysis. However, com-
puter implementation of the model selection process has allowed evaluation of such
strategies by Monte Carlo simulation. Krolzig and Hendry (2001) and Hendry and
Krolzig (2003) present the results of many Monte Carlo experiments to investigate
whether the model selection process works well or fails badly for time series processes.
The implications for the calibration of their econometrics computer program PcGets
are also noted below; see Hendry and Krolzig (2001).
The remainder of this paper is organized into four sections. Section 2 reviews the

theory of reduction as a major background component to general-to-specific modeling.
Section 3 reviews the basis for general-to-specific modeling and discusses the econo-
metrics of model selection, noting that general-to-specific modeling is the practical
embodiment of reduction. Section 4 then summarizes, paper by paper, fifty-seven
papers key to the development of general-to-specific modeling. These papers are
reprinted in Campos, Ericsson, and Hendry (2005) and are grouped into nine parts
across the two volumes of Campos, Ericsson, and Hendry (2005): see the Appendix
below for a listing of these papers. This nine-part division is also paralleled by the
subsections in Section 4, as follows.
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Volume I
Part I. Introduction to the methodology (Section 4.1);
Part II. Theory of reduction (Section 4.2);
Part III. Dynamic specification (Section 4.3);
Part IV. Model selection procedures (Section 4.4);

Volume II
Part I. Model selection criteria (Section 4.5);
Part II. Model comparison (Section 4.6);
Part III. Encompassing (Section 4.7);
Part IV. Computer automation (Section 4.8); and
Part V. Empirical applications (Section 4.9).

Section 5 concludes.
For ease of reference, when an article reprinted in Campos, Ericsson, and Hendry

(2005) is initially cited in Sections 2—3, text in square brackets immediately following
the citation indicates the volume and chapter where the reprint appears: for in-
stance, “Hoover and Perez (1999a) [Volume II: Chapter 22]”. Thereafter–except in
Section 4’s actual summary of the article–citation to an article reprinted in Campos,
Ericsson, and Hendry (2005) is indicated by a trailing asterisk, as in “Hoover and
Perez (1999a)*”. On a separate issue, the mathematical notation in Section 2 differs
somewhat from that used in Section 3, owing to the different strands of literature on
which those two sections are based. The mathematical notation in Section 4 generally
follows the notation in the article being described.

2 Theory of Reduction

This section examines the relationship between the data generation process and an
empirical model. Section 2.1 defines what an empirical model is, Section 2.2 defines
what the data generation process is, and Section 2.3 shows how an empirical model is
obtained as a reduction or simplification of the data generation process. Sections 2.4,
2.5, and 2.6 thus examine how models can be compared, how to measure the infor-
mation losses associated with a model, and what information is used in evaluating
models. Section 2.7 turns to explicit model design, which recognizes and utilizes the
relationship between empirical models and the data generation process.
The exposition in this section draws on Hendry (1995a). Hendry (1987) [Volume I:

Chapter 8] presents a non-technical exposition of the theory of reduction. Important
contributions to its development include Florens and Mouchart (1980, 1985), Hen-
dry and Richard (1982) [Volume I: Chapter 9], Engle, Hendry, and Richard (1983)
[Volume I: Chapter 13], and Florens, Mouchart, and Rolin (1990).
Before proceeding to the theory of reduction, a few comments are in order. First,

data are generated from an unknown high-dimensional probability distribution (the
DGP), which is indexed by a set of parameters. Some functions of those parameters
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are of interest to an investigator. A central aim of modeling is to determine the nu-
merical values of those parameters, which can be used for testing theories, forecasting,
conducting economic policy, and learning about the economy.
Second, the DGP itself involves far too many parameters to estimate on available

data, so reductions of the DGP are essential to produce an operational model. The key
feature of every reduction is whether or not it involves a loss of information about the
parameters of interest. Such a loss may be total (as when the parameters of interest
no longer enter the model) or partial (as when some parameters can be gleaned but
others not, or when some cease to be constant), or it may just lower the statistical
efficiency with which the parameters may be estimated. Logically, reductions lead
from the original DGP–which involves the universe of variables–to the distribution
of a small subset thereof–which is the local DGP.
Third, an empirical model of that subset of variables then approximates their lo-

cal DGP. Estimation of the parameters of that model comes last, logically speaking.
That model’s estimation has been extensively analyzed in econometrics for many pos-
tulated types of model. A variety of approaches are still extant, such as “classical”
and “Bayesian”, and with varying degrees of emphasis on least squares, instrumen-
tal variables, maximum likelihood, method of moments, and so on. Many of these
approaches are minor variants on the basic likelihood score equations; see Hendry
(1976).
Fourth, an empirical model may include variables that do not actually enter the

local DGP, in which case a more parsimonious representation can be selected from
the sample evidence. Such a data-based simplification is a major focus of this pa-
per. As noted in the previous section, model selection procedures have been debated
extensively, with little professional accord. The discussion below shows how the
general-to-specific approach is the analogue in modeling of reduction in theory. Cri-
tiques of the general-to-specific approach and the practical arguments in its favor are
also considered.

2.1 Theory Models and Empirical Models

Both economic theory and data are important in empirical economic modeling, so
this subsection compares theory models and empirical models. Theory models are
freely created, whereas empirical models are derived and not autonomous. That
distinction in a model’s status has direct implications for the roles that sequential
reduction and mis-specification testing play in empirical modeling. At a more general
level, theory models play a key part in interpreting economic data, but theory models
in themselves are not sufficient for doing so in a reliable fashion. To illustrate the
distinction between theory models and empirical models, consider a standard linear
model that is subsequently estimated by least squares.
From the outset, it is important to distinguish between the economic theory-model

and the empirical model that the theory model serves to interpret. A theory model
is freely created by the human imagination. For instance, economic theory might
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specify a relationship between two variables yt and zt:

yt = b0zt + et,
[output] [transformed input] [perturbation]

(1)

where the coefficient vector b is the partial derivative ∂yt/∂zt, the variables yt and zt
(in sans serif font) denote the economic theoretic variables at time t, and the error et
is an independent perturbation at time t. The theory model is defined by how it
is constructed. In equation (1), yt is constructed from zt and the error et, and the
relationship between yt and zt can be treated as if it were a causal mechanism.
A corresponding empirical model is anything but freely created, with the proper-

ties of the empirical model being determined by reductions of the DGP. The mapping
between variables and disturbances also differs. To demonstrate, consider the follow-
ing empirical model:

yt = b0zt + et,
[observed variable [explanation] [remainder]

of interest]

(2)

where yt and zt (in italic) are economic data at time t, the conditional expecta-
tion E(et|zt) is zero (by assumption), and E(·) is the expectations operator. The
orthogonality assumption that E(et|zt) = 0 defines the parameter vector b from equa-
tion (2) in terms of the data’s properties:

E(yt|zt) = b0zt. (3)

The error et in equation (2) is also defined as a function of the data:

et = yt − E(yt|zt). (4)

In particular, equation (4) shows explicitly that the error et contains everything in
yt that is not modeled by zt. From a slightly different perspective, yt can always be
decomposed into two components: b0zt (the explained part) and et (the unexplained
part). Such a partition is feasible, even when yt does not depend on zt in any way
and so is not caused by zt.
From equations (3) and (4), the properties of b and et vary with the choice of zt

and the orthogonality assumption. Equivalently, the properties of b and et vary with
the choice of variables ignored and with the conditioning assumption. The coefficients
and errors of empirical models are thus derived and not autonomous.
As an immediate implication, empirical models can be designed through the se-

lection of zt: changing zt redesigns the error et and the coefficients b. Consequently,
design criteria can be analyzed. For example, what makes one design better than
another? Sections 2.5—2.7 address this issue, leading to the notion of a congruent
model–one that matches the data evidence on all the measured attributes. Any given
sample may have more than one congruent model. That leads to the requirement of
a dominant congruent model, which entails an ordering over congruent models. In-
deed, successive congruent models of a given phenomenon should be able to explain
or encompass previous models, thereby achieving progress in modeling.
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2.2 The Data Generation Process

This subsection formally (and briefly) discusses the statistical basis for the data gen-
eration process.
Let {ut} denote a stochastic process for a vector ut of random variables at time t

that is defined on the probability space (Ω,F ,P), where Ω is the sample space, F
is the event space (sigma field), and P is the probability measure. Let ψ denote a
vector of parameters, which are entities that do not depend on F .
Consider the full sample U1

T = (u1 . . .uT ), which is for t = 1, . . . , T where the
notationUi

j means (ui . . .uj) for j ≥ i; and denote the initial (pre-sample) conditions
by U0 = (. . .u−2 u−1 u0). The distribution function DU (·) of U1

T , conditional on U0,
is denoted by DU (U1

T | U0, ·), which is often called the Haavelmo distribution; see
Spanos (1989) [Volume I: Chapter 4]. To make explicit the observed phenomenon of
parameter nonconstancy, DU (·) is represented parametrically by the kT -dimensional
vector of parameters ψ1

T = (ψ0
1 . . .ψ

0
T )
0, where each time period has an associated

parameter ψt =
¡
ψ1,t . . . ψk,t

¢0. Thus, elements of ψ need not be the same at each
time t, and some of the

©
ψi,t

ª
may reflect transient effects or regime shifts. The

parameter space is Ψ ⊆ RkT , so ψ1
T ∈ Ψ.

The data generating process of {ut} is therefore written as:

DU
¡
U1

T | U0,ψ
1
T

¢
with ψ1

T ∈ Ψ ⊆ RkT . (5)

From equation (5), the complete sample {ut, t = 1, . . . , T} is generated from DU (·)
by a population parameter value, which is denoted ψp.

2.3 The Reduction Sequence

This subsection considers the sequence of reductions that obtains the empirical model
from the DGP. Because U1

T is unmanageably large, operational models are defined
by a sequence of data reductions, which can be viewed in ten stages:

• parameters of interest,
• data transformations and aggregation,
• sequential factorization,
• data partition,
• marginalization,
• mapping to stationarity,
• conditional factorization,
• constancy,
• lag truncation, and
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• functional form.
It is assumed that empirical modeling aims to determine the values of a set of para-
meters of interest that are relevant to an investigator’s objectives, such as testing
theories or undertaking policy analysis. The key concern of any given reduction is
its effect on the parameters of interest. To derive that effect, this subsection briefly
considers each of these ten stages in turn, while noting that some of these stages do
not involve a reduction per se.

Parameters of interest. Let the parameters of interest be denoted by µ ∈M.
Both economic theory and empirical properties may suggest that certain parameters
are parameters of interest. Parameters that are identifiable and invariant to an em-
pirically relevant class of interventions are likely to be of interest. Other parameters
may be of interest, depending on the purpose of the exercise.
Also, if µ is not a function of ψ1

T , then the modeling exercise will be vacuous, so
assume that µ = g

¡
ψ1

T

¢
. After each reduction, it is essential to check that µ can still

be retrieved from the parameters characterizing the lower-dimensional data density.

Data transformations and aggregation. Consider a one-to-one mapping of
U1

T to a new datasetW
1
T : U

1
T ↔W1

T . The variables inW
1
T may include aggregates

of the original variables, their growth rates, etc. The transformation from U to W
affects the parameter space, so Ψ is transformed into Φ (say). Because densities are
equivariant under one-to-one transformations, the DGP of W1

T is characterized by
the joint density of U1

T :

DW
¡
W1

T |W0,φ
1
T

¢
= DU

¡
U1

T | U0,ψ
1
T

¢
, (6)

where φ1T is the set of transformed parameters, with φ
1
T ∈ Φ.

For DW (·) in equation (6), the key issue is how the transformation from ψ1
T to φ

1
T

alters the properties of the parameters. Some parameters in φ1T may be more constant
than ones in ψ1

T ; others may be less constant; and a smaller (or larger) number of
the parameters in φ1T may be needed to characterize the parameters of interest µ.

Sequential factorization. Using the basic result that a joint probability equals
the product of the conditional and marginal probabilities, and noting that time is irre-
versible, then sequentially factorize the density ofW1

T into its (martingale-difference)
components:

DW
¡
W1

T |W0,φ
1
T

¢
=

TY
t=1

Dw (wt |Wt−1, δt) , (7)

where Wt−1 =
¡
W0 :W

1
t−1
¢
, wt is the t-th column in W1

T = (w1 . . .wT ), and δt
is the parameterization resulting from the sequential factorization. The right-hand
side of equation (7) implicitly defines an innovation process ηt, which equals wt −
E(wt|W1

t−1).

Data partition. Now, partitionW1
T into two sets, one set to be analyzed (X

1
T )

and one set to be marginalized (V1
T ):

W1
T =

¡
X1

T : V
1
T

¢
, (8)
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where X1
T is an T ×n matrix. Consequently, everything about µ must be learnt from

X1
T alone, which entails that V

1
T must not be essential to inference about µ.

Marginalization. Actual marginalization proceeds as follows. Using the parti-
tion in equation (8), and noting thatWt−1 =

©
X1

t−1,V
1
t−1,W0

ª
, factorize Dw (·) into

the conditional distribution of vt given xt, and the marginal distribution of xt:

Dw (wt |Wt−1, δt)

= Dv|x (vt | xt,Wt−1, δa,t) · Dx
¡
xt | V1

t−1,X
1
t−1,W0, δb,t

¢
. (9)

If only {xt} is to be analyzed, with only Dx (xt|·) retained, then µ must be obtainable
from {δb,t} alone.
If lagged information about v is also to be eliminated, then Dx (xt|·) must be

marginalized with respect to V1
t−1, requiring the very strong condition that:

Dx
¡
xt | V1

t−1,X
1
t−1,W0, δb,t

¢
= Dx

¡
xt | X1

t−1,W0, δ
∗
b,t

¢
. (10)

There is no loss of information from eliminating the history V1
t−1 if and only if δb,t =

δ∗b,t ∀t, in which case the conditional sequential distribution of {xt} does not depend
on V1

t−1. That is, v does not Granger-cause x; see Granger (1969). In modeling,
another important condition is that there is no loss of relevant information when
µ = g({δ∗}1b,T ). That is still a strong condition, but less stringent than δb,t = δ∗b,t ∀t.
Also, marginalizing v will entail a loss of information unless δt = (δa,t, δb,t) ∈∆a×∆b

for parameter spaces ∆a and ∆b. Otherwise, the parameters of the conditional and
marginal distributions in equation (9) are cross-linked.
The above discussion implies that modeling aggregated data (say) can be viewed

as a two-step process. First, the disaggregated series for a given variable (such as
expenditure) are transformed by a one-to-one transformation into the correspond-
ing aggregated series and all but one of those disaggregated series. Second, those
disaggregated series are marginalized.

Mapping to stationarity. An economy may generate integrated data, where a
variable that is integrated of order d (denoted I(d)) must be differenced d times to
eliminate all unit roots. Mapping such data to stationarity is a reduction from I(d)
to I(0). This mapping is generally useful for interpreting the resulting models, and
it is needed to ensure that conventional inference is valid for all parameters. Still,
many inferences will be valid even if this reduction is not enforced; see Sims, Stock,
and Watson (1990). While differencing the data can map the data to stationarity,
cointegration can also eliminate unit roots between linear combinations of variables.
Cointegration is merely noted here, as it is treated extensively in numerous books
and expository articles: see Banerjee and Hendry (1992), Ericsson (1992a), Banerjee,
Dolado, Galbraith, and Hendry (1993), Johansen (1995), Hatanaka (1996), Doornik,
Hendry, and Nielsen (1998), and Hendry and Juselius (2001) inter alia.

Conditional factorization. Typically in empirical modeling, some variables are
treated as endogenous and others are treated as given or non-modeled. Formally, this
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partitioning of the variables arises by factorizing the density of n variables in xt into
sets of n1 and n2 variables yt and zt:

x0t = (y0t : z
0
t) , (11)

where yt denotes the endogenous variables in xt, zt denotes the non-modeled variables
in xt, and n1+ n2 = n. Using the partition in equation (11), the joint distribution of
xt on the right-hand side of equation (10) can always be factorized as:

Dx
¡
xt | X1

t−1,W0, δ
∗
b,t

¢
= Dy|z

¡
yt | zt,X1

t−1,W0,θa,t
¢ · Dz ¡zt | X1

t−1,W0,θb,t
¢
, (12)

where Dy|z (yt|·) is the conditional density of yt given zt, Dz (zt|·) is the marginal
density of zt, and θa,t and θb,t are those densities’ parameters. Modeling only yt
and treating zt as given corresponds to modeling only Dy|z (yt|·) and discarding the
marginal distribution Dz (zt|·) on the right-hand side of equation (12). No loss of
information in this reduction corresponds to the condition that zt is weakly exo-
genous for µ. Specifically, weak exogeneity requires that µ = f (θa,t) alone and that
(θa,t,θb,t) ∈ Θa×Θb for parameter spacesΘa andΘb; see Engle, Hendry, and Richard
(1983)*.

Constancy. Complete parameter constancy in the conditional density Dy|z (yt|·)
means that θa,t = θa ∀t, where θa ∈ Θa. In such a situation, if weak exogeneity holds,
µ itself is constant because µ is a function of only θa. While appearing simple enough,
constancy is actually a subtle concept; see Hendry (1996) and Ericsson, Hendry, and
Prestwich (1998).

Lag truncation. Lag truncation limits the extent of the history X1
t−1 in the

conditional density Dy|z (yt|·) in equation (12). For instance, truncation at s lags
implies:

Dy|z
¡
yt | zt,X1

t−1,W0,θa
¢
= Dy|z

¡
yt | zt,Xt−s

t−1,W0, ζ
¢
. (13)

In equation (13), no loss of relevant information requires that µ = f (ζ).

Functional form. Functional form could be treated as a set of data trans-
formations, but it merits some discussion on its own. Specifically, map yt into y

†
t

(= h1 (yt)) and zt into z
†
t (= h2 (zt)), and denote the resulting data by X

†. Assume
that the transformations y†t and z

†
t together make Dy†|z†(y

†
t |·) approximately normal

and homoscedastic, denoted Nn1(λt,Υ). Then there is no loss of information–and
no change in the specification–if:

Dy†|z†(y
†
t | z†t ,X†t−s

t−1,W0,γ) = Dy|z
¡
yt | zt,Xt−s

t−1,W0, ζ
¢
. (14)

A well-known example in which no loss of information occurs is transforming the log-
normal density of a variable to the normal density in the logarithm of that variable.
The left-hand side density in equation (14) defines the local (conditional) DGP of y†t .
When joint normality holds, as is assumed here, that final conditional model is linear
in the transformed space.
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The derived model. This sequence of reductions delivers the following speci-
fication:

A (L)h1 (yt) = B (L)h2 (zt) + εt εt app Nn1(0,Σε), (15)

where εt is a mean-zero, homoscedastic, mean-innovation process with variance Σε,
andA (L) andB (L) are constant-parameter polynomial matrices of order s in the lag
operator L. That is, A (L) and B (L) are matrices whose elements are polynomials.
The error εt is a derived process that is defined by:

εt = A (L)h1 (yt) − B (L)h2 (zt) , (16)

so εt as given in equation (16) is not autonomous. For the same reason, equation (15)
is a derived model, rather than an autonomous model. Equations (15) and (16) par-
allel and generalize Section 2.1’s discussion of the empirical model in equation (2)
and its derived error in equation (4). Section 4.3 discusses further aspects of model
formulation, focusing on dynamic specification, noting that equation (15) is an auto-
regressive distributed lag model.
Reduction from the DGP to the generic econometric equation in (15) involves all

ten stages of reduction discussed above, thereby transforming the parameters ψ1
T in

the DGP to the coefficients of the empirical model. Because the DGP is congruent
with itself, equation (15) would be an undominated congruent model if there were no
information losses from the corresponding reductions. More generally, equation (15)
is congruent under the conditions stated, but it still could be dominated, as the next
subsection discusses.

2.4 Dominance

Comparison of empirical models is often of interest, and dominance is a useful criterion
when comparing models. Dominance can be summarized, as follows.
Consider two distinct scalar empirical models, denoted M1 and M2, with mean

innovation processes (MIPs) {ε1t} and {ε2t} relative to their own information sets,
where ε1t and ε2t have constant finite variances σ21 and σ22 respectively. Model M1

variance-dominates model M2 if σ21 < σ22. That property is denoted M1 Â M2.
Several implications follow immediately from the definition of variance dominance

in terms of the models’ variances.

• Variance dominance is transitive: if M1 Â M2 and M2 Â M3, then M1 Â M3.

• Variance dominance is also anti-symmetric: if M1 Â M2, then it cannot be true
that M2 Â M1.

• On a common dataset, a model without a MIP error can be variance-dominated
by a model with a MIP error.

• In the population, the DGP cannot be variance-dominated by any models
thereof; see Theil (1971, p. 543).
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• A model with an innovation error cannot be variance-dominated by a model
that uses only a subset of the same information.

• If (e.g.) ε1t = xt−E(xt|Xt−1), then σ21 is no larger than the variance of any other
empirical model’s error ε2t that is defined by ε2t = xt − G(xt|Xt−1), whatever
the choice of G(·). This result follows because the conditional expectation is
the minimum mean-square error predictor.

• Thus, a model that nests all contending explanations as special cases must
variance-dominate in that class of models.

• Variance dominance and parsimony may be considered together. Let model Mj

be characterized by a parameter vector with κj elements. Then model M1 is
parsimoniously undominated in the class {Mi} if κ1 ≤ κi and no Mi Â M1 ∀i.
Hendry and Richard (1982)* define this property; see also Section 4.2.

• Model selection procedures such as the Akaike information criterion and the
Schwarz criterion seek parsimoniously undominated models, but they usually
do not check for congruence; see Akaike (1981) [Volume II: Chapter 1] and
Schwarz (1978) [Volume II: Chapter 2], and Section 4.5.

These implications favor starting with general rather than simple empirical mod-
els, given any choice of information set; and they suggest modeling the conditional
expectation.

2.5 Measuring Information Loss

Valid reductions involve no losses in information. Econometrics has created concepts
that correspond to avoiding possible losses, as the following list highlights.

• Aggregation entails no loss of information when marginalizing with respect to
disaggregates if the retained (aggregated) information provides a set of sufficient
statistics for the parameters of interest µ.

• Sequential factorization involves no loss if the derived error process is an inno-
vation relative to the history of the random variables.

• Marginalizing with respect to vt is without loss, provided that the remaining
data are sufficient for µ.

• Marginalizing with respect to V1
t−1 is without loss, provided that v does not

Granger-cause x and that the parameters are variation free.

• Cointegration and differencing can reduce integrated data to I(0) without loss.
• Conditional factorization leads to no loss of information if the conditioning
variables are weakly exogenous for µ.
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• Parameter constancy over time and with respect to interventions on the mar-
ginal processes (invariance) are essential for sustainable relationships.

• Lag truncation involves no loss when the error process remains an innovation.
• Choice of functional form likewise involves no loss when the error process re-
mains an innovation.

At a more general level, encompassing implies that no loss of information arises from
ignoring another model’s data, conditional on retaining the data in one’s own model.
To provide some insight into encompassing, note that the local DGP is a reduction

of the DGP itself and is nested within that DGP. The properties of the local DGP
are explained by the reduction process: knowledge of the DGP entails knowledge
of all reductions thereof. Thus, when knowledge of one model entails knowledge of
another, the first model is said to encompass the second. Several relevant papers on
encompassing are reprinted in Campos, Ericsson, and Hendry (2005); see Sections 4.6
and 4.7.

2.6 Information for Model Evaluation

Given the potential information losses that can occur in reduction, it is natural to
evaluate the extent to which there is evidence of invalid reductions. A taxonomy
of information sources arises from the data themselves, theory and measurement
information, and data used in rival models. In this taxonomy, it is useful to partition
the data used in modeling (X1

T ) into its relative past, relative present, and relative
future:

X1
T =

¡
X1

t−1 : xt : X
t+1
T

¢
. (17)

The taxonomy of information sources is thus:

1. past data X1
t−1;

2. present data xt;

3. future data Xt+1
T ;

4. theory information, which often motivates the choice of parameters of interest;

5. measurement information, including price index theory, constructed identities,
and data accuracy; and

6. data of rival models, which is partitioned into its relative past, present, and
future, paralleling the partition of the model’s own data in equation (17).

Each source of information implies a criterion for evaluating an empirical model:

1. homoscedastic innovation errors;

2. weakly exogenous conditioning variables for the parameters of interest;
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3. constant invariant parameters of interest;

4. theory-consistent identifiable structures;

5. data-admissible formulations on accurate observations; and

6. encompassing of rival models.

Models that satisfy the criteria for the first five information sets are said to be con-
gruent. An encompassing congruent model satisfies all six criteria; see Sections 4.6
and 4.7.

2.7 Model Design

Model design can be either implicit or explicit. Implicit model design typically occurs
when modeling aims to address the symptoms of existing mis-specification. For in-
stance, a simple model might be initially specified and then tested for problems such
as autocorrelation, heteroscedasticity, and omitted variables, correcting such prob-
lems as they are discovered. The model is thus implicitly designed to minimize (or
control) the values of the test statistics that are computed.
Explicit model design aims to mimic reduction theory in empirical modeling,

thereby minimizing the losses due to the reductions imposed. Explicit model de-
sign leads to general-to-specific modeling; see the following section. Gilbert (1986)
[Volume I: Chapter 1] discusses and contrasts implicit and explicit model design in
detail.

3 General-to-specific Modeling

General-to-specific modeling is the practical embodiment of reduction. The intro-
duction to the current section summarizes important aspects of that relationship,
focusing on implications for automated general-to-specific modeling algorithms. See
Gilbert (1986)* and Ericsson, Campos, and Tran (1990) [Volume I: Chapter 7] for
detailed expositions on general-to-specific modeling and Phillips (1988) [Volume I:
Chapter 6] for a constructive critique.
As background to the methodology of general-to-specific modeling, consider the

local DGP, which is the joint distribution of the subset of variables under analysis. A
general unrestricted model such as equation (15) is formulated to provide a congru-
ent approximation to that local DGP, given the theoretical, institutional, and existing
empirical background. The empirical analysis commences from this general specifica-
tion, which is assessed for discrepancies from congruency by using mis-specification
tests. If no mis-specification is apparent, the general unrestricted model (or GUM)
is simplified to a parsimonious congruent representation, with each step in the sim-
plification being checked by diagnostic testing.
Simplification can proceed in many ways. Although the goodness of a model is

intrinsic to the model and is not a property of the selection route, poor routes seem
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unlikely to deliver useful models. Consequently, some economists worry about how
selection rules may affect the properties of the resulting models, thus advocating
the use of a priori specifications. To be a viable empirical approach, these a priori
specifications require knowledge of the answer before starting; and they deny any
useful role to empirical modeling. Conversely, good routes may have a high chance of
delivering congruent representations of the local DGP. Section 4.4 addresses model
selection procedures and summarizes the papers reprinted in Campos, Ericsson, and
Hendry (2005).
Several studies have recently investigated how well general-to-specific modeling

does in model selection. In particular, the pathbreaking Monte Carlo study by Hoover
and Perez (1999a) [Volume II: Chapter 22] reconsiders earlier Monte Carlo results by
Lovell (1983) [Volume II: Chapter 20]. Hoover and Perez start with series on 20
macroeconomic variables (zt) and generate a new variable (denoted yt) as a function
of zero to five of the zt’s and an error. Hoover and Perez then regress yt on all twenty
zt’s plus lags thereof (yt−1, yt−2, yt−3, yt−4, zt−1), and they let their general-to-specific
algorithm simplify that general unrestricted model until it finds an irreducible, con-
gruent, encompassing result. Their algorithm checks up to 10 different simplification
paths, testing for mis-specification at every step. It then collects the models from
those different simplification paths and selects the one that variance-dominates the
others. By following many paths, the algorithm guards against choosing a misleading
route; and it delivers an undominated congruent model.
Hoover and Perez (1999a)* stimulated a flurry of activity on the methodology

of general-to-specific modeling. Hendry and Krolzig (1999) [Volume II: Chapter 23]
improved on Hoover and Perez’s algorithm. More recently, Hoover and Perez (2004)
extended their investigations to cross-section datasets and found equally impressive
performance by general-to-specific modeling in model selection. Hendry and Krolzig
(2003) also reported a wide range of simulation studies used to calibrate their algo-
rithm.
To see why general-to-specific modeling does well, the current section examines

this approach from several standpoints. Section 3.1 summarizes generic difficulties in
model selection. Section 3.2 reviews the debates about general-to-specific modeling
prior to the publication of Hoover and Perez (1999a)*. Section 3.3 develops the
analytics for several procedures in general-to-specific modeling, drawing on Hendry
(2000), from which Section 3.4 derives various costs of search. Section 3.5 reports
recent simulation evidence on the properties of general-to-specific modeling.

3.1 The Econometrics of Model Selection

There are four potential basic mistakes in selecting a model from data evidence:

1. mis-specifying the general unrestricted model;

2. failing to retain variables that should be included;

3. retaining variables that should be omitted; and
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4. selecting a noncongruent representation, which renders conventional inference
hazardous.

The first mistake is outside the purview of selection issues, although mis-specification
testing of the general unrestricted model can alert the investigator to potential prob-
lems with that model. When the general unrestricted model is congruent, the fourth
mistake can be avoided by ensuring that all simplifications are valid. That leaves the
second and third mistakes as the two central problems for model selection. In what
follows, the resulting costs of selection are typically considered for situations in which
the general unrestricted model is much larger than the required model.
The conventional statistical analysis of repeated testing provides a pessimistic

background for model selection. Every test has a nonzero null rejection frequency
(or size, if independent of nuisance parameters), so type I errors accumulate across
tests. Setting a tight significance level for tests would counteract that phenomenon,
but would also induce low power to detect the influences that really matter. Thus,
the conventional view concludes that incorrect decisions in model search must be
commonplace.
As a contrasting view, in a progressive research strategy that utilizes general-to-

specific modeling, evidence accumulates over time against irrelevant influences and in
favor of relevant influences. White (1990) [Volume I: Chapter 23] showed that, with
sufficiently rigorous testing, the selected model will converge to the DGP, so overfitting
and mis-specification problems are primarily finite sample issues. Sections 3.3, 3.4,
and 3.5 show that general-to-specific modeling has relatively low search costs, with
sizes close to their nominal levels and powers near those attainable when commencing
from the correct specification.

3.2 Past Debates

In addition to the four potential mistakes above, critics of general-to-specific methods
have voiced concerns about data-based model selection, measurement without theory,
pre-test biases, ignored selection effects, data mining, repeated testing, lack of iden-
tification, and the potential path dependence of any selected model. This subsection
highlights central references in these debates and considers various responses to the
critics.
Keynes (1939, 1940), Tinbergen (1940), Koopmans (1947), Judge and Bock (1978),

Leamer (1978), Lovell (1983)*, Pagan (1987) [Volume I: Chapter 5], Hendry, Leamer,
and Poirier (1990), and Faust and Whiteman (1997) inter alia critique general-to-
specific methods in several key exchanges in the literature. Although Hendry and
Krolzig (2001) address numerous concerns raised about general-to-specific modeling,
it has taken a considerable time to develop the conceptual framework within which
that rebuttal is possible. For instance, when Hendry (1980) was written, it was unclear
how to counter earlier attacks, such as those by Keynes on Tinbergen (1939) or by
Koopmans on Burns and Mitchell (1946). These debates set the scene for doubting
any econometric analysis that failed to commence from a pre-specified model. Leamer
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(1978) also worried about the effects of data mining, which he defined as “the data-
dependent process of selecting a statistical model” (p. 1). After Lovell (1983)* found
low success rates for selecting a small relation hidden in a large database, an adverse
view of data-based model selection became entrenched in the profession. This view
was reinforced by two additional results: the apparent coefficient bias that arises
when variables are selected by significance tests, and the claimed under-estimation in
reported coefficient standard errors that arises from treating a selected model as if it
were certain.
Consequently, many empirical econometric studies have tried to appear to com-

mence from pre-specified models, whether they did so or not. Econometric evidence
became theory dependent: empirical evidence provided little value added, and it was
likely to be discarded when fashions in theory changed. Confusion over the role of
econometric evidence was so great that (e.g.) Summers (1991) failed to notice that
theory dependence was a source of the problem, not the use of “sophisticated” econo-
metrics.
Keynes and others claimed that valid econometric analysis must be based on mod-

els pre-specified by economic theory. The fallacy in that approach is that theoretical
models are themselves incomplete and incorrect. Similarly, Koopmans inter alia relied
on the (unstated) assumption that only one form of economic theory was applicable,
that it was correct, and that it was immutable; see Hendry and Morgan (1995). That
said, it is actually not necessary (or even possible) to know everything in advance
when commencing statistical work in economics. If it were necessary, no one would
ever discover anything not already known! Partial explanations are likewise valuable
empirically, as the development of the natural sciences has demonstrated. Progres-
sive research can discover invariant features of reality without prior knowledge of the
whole; see Hendry (1995b).
A critic might well grant the force of such arguments, yet remain skeptical that

data mining could produce anything useful, thereby undermining an evidence-based
approach. However, as Gilbert (1986)* discusses, pejorative forms of data mining
can be discovered from conflicting evidence or by rival models that cannot be en-
compassed. Stringent and critical model evaluation can detect and avoid these forms
of data mining. See Hendry (1995a, Ch. 15) and Campos and Ericsson (1999) [Vol-
ume II: Chapter 33] for further discussion of data mining, including other less pe-
jorative senses. Even when an undominated congruent model is data-based, it can
provide a good approximation to the local DGP; and it can help reveal pejorative
data mining.

3.3 Probabilities of Deletion and Retention

At first blush, the theory of repeated testing appears to wreak havoc with general-to-
specific model selection, so this subsection addresses that issue. In fact, the probabili-
ties of deleting irrelevant variables are relatively high. The greater difficulty is retain-
ing relevant effects, even if the analysis commences from the “correct” model, i.e., the
local DGP. This subsection re-examines the probabilities associated with deleting ir-
relevant variables and retaining relevant variables when adopting a general-to-specific
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modeling strategy.

Deleting irrelevant variables. To illustrate the probabilities associated with
deleting irrelevant variables in general-to-specific model selection, consider a classical
regression model in which n regressors are irrelevant, i.e., have regression parameters
equal to zero. Under that null hypothesis, the probability pα that at least one of n
corresponding t-tests rejects at the (100 · α)% level is one minus the probability that
none of those t-tests rejects:

pα = 1− P(|ti| < cα ∀i = 1, . . . , n)
= 1− (1− α)n , (18)

where cα is the critical value associated with an α rejection frequency. For example,
when 40 tests of correct null hypotheses are conducted at α = 0.05 (say), then
p0.05 ' 0.87 from equation (18). With approximately 87% probability, at least one
t-test spuriously rejects at the 5% level. Such a high p-value is usually the focus of
worry with repeated testing.
One solution is to use larger critical values. The t-distribution is thin-tailed,

leading Sargan (2001a) to note how difficult it is to obtain spurious t-values exceeding
three in absolute value; see also Sargan (2001b). A critical value of three corresponds
to (approximately) the 0.5% critical value for a t-test with T = 50, for which p0.005 '
0.18 when n = 40. While an 18% chance of a false rejection may still be high from
some perspectives, this situation has other interpretations, as is now shown.
To better grasp the issues involved in false rejection, reconsider the probability of

irrelevant variables being significant on a t-test at significance level α. That prob-
ability distribution {pj} is given by the n + 1 terms of the binomial expansion of
(α+ (1− α))n, namely:

pj =
n!

j! (n− j)!
αj (1− α)n−j j = 0, . . . , n. (19)

Thus, the probability of all n coefficients being significant is αn, the probability of
n−1 being significant is nαn−1 (1− α), and (as used in equation (18)) the probability
of none being significant is (1− α)n. Using equation (19), the average number of
variables found significant by chance is:

m =
nX

j=0

j · pj = nα. (20)

If α = 0.05 and n = 40, then m equals two, which explains the high probability of
at least one spurious rejection. Even so, 38 out of the 40 variables will be deleted
(on average) when using individual t-tests at this relatively loose significance level.
Moreover, from equation (20), m falls to 0.4 for α = 0.01 and to 0.2 for α = 0.005.
That is, when using a critical value of three, one variable out of forty is retained just
once in five attempts, on average. That value of m explains why p0.005 ' 0.18. It also
reveals that such a rejection rate does not correspond to the usual interpretation of
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size but to the rare occurrence of a selection error, despite a large number of irrelevant
variables. Even if repeated t-tests are used, few spurious variables will typically be
retained for α ≤ 0.01. Unfortunately, small values of α often imply difficulty in
detecting relevant variables, leading to the issue of retention.

Retaining relevant variables. Unless the relevant variables are highly signif-
icant in the population, retaining them appears inherently difficult, whether or not
general-to-specific modeling is used. The difficulty in retaining relevant variables
can be illustrated in a framework similar to the one used above for calculating the
probabilities of deleting irrelevant variables, but with the t-ratios having noncentral
distributions.
Consider drawing from a t-distribution t (T, τ) with T degrees of freedom and a

noncentrality parameter τ , which is approximately the t-statistic’s mean. The null
hypothesis H0 is τ = 0, the alternative hypothesis H1 is τ 6= 0, and assume that the al-
ternative hypothesis is true. For a critical value cα, the probability P (|t| ≥ cα | H0) =
α determines the size, whereas power is given by:

P (|t| ≥ cα | H1) . (21)

Suppose that τ = 2, which corresponds to an expected t-value of approximately two
in the population. That is, E(t (T, 2)) ' 2 for a fixed T . Because the t-distribution
is nearly symmetric around its mean, the probability of that t-ratio exceeding two is
about 50%:

P (t ≥ 2 | τ = 2) ' 0.50. (22)

For even relatively small T , equation (22) is the power in equation (21) when cal-
culated for the alternative hypothesis H1 : τ = 2, noting that then cα = 2 roughly
corresponds to α = 0.05 and P (t ≤ −2 | τ = 2) is approximately zero. The probabil-
ity of rejecting the null hypothesis that τ = 0 is thus only 50% under the alternative
hypothesis that τ = 2, even although the local DGP is known and only a single
variable is involved. For three such variables, the probability of detecting all three is:

P (|ti| ≥ cα ∀i = 1, 2, 3 | τ = 2) ' 0.503 = 0.125, (23)

where the estimated model is the local DGP and includes no additional irrelevant
variables, and the included variables are orthogonal. From equation (23), all three
variables are deemed significant only about one-eighth of the time (12.5%)–the same
probability that no variables are retained. This low power represents an inexorable
cost of inference from the given evidence, even when commencing from a correctly
specified model.
This difficulty with power is exacerbated if the critical value is increased (e.g.) to

offset problems of “overfitting”. For example, P (|t| ≥ c0.01 | τ = 2) ' 0.28 for even
large T , implying only about a 2% chance of keeping all three variables. Despite
knowing the local DGP, such a variable will only occasionally be retained using t-
tests if the null hypothesis is tested. If there are many such variables, retaining all of
them is highly unlikely.
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These calculations paint a potentially gloomy picture for data-based model selec-
tion. However, the situation is more promising than it might appear. As Section 3.4
explains, general-to-specific modeling can have surprisingly small search costs–i.e.,
the additional costs that arise by commencing from a general unrestricted model that
nests the local DGP, rather than by commencing from the local DGP and knowing
that it is the local DGP. These search costs are typically positive: it is difficult to
improve on model selection if the local DGP is known. However, multiple-variable
procedures such as F-tests can improve on single-variable procedures such as the
t-tests above.

3.4 Costs of Inference and Costs of Search

The costs associated with model selection can be usefully separated into the costs of
inference and the costs of search, as the following example illustrates.
The costs of inference are those costs associated with inference about variables

in a model when the model is the local DGP but the modeler does not know that.
Consider a local DGP with k variables (all relevant), and denote those variables by
the set Srel (rel for relevant). Let p

dgp
α,i denote the probability of retaining the ith

variable at significance level α when commencing from the local DGP as the initial
specification. The probability of dropping the ith relevant variable is (1− pdgpα,i ), so a
measure of the total costs of inference in this situation is:X

i∈Srel
(1− pdgpα,i ). (24)

While equation (24) is one measure of the costs of inference, other measures are
feasible as well, such as unity minus the probability of selecting the local DGP;
cf. equation (23).
The costs of search are those costs associated with inference about variables in

a general unrestricted model that nests the local DGP, relative to inferences in the
local DGP itself. Let pgumα,i denote the probability of retaining the ith variable when
commencing from a general unrestricted model with n variables, applying the same
selection tests and significance levels as before. The cost of search is pdgpα,i − pgumα,i

for a relevant variable (i ∈ Srel), and it is p
gum
α,i for an irrelevant variable (i ∈ S0),

where S0 is the set of n− k irrelevant variables in the general unrestricted model. By
construction, the local DGP has no irrelevant variables, so the whole cost of keeping
irrelevant variables in model selection is attributed to search. Thus, a measure of the
pure search costs is: X

i∈Srel
(pdgpα,i − pgumα,i ) +

X
i∈S0

pgumα,i . (25)

In principle, the pure search costs given in equation (25) could be negative if the
algorithm for selection from a general unrestricted model were different from that
for testing in a local DGP. The complexities of multiple-variable problems typically
preclude analytical answers, so Section 3.5 reports some simulation evidence. Before
examining that evidence, consider conditions under which search might do well.
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Reducing search costs. To keep search costs low, the model selection process
should satisfy a number of requirements. These include starting with a congruent
general unrestricted model and using a well-designed simplification algorithm, as is
now discussed.

1. The search should start from a congruent statistical model to ensure that se-
lection inferences are reliable. Problems such as residual autocorrelation and
heteroscedasticity not only reveal mis-specification. They can deliver incorrect
coefficient standard errors for test calculations. Consequently, the algorithm
must test for model mis-specification in the initial general model. The tests
used at this stage should be few in number (four or five, say), at relatively
stringent significance levels (such as 1%), and well calibrated, i.e., so that their
nominal sizes are close to the actual size. These choices help avoid spurious
rejections of the general unrestricted model at the outset. For instance, five in-
dependent mis-specification tests at the 1% level induce an overall size of about
5%. Alternatively, a single general portmanteau test could be applied at the
5% level. Once congruence of the general unrestricted model is established,
selection can reliably commence.

2. The search algorithm should avoid getting stuck in search paths that inadver-
tently delete relevant variables early on and then retain many other variables as
proxies, leading to very non-parsimonious selections. The algorithm should con-
sequently both filter out genuinely irrelevant variables and search down many
paths to avoid path dependence. The former points towards F-testing, the latter
towards exploring all statistically reasonable paths.

3. The algorithm should check that diagnostic tests remain insignificant through-
out the search process. If eliminating a variable induced a significant diagnostic
test, the associated reduction would appear to be invalid, and later inferences
would be distorted. Even if model mis-specification tests are computed at every
simplification step, this form of repeated testing does not affect the probabilities
of spurious rejections because the general unrestricted model is already known
to be congruent. There are thus three protections against inappropriate simpli-
fication: the reduction test itself, the reduction’s consequences for the residuals,
and the outcomes of different paths. Such protections act together, rather like
error correction: each reduces the chances of a mistake.

4. The algorithm should ensure that any candidate model parsimoniously encom-
passes the general unrestricted model, so that no loss of information has oc-
curred. Searching down various paths may result in several different (perhaps
non-nested) terminal models. Each of these models can be tested against the
general unrestricted model to ensure that the cumulative losses from simplifi-
cation are small enough: i.e., that the general unrestricted model is parsimo-
niously encompassed. These models can also be tested against each other to
eliminate any dominated findings. A coherent approach is to form the union of
the models’ variables, test each model against that union to check whether it
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(the model) parsimoniously encompasses the union, and drop any model that
does not parsimoniously encompass the union.

5. The algorithm should have a high probability of retaining relevant variables.
To achieve this requires both a relatively loose significance level and powerful
selection tests. Decisions about significance levels should probably be made
by the user because the trade-off between costs of over- and under-selection
depend on the problem, including such features as the likely numbers of relevant
variables and irrelevant variables, and the likely noncentrality parameters of the
former.

6. The algorithm should have a low probability of retaining variables that are
actually irrelevant. This objective clashes with the fifth objective in part and
so requires an alternative use of the available information. As noted previously,
false rejection frequencies of the null can be lowered by increasing the required
significance levels of the selection tests, but only at the cost of reducing power.
However, it may be feasible to simultaneously lower the former and raise the
latter by improving the search algorithm.

7. The algorithm should have powerful procedures to select between the candidate
models and any models derived from them–with an aim of good model choice.
Tests of parsimonious encompassing are natural here, particularly because all of
the candidate models are congruent relative to the general unrestricted model
by design.

Section 4.8 summarizes the relevant papers that are reprinted in Campos, Ericsson,
and Hendry (2005) on this topic. Assuming now that the chosen algorithm satisfies the
first four requirements–which are relatively easy to ensure–the current subsection
examines the fifth and sixth requirements in greater detail.

Improving deletion probabilities. To highlight how the choice of algorithm
may improve deletion probabilities, consider the extreme case in which the model
includes many variables but none of those variables actually matters. Low deletion
probabilities of those irrelevant variables might entail high search costs. One solution
is to check whether the general unrestricted model can be reduced to the empty (or
null) model, as with a one-off F-test (Fgum, say) of the general unrestricted model
against the null model using a critical value cγ. This approach would have size
P (Fgum ≥ cγ) = γ under the null hypothesis if Fgum were the only test implemented.
Because the null is true, model searches along more complicated paths would occur
only if Fgum rejected, i.e., only 100γ% of the time. Even for those searches, some
could terminate at the null model as well, especially if cα were set more stringently
than cγ.
A specific example helps clarify the benefits of this two-stage strategy. For a

general unrestricted model with n regressors, suppose Fgum rejects 100γ% of the
time, as above. Also, suppose that t-test selection in the general unrestricted model
is used if the null model is rejected by Fgum, with (say) r regressors being retained on
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average from the t-test selection. Overall, the average number of variables retained
by this two-stage search procedure is:

(0× (1− γ)) + (r × γ) = r × γ. (26)

It is difficult to determine r analytically because the model searches using t-test
selection condition on Fgum ≥ cγ. Because nα variables are retained on average when
the test Fgum is not utilized, it seems reasonable to assume that r is larger than nα,
e.g., r = 2nα. Under that assumption, the expected number of variables retained
by this two-stage algorithm is 2nαγ, using equation (26). For γ = 0.10 (a moderate
value), α = 0.05, and n = 40, only 0.4 variables are retained on average, implying
a size of just 1%, and without the consequential adverse implications for power that
were present when the search algorithm used only t-tests.
For comparison, Hendry and Krolzig (1999)* found that this two-stage algorithm

selected the (correct) null model 97.2% of the time, with a very small size, when
γ = 0.01 and n = 40 in their Monte Carlo re-run of Hoover and Perez’s experiments.
Hendry and Krolzig’s value of γ now seems too stringent, over-emphasizing size rela-
tive to power. Nevertheless, by using relatively tight significance levels or a reasonable
probability for looser significance levels, it is feasible to obtain a high probability of
locating the null model, even when 40 irrelevant variables are included.

Improving selection probabilities. A generic pre-search filter can improve
selection probabilities, even when Fgum by itself is not very useful. Notably, Fgum
may well reject much of the time if the general unrestricted model includes even a
relatively small number of relevant variables, in which case Fgum has little value in the
search algorithm. To illustrate the use of a pre-search filter, suppose that the general
unrestricted model has 40 variables, of which 30 are irrelevant and 10 are relevant, and
where the latter have population t-values equal to two in absolute value. The test Fgum
will almost always reject at standard levels. However, a pre-search filter generalizing
on Fgum can help eliminate the irrelevant variables. One appealing pre-search filter
focuses on a single decision–“What is to be excluded?”–thereby entailing what is
to be included. Ideally, the general model’s variables would be split into the two
sets Srel and S0, with the F-test applied to the latter set (the irrelevant variables).
Although that particular split cannot be accomplished with any certainty due to the
sampling variability of estimated coefficients, the overall approach is useful.
One feasible pre-search filter in this spirit can be constructed as follows. Consider

a procedure comprising two F-tests, denoted F1 and F2, where F1 is conducted at the
γ level (as above), and F2 is conducted at the δ level (say). The n variables to be
tested are first ordered by their t-values in the general unrestricted model, such that
t21 ≤ t22 ≤ · · · ≤ t2n. The statistic F1(q, ·) tests the significance of the first q variables,
where q is chosen such that F1(i, ·) ≤ cγ (i = 1, . . . , q) and |tq| ≤ cα but that either
F1(q + 1, ·) > cγ or |tq+1| > cα. The first q variables are eliminated, provided that
the diagnostic statistics for the corresponding reduction remain insignificant. Then,
F2(n − q, ·) tests whether the remaining n − q variables are jointly significant, i.e.,
that F2 > cδ. If so, those remaining variables are retained.
The number of variables eliminated (q) is central to this procedure. To illustrate

this procedure’s appeal, calculate the likely values of q for n = 40, with 30 irrelevant
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variables and 10 relevant variables (as above). For ease of exposition, further assume
that the variables are independent of each other. From the definitions of q and F1, it
follows that |tq| ≤ cα, that F1 (q, T − n) ≤ cγ, and that:

F1 (q, T − n) ' 1

q

qX
i=1

t2i . (27)

When 30 variables are irrelevant, approximately 20 of those variables will have ab-
solute t-ratios less than unity because P (|t| < 1 | τ = 0) ' 0.68. From equation (27),
every additional t2i that is less than unity reduces the value of F1, implying that typ-
ically F1 (20, ·) < 1. Moreover, P (|t| ≥ 1.65 | τ = 0) ' 0.1, so on average only three
irrelevant variables have absolute t-ratios larger than 1.65, with seven variables hav-
ing absolute t-ratios between unity and 1.65. Hence, the expected value of F1 for the
first 27 variables is approximately:

F1 (27, T − n) ' 1

27
[(20× 1.002) + (4× 1.332) + (3× 1.652)]

' 1.31, (28)

which is insignificant at the 19% level for T = 100. For even this very moderate
level of γ implied by equation (28), q is likely to be close to the total number of
irrelevant variables, with only a few irrelevant variables inadvertently retained. Also,
few relevant variables are likely to be deleted because P (|t| ≥ 1.65 | τ = 2) ' 0.64.

3.5 Simulation Evidence

Monte Carlo findings on the econometrics software package PcGets suggest that its op-
erational characteristics are well described by the above analysis. Hendry and Krolzig
(2001) present full details of the algorithm in PcGets. This subsection summarizes the
accumulating evidence on the excellent–and still rapidly improving–performance of
implemented general-to-specific selection procedures.
Hoover and Perez (1999a)* is the first major Monte Carlo study of general-to-

specific selection procedures. Hoover and Perez demonstrated both the feasibility of
automatic model selection procedures and the highly superior properties of general-
to-specific modeling over any of the selection approaches considered by Lovell (1983)*.
Hoover and Perez found that the size (null rejection frequency) of their automated
general-to-specific model selection procedure was close to the nominal value. More-
over, they found that power was sufficiently high to detect many of the models hidden
in very large general unrestricted models, e.g., when seeking models with from zero
to five variables when the general unrestricted model had 44 variables.
Building on Hoover and Perez (1999a)*, Hendry and Krolzig (1999)* used early

versions of many of the ideas discussed above and substantially improved Hoover and
Perez’s algorithm. While Hendry and Krolzig’s algorithm performed exceptionally
well in some states of nature–as when the DGP was the null model–the algorithm
did less well in other situations. Hendry and Krolzig (2003) have shown that a
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more recent version of their algorithm achieves good performance across all the states
considered, with controlled size and power close to those that would be achieved if
the analysis commenced from the local DGP.
Hendry and Krolzig (2001) present an array of simulations at different choices

of the many critical values in PcGets and confirm the algorithm’s “error correction”
behavior, in that poor choices for some decision criteria can be offset by more sensible
choices elsewhere. For instance, too loose a pre-search criterion can be offset by multi-
path searches. Finally, Krolzig (2001, 2003) finds that the general-to-specific search
procedure does well in selecting the equations in a vector autoregression.
All of these experiments concerned time series datasets. Hoover and Perez (2004)

have reported simulations representing cross-country regressions. Again, Hoover and
Perez found well-controlled size and power close to those attainable when the local
DGP is the model. Hoover and Perez contrast that outcome with the poor properties
of procedures such as extreme bounds analysis; see Leamer (1985). To summarize,
the available analytics and simulation evidence concur: general-to-specific modeling
can work almost as well as commencing from the local DGP, and search costs are
remarkably low.

4 A Selected Bibliography

This section summarizes fifty-seven papers key to the development of general-to-
specific modeling. These papers are reprinted in the two volumes of Campos, Er-
icsson, and Hendry (2005). Selecting the papers was not easy, as literally hundreds
of exemplars are available. We considered the pivotal role of each paper and the
ease of access to that paper, including through existing reprints of it–although pre-
vious reprinting in itself signaled importance. We included many papers on specific
tests and procedures, while narrowing the topic by excluding papers that arose as
implications of general-to-specific modeling approaches. We also omitted papers on
alternative methodologies, while including some expository evaluations of general-to-
specific modeling.
The fifty-seven papers are divided topically into nine parts, which are discussed

in this section’s nine subsections.

Volume I
Part I. Introduction to the methodology (Section 4.1);
Part II. Theory of reduction (Section 4.2);
Part III. Dynamic specification (Section 4.3);
Part IV. Model selection procedures (Section 4.4);

Volume II
Part I. Model selection criteria (Section 4.5);
Part II. Model comparison (Section 4.6);
Part III. Encompassing (Section 4.7);
Part IV. Computer automation (Section 4.8); and
Part V. Empirical applications (Section 4.9).
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These divisions are convenient but not always clearcut. For instance, some applica-
tions have a strong methodological slant; and some analyses of econometric theory
report substantive empirical findings. The remainder of this section summarizes the
fifty-seven papers, part by part, following the structure indicated above.

4.1 Introduction to the Methodology

This subsection focuses on two common, alternative approaches to modeling the econ-
omy: specific-to-general and general-to-specific. In the first approach, the researcher
starts from a simple relationship, with the intent of generalizing it in light of any dis-
crepancies between the model and the data. In the second approach, the researcher
postulates the most general model that is feasible, which is then reduced as far as
its congruence with the data permits. While both procedures may lead to a congru-
ent model, they have substantial differences that may greatly affect the chances of
selecting a good representation.
Any specific-to-general strategy faces a key problem: diagnostic statistics are un-

able to provide enough information to identify the causes of the symptoms detected
by diagnostic statistics themselves. For instance, a test for parameter constancy may
reject, but the parameters’ apparent nonconstancy may have arisen because relevant
variables are omitted or because conditioning upon the included variables is invalid.
Hence, in the specific-to-general approach, it is crucial to correctly guess the inter-
pretation of a rejected null hypothesis because fixing the wrong cause does not solve
the actual problem. For example, adding variables to a model may not lead to con-
stant parameters if joint modeling is in fact required. Likewise, correcting for residual
autocorrelation may not lead to a better model if inappropriate functional form is the
root cause of the autocorrelation.
General-to-specific strategies also face challenges, as documented in Section 3.

That section also considers how those challenges are addressable in practice.
Gilbert (1986) [Volume I: Chapter 1] offers a clear explanation of the general-to-

specific approach to econometric modeling, emphasizing the approach’s foundations
and its advantages over specific-to-general modeling. Hendry (1983) [Volume I: Chap-
ter 2] exposits the main aspects of general-to-specific modeling, illustrating through-
out with the modeling of U.K. consumers’ expenditure.
Gilbert (1989) [Volume I: Chapter 3] discusses the origins of general-to-specific

modeling at the London School of Economics (LSE), and he summarizes the ap-
proach’s major developments through the 1970s. Understanding these circumstances
is of interest in order to avoid repeating earlier mistakes. Spanos (1989) [Volume I:
Chapter 4] outlines a framework based on the Haavelmo distribution, in which the
LSE approach may be embedded. Mizon (1995) notes further recent improvements
in general-to-specific modeling and discusses model evaluation.
Three additional papers evaluate a range of alternative approaches. Pagan (1987)

[Volume I: Chapter 5] compares Hendry’s, Leamer’s, and Sims’s methodologies for
constructing econometric models; see Hendry (1983) [Volume I: Chapter 2], Leamer
(1978), and Sims (1980) respectively, and see Hendry, Leamer, and Poirier (1990)
for further discussion. Phillips (1988) [Volume I: Chapter 6] evaluates Aigner’s,
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Granger’s, Leamer’s, and Pesaran’s views on econometric methodology, with reflec-
tions on Hendry’s methodology, including general-to-specific modeling. Ericsson,
Campos, and Tran (1990) [Volume I: Chapter 7] provide a general exposition of
Hendry’s methodology, linking it to the econometrics software program PcGive.

4.1.1 ProfessorHendry’s EconometricMethodology byC.L.Gilbert (1986)

Gilbert (1986) offers a clear yet quite complete explanation of the general-to-specific
approach to econometric modeling, emphasizing the approach’s foundations and its
advantages over specific-to-general modeling. Gilbert (1986) contrasts these two ap-
proaches, referring to the latter as Average Economic Regression (AER) and the
former as Professor Hendry’s econometric methodology. The two approaches differ
in several respects: the interpretation of the econometric model, the interpretation
of any evidence of the model’s mis-specification, the solutions advocated to correct
for that mis-specification, the consequences of the strategy followed to obtain a final
representation, and the independence of the final representation from the approach
by which it has been obtained.
Gilbert characterizes the AER as follows. First, the econometric model is viewed

as a representation of economic theory. Second, statistical properties such as resid-
ual autocorrelation, heteroscedasticity, collinearity, and simultaneity are regarded as
inherent to the model, so the modeler’s goal becomes one of re-specifying the model
in order to eliminate those undesirable features, thereby permitting estimation with
desirable properties. Third, because the AER treats the model as a representation
of economic theory, the AER approach is naturally specific-to-general: it starts from
a simple model, which is re-specified to adjust for any of its undesirable empirical
properties.
Gilbert characterizes Hendry’s approach as follows. First, the econometric model

is viewed as a representation of the process or probability distribution generating the
sample of data, i.e., the DGP. Second, the model’s properties arise from operations
applied to the DGP to obtain the empirical model. The modeler’s goal is thus to find
evidence on whether the model’s properties are sustained by the data, and so whether
those properties are satisfied by the DGP. Third, because Hendry’s approach views
the model as a simplification of the unknown DGP, Hendry’s approach is naturally
a general-to-specific modeling strategy. Model specification starts from the most
general feasible model and arrives at a parsimonious model by imposing acceptable
restrictions.
Gilbert considers one important consequence of the choice of strategy: the likeli-

hood of arriving at a unique representation. Whichever approach is used, there are
many routes from the initial model to a final representation. However, a general-to-
specific modeling approach appears to be more efficient in finding such a representa-
tion.
Gilbert (1986) reformulates Leamer’s (1978, p. 4) “Axiom of Correct Specification”

as an axiom of route independence of the final specification from the strategy by which
the modeler has arrived at that final representation. Gilbert explains the criteria in
Hendry and Richard (1982*, 1983) under which a model is congruent with data; and he
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concludes that there is no surefire recipe for discovering a suitable final representation.
That said, there are a few guidelines: models are designed for particular purposes;
models must be robust to changes in the properties of the sample; parameters must
be economically interpretable; and models must be reasonably simple.

4.1.2 Econometric Modelling: The “Consumption Function” in Retro-
spect by D.F. Hendry (1983)

Hendry (1983) summarizes all of the main issues in the theory of reduction and
general-to-specific modeling, focusing on model evaluation and model design. He first
observes that every empirical model is a reduction of the DGP. A model’s distur-
bances are thus a derived process, suggesting that the model (and so its residuals)
could be designed to have specific desirable properties. Those properties are charac-
terized by a set of criteria against which the model can be tested or evaluated. In
model design, the model is revised after a diagnostic statistic’s failure, rather than
being rejected. While a revised model may reflect a successful design procedure,
it need not be a good representation of the DGP, emphasizing the importance of
general-to-specific rather than specific-to-general modeling.
Hendry (1983) illustrates model evaluation with the quarterly model of U.K. con-

sumers’ expenditure in Davidson, Hendry, Srba, and Yeo (1978)*, testing that model
for data coherence, valid conditioning, parameter constancy, data admissibility, theory
consistency, and encompassing. Hendry discusses what test statistics are associated
with which criterion, shows that white noise is a weak property, and tries to find
evidence as to whether simultaneity is due to time aggregation. Hendry examines
the issue of parameter constancy in detail, implementing standard tests, consider-
ing changes in correlations over subperiods, and checking the model against earlier
(pre-sample) annual data. He checks for data admissibility by constructing a savings
equation and by considering the model’s robustness to data revisions; he discusses the
role of economic theory and examines the consistency of the model with the life-cycle
hypothesis; he interprets the model’s long-run solution, highlighting the importance
of regressors that are orthogonal; and he discusses sequential simplification.
Hendry advocates a modeling strategy that incorporates encompassing. Variance

dominance is necessary but not sufficient for parameter encompassing, so the latter
criterion is of greater interest in practice. Finally, he notes that none of the avail-
able models may be encompassing, that unions of models need not be meaningful
to provide a test baseline, and that a minimal nesting model may not exist. While
attaining innovation errors is important, innovations are defined with respect to a
given information set: hence, an encompassing model may itself be encompassed on
a different information set.

4.1.3 LSE and the British Approach to Time Series Econometrics by C.L.
Gilbert (1989)

Gilbert (1989) describes the joint evolution of econometrics and time series analysis
at the LSE through the 1970s. He argues that the methodology of general-to-specific
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modeling was motivated by the uniformly most powerful testing procedure proposed
by Anderson (1971), and that Sargan’s (1980b)* COMFAC procedure was derived
in this framework. Gilbert also discusses two additional papers that provided major
contributions to econometrics: Sargan’s (1964) Colston paper on modeling wages and
prices, and Davidson, Hendry, Srba, and Yeo’s (1978)* paper on modeling consumer’s
expenditure. The former appears to be the first empirical implementation of an error
correction model; the latter introduces the encompassing procedure, albeit informally.

4.1.4 On Rereading Haavelmo: A Retrospective View of Econometric
Modeling by A. Spanos (1989)

Spanos (1989) proposes a methodological framework based on the probabilistic ap-
proach in Haavelmo (1944), focusing on Haavelmo’s concepts of statistical adequacy
and identification. Spanos’s framework is closely tied to the LSE (or Hendry’s) mod-
eling strategy and addresses various common criticisms of empirical modeling.
In the context of statistical adequacy, Spanos (1989) discusses how the statistical

model is a relationship between observables, with a set of distributional assumptions
on those observables. The statistical model can be interpreted as a reduction of
the Haavelmo distribution and is derived from a distribution that is conditional on
factors suggested by theory and data. A model is statistically adequate if the distribu-
tional assumptions embedded in that model are compatible with the data’s properties.
Spanos then considers how specification, mis-specification, and re-specification are all
well-defined aspects concerning statistical adequacy.
Spanos also distinguishes between statistical identification and structural iden-

tification. Statistical identification is a concept related to the parameters in the
statistical model and so concerns the estimability of those parameters. Structural
identification is a concept relating the economic theory’s parameters to the para-
meters in the statistical model, so it reparameterizes or restricts the statistical model
to provide it with a theory interpretation. Testing over-identifying restrictions thus
checks whether the data are consistent with the underlying economic theory. Spanos
also suggests considering reparameterizations induced by data as a valid interim al-
ternative to finding more realistic economic theories.
Spanos contrasts his approach with the “textbook” approach. The latter has

been criticized because it has generated empirical models with questionable fore-
casting abilities, and because those models have used a priori information without
adequately accounting for the time series properties of the observed data. Spanos’s
framework addresses two common elements that underlie these criticisms–the exper-
imental interpretation of the statistical model, and statistical adequacy.
Spanos (1989) discusses how his framework provides support for and is compati-

ble with most features of the LSE methodology. In particular, his framework helps
clarify the roles of mis-specification, diagnostic checking, statistical adequacy, and
model selection; and it provides arguments in favor of a general-to-specific modeling
approach.
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4.1.5 Three Econometric Methodologies:A Critical Appraisal by A. Pa-
gan (1987)

Pagan (1987) compares Hendry’s, Leamer’s, and Sims’s methodologies for construct-
ing econometric models. Pagan notes that all three methodologies are general-to-
specific in nature, albeit each with a different procedure for simplifying and each with
limited reporting of the procedure. Hendry’s and Sims’s methodologies reduce their
general models by testing restrictions on parameters, whereas Leamer’s relies on ex-
treme bounds analysis. Both Hendry’s and Leamer’s methodologies base decisions
on the value of a χ2 statistic, but in a different way, and hence their conclusions
may differ. At the time of writing (in 1985), none of these methodologies provided
a complete set of techniques for analyzing data. For instance, they had been devel-
oped mainly for macroeconomic time series and would require modification for large
microeconomic datasets.
All three methodologies perform data transformations, but with different pur-

poses. Hendry’s approach reparameterizes his general model to obtain orthogonal
regressors, keeping in mind the issue of interpretable parameters. Leamer’s approach
reparameterizes in terms of parameters of interest. Sims’s approach seeks stationarity
with orthogonal innovations, despite orthogonality implying restrictions on the model
in its structural form and hence defeating a main purpose of Sims’s methodology–
to avoid imposing a priori restrictions. Pagan indicates that it is difficult to decide
which parameters are of interest at the outset, especially because Hendry’s and Sims’s
methodologies are responding to different economic questions.
In Pagan’s view, precise control of the overall significance level is not very impor-

tant. Rather, the crucial issue is how the likelihood changes as simplification decisions
are made. Model evaluation is performed in Hendry’s and Leamer’s methodologies,
but in very different ways. Evaluation in Hendry’s methodology is performed by
diagnostic testing. Evaluation in Leamer’s methodology proceeds by analyzing the
sensitivity of the mean of the posterior distribution to changes in prior variances.
Pagan suggests that all the methodologies need to improve on their reporting of in-
formation about model validity. While useful information is provided, Pagan feels
that too many statistics appear in Hendry’s approach, restrictions on prior variances
are hard to understand in Leamer’s approach, and graphs and impulse responses are
difficult to interpret in Sims’s approach.
In summary, Pagan advocates clarifying and combining these methodologies in

order to extract the greatest information from the available data. Hendry’s method-
ology may benefit from extreme bounds analysis and sensitivity analysis, which may
provide information on the shape of the likelihood, whereas Sims’s and Leamer’s
methodologies may find that an analysis of residuals can help assess the sensitivity
of the likelihood to including variables.

4.1.6 Reflections on Econometric Methodology by P.C.B. Phillips (1988)

Phillips (1988) discusses Aigner’s, Granger’s, Leamer’s, and Pesaran’s views on econo-
metric methodology and illustrates how econometric methods can be used for eval-
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uating modeling strategies. Phillips also shows, under quite general conditions, how
Hendry’s methodology provides an optimal or near-optimal procedure for estimating
a cointegrating relationship.
Phillips (1988) argues for progressive modeling strategies, which are amenable to

being improved and capable of providing explanations for changing economic mecha-
nisms. Phillips identifies several properties that are desirable in a modeling strategy,
as follows. Economic theory must play a role. The modeling strategy must guide
the choice of econometric technique, model specification, and dataset. It must warn
against its own weaknesses and provide advice on how to sort out those weaknesses.
It must be implemented in software for carrying out computations, drawing graphs,
and performing Monte Carlo studies that can assess how good the strategy is in
discovering an adequate representation of the economic mechanism. Phillips also dis-
cusses several key issues in empirical modeling, including the limited role of more and
better data, procedures for model comparisons, the relationship between economet-
ric models and DGPs, the use of sharp hypotheses, the use and misuse of diagnostic
testing and graphical analysis, asymptotic and finite sample approximations, nuisance
parameters, maximum likelihood methods, and the role of economic theory.
Phillips (1988) then discusses the role of econometric theory in evaluating model-

ing strategies, illustrating with Hendry’s methodology applied to a cointegrated vector
autoregression in triangular form. For disturbances that are independently and identi-
cally distributed normal, the maximum likelihood estimates of this triangular system
coincide with least squares for an equivalent equilibrium correction representation of
the conditional equation in Hendry’s methodology. For more general stationary error
processes, the general-to-specific methodology performs a set of corrections that make
it an optimal procedure under weak exogeneity.

4.1.7 PC-GIVE and David Hendry’s Econometric Methodology by N.R.
Ericsson, J. Campos, and H.-A. Tran (1990)

Ericsson, Campos, and Tran (1990) describe Hendry’s methodology in detail. They
then consider how that methodology is implemented in the software package PC-
GIVE (now known as PcGive) and illustrate key aspects of that methodology with
empirical examples.
In Hendry’s methodology, econometric models of the economic mechanism are

constructed, based on statistical data and economic theory. Statistical data are re-
alizations from a probability distribution (the DGP); economic theory guides the
econometric model’s specification; and the DGP determines the model’s properties
because the model arises from a sequence of reductions applied to the DGP.
Ericsson, Campos, and Tran describe those reductions, discuss why they may lead

to losses of information (and hence to invalid inference), establish the relationship be-
tween those reductions and tests of the corresponding assumptions, and illustrate how
this framework leads to a constructive modeling strategy, such as simplifying a general
autoregressive distributed lag model in a multiple-path search. The autoregressive
distributed lag model is the most general model in its class and includes many other
model types as special cases. Evidence on the autoregressive distributed lag model
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thus may suggest directions in which it may be simplified, while keeping in mind the
importance of evaluating the final specification and of isolating invariants to changes
in the economy.
Many results follow immediately by noting that an econometric model is an en-

tity derived from the DGP. Specifically, the model’s disturbances are derived and
not autonomous; simply leaving some variables as unmodeled does not make them
exogenous; and model evaluation is a structured procedure, not an ad hoc one.
Ericsson, Campos, and Tran (1990) also illustrate Hendry’s methodology in prac-

tice. First, they re-analyze Hendry and Ericsson’s (1991) data on U.K. narrow
money demand, demonstrating cointegration and weak exogeneity; see also Johansen
(1992b)* and Johansen and Juselius (1990)*. In light of those results, Ericsson, Cam-
pos, and Tran estimate a general unrestricted autoregressive distributed lag model
of U.K. money demand, reparameterize it with a relatively orthogonal and economi-
cally interpretable set of regressors, and simplify, describing that simplification path
in detail. Second, Ericsson, Campos, and Tran replicate a key money demand equa-
tion from Friedman and Schwartz (1982) and demonstrate that that equation is mis-
specified by employing various diagnostic tests. Finally, Ericsson, Campos, and Tran
test for exogeneity in a model of consumers’ expenditure from Campos and Ericsson
(1988), later published as Campos and Ericsson (1999)*.
Mizon (1995) provides a complementary assessment of the LSE methodology, be-

ginning with its origins and evolution. Mizon describes the general-to-specific model-
ing strategy, emphasizing the roles of two main evaluation criteria–congruence and
encompassing; and he contrasts that strategy with the specific-to-general modeling
strategy. Mizon illustrates the LSE methodology for both single-equation and sys-
tem modeling with an empirical analysis of wages, prices, and unemployment in the
United Kingdom over 1965—1993.

4.2 Theory of Reduction

Section 2 summarizes the structure of the theory of reduction. The current subsection
summarizes two papers that help clarify that structure: Hendry (1987) [Volume I:
Chapter 8], and Hendry and Richard (1982) [Volume I: Chapter 9]. The first system-
atizes the components in the theory of reduction and thereby accounts for the origins
and properties of empirical models. The second investigates the concepts underlying
model formulation. Hendry (1983)* illustrates the concepts developed in both papers
by demonstrating empirically how to build models and evaluate their properties.
The remaining papers associated with this subsection concentrate on the issue

of exogeneity and the reductions associated with that concept. Koopmans (1950)
[Volume I: Chapter 10] ties exogeneity to the feasibility of obtaining consistent and
asymptotically unbiased maximum likelihood estimators of the parameters of interest
when the equations explaining some of the variables in the analysis are disregarded.
The general problem is viewed as one of completeness of models in a statistical frame-
work, and it is solved by providing informal definitions of exogeneity, predetermined-
ness, and joint dependence. Koopmans’s concept of exogeneity can be interpreted
as what is later called weak exogeneity. Phillips (1956) [Volume I: Chapter 11] in-
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vestigates the validity of these results for discrete approximations to continuous time
variables.
Richard (1980) [Volume I: Chapter 12] provides a formal definition of weak exo-

geneity for dynamic systems and derives a sufficient condition for it. Richard also
defines strong exogeneity and generalizes the sufficient condition for it to include mod-
els with changing regimes. Some of the assumptions leading to Koopmans’s sufficient
conditions for exogeneity imply that the disturbances in the subsystem of interest are
uncorrelated with the predetermined variables. Richard (1980)* warns against relying
on that zero covariance. More than one representation may have a zero covariance;
a zero covariance need not provide information on causality; and, in models with
several regimes, that covariance may alter as economic variables switch their status
between being endogenous and exogenous.
Engle, Hendry, and Richard (1983) [Volume I: Chapter 13] separate the prob-

lem of model completeness from that of efficient model estimation, and they add to
Richard’s (1980)* results by providing the definition of super exogeneity. With the
conceptual tools that they developed, Engle, Hendry, and Richard then clarify the
implications that predeterminedness, Granger causality, and weak, strong, super, and
strict exogeneity have for the economic analysis of dynamic econometric models with
possibly autocorrelated errors.
Subsequent work re-assesses these concepts for cointegrated systems. Johansen

(1992a), Johansen (1992b)*, and Urbain (1992) derive sufficient conditions for weak
exogeneity for short-run and long-run parameters in a conditional subsystem from
a cointegrated vector autoregression. Harbo, Johansen, Nielsen, and Rahbek (1998)
provide critical values for the likelihood ratio test for that form of cointegration; and
Johansen and Juselius (1990)* develop a general framework for testing restrictions
on cointegrated systems, including exogeneity restrictions. Ericsson (1992a) and Er-
icsson, Hendry, and Mizon (1998) provide expository syntheses of cointegration and
exogeneity.

4.2.1 Econometric Methodology: A Personal Perspective by D.F. Hendry
(1987)

Hendry (1987) begins with four prescriptions for successful empirical econometric
research: “think brilliantly, . . . be infinitely creative, . . . be outstandingly lucky,
. . . [and] stick to being a theorist” (pp. 29—30). While tongue in cheek, Hendry’s
prescriptions emphasize key aspects of substantive empirical analysis, particularly
the “respective roles of theory and evidence and discovery and justification as well as
the credibility of econometric models” (p. 30).
Hendry then focuses on how models are reductions of the DGP, and on what im-

plications follow therefrom. Hendry outlines the principal reductions (see Section 2),
discusses the implied derived status of empirical models, and explains how errors on
empirical equations can be either implicitly or explicitly redesigned to achieve de-
sirable criteria, such as being white noise. The theory of reduction clarifies how an
empirical model is entailed by the DGP, while economic-theory models help motivate,
formulate, and interpret the empirical model. The validity of reductions can be eval-
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uated by diagnostic tests derived from a taxonomy of information, which underpins
the notion of a congruent model.
By establishing the link between DGPs and empirical models, the theory of reduc-

tion justifies both evaluative and constructive aspects of econometric modeling. That
said, Hendry argues against mechanically redesigning an empirical model to “cor-
rect” whatever econometric problems arise, such as residual autocorrelation. Hendry
instead proposes designing an empirical model to satisfy all of the criteria that under-
lie congruence. Extreme bounds analysis is unhelpful in empirical modeling because
a congruent dominating model may be fragile in Leamer’s sense. Finally, Hendry
emphasizes the value of a progressive research strategy and cites empirical examples
where later studies have successfully encompassed earlier ones.

4.2.2 On the Formulation of Empirical Models in Dynamic Econometrics
by D.F. Hendry and J.-F. Richard (1982)

Hendry and Richard (1982) formally derive an information taxonomy from the theory
of reduction, they propose a corresponding set of criteria for evaluating econometric
models (see Section 2.6), and they illustrate these results with an empirical model of
mortgage repayments.
Hendry and Richard propose the following model evaluation criteria.

• The empirical model’s error is an innovation with respect to the selected infor-
mation set.

• Conditioning variables are weakly exogenous for the parameters of interest.
• The model’s parameters are constant.
• The econometric model is consistent with the underlying economic theory.
• The model is data admissible.
• The model encompasses all rival models.

A specification meeting these criteria is said to be a tentatively adequate condi-
tional data characterization (TACD) or (in later publications) a congruent model.
Hendry and Richard also discuss the value of reparameterizing equations to have
near-orthogonal regressors and the value of having a parsimonious final specification.
Hendry and Richard highlight the differences between an economic-theory model,

an empirical econometric model, a statistical model, and the DGP. The economic-
theory model and the empirical econometric model complement each other in that
they both help explain the same phenomenon. However, they are distinct in that the
properties of an empirical model are implicitly derived from the DGP, rather than
being a consequence of the postulated economic theory.
In this context, Hendry and Richard discuss problems with some traditional ap-

proaches to empirical modeling. For instance, they demonstrate that adding a hy-
pothesized stochastic process to an economic-theory model need not obtain an ad-
equate characterization of the data. Hendry and Richard also highlight difficulties
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with mechanically correcting problems in an empirical specification, e.g., when start-
ing from a strict economic-theory representation and reformulating that specification
to correct for residual autocorrelation, heteroscedasticity, etc. Rejection of the null
hypothesis does not imply the alternative hypothesis: hence, underlying causes can-
not be inferred from effects detected by diagnostic tests. For example, rejection of the
null hypothesis of white-noise residuals does not imply any specific alternative, e.g.,
autoregressive errors.
Hendry and Richard suggest a different perspective on empirical modeling. An

unknown DGP generates measurements on economic variables, which are represented
by an econometric specification in which the residuals include everything not in that
specification. In that light, empirical models and their errors may be designed to
have specified properties, turning the evaluation criteria discussed above into design
criteria. One minimal design criterion is white-noise errors. That is, the errors should
be unpredictable on their own past. Otherwise, the model could be improved by
accounting for the errors’ predictability. More generally, modeling should aim for
representations with innovation errors, which also ensure variance dominance of other
models using the same information set.
The remaining design criteria–weak exogeneity, parameter constancy, theory con-

sistency, data admissibility, and encompassing–also have clear justifications. For in-
stance, econometric models often have fewer equations than variables, so Hendry and
Richard examine the conditions for excluding equations for some of the variables. The
required concept is weak exogeneity, which sustains inference about the parameters
of interest without loss of information. If the process for the unmodeled variables
alters, invalid conditioning on those variables may induce parameter nonconstancy in
the model itself, rendering the model less useful for forecasting and policy analysis.
The theory of reduction also sheds light on the concept of encompassing. For in-

stance, all empirical models are reductions of the underlying DGP and so are nested
in the DGP. Hence, comparisons of rival econometric models are feasible. This result
underpins the principle of encompassing, in which a given model accounts for the
results of rival models. Hendry and Richard provide examples in which the encom-
passing model predicts parameter nonconstancy and residual autocorrelation in the
encompassed model. Variance dominance is an aspect of encompassing–rather than
an independent criterion–because variance dominance is necessary but not sufficient
for encompassing. Hendry and Richard then illustrate model evaluation and model
design with an empirical example of mortgage repayments, and they examine the role
of dynamic simulation in evaluating econometric models.

4.2.3 When Is an Equation System Complete for Statistical Purposes?
by T.C. Koopmans (1950)

Koopmans (1950) addresses the problem of completeness in models. A model is com-
plete if it includes equations for all variables in the system that are neither exogenous
nor predetermined. Conversely, variables are regarded as exogenous if consistent and
asymptotically unbiased maximum likelihood estimates of the parameters of interest
can be obtained, even though the (marginal) equations explaining those exogenous
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variables have been neglected. Non-exogenous variables are called predetermined if
consistent and asymptotically unbiased estimates of the parameters of the subsystem
of non-exogenous non-predetermined variables can be obtained separately from those
of the subsystem of predetermined variables.
Koopmans provides sufficient conditions for this definition of exogeneity. Specif-

ically, the variables explained by the conditional equations must not enter the mar-
ginal equations; all parameters of interest must be located in the conditional equa-
tions; conditional and marginal parameters must be unrelated; and error terms across
conditional and marginal subsystems must be mutually independent. The sufficient
conditions for predeterminedness are analogous and require that the subsystem for
the predetermined variables not be a function of the remaining current-dated non-
exogenous variables, with error terms across subsystems of these variables being mu-
tually independent.
Koopmans (1950) derives his sufficient conditions, assuming that the error terms

are serially independent. Serial independence appears to be a satisfactory assumption,
provided that the lengths of lagged reactions are not smaller than the time unit of
observation. Koopmans also re-examines the issue of identification and argues that,
if the parameters in the estimated subsystem are identified, they also will be so in
the whole system.

4.2.4 Some Notes on the Estimation of Time-forms of Reactions in In-
terdependent Dynamic Systems by A.W. Phillips (1956)

Phillips (1956) provides theoretical justifications for lagged responses of agents to
changing conditions and for the interdependence of economic variables. He examines
the effects of time aggregation and the feasibility of estimating “time-forms” (i.e.,
distributed lags) between economic variables.
Phillips analyzes the effects of time aggregation by postulating linear relationships

between economic variables in continuous time and aggregating over time. He shows
that the reaction over time of one variable to another coincides with the change of the
explained variable to a unit step change of the explanatory variable at the origin. Be-
cause discrete-time observations on flow variables may be interpreted as cumulations
of corresponding continuous-time observations, Phillips then considers the estimation
of time-forms of linear relationships between variables that are measured in discrete
time. Phillips notes that, because of the effects of time aggregation, the time-lag re-
actions in discrete-time relationships generally do not reveal the precise nature of the
underlying continuous-time relationship. Additionally, Phillips shows that variables
in discrete time are related over at least two periods unless the time-form reaction
in continuous time is instantaneous. That observation has direct implications for
empirical modeling.
Phillips (1956) also derives conditions under which least squares estimation of the

coefficients in the discrete-time relationship is a reasonable procedure. In doing so,
he considers distributed-lag and feedback reactions within a system, and reactions
of the system to variables determined outside the system. Phillips shows that errors
correlated with explanatory variables can be avoided by including in the estimated
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equation all factors affecting directly or indirectly the explained variable as well as
exogenous factors. Finally, Phillips proposes a strategy for empirical work, focusing
on choice of explanatory variables, observation frequency, length of lags, seasonal
components, trends, and multicollinearity.

4.2.5 Models with Several Regimes and Changes in Exogeneity by J.-F.
Richard (1980)

Richard (1980) develops two key concepts–weak exogeneity and strong exogeneity–
and he considers maximum likelihood estimation of models with switching regimes.
Richard motivates his approach by re-examining Goldfeld and Quandt’s (1973) model
with two regimes. Goldfeld and Quandt’s model is statistically incomplete in the sense
of Koopmans (1950)* and so is inappropriate for detecting changes in the exogeneity
status of variables. Richard also uses that model to distinguish between causality,
exogeneity, and assumptions of “zero covariances between some variables and so-
called ‘disturbance terms’ ” (p. 3), showing in particular that the last property can
be obtained by definition.
Richard (1980) then sets up a linear dynamic framework and specifies conditions

for weak exogeneity, which permits conditioning on a variable with no loss of infor-
mation for the model’s purpose–here, specifically, for estimation and testing. He
interprets those conditions from an economic viewpoint; and he proposes a likelihood
ratio statistic for testing for weak exogeneity when the model is identified, as well
as one that can be applied for complete dynamic simultaneous equations models.
Richard also considers a model with several regimes when the regimes are known
and the conditioning variables in each regime are weakly exogenous. In that case,
the likelihood function for all regimes can be factorized into a product of conditional
densities times a product of marginal densities, and the marginal densities can be
ignored for statistical inference. Richard analyzes two types of restrictions on the
conditional parameters: restrictions corresponding to parameters in the structural
model having columns in common across regimes, and restrictions arising from the
connection between reduced form and structural form parameters.
Richard also describes limited information maximum likelihood (LIML) proce-

dures for estimating the conditional parameters, both when the switching times are
known and when they are unknown. If the marginal parameters are not of interest
and the switching times are known, then only the conditional densities need be an-
alyzed. If the switching times are unknown, then conditional and marginal densities
share the (unknown) switching times and so must be analyzed jointly, even if all other
parameters in the marginal densities are not of interest.

4.2.6 Exogeneity by R.F. Engle, D.F. Hendry, and J.-F. Richard (1983)

Engle, Hendry, and Richard (1983) find sufficient conditions for a variable to be
exogenous, where the conditions depend upon the purpose of the model at hand.
Engle, Hendry, and Richard show that the distinct purposes of statistical inference,
forecasting, and policy analysis define the three distinct concepts of weak, strong,
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and super exogeneity. Valid exogeneity assumptions may permit simpler modeling
strategies, reduce computational expense, and help isolate invariants of the economic
mechanism. Invalid exogeneity assumptions may lead to inefficient or inconsistent
inferences and result in misleading forecasts and policy simulations. Engle, Hendry,
and Richard demonstrate the relationship between these three concepts of exogeneity
and the concepts of predeterminedness, orthogonality conditions, strict exogeneity,
Granger causality, and Wold’s causal ordering; and Engle, Hendry, and Richard illus-
trate these concepts with bivariate models and the dynamic simultaneous equations
model.
As in Richard (1980)*, Engle, Hendry, and Richard (1983) start with the joint

distribution of all variables relevant to the phenomenon under study. Engle, Hen-
dry, and Richard then ask whether the marginal distribution for a certain subset of
those variables (the supposedly exogenous variables) can be ignored without loss of
information. The answer to that question depends on the purpose of the model, the
choice of marginal variables, the parameters of interest, and the underlying process
generating the data. The authors also discuss the close connection between their
approach to exogeneity and the approach in Koopmans (1950)*.
The paper’s examples show how to apply the sufficient conditions for exogen-

eity, and they highlight the importance of parameters of interest. The examples
also demonstrate several general propositions. Strict exogeneity, predeterminedness,
and the absence of Granger causality are neither necessary nor sufficient for valid
conditional inference and policy analysis. Behavioral models with structurally invari-
ant parameters of interest need not lead to models with conditional parameters that
are invariant to interventions on the marginal model’s parameters. And, irrelevant
current-dated variables need not be weakly exogenous.

4.3 Dynamic Specification

The theory of reduction in Section 2 presents a straightforward framework in which
to discuss dynamic specification. The current subsection considers how that theory
aids in understanding both the structure of dynamic specification and the tests of
dynamic specification. One recent and important special case of dynamic specification
is cointegration.
The theory of reduction leads to a model typology for dynamic specification. Eco-

nomic data are realizations of a probability distribution (the DGP), and an econo-
metric model is constructed to characterize that DGP and represent the economic
phenomena under study. As Phillips (1956)* and Hendry, Pagan, and Sargan (1984)
[Volume I: Chapter 14] inter alia discuss, theoretical justifications exist for why agents
might base their current decisions on past information. Thus, it is sensible to write
the DGP as the product of joint distributions of current variables conditional on past
observations; see also Section 2.3. This sequential factorization implies econometric
models with lagged variables, which may enter explicitly as “variable dynamics” or
implicitly as “error dynamics”. In the latter, an equation includes lagged errors, as
with an autoregressive error process. However, lagged errors are functions of lagged
variables in the equation and hence are interpretable as imposing a set of restrictions
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on variable dynamics. The roots of the lag polynomials are also important, with a
zero root allowing lag simplification, a unit root implying a nonstationary component,
etc. Dynamic specification also focuses on the properties of alternative model formu-
lations. The model typology in Hendry, Pagan, and Sargan (1984)* greatly eases that
comparison by interpreting those formulations as special cases of an autoregressive
distributed lag (ADL) specification: see equation (15).
Tests of dynamic specification are typically part of the simplification procedure for

models involving time series data, so dynamic specification has figured prominently
in the general-to-specific modeling methodology. Models with autoregressive errors
can be viewed as imposing a restriction of common factors in the lag polynomials of
an ADL–a restriction called “comfac”: see Sargan (1964). Because of the ubiquity of
autoregressive errors in econometric modeling, several papers discussed below focus on
the comfac reduction. Sargan (1980b) [Volume I: Chapter 16] derives a determinantal
procedure for testing common factors in dynamics for single equations. Based on that
work, Hendry and Mizon (1978) [Volume I: Chapter 15] clarify how autoregressive
errors imply restrictions on a general ADL model, rather than simply offering a way
of generalizing a static model with innovation errors. Hendry and Anderson (1977)
develop Sargan’s (1980b)* procedure for simultaneous equations systems. A suitable
estimation procedure is required if an autoregressive restriction is valid: Sargan (1961)
[Volume I: Chapter 17] describes the corresponding maximum likelihood procedure.
Whether or not the autoregressive restrictions are valid, the choice of lag length and
the shape of the lag distribution are of interest, as discussed in Hendry, Pagan, and
Sargan (1984)*; see also Phillips (1956)*.
Modeling nonstationarities due to unit roots in the dynamics has also attracted

considerable attention; see Dickey and Fuller (1979, 1981) and Engle and Granger
(1987). Johansen and Juselius (1990) [Volume I: Chapter 18] focus specifically on
cointegration and differencing as reductions to I(0), developing corresponding infer-
ential procedures and applying them to small monetary systems for Denmark and
Finland. Dynamic specification in cointegrated systems also arises in several papers
discussed in other subsections: see Phillips (1991) [Volume I: Chapter 24], Hendry
and Mizon (1993) [Volume II: Chapter 19], MacDonald and Taylor (1992) [Volume II:
Chapter 30], and Johansen (1992b) [Volume II: Chapter 31], and Metin (1998) [Vol-
ume II: Chapter 32] inter alia.

4.3.1 Dynamic Specification by D.F. Hendry, A. Pagan, and J.D. Sargan
(1984)

Hendry, Pagan, and Sargan (1984) examine two related issues–dynamic specification
(“variable dynamics”) and stochastic specification (“error dynamics”)–in the context
of model formulation and model selection for single equations and systems. This
examination leads to a general model typology for dynamic specification. Hendry,
Pagan, and Sargan also summarize maximum likelihood methods for estimation and
the three main principles for testing.
Hendry, Pagan, and Sargan (1984) systematize their study of dynamic specifica-

tion by creating a model typology that includes all major model types as special
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(restricted) cases of an ADL. Those model types are:

• a static regression,
• a univariate time series model,
• a differenced data (growth rate) model,
• a leading indicator model,
• a distributed lag model,
• a partial adjustment model,
• a common factor (autoregressive error) model,
• a homogeneous error correction model, and
• a reduced form (dead start) model.

The restrictions implied by each model type are testable against the ADL. If accepted,
the restrictions achieve greater parsimony through the associated reduction. If the
restrictions are rejected, then the associated model ignores valuable information in
the dataset.
The relationship between dynamic specification and stochastic specification is il-

lustrated by showing that apparently alternative specifications (dynamic and stochas-
tic) may be equivalent representations. Some of those representations may be more
parsimonious than others, so some justification is required to choose between them.
Two criteria appear fundamental: data coherency and theory consistency. How-

ever, these criteria can be regarded as only necessary conditions for choosing a model.
Lack of sufficiency arises because alternative representations entailing different behav-
ior may be consistent with the same economic theory, and data coherence may be
unclear due to measurement errors and various sorts of mis-specification. Further
criteria are mentioned for in-sample testing, in addition to a measure of the model’s
ability to encompass any extant models.
Hendry, Pagan, and Sargan (1984) give several theoretical justifications for dy-

namics, including non-instantaneous adjustment by agents and the formation of ex-
pectations by agents. Empirically, dynamics can be represented by ADL models,
which are the unrestricted (and hence most general) parameterization for a class of
models, with each model type having its own properties. To illustrate, Hendry, Pagan,
and Sargan analyze in detail nine distinct models that are all special cases of a bi-
variate, single-lag ADL model. A general-to-specific modeling approach emerges from
this model typology as a natural way to design models. The model typology also has
implications for the usefulness of several existing empirical procedures. For instance,
autocorrelated residuals are not interpretable as autoregressive errors unless common
factor restrictions are valid; tests for the significance of autoregressive coefficients
condition on the existence of a common factor, which itself is testable; the insignifi-
cance of autoregressive error coefficients does not imply the absence of dynamics; and
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white-noise residuals do not imply data coherency. Error correction models (ECMs;
also called equilibrium correction models) are convenient reparameterizations of ADL
models and are supported by their relation to cointegration.
Hendry, Pagan, and Sargan (1984) also examine high- (but finite-) order distrib-

uted lag models and infinite-order distributed lag models. Because these models may
entail estimation problems due to a large number of parameters, various forms of
restrictions have been considered in the literature to reduce dimensionality. Hendry,
Pagan, and Sargan discuss various polynomial distributed-lag restrictions (such as
Almon distributed lags), procedures for choosing lag lengths and lag shapes, and
the effects on estimates of incorrect choices. Hendry, Pagan, and Sargan propose
reparameterizing the distributed lag model as an error correction model whenever
convenient. Sargan (1980a) also proposes a lag shape that further reduces the re-
quired number of parameters. Hendry, Pagan, and Sargan (1984) emphasize the
consequences of stochastic mis-specification, the effect of Granger causality on the
properties of diagnostic tests, the merits of general error correction models, the suit-
ability of normality as an approximation to the distribution of the estimated mean lag,
and the value of economic theory and the importance of correct dynamic specification
in determining long-run parameters.
Model selection in the (infinite-order) ARMAX class is more complex, no matter

which model representation is considered. Hypotheses may be non-uniquely nested,
there may be too many parameters relative to the sample size, and roots may be close
to the unit circle. Hendry, Pagan, and Sargan (1984) consider various simplifications
of the model representation and discuss procedures to determine the maximal lag,
including a variation on Sargan’s (1980b)* COMFAC procedure. In COMFAC, first
the maximal lag order is determined, with no comfac restrictions. Then hypotheses of
polynomial common factors are tested by a sequence of Wald tests. Likelihood-ratio
and Lagrange multiplier tests are also discussed. Finally, Hendry, Pagan, and Sargan
(1984) generalize their model typology to systems of equations and consider issues of
reduced form, final form, dynamic multipliers, and alternative model representations.
On the last, various disequilibrium models are shown to be derivable as optimal
control rules.

4.3.2 Serial Correlation as a Convenient Simplification, Not a Nuisance:
A Comment on a Study of the Demand for Money by the Bank of
England by D.F. Hendry and G.E. Mizon (1978)

HendryandMizon(1978)exposit how the comfac analysis proposed in Sargan(1980b)*
tests for dynamic mis-specification. Comfac analysis involves a two-step procedure.
The first step tests for common factor restrictions in the equation’s dynamics by ap-
plying (e.g.) Wald tests to check the validity of an autoregressive error interpretation.
The second step tests whether the common factor polynomial has any zero roots to
see if an autoregressive error is required.
Hendry and Mizon (1978) discuss several key issues in comfac analysis.

• Common factor dynamics imply autoregressive errors, so this form of dynamic
specification is testable.
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• Residual autocorrelation does not necessarily imply autoregressive errors. Resid-
ual autocorrelation may also arise from incorrect functional form, parameter
nonconstancy, incorrect seasonal adjustment, and other forms of dynamic mis-
specification inter alia.

• Growth-rate models impose common factors with unit roots.
• Choosing a growth-rate model as the most general model prevents one from
detecting invalid restrictions imposed on the levels of the variables.

• The Durbin—Watson statistic is not a test for a common factor, and hence it is
not testing for autoregressive errors. Rather, the Durbin—Watson statistic is a
test for a zero root, assuming a common factor exists.

Hendry and Mizon (1978) illustrate comfac analysis by re-examining the growth-
rate model for U.K. money demand in Hacche (1974). Hacche’s model is rejected
against an ADL model in levels. Thus, Hacche’s model imposes invalid common
factor restrictions and incorrectly excludes certain levels of the variables.

4.3.3 Some Tests of Dynamic Specification for a Single Equation by J.D.
Sargan (1980b)

Sargan (1980b) proposes a procedure for model selection in a single-equation time
series model with multiple variables and illustrates it empirically. His procedure for-
mulates an unrestricted ADL model and tests (with a Wald test) that all lag polyno-
mials on the variables in the equation have a polynomial of a given degree in common
(the “common factor”). A single ADL may permit common factors corresponding
to different lag lengths (or degrees), and those common factors describe a sequence
of uniquely ordered nested hypotheses. Each hypothesis can be written as a less
restrictive hypothesis plus a set of additional restrictions; and the corresponding in-
cremental Wald statistics are mutually independently distributed, so that the overall
significance level can be controlled, as in Anderson (1971).
Sargan derives a necessary and sufficient condition for the lag polynomials to

have a common factor in terms of a determinantal condition for a particular matrix.
The lag polynomials associated with the variables in the ADL model may be of
different degrees, but they all have a common factor of a certain degree under suitable
restrictions. Sargan develops an algorithm for testing whether those restrictions are
satisfied.
Sargan (1980b) compares his procedure to the traditional procedure in which a

model with autoregressive errors is estimated. Sargan’s procedure may be inefficient
due to unrestricted estimation, but the traditional procedure seems to be incapable
of distinguishing between models with the same total maximal lag order but with
different degrees of variable and stochastic dynamics.
Sargan provides two justifications for choosing theWald test. First, Wald statistics

can be defined for any estimation method, with their properties depending upon the
restrictions tested and the properties of the estimator. Second, if the true common
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factor has complex roots and if the degree of the (tested) common factor is set too
low, the likelihood-ratio statistic has problems because the likelihood has multiple
maxima.
Sargan also considers shortcomings of his procedure. First, a Jacobian condition

must be satisfied in order to write the most restricted hypothesis as a less restrictive
hypothesis plus a set of additional restrictions. Second, if that Jacobian condition is
not satisfied, then the Wald statistic for testing those additional restrictions does not
converge to a χ2 distribution.
Sargan illustrates the comfac procedure with a model for U.K. wages, and the

procedure’s performance is compared to the likelihood-ratio test.
Hendry and Anderson (1977) generalize Sargan’s comfac analysis to include simul-

taneous equations systems. Hendry and Anderson (1977) also discuss the advantages
of system-based likelihood-ratio statistics over single-equation instrumental variable
statistics. Hendry and Anderson apply their procedure to a simultaneous equations
model of U.K. building societies. Hendry and Anderson construct an economic-theory
model by minimizing a loss function that is believed to explain how building societies
set borrowing and lending rates and volumes. Minimization of that loss function
results in a simultaneous equations model, with many testable implications. See
Anderson and Hendry (1984) for a follow-up study.

4.3.4 The Maximum Likelihood Estimation of Economic Relationships
with Autoregressive Residuals by J.D. Sargan (1961)

Sargan (1961) proposes procedures to compute full information and limited informa-
tion estimators–denoted ARFIML and ARLIML respectively–of parameters in a
dynamic simultaneous equations model with autoregressive errors.
The procedure for ARFIML depends upon whether the system is over-identified

or just identified. If the system is over-identified, ARFIML is obtained by maximizing
the log-likelihood of the original system. If the system is just identified, ARFIML
estimates can be obtained from the system’s reduced form, with the precise approach
depending upon whether the system is closed or open. Closed systems have vector
autoregressions as reduced forms. The maximum likelihood estimates of the vector
autoregression provide non-unique (but equally good) maximum likelihood estimates
of the parameters in the unrestricted reduced form of the original system, fromwhich a
unique ARFIML solution can be obtained. If the system is open, maximum likelihood
estimates of the unrestricted transformed reduced form parameters must be obtained
directly, as with an iterative procedure or by a successive maximization procedure
proposed by Sargan.
Sargan also derives the ARLIML estimator for a single equation in the system.

If the errors of the estimated equation are the only errors that appear at a lag in
that equation, then ARLIML coincides with Sargan’s (1959) autoregressive instru-
mental variables estimator. If a lag of another equation’s errors also appears in the
estimated equation, estimation is more involved. The log-likelihood is more compli-
cated, and its maximum must be found by an iterative procedure. Sargan (1961)
also provides necessary and sufficient conditions for identification, and he formulates
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a mis-specification test.

4.3.5 Maximum Likelihood Estimation and Inference on Cointegration–
With Applications to the Demand for Money by S. Johansen and
K. Juselius (1990)

Johansen and Juselius (1990) develop procedures for analyzing vector autoregressions
(VARs) that are possibly cointegrated, focusing on tests of cointegration and tests
of restrictions on the cointegrating vectors and feedback coefficients. In the context
of general-to-specific modeling, cointegration permits a reduction from I(1) to I(0);
and valid restrictions on the cointegrating vectors and feedback coefficients permit
yet additional reductions. Johansen and Juselius (1990) illustrate their approach by
estimating and testing small monetary systems for Denmark and Finland.
Johansen and Juselius (1990) discuss the determination of the number of coin-

tegration relations, the estimation of the cointegrating relations, and the testing of
further restrictions in a cointegrated system. Johansen and Juselius also consider the
role of deterministic terms in the underlying VAR. For instance, an intercept in the
VAR is associated with both the mean of the cointegration relations and the mean
of the variables’ growth rates. A linear trend in the VAR is associated with both a
linear trend in the cointegration relations and a linear trend in the variables’ growth
rates, with the latter implying a quadratic trend in the levels of the variables–an
unrealistic property for most economic data. Care is thus required to ensure that the
estimated model does not inadvertently allow for quadratic trends in the levels of the
variables and ever-increasing growth rates. Johansen and Juselius distinguish clearly
between inference about coefficients on nonstationary variables and inference about
coefficients on I(0) variables.
Johansen and Juselius (1990) apply their procedures to small monetary systems

of Denmark and Finland that involve money, income, prices, and the opportunity
cost of holding money. The two datasets are distinctly different and thus illustrate
the versatility of Johansen and Juselius’s procedures, particularly regarding trends,
determination of cointegration, and subsequent testing. First, their procedures can
be applied to datasets with or without trends in the underlying VAR, as exemplified
by the Finnish data and Danish data respectively. Second, the hypotheses concern-
ing the order of cointegrating rank are formulated as a sequence of nested hypotheses
and are tested using likelihood-ratio statistics, albeit ones that are not asymptoti-
cally χ2. Johansen and Juselius (1990, Tables A1-A3) list critical values for these
statistics–tabulations that the profession has used heavily since their publication.
Third, remaining inferences based on the likelihood ratio are asymptotically χ2 be-
cause, once the order of cointegrating rank is determined, the variables involved have
all been transformed to I(0). Fourth, the conjectured presence or absence of linear
trends can be tested. Fifth, likelihood-ratio statistics are derived for linear restrictions
on all cointegration vectors. These restrictions include hypotheses such as station-
arity and proportionality. Sixth, Wald statistics are developed and are compared
with the likelihood-ratio statistics. Finally, likelihood-ratio statistics are derived for
linear restrictions on the weighting matrix, including restrictions that imply valid
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conditioning (weak exogeneity).
Although the reduction to I(0) is but one of many possible reductions, its correct

treatment is important for valid inference on other reductions and for the proper
interpretation of dynamic economic systems. Moreover, the empirical presence of
unit roots in many macroeconomic time series confirms the value of a sound statistical
framework for analyzing nonstationary processes.

4.4 Model Selection Procedures

The theory of reduction in Section 2 helps clarify the nature of various model selection
procedures. This overview to the current subsection focuses on sequential simplifica-
tion tests, progressive modeling strategies, and cointegrated systems. The associated
literature is closely related to the literature on dynamic specification, discussed in
Section 4.3 above.
Sequential simplification tests have an important place in general-to-specific mod-

eling strategies. Anderson (1962) [Volume I: Chapter 19] develops sequential simpli-
fication tests for determining the order of a polynomial in an index, such as time.
That model structure generates a naturally ordered sequence of hypotheses. Ander-
son (1971, Ch. 6.4) carries over that approach to sequential simplification tests for
autoregressive models. Using Monte Carlo methods, Yancey and Judge (1976) [Vol-
ume I: Chapter 20] assess the effects of model selection on the implied coefficient
estimators. Mizon (1977b) [Volume I: Chapter 21] generalizes Anderson’s approach
for a special form of non-ordered hypotheses for nonlinear restrictions that arise in
common factor analysis. Savin (1980) [Volume I: Chapter 22] shows how to use Bon-
ferroni and Scheffé procedures to compute the overall significance level of a set of
tests.
Two additional papers examine key aspects of model selection procedures. White

(1990) [Volume I: Chapter 23] provides a consistent procedure for testing model mis-
specification. The overall size of the test can be controlled, even when the set of
hypotheses to be tested may not be representable by a sequence of nested hypotheses.
Control of the overall significance level is gained by combining a set of indicator func-
tions into a single indicator. However, combining indicators entails a loss of informa-
tion regarding the potential directions in which the model is mis-specified. Phillips
(1991) [Volume I: Chapter 24] discusses the relative advantages of unrestricted VARs,
single-equation error correction models, and system error correction models for con-
ducting inference in cointegrated systems, where that inference concerns reductions
in those cointegrated systems.

4.4.1 The Choice of the Degree of a Polynomial Regression as a Multiple
Decision Problem by T.W. Anderson (1962)

Anderson (1962) proposes a uniformly most powerful (UMP) procedure for testing
hypotheses on a set of parameters, where those hypotheses have a natural order-
ing. Specifically, Anderson considers a model in which the independent variables are
polynomials in a deterministic index (such as time), and the modeler wants to deter-
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mine the order of polynomial required. Anderson assumes that the coefficients of the
polynomial are:

γ0, γ1, . . . , γm−1, γm, γm+1, . . . , γq−1, γq, (29)

wherem and q in equation (29) are the minimum and maximum possible orders of the
polynomial, both known a priori . Additionally, Anderson assumes that the signs of
the coefficients are irrelevant and that the hypothesis γi = 0 is of interest if and only if
γj = 0 for all q ≥ j > i ≥ m or i = q. Under these assumptions, Anderson represents
the multiple-decision problem in terms of a set of mutually exclusive hypotheses, from
which he derives a uniquely ordered nested sequence of hypotheses.
Anderson shows that this procedure is similar and uniformly most powerful, and

that the hypotheses (suitably defined) can be tested at the same significance level.
Anderson (1962) notes that this procedure can be applied in testing the significance of
other types of regressors, so long as the coefficients of these variables can be ordered
as described above. Anderson (1971, pp. 270—276) develops that generalization for
data densities in the exponential family.
While the construction of econometric models requires solving more complicated

problems than the order of a polynomial, Anderson’s results have three direct impli-
cations for general-to-specific modeling. First, they provide the basis for developing
statistically powerful procedures for testing the relevance of explanatory variables
in general; see Mizon (1977b)*. Second, the significance level can be kept constant
by suitably redefining the sequence of hypotheses being tested. Third, as Anderson
demonstrates, a simple-to-general procedure that starts from the lowest-order poly-
nomial and incrementally increases the order of the polynomial is non-optimal. That
contrasts with the optimality of the general-to-specific approach that he advocates.

4.4.2 A Monte Carlo Comparison of Traditional and Stein-rule Estima-
tors Under Squared Error Loss by T.A. Yancey and G.G. Judge
(1976)

Yancey and Judge (1976) assess the effects of model selection on the implied co-
efficient estimators, examining a single-equation model with normally distributed,
independent errors. Yancey and Judge focus on the efficiency of least squares (which
is maximum likelihood in their case), the pre-test estimator, the Stein rule estimator,
the Stein rule positive estimator, and the Stein-modified positive rule estimator. Be-
cause of the complicated risk functions involved, Yancey and Judge use Monte Carlo
techniques to evaluate and compare these different approaches to model selection. For
the critical values examined, all estimators have higher gains in efficiency over least
squares when the null and alternative hypotheses are close to each other. Yancey and
Judge also show that the choice of the critical value is crucial to the results obtained.

4.4.3 Model Selection Procedures by G.E. Mizon (1977b)

Mizon (1977b) proposes a procedure for testing the dynamic specification of an econo-
metric model. Mizon’s approach generalizes Anderson’s (1962*, 1971) approach to
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include a special form of non-ordered hypotheses for nonlinear restrictions that arise
in Sargan’s (1980b)* common factor analysis.
Mizon’s procedure is not uniformly most powerful because a single set of uniquely

ordered nested hypotheses cannot be defined. However, the testing problem can be
represented by two main sequences of nested hypotheses. The first main sequence con-
sists of a set of hypotheses on the maximal lag order of dynamics in a single-equation
or simultaneous equations system ADL. That sequence is a set of subsequences of
hypotheses, one subsequence for each variable in the model. Anderson’s procedure is
asymptotically uniformly most powerful for each subsequence. However, the combina-
tion of subsequences is not uniformly most powerful because tests across subsequences
are not independent. The second main sequence evaluates how many common factors
are present in the model’s dynamics, as in Sargan (1980b)* and Hendry and Anderson
(1977). This sequence is subsidiary to the first main sequence, in that the number of
common factors is determined after the maximal lag length has been chosen.
The two-stage procedure is not uniformly most powerful, so Mizon discusses situa-

tions in which more powerful procedures exist, and he considers how to improve power
after the maximal lag order and the degree of common factors have been determined.
First, tests of mis-specification and the use of larger-than-conventional significance
levels in the first main sequence may improve the power of Mizon’s procedure. Second,
Anderson’s procedure assumes that, if γi = 0, then γj = 0 for all j > i, precluding
holes in the lag distributions. In practice, such holes may be present, both in the gen-
eral lag distributions and in the (presumed) autoregressive error’s coefficients. Both
economic theory and statistical regularities in the data–such as seasonality–may
provide hypotheses about holes that can help improve power. Third, if some roots of
an autoregressive process are complex, first-order autocorrelation may be rejected in
favor of no autocorrelation. Thus, testing simultaneously for autoregressive factors
in pairs is recommended in order to allow for complex roots.
In a closely related paper, Mizon (1977a) analyzes selection procedures for non-

linear models. Mizon focuses on several issues: direct estimation of the nonlinear
models; existence of a uniformly most powerful procedure for a composite hypothesis;
and the importance of singling out which of the constituent hypotheses causes rejec-
tion of that composite hypothesis, if rejection occurs. Mizon distinguishes between
three kinds of composite hypotheses.

1. The composite hypothesis is formed by a set of independent constituent hypo-
theses. The composite hypothesis can then be tested by testing each constituent
hypothesis separately.

2. The constituent hypotheses are not independent, but they do have a natural
and unique ordering. Specifically, if the constituent hypotheses are ordered
from the least restrictive to the most restrictive, rejection of a given hypothesis
implies rejection of all succeeding ones. Mizon discusses why Anderson’s (1971)
procedure is asymptotically valid in this situation, even for nonlinear models.

3. The constituent hypotheses are not independent and do not have a natural
ordering. Mizon suggests either (a) applying enough additional structure to
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achieve a unique ordering, or (b) applying an optimal procedure to every path
of nested hypotheses–his “exhaustive testing procedure” (p. 1229). The ex-
haustive procedure may lead to multiple final models that are non-nested, so
Mizon considers three ways for choosing between such models: the Cox (1961)*
procedure, Sargan’s (1964) approach based on maximized likelihood values, and
the Akaike (1973) information criterion; see also Akaike (1981)*.

Mizon (1977a) applies this structure for model selection to testing and choosing be-
tween nine nonlinear production functions.

4.4.4 The Bonferroni and the Scheffé Multiple Comparison Procedures
by N.E. Savin (1980)

Savin (1980) considers testing composite hypotheses about the parameters in a re-
gression model, both as a single-decision problem and as a multiple-decision problem.
A single-decision procedure (i.e., using a joint test) is straightforward because the
distribution of the test statistic–either exact or asymptotic–can usually be derived.
If the decision on the composite hypothesis is derived from separate decisions on the
constituent hypotheses, the situation is more complex because the individual test sta-
tistics may not be independent of each other. Savin provides a graphical example in
which single-decision and multiple-decision approaches can lead to conflicting results
and have different power.
Savin proposes both a Bonferroni procedure and a Scheffé procedure for testing

restrictions on the model’s parameters. The Bonferroni procedure is based on the
Bonferroni inequality and allows one to compute an upper bound to the overall sig-
nificance level in a multiple-decision problem. Savin also provides an expression for
simultaneous confidence intervals for restrictions of primary interest. The composite
hypothesis is rejected if and only if any of the individual hypotheses is rejected, so
rejection of the composite hypothesis depends upon what restrictions are chosen to
be of primary interest.
The Scheffé procedure is based on a theorem by Scheffé (1953) and provides the

exact overall significance level. The overall Scheffé acceptance region of tests of in-
dividual hypotheses coincides with that of the joint test, so it is reasonable to carry
out the joint test first and then test separate hypotheses if and only if the joint test
rejects the composite hypothesis.
Savin (1980) compares the lengths of the Bonferroni and Scheffé confidence inter-

vals, distinguishing between restrictions of primary interest and those of secondary
interest. Bonferroni confidence intervals seem to be wider than Scheffé confidence
intervals if the number of linear combinations of restrictions of primary interest is
sufficiently large, and shorter if sufficiently small. Bonferroni confidence intervals are
generally shorter than Scheffé confidence intervals for restrictions of primary interest
and wider for restrictions of secondary interest. Savin also indicates how simultaneous
confidence intervals can be derived for restrictions of secondary interest. Savin briefly
discusses possible data-based inference, he extends both procedures for large sam-
ples, and he provides two empirical examples to show how to compute the confidence
intervals.
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4.4.5 A Consistent Model Selection Procedure Based on m-testing by H.
White (1990)

White’s (1990) framework is similar to that in Section 2 and consists of a DGP, a
parametric stochastic specification (a model) of the mean of the conditional distrib-
ution, and a set of requirements that a stochastic specification must satisfy to be re-
garded as a correct specification. White proposes a model selection procedure known
as m-testing, which uses a single statistic for jointly testing a set of specification
requirements. Under suitable conditions, m-testing selects the correct specification
with a probability approaching unity as the sample size becomes large.
The idea underlying m-testing is as follows. If a model with parameters θ of a

dataset X1
T is correctly specified, then a collection of T indicator functions mt =

mt (X
1
t ;θ) for t = 1, 2, . . . , T must satisfy E (mt) = 0 for t = 1, 2, . . . , T . Testing for

correct specification can thus be performed with a single test on the sample average
ofmt. White proposes four sets of requirements for correct specification, and they are
closely related to the model evaluation criteria in Hendry and Richard (1982)* and
Hendry (1987)*. Each set of requirements represents a degree of closeness to correct
specification, and each has a joint indicator function.
White describes the implications of his results for the Hendry methodology.

Thus, we have an m-testing model selection procedure which rejects suf-
ficiently mis-specified models and retains sufficiently correctly specified
models with confidence approaching certainty as [the sample size becomes
large]. Use of such procedures has the potential to remove some of the
capriciousness associated with certain empirical work in economics and
other fields. For this reason we wholeheartedly endorse progressive re-
search strategies such as that of Hendry and Richard (1982) and Hendry
(1987) for arriving at sufficiently well specified characterizations of the
DGP. We believe the m-testing framework set forth here can be a conve-
nient vehicle for such strategies. (p. 381)

White’s article thus helps formalize the statistical basis for model evaluation and
design, as summarized in Sections 2 and 3.

4.4.6 Optimal Inference inCointegrated Systems by P.C.B. Phillips (1991)

Phillips (1991) derives conditions for optimal inferences in a cointegrated system,
focusing on conditions that obtain distributions in the locally asymptotically mixed
normal family. In essence, asymptotic normal inference is feasible, once the presence
of unit roots is known and the system can be written in a triangular representation.
Inferences about the presence of unit roots themselves (and so of cointegration) in-
volve non-standard distributions, as discussed in Johansen (1988) and Johansen and
Juselius (1990)*.
Phillips’s results are particularly important for general-to-specific modeling be-

cause they partition inferences into two stages:

• one about unit roots, and involving non-standard distribution theory; and
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• one conditioning upon the presence of (and upon a certain amount of structure
about) unit roots, but involving only standard distribution theory.

In addition to being an important conceptual clarification, this partitioning has a
valuable empirical implication: it is advantageous to sort out issues of integration
and cointegration at the outset of an empirical analysis, and then proceed to the
remaining inferences. Otherwise, it can be very difficult to conduct proper inferences.
Phillips’s results include the following. First, if the triangular system’s errors

are independently and identically distributed normal, then maximum likelihood es-
timates of the long-run parameters coincide with least squares applied to a suitably
augmented version of the triangular representation; see Phillips’s equation (7). Sec-
ond, the asymptotic distribution of these estimates is in the locally asymptotically
mixed normal family. Third, these estimates are asymptotically optimal. Fourth,
the maximum likelihood estimates of the triangular form have different asymptotic
properties from those obtained from a VAR representation or an unrestricted error
correction model because the VAR and the ECM implicitly estimate unit roots. Fifth,
the results can be (and are) generalized to account for error processes that are not
independently and identically distributed normal. Sixth, joint estimation of long-run
parameters and short-run dynamics is not required for optimal estimation of the long-
run parameters. Seventh, subsystem and single-equation estimation are equivalent to
full system maximum likelihood under only very specific conditions. Eighth, statistics
for testing hypotheses on the long-run parameters are asymptotically χ2.
Through its focus on cointegrated systems, Phillips (1991) has close links with the

articles in Section 4.3 on dynamic specification.

4.5 Model Selection Criteria

Model selection criteria in the form of information criteria are utilized in three as-
pects of general-to-specific modeling: model selection after multiple path searches,
the reduction of lag length, and the choice of maximal lag length. On the first, if
several undominated congruent models are found after multiple path searches, a se-
lection needs to be made. Information criteria provide a tool for model selection. On
the second, the lag order may be determined in practice by information criteria–
rather than by significance testing–when constructing econometric models of time
series. On the third, the maximal lag order is often determined by the number of
observations available. Large values of an information criterion may suggest invalid
exclusion of higher-order lags, so a consistent procedure using an information criterion
can function as part of a progressive research strategy.
Many information criteria have been proposed, including:

• the Akaike (1973) information criterion (denoted AIC), as discussed in detail
by Akaike (1981) [Volume II: Chapter 1];

• the Schwarz criterion (denoted SC, or sometimes BIC for Bayesian information
criterion), developed in Schwarz (1978) [Volume II: Chapter 2];
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• the Hannan—Quinn criterion (denoted HQ), developed in Hannan and Quinn
(1979) [Volume II: Chapter 3]; and

• the posterior information forecast evaluation criterion (denoted PIC), developed
and analyzed in Phillips (1996) [Volume II: Chapter 6].

Atkinson (1981) [Volume II: Chapter 4] constructs a criterion generating equation,
which helps clarify the relationships between the various criteria. Sawyer (1983) [Vol-
ume II: Chapter 5] constructs a criterion based on the Kullback—Leibler information
measure.

4.5.1 Likelihood of a Model and Information Criteria by H. Akaike (1981)

Akaike (1981) shows that his 1973 “AIC” information criterion is a maximum predic-
tive likelihood selection procedure. He also compares the AIC with other then-extant
information criteria.
Akaike uses a paradox in Bayesian model selection to justify the AIC. If the mod-

eler has diffuse priors about the parameters of a given model, then the likelihood of
that model tends to zero as the prior becomes sufficiently diffuse. To clarify the nature
of this problem, Akaike decomposes the log-likelihood into the prior log-likelihood–
which is the “expected log likelihood under the assumption of the model” (pp. 5—6)–
and an incremental log-likelihood–which is the deviation of the actual log-likelihood
of the model from its expectation. The incremental log-likelihood converges to a finite
quantity, but the prior log-likelihood converges to minus infinity as the measure of
diffuseness becomes large, thereby creating the paradox.
Following this course of thought, Akaike defines the predictive log-likelihood as

the sum of the prior predictive log-likelihood and the incremental predictive log-
likelihood. He then shows that (aside from a constant term) the AIC is simply minus
twice the log of the predictive log-likelihood:

AIC = −2c+ 2k, (30)

where c is the log-likelihood for the model, and k is the number of parameters in
the model. Minimizing the AIC as a model selection procedure is thus equivalent to
maximizing the predictive log-likelihood.
Akaike (1981) then discusses why the Schwarz (1978)* criterion is not based on

the expected behavior of the likelihood, and that it is valid only if the priors are
strongly held. Akaike also analyzes certain modifications to the AIC–as in Sawa
(1978)–and finds some shortcomings with them.

4.5.2 Estimating the Dimension of a Model by G. Schwarz (1978)

Schwarz (1978) proposes an alternative information criterion for choosing between lin-
ear models when the joint distribution of the data belongs to the Koopman—Darmois
family. Schwarz’s criterion is:

SC = c− 1
2
k log T, (31)
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where T is the sample size. Schwarz formulates his procedure in a Bayesian framework
and analyzes its asymptotic properties. If the priors assign positive probability to all
subspaces corresponding to contending models, and if there is a fixed penalty for
choosing the wrong model, then a Bayesian analysis leads to choosing the model that
maximizes SC. Because of its relationship to Bayesian analysis, the Schwarz criterion
is sometimes known as the Bayesian information criterion. That said, the asymptotic
properties of SC as a selection criterion do not depend upon the priors, making the
Schwarz criterion appealing beyond the Bayesian context.
Schwarz notes that his information criterion and the AIC differ only in the way

that they treat the additive term involving the number of parameters in the model.
Specifically, SC weights k by 1

2
log T , relative to AIC. SC thus tends to favor models

with fewer parameters, particularly in larger samples. Because of this different treat-
ment of k, AIC is not a consistent model selection procedure for certain classes of
models; see also Atkinson (1981)*.

4.5.3 The Determination of the Order of an Autoregression by E.J. Han-
nan and B.G. Quinn (1979)

Hannan and Quinn (1979) provide a criterion for estimation of the order k of a
stationary, ergodic, finite-order autoregressive process. Their estimator k̂ of the true
order k0 is obtained by minimizing the criterion function:

HQ = ln σ̂2k + 2kc log(log(T ))/T, (32)

with respect to k, where σ̂2k is the estimate of σ
2 obtained from solving the Yule—

Walker equations for a kth-order autoregressive model, and c ≥ 1.
Hannan and Quinn show that k̂ is strongly consistent for k0 when the postulated

maximum order of the autoregressive process is greater than or equal to the true order.
By the same token, k̂ is strongly consistent for k0 when the postulated maximum order
of the process is allowed to increase at a suitable rate with the sample size. Hannan
and Quinn simulate a first-order autoregressive process by Monte Carlo and show
that HQ performs better than AIC for moderately to highly autoregressive processes
and larger sample sizes. Hannan and Quinn (1979) thus recommend HQ for larger
sample sizes when an autoregressive process is a good approximation to the DGP.

4.5.4 Likelihood Ratios,PosteriorOdds and Information Criteria by A.C.
Atkinson (1981)

Atkinson (1981) provides a general function that includes various existing model se-
lection criteria as special cases, including AIC, SC, HQ, final prediction error (FPE),
Mallows’s CP criterion, and Atkinson’s posterior odds. For autoregressive processes,
Atkinson’s criterion generating function is the negative of the log-likelihood, plus
some weighting times the number of parameters in the model. For a kth-order auto-
regressive model, the criterion generating function (CGF) is equivalent to:

CGF = log(σ̂2k) + (ak/T ), (33)
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where a (Atkinson’s “α”) is a value or function associated with the particular infor-
mation criterion. Thus, in equation (33), a = 2 for AIC, a = log(T ) for SC, and
a = 2(log(log(T )) for HQ; cf. equations (30), (31), and (32). See Campos, Hendry,
and Krolzig (2003, Figures 1—3) for a graphical comparison of these and other model
selection criteria; see also Hendry and Krolzig (2005).
Atkinson shows that the criterion increases with the sample size for false models,

and that the probability of choosing an over-parameterized model can be controlled
by appropriately setting a. Atkinson also discusses the optimum choice of a.

4.5.5 Testing Separate Families of Hypotheses: An Information Criterion
by K.R. Sawyer (1983)

Cox (1961*, 1962*) derives a test for comparing two non-nested hypotheses, basing
the test on the likelihood ratio of those hypotheses relative to what that likelihood
ratio would be if one of the hypotheses were the DGP. Sawyer (1983) derives a similar
test that uses the Kullback—Leibler information criterion rather than the likelihood
ratio. Sawyer’s statistic is asymptotically normally distributed when the assumed
hypothesis is actually the DGP.
Sawyer illustrates his procedure with the choice between two non-nested models

that have non-stochastic regressors and Gaussian errors. When one model’s regressors
are orthogonal to the other model’s regressors, Cox’s test does not exist, but Sawyer’s
test is still valid, and it is equivalent to the F—test applied to the minimal nesting
model. Sawyer also compares the finite sample properties of the two tests for the
Monte Carlo experiments in Pesaran (1974)*, focusing on the statistics’ moments,
size, and power.

4.5.6 Econometric Model Determination by P.C.B. Phillips (1996)

Phillips (1996) develops, analyzes, and justifies automated model selection proce-
dures, focusing on the updating of forecasting models when data properties change
and when the DGP is nonconstant. Phillips commences with the Bayesian data den-
sity, constructs the conditional density (conditional on past observations), links it
to the posterior information criterion (PIC) for forecasts, discusses how PIC is an
extension of SC, and derives asymptotic properties of model selection using PIC.
Phillips’s numerous results include the following. Maximizing PIC is asymptoti-

cally equivalent to maximizing the penalized log-likelihood. When the DGP is con-
stant over time, PIC is valid for stationary data, integrated data, and cointegrated
data. PIC leads to the best model that can be chosen from a parametric class, even
if the true density does not belong to that class. When the DGP is nonconstant, PIC
achieves the lower bound of closeness to the evolving true density.
Phillips shows how PIC can help detect when an existing model using historical

data may no longer adequately capture the behavior of recent data. For model se-
lection, such a situation may lead to discarding some data or to weeding out certain
models. Phillips also illustrates PIC for the joint selection of cointegration rank, lag
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length, and trend in a VAR, and for the choice between unrestricted VARs, cointe-
grated VARs, and Bayesian VARs (such as ones with Minnesota priors).

4.6 Model Comparison

The literature on model comparison is closely tied to the literature on model selec-
tion criteria, as Sawyer (1983)* in particular highlights. The literature on model
comparison also spurred the development of encompassing, both as a concept and as
a practical tool; see Section 4.7. The articles discussed below focus on comparing
non-nested models: Section 4.4 focuses on nested models.
As a pair, Cox (1961) and Cox (1962) [Volume II: Chapters 7 and 8] provide the

key source on model comparison. Cox proposes a modified likelihood-ratio statistic for
comparing non-nested models, derives its asymptotic distribution, and illustrates its
application for several specific classes of models. Cox (1961)* and Cox (1962)* seed a
large literature on testing non-nested hypotheses; see MacKinnon (1983), Mizon and
Richard (1986)*, and Hendry and Richard (1989)* for summaries. Dhrymes, Howrey,
Hymans, Kmenta, Leamer, Quandt, Ramsey, Shapiro, and Zarnowitz (1972) [Vol-
ume II: Chapter 9] assess numerous procedures for comparing and evaluating models,
including (for non-nested models) Ramsey’s (1969) test, Cox’s test, the Bayesian ap-
proach, and the use of R2. Pesaran (1974) [Volume II: Chapter 10] derives the explicit
form of the Cox statistic for non-nested linear regression models, and he compares
its finite sample properties with the F-statistic that evaluates each model of interest
directly against the comprehensive model that nests the two competing non-nested
models. This subsection on model comparison thus segues directly to Section 4.7 on
encompassing.

4.6.1 Tests of Separate Families of Hypotheses by D.R. Cox (1961)

Drawing on the framework for the Neyman—Pearson likelihood ratio, Cox (1961)
proposes a procedure for testing two separate families of hypotheses, assuming that
the parameters are continuous and are interior to their parameter spaces. Cox defines
his test statistic as the deviation of the Neyman—Pearson likelihood ratio from its
expected value under the hypothesis chosen to be the null hypothesis.
The asymptotic distribution of Cox’s statistic is non-trivial to derive. However,

if both hypotheses belong to the Koopman—Darmois family of densities, then, under
suitable conditions, the statistic can be written in terms of the estimates of the
parameters of the null hypothesis, the estimates of the parameters of the alternative
hypothesis, and the value that the latter converge to under the null hypothesis. Cox
derives the asymptotic covariance matrix for the estimates of both models, from
which he obtains the statistic’s asymptotic variance; and he shows that the statistic
is asymptotically normally distributed.
Cox then suggests how to proceed for more general cases. He also notes a number

of caveats for some specific classes of hypotheses. In particular, for some classes of
hypotheses, the statistic’s asymptotic distribution may not be normal.
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4.6.2 Further Results on Tests of Separate Families of Hypotheses by
D.R. Cox (1962)

Cox (1962) derives the asymptotic distribution of the Cox (1961)* test statistic un-
der maximum likelihood estimation when the sample is independently and identically
distributed and when the assumption of identical distributions is relaxed. Cox’s pro-
cedure is also valid for estimators that are asymptotically equivalent to the maximum
likelihood estimator. Cox discusses how to compute the statistic; and he illustrates
it with detailed derivations for examples of testing log-normal versus exponential dis-
tributions, Poisson versus geometric distributions, and multiplicative versus additive
models.

4.6.3 Criteria for Evaluation of Econometric Models by P.J. Dhrymes,
E.P. Howrey, S.H. Hymans, J. Kmenta, E.E. Leamer, R.E. Quandt,
J.B. Ramsey, H.T. Shapiro, and V. Zarnowitz (1972)

Dhrymes, Howrey, Hymans, Kmenta, Leamer, Quandt, Ramsey, Shapiro, and Zar-
nowitz (1972) aim to systematize both parametric and non-parametric evaluation
of econometric models. Parametric evaluation includes model selection, estimation,
hypothesis testing, computation of ex post forecasts and structural stability tests,
and testing against new datasets. The authors associate the first four activities with
model design and the last activity with model evaluation. Non-parametric evaluation
includes examination of goodness-of-fit statistics (such as the mean square forecast
error) and spectral methods, and it can help check whether the model is useful for
particular purposes. In the context of general-to-specific modeling, the framework in
Dhrymes et al. can be interpreted as a loose categorization similar to the taxonomy of
model evaluation and design criteria developed later by Hendry and Richard (1982)*;
see also Section 2.6.
Dhrymes et al. view model selection as an activity for discriminating between

functional forms. They first examine discrimination between non-nested specifica-
tions, comparing Ramsey’s (1969) test, Cox’s (1961*, 1962*) test, the Bayesian ap-
proach, and the use of R2. Dhrymes et al. then consider testing of sequences of
nested hypotheses, focusing on the Lagrange multiplier statistic and the comparable
F—statistic; and they generalize the Chow (1960) statistic for predictive failure to
forecasts from a system. They consider various methods for evaluating a model after
its initial construction, as by regressing actual values on predicted values and testing
hypotheses about the coefficients. That approach is the basis for forecast encompass-
ing; see Chong and Hendry (1986)* and Ericsson (1992b)*. Finally, Dhrymes et al.
outline possible non-parametric measures for model evaluation, including measures
such as the mean square forecast error. The usefulness of many of these measures is
reconsidered by Clements and Hendry (1998, 1999).

4.6.4 On the General Problem of Model Selection byM.H. Pesaran (1974)

Pesaran (1974) considers how to choose between non-nested linear regression models,
deriving the explicit form of the Cox statistic for this situation. The Cox statistic is
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asymptotically distributed as standardized normal, provided that the contending sets
of regressors are not orthogonal to each other.
Pesaran compares the finite sample properties of the Cox test (Pesaran’s “N-test”)

with those of the exact F-test in a Monte Carlo study. The F-test compares the model
of interest directly against the comprehensive model that nests the two competing
non-nested models. Pesaran finds that the small-sample size of the Cox test is much
larger than its nominal size, but that its Type II error is smaller than that associated
with the F-test. Pesaran argues against calculating a test’s power from its Type II
error alone because there is a nonzero probability of rejecting both models. Pesaran
proposes an alternative measure of power–the probability of jointly accepting the
correct specification and rejecting the incorrect specification. In Pesaran’s Monte
Carlo study, the Cox test performs better than the F-test on this measure. Pesaran
also presents three conceptual reasons for using the Cox test rather than the F-test:
the comprehensive model is arbitrary, the F-test may be inconclusive, and the F-test
may be affected by high collinearity between the competing sets of regressors. Pe-
saran and Deaton (1978) subsequently derive the Cox statistic for nonlinear regression
models, and Ericsson (1983) derives it for instrumental variables estimators.

4.7 Encompassing

Encompassing provides a basis for constructing tests of a given model against an
alternative specification, whether those models are nested or non-nested. In general-
to-specific modeling, one common application of encompassing arises when comparing
congruent models obtained from alternative simplification paths.
An encompassing test evaluates a given model against the information content

in an alternative specification that is not a special case of the given model. Equiv-
alently, an encompassing test assesses whether a given model is able to explain why
the alternative explanation obtains the results that it does. If the given model were
the DGP, then the alternative specification would be derivable from the given model;
see Section 2.1. Thus, an encompassing model explains the results obtained by an
alternative model. More generally, an encompassing model may predict unnoticed
features of an alternative model, such as error autocorrelation or parameter noncon-
stancy; and it may help explain why the alternative model was selected. As with the
evaluation of a model on its own data, evaluation of a model by encompassing can
utilize (relative) past, current, and future information sets, with the relevant concepts
being variance and parameter encompassing, exogeneity encompassing, and forecast
encompassing.
Mizon and Richard (1986), Hendry and Richard (1989), Wooldridge (1990), and

Lu and Mizon (1996) [Volume II: Chapters 11, 12, 13, and 14, respectively] focus
on variance and parameter encompassing. Mizon and Richard (1986)* consider a
wide range of possible encompassing test statistics and show that Cox-type tests
of non-nested hypotheses are tests of variance encompassing. Hendry and Richard
(1989)* summarize the encompassing literature to date, generalize certain aspects
of encompassing, and consider various nuances to encompassing when the models
are dynamic. Wooldridge (1990)* derives a conditional mean encompassing test and
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compares it to the Cox and Mizon—Richard tests. Lu and Mizon (1996)* establish an
equivalence of m—testing (as in White (1990)*) and the encompassing procedures.
Hendry (1988) [Volume II: Chapter 15] develops statistics for exogeneity encom-

passing, focusing on the Lucas (1976) critique and the role of expectations in econo-
metric models. In empirical analysis, contending models often differ in their treatment
of expectations. Two common forms are feedforward (or expectations-based) models
such as rational expectations models, and feedback (or conditional) models such as
the conditional model in equation (15). Expectations-based models are of particular
interest to economists: they have an intuitive appeal, and they are ubiquitous, in fair
part because of the Lucas critique. Lucas (1976) shows that, under an assumption of
rational expectations, coefficients in conditional econometric equations are noncon-
stant when policy rules change. That nonconstancy is an encompassing implication,
and it provides the basis for Hendry’s exogeneity encompassing statistics.
Chong and Hendry (1986), Ericsson (1992b), and Ericsson and Marquez (1993)

[Volume II: Chapters 16, 17, and 18, respectively] develop tests of forecast encom-
passing. Chong and Hendry (1986)* discuss the usefulness of various methods for
evaluating econometric systems and propose a forecast encompassing test, which as-
sesses a model’s ability to explain the forecasts obtained from an alternative model.
In addition, mean square forecast errors have often been used to compare models’
forecast performance. Ericsson (1992b)* shows that achieving the smallest mean
square forecast error is neither necessary nor sufficient for parameter constancy. This
separation of properties leads to a forecast-model encompassing test, which assesses
a given model’s ability to explain the model used to generate the alternative model’s
forecasts. Ericsson and Marquez (1993)* extend the results in Chong and Hendry
(1986)* and Ericsson (1992b)* to nonlinear systems.
Hendry and Mizon (1993) [Volume II: Chapter 19] focus specifically on encompass-

ing in dynamic systems. Hendry and Mizon develop a test for whether a structural
econometric model parsimoniously encompasses the VAR from which it is derived.

4.7.1 The Encompassing Principle and its Application to Testing Non-
nested Hypotheses by G.E. Mizon and J-F. Richard (1986)

Mizon and Richard (1986) develop a class of Wald encompassing test statistics that
unifies testing of both nested and non-nested hypotheses. The Wald encompassing
test statistic (or “WET statistic”) compares a parameter estimate for the alternative
hypothesis with an estimate of what the null hypothesis implies that the alterna-
tive hypothesis’s parameter estimate would be, if the null hypothesis were correct.
If these two estimates are close together, given the uncertainty of estimation, then
the null hypothesis encompasses the alternative hypothesis–at least for the para-
meter estimated. If these two estimates are far apart, then the alternative hypothesis
contains information that the null hypothesis has difficulty explaining, in which case
the null hypothesis does not encompass the alternative hypothesis. While the test is
“against” the alternative hypothesis, it is the null hypothesis that is being evaluated.
Specifically, the null hypothesis is being evaluated against information in the alter-
native hypothesis that is not contained in the null hypothesis. Mizon and Richard
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derive the asymptotic distribution of the Wald encompassing test statistic, and they
demonstrate its asymptotic equivalence to likelihood ratio and Lagrange multiplier
statistics under certain conditions.
Mizon and Richard also show that the Wald encompassing test statistic is as-

ymptotically equivalent to the Cox statistic for linear regression models when the
parameter being estimated is the model’s error variance. The Cox statistic is thus
a variance encompassing test statistic. The Cox statistic is not equivalent (even as-
ymptotically) to the Wald encompassing test statistic for the regression parameters.
That distinction leads to a discussion of the implicit null hypothesis defined by a test
statistic, helping clarify the relationships between the various test statistics. In par-
ticular, the Cox statistic has an implicit null hypothesis that is larger than its nominal
null hypothesis, implying power equal to size for some regions of the comprehensive
hypothesis.
In related work, Mizon (1984) shows that the Wald encompassing test statistic is

a test generating equation, in that it generates numerous other extant test statistics
as special cases. These statistics include the Cox statistic when the parameter being
encompassed is the other model’s error variance, Sawyer’s (1983)* statistic based on
the information criterion, a non-nested hypothesis test statistic based on the empirical
moment generating function, the conventional F-statistic that tests for invalid exclu-
sion of regressors, Sargan’s (1980b)* comfac statistic, Sargan’s (1964) statistic for
testing the validity of instruments, Hausman’s (1978) mis-specification test statistic,
and specification-robust Wald and Largrange multiplier test statistics. Encompassing
is a criterion for comparing models, rather than a tool for choosing between them.
Mizon also discusses the role of encompassing in a progressive research strategy. In
subsequent work, Kent (1986) examines the properties of the Cox and Wald encom-
passing tests when the joint distribution is degenerate, he proposes an additional test
that combines features of both the Cox test and the Wald encompassing test, and he
analyzes the geometry of the tests.

4.7.2 Recent Developments in the Theory of Encompassing by D.F. Hen-
dry and J.-F. Richard (1989)

Hendry and Richard (1989) summarize numerous then-extant results on encompassing
in a unifying framework; and they develop further results, particularly for dynamic
models. Hendry and Richard first define concepts such as parametric encompassing,
parsimonious encompassing, encompassing with respect to an estimator, the minimal
nesting model, and the minimal completing model. Analytical examples then illus-
trate these concepts and various results. In particular, encompassing analysis can
be carried out by encompassing the minimal nesting model; exact distributions are
derivable in some situations; and variance dominance is necessary but not sufficient
for parameter encompassing in linear models. Hendry and Richard propose a Monte
Carlo procedure for calculating the empirical distribution of the Wald encompassing
test statistic–a procedure that is particularly useful when no explicit analytical re-
sults are available. Hendry and Richard also discuss the choice between encompassing
tests in terms of power, invariance, and computational burden, highlighting how the
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Wald encompassing test statistic arises naturally from a theory of reduction.
Hendry and Richard then develop a theory of encompassing for dynamic systems,

including ones with Granger causality. If Granger causality is present, the marginal
model features much more prominently in calculating the encompassing statistic than
if Granger causality is lacking. Govaerts, Hendry, and Richard (1994) provide ad-
ditional details. Hendry and Richard (1989) finish by considering the concept of
encompassing in a Bayesian framework.

4.7.3 An Encompassing Approach to Conditional Mean Tests with Ap-
plications to Testing Nonnested Hypotheses by J.M. Wooldridge
(1990)

Wooldridge (1990) derives an easily computable encompassing test that is robust to
heteroscedasticity. This conditional mean encompassing test (or “CME test”) does
not require computation of the asymptotic covariance matrix of estimates of either
model under the null hypothesis. Wooldridge derives the conditional mean encom-
passing test statistic for nonlinear least squares and shows that it has asymptotic χ2

distributions under both the null hypothesis and a local alternative hypothesis. This
test statistic may utilize any

√
T -consistent estimator of the parameters of the null

hypothesis.
Wooldridge derives the conditional mean encompassing test statistic for non-

nested linear models, linear versus loglinear models, and linear versus exponential
models, showing that the test statistic is asymptotically equivalent to a suitably con-
structed Lagrange multiplier statistic. Wooldridge extends his results for weighted
nonlinear least squares; notes additional relationships with the Lagrange multiplier
statistic, Wald encompassing statistic, Hausman statistic, and Davidson and Mac-
Kinnon’s (1981) statistic; and proposes heteroscedasticity-robust versions of the last.

4.7.4 The Encompassing Principle and Hypothesis Testing by M. Lu and
G.E. Mizon (1996)

Lu and Mizon (1996) establish several relationships between statistics developed for
testing the specification of econometric models. Lu and Mizon show that the m-
testing procedure and the encompassing principle can generate equivalent test statis-
tics, which are Lagrange multiplier in nature. That said, the two principles have differ-
ent motivations: m-testing is performed mainly to check for model mis-specification,
whereas encompassing tests are viewed as specification tests, particularly in the con-
text of general-to-specific modeling.

4.7.5 The Encompassing Implications of Feedback Versus Feedforward
Mechanisms in Econometrics by D.F. Hendry (1988)

Hendry (1988) proposes and implements a test of super exogeneity that is based on
tests of constancy. Super exogeneity is the concept relevant for valid conditioning
when regimes change, so it is of particular interest to economists. Hendry’s test is
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interpretable as an encompassing test of feedback versus feedforward models, and it
provides a means of testing the Lucas critique.
Specifically, Hendry develops procedures for discriminating between feedback and

feedforward models, highlighting the role of changes in the marginal models for the
expectations processes. Sufficient changes in the marginal processes permit distin-
guishing between feedback and feedforward models, which advocates testing the con-
stancy of the proposed marginal models. Recursive estimation and recursive testing
are useful tools for doing so. Hendry illustrates his approach, empirically rejecting
Cuthbertson’s (1988) expectations interpretation of a constant conditional model for
U.K. M1 demand. Such conditional models still have a forward-looking interpreta-
tion, albeit one formulated in terms of data-based rather than model-based predictors;
see Campos and Ericsson (1988, 1999*) and Hendry and Ericsson (1991).
In a rejoinder, Cuthbertson (1991) qualifies Hendry’s (1988) results, emphasizing

finite sample issues and model design. Favero and Hendry (1992) discuss and rebut
Cuthbertson’s (1991) criticisms of Hendry (1988), focusing on the asymptotic and
finite sample power of the encompassing tests. Favero and Hendry also examine dif-
ferent tests of super exogeneity and invariance, and they generalize results in Hendry
(1988) by considering expectations about future values of variables. Ericsson and
Hendry (1999) derive additional encompassing implications of conditional models for
rational expectations models. Despite the importance of testing the Lucas critique,
it remains untested in much empirical work; see Ericsson and Irons (1995).

4.7.6 Econometric Evaluation of Linear Macro-economic Models by Y.Y.
Chong and D.F. Hendry (1986)

Chong and Hendry (1986) develop and analyze a forecast encompassing test as a
feasible device for evaluating multi-equation econometric models. Chong and Hendry
first critique several common procedures for evaluating econometric systems, includ-
ing dynamic simulation, inter-model ex ante forecast performance, and the economic
plausibility of the model. Chong and Hendry propose four alternative devices for
model evaluation: forecast encompassing, multi-step ahead forecast errors, long-run
properties, and inter-equation feedbacks. Chong and Hendry focus on forecast en-
compassing and multi-step ahead forecast errors, simulating finite sample properties
of the latter.
Chong and Hendry construct their forecast encompassing test statistic from an

artificial regression in which the dependent variable is the variable being forecast and
the regressors are the forecasts from two competing models. Under the null hypothesis
that the first model is correct, the coefficients in that regression should be unity on
the correct model’s forecasts and zero on the incorrect model’s forecasts. From that
property, Chong and Hendry base their actual forecast encompassing test statistic
on a (modified) artificial regression of the forecast errors for the model of the null
hypothesis on the forecasts of the alternative model. Their forecast encompassing test
statistic is the t-ratio for the regressor’s coefficient. The distribution of this statistic
is found under the null hypothesis, and the authors argue that power functions can
also be derived for alternatives that embed the two rival models.
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Chong and Hendry also formulate test statistics based on n-step ahead forecast
errors and on averages of forecast errors, derive their asymptotic distributions, and
analyze their finite sample properties in a Monte Carlo study. Chong and Hendry
note that the variance of the n-step ahead forecast error is not necessarily monotoni-
cally increasing in the forecast horizon, so forecast modifications such as pooling and
intercept adjustment may be worthwhile.

4.7.7 Parameter Constancy, Mean Square Forecast Errors, and Measur-
ing Forecast Performance: An Exposition, Extensions, and Illus-
tration by N.R. Ericsson (1992b)

Ericsson (1992b) focuses on the issues of parameter constancy and predictive ac-
curacy. He begins with an exposition of the statistical criteria for model evaluation
and design, including various criteria based on forecasts. Using Hendry and Richard’s
(1982*, 1983) taxonomy for model criteria, Ericsson resolves a debate between model-
ers emphasizing parameter constancy and those running competitions based on mean
square forecast errors (MSFEs). By explicit consideration of the information sets
involved, Ericsson clarifies the roles that each plays in analyzing a model’s forecast
accuracy. Both parameter constancy and minimizing MSFE across a set of mod-
els are necessary for good forecast performance, but neither (nor both) is sufficient.
Both criteria also fit into Hendry and Richard’s general taxonomy of model evaluation
statistics. Simple linear models illustrate how these criteria bear on forecasting.
Hendry and Richard’s taxonomy also leads to a new test statistic, which is for

forecast-model encompassing. Ericsson applies that and other forecast-related test
statistics to two models of U.K. money demand. Properties of several of the forecast-
based tests are affected by the presence of integrated and cointegrated variables.
Ericsson’s Table 2 categorizes numerous model evaluation and design criteria accord-
ing to Hendry and Richard’s taxonomy. This table provides a useful reference, as
many of these criteria appear elsewhere in this collection.
In discussing Hendry and Richard’s taxonomy, Ericsson re-examines the concepts

of variance dominance, variance encompassing, and parameter encompassing, derives
relationships between these concepts, and formulates the corresponding hypotheses
and testing procedures. This discussion leads to a similar discussion for the equivalent
forecast-related concepts: MSFE dominance, forecast encompassing, and forecast-
model encompassing. Because Chong and Hendry’s forecast encompassing test is
generally not invariant to nonsingular linear transformations of the data, Ericsson
reformulates their testing procedure to attain invariance, and he evaluates the prop-
erties of that modified test statistic. Ericsson also shows that models with time-
varying coefficients do not necessarily attain smaller MSFEs than models with fixed
coefficients.
Lu and Mizon (1991) re-interpret the forecast tests in Ericsson (1992b) and Chong

and Hendry (1986)* by examining the implicit null hypotheses associated with para-
meter encompassing, parameter constancy, and forecast encompassing. Additionally,
some of the results in Chong and Hendry (1986)*, Lu and Mizon (1991), and Ericsson
(1992b) may be affected by transformations of the models’ variables. For instance,
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Ericsson, Hendry, and Tran (1994) show that variance dominance is not necessary
for a model using seasonally unadjusted data to encompass a model using season-
ally adjusted data. Ericsson, Hendry, and Tran then design encompassing tests for
comparing two such models and discuss the effects of seasonal adjustment on other
properties, such as cointegration and weak exogeneity. Ericsson, Hendry, and Tran
illustrate their analytical results empirically with models of quarterly U.K. narrow
money demand over 1964—1989.

4.7.8 Encompassing the Forecasts of U.S. Trade Balance Models by N.R.
Ericsson and J. Marquez (1993)

Chong and Hendry (1986)* propose the concept of forecast encompassing, which
corresponds to the lack of additional information in another model’s forecasts. Chong
and Hendry’s test statistic for forecast encompassing is based on the regression of one
model’s forecast errors on the other model’s forecasts. Ericsson and Marquez (1993)
generalize Chong and Hendry’s statistic to include sets of dynamic nonlinear models
with uncertain estimated coefficients generating multi-step forecasts with possibly
systematic biases. Using Monte Carlo simulation, Ericsson and Marquez apply their
generalized forecast encompassing test statistic to forecasts over 1985Q1—1987Q4 from
six models of the U.S. merchandise trade balance, revealing mis-specification in all
models.

4.7.9 EvaluatingDynamic EconometricModels by Encompassing theVAR
by D.F. Hendry and G.E. Mizon (1993)

Hendry and Mizon (1993) propose a procedure for comparing econometric models,
whether those models’ variables are I(0) or I(1) and whether those models are closed
or open. Hendry and Mizon’s procedure consists of formulating a congruent VAR
that embeds all the contending dynamic structural econometric models (SEMs) be-
ing evaluated, and testing which of those models is a valid reduction of that VAR.
The variables’ orders of integration can affect inferential procedures, so Hendry and
Mizon first test for cointegration–which is a reduction in itself–and then examine
parsimonious congruence in the cointegrated VAR, which is transformed to have I(0)
variables.
Closed SEMs are transformed restrictions of the congruent VAR, providing a nec-

essary and sufficient condition for the SEM to encompass the VAR. While this condi-
tion does not necessarily lead to a unique encompassing model, parameter invariance
provides an additional criterion for narrowing the class of acceptable models.
Open SEMs condition on a set of variables, which may be I(1). If it is known

which of those variables are I(1) and which cointegrate, then the open SEM can be
tested against a VAR formulated in terms of differences of the I(1) variables and the
cointegrating relationships. If there is no information about unit roots and cointe-
gration vectors, then Hendry and Mizon suggest the following procedure: formulate
a VAR on all variables in I(0) form, construct a closed SEM by augmenting the open
SEM with equations for all conditioning variables, test each closed form against the
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general VAR, and finally test the validity of the weak exogeneity (conditioning) as-
sumptions of each closed model. Hendry and Mizon illustrate their approach with
system models of quarterly U.K. narrow money demand over 1963—1984.
In a subsequent and related paper, Hendry and Doornik (1997) examine po-

tential sources of predictive failure, including parameter nonconstancy, model mis-
specification, collinearity, and lack of parsimony. Parameter changes associated with
deterministic factors typically have larger effects on the forecasts than changes in co-
efficients associated with stochastic variables. Model mis-specification per se can not
induce forecast failure, although model mis-specification in the presence of parameter
nonconstancy can augment the effects of the latter. Likewise, multi-collinearity per
se can not induce forecast failure, although it can affect forecasts when the marginal
process alters.
Hendry and Doornik (1997) distinguish between error correction and equilibrium

correction, and show that forecasts from equilibrium correction models generally have
biased forecasts if the equilibrium mean alters. Changes in equilibrium means typi-
cally have larger effects on the forecasts than changes in growth rates. Hendry and
Doornik also discuss the concept of extended model constancy, in which a model that
is constant in sample may require extensions out-of-sample if it is to remain constant
in a world of structural change.

4.8 Computer Automation

Computers have long played an essential role in the operational development of econo-
metrics, particularly for estimation, inference, and simulation. Beale, Kendall, and
Mann (1967) and Coen, Gomme, and Kendall (1969) set a backdrop for more recent
developments in computer-automated model selection.
Beale, Kendall, and Mann (1967) propose an early algorithm for model selection

that aims to maximize the adjusted R2 of a regression with an initially specified set
of potential regressors. Coen, Gomme, and Kendall (1969) empirically apply that
algorithm to modeling the Financial Times ordinary share index, starting from pure
distributed lags, with the lag order and lag length chosen informally. Coen, Gomme,
and Kendall model seasonally adjusted data, which in some cases is detrended or
differenced. They then graphically analyze forecasts for different models over different
forecast periods. The published discussion of Coen, Gomme, and Kendall (1969) is
critical and raises numerous issues, including the role of statistics in economic analysis,
goodness of fit and the choice of model selection criterion, dynamics and dynamic
specification, expectations and endogeneity, causality, policy analysis, institutional
and structural changes, the effects of seasonal adjustment on modeling, the purpose
of a model (e.g., whether for policy, economic analysis, or forecasting), and the use
of spectral methods.
Lovell (1983) [Volume II: Chapter 20] re-examines the appropriateness of auto-

mated selection procedures in a quasi-empirical Monte Carlo study. Denton (1985)
[Volume II: Chapter 21] extends Lovell’s critique of data mining to a profession that
chooses which papers to publish, based on their empirical results, even when the pa-
pers’ authors themselves do not data-mine. While Lovell (1983)* and Denton (1985)*
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(and others) cast a pejorative light on data mining, Lovell (1983)* in particular stim-
ulated a more recent and constructive view of data mining by Hoover and Perez
(1999a)*.
Hoover and Perez (1999a) [Volume II: Chapter 22] implement and analyze a

general-to-specific model selection algorithm that mimics the theory of reduction for
model simplification. Hendry and Krolzig (1999) [Volume II: Chapter 23] comment on
Hoover and Perez (1999a)* and improve upon Hoover and Perez’s algorithm in what
has become the econometrics software package PcGets. Hoover and Perez (1999b)
[Volume II: Chapter 24] reply to their discussants, which include Hendry and Krolzig
(1999)* and Campos and Ericsson (1999)*. Perez-Amaral, Gallo, and White (2003)
develop, simulate, and apply a specific-to-general algorithm called RETINA that uses
a forecast-based criterion for model selection. Castle (2005) evaluates and compares
the simulated and empirical performance of PcGets and RETINA. The remarkable
performance of general-to-specific algorithms has already been discussed in Section 3;
and they seem bound to improve in the years ahead.

4.8.1 Data Mining by M.C. Lovell (1983)

Lovell (1983) criticizes the use of nominal significance levels when model selection
depends on the dataset. Lovell addresses this problem in two ways. First, he develops
a rule of thumb that approximates the actual significance level when a given number
of explanatory variables are selected from a larger set of variables, assuming that those
variables are orthogonal. Second, Lovell simulates selection probabilities by Monte
Carlo for several DGPs that use actual macroeconomic time series as explanatory
variables but construct the dependent variable by adding a simulated disturbance.
For simulations from each of those DGPs, Lovell considers three automated pro-

cedures that may mimic actual empirical model selection:

• stepwise regression,
• maximum adjusted R2, and

• max-min |t|.

For each procedure and at various significance levels, Lovell calculates how frequently
the DGP is found and how frequently each variable is selected. Estimated finite
sample significance levels are much larger than nominal levels, but employing Lovell’s
proposed rule helps to some extent. Also, stepwise regression and the adjusted R2 cri-
terion appear to outperform the t-value criterion, in that the first two procedures find
the relevant variables more often. Nevertheless, no method is uniformly successful.

4.8.2 Data Mining as an Industry by F.T. Denton (1985)

Denton (1985) shows that re-using data can affect the probability of incorrectly re-
taining variables, whether a single researcher tests several hypotheses on the data
and selects the best model (Lovell’s example), or whether many researchers test one
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hypothesis each and only significant results are reported (as might occur with a pub-
lication filter). The probabilities in these two situations coincide when either the
number of researchers is large or the number of hypotheses tested is large. Under
certain simplifying assumptions, Denton shows that the probability of false inclusion
increases with the number of researchers involved and with the total number of pos-
sible explanatory variables. Denton thus urges using smaller significance levels and
computing Lovell’s (1983)* rule of thumb to interpret published results.

4.8.3 DataMiningReconsidered:Encompassing and theGeneral-to-specific
Approach to Specification Search by K.D. Hoover and S.J. Perez
(1999a)

Hoover and Perez (1999a) assess the practical efficacy of the LSE’s general-to-specific
approach for building econometric models. Hoover and Perez characterize the LSE
approach as a search procedure for finding a parsimonious econometric model by
imposing restrictions on a more general representation. Hoover and Perez design a
computerized general-to-specific modeling algorithm that mimics the LSE approach,
they simulate several DGPs that are similar to those used by Lovell (1983)*, and they
examine how well their algorithm does in selecting the DGP as its final model.
Hoover and Perez find that their algorithm performs remarkably well, and that

the size and power of t-tests in the final model are not very much affected by the
algorithm’s search procedure. In addition to these surprising and innovative findings,
Hoover and Perez make major contributions to the LSE methodology itself, including
development of a computer algorithm to perform general-to-specific modeling, for-
malization of multi-path searches, and encompassing-based comparisons of multiple
terminal models.
Prior to conducting their Monte Carlo analysis, Hoover and Perez (1999a) examine

several criticisms of the LSE modeling approach.

1. Multiple search paths–whether by a single researcher or several–may give rise
to multiple parsimonious terminal models, which require comparison. Encom-
passing procedures can distinguish between those terminal models.

2. Overfitting could occur from an approach that selects regressors from many
intercorrelated variables where selection is based (in part) on goodness of fit.
Chance empirical correlations in the data may thus favor retaining some re-
gressors that are actually irrelevant in the DGP. However, the LSE approach
emphasizes a progressive research strategy, in which such mistakes become de-
tectable as additional data accrue.

3. The interpretation of test statistics in the final model may be at issue because of
the potential consequences of empirical model selection. In proceeding along a
simplification path, tests are applied to a sequence of models to check whether
each new model is a congruent reduction of the previous one. Because the
dataset is the same at every stage of simplification, some critics have questioned
the tests’ independence and the critical values used. However, this view confuses
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two distinct roles of such tests: as mis-specification tests when applied to the
initial model to check congruence; and as diagnostics for detecting inappropriate
reductions, which are not followed if they induce a lack of congruence.

To investigate whether these concerns have merit in practice, Hoover and Perez
construct a computerized search algorithm that mimics the LSE general-to-specific
modeling approach. In the LSE approach, the general-to-specific procedure should ob-
tain a final model that satisfies the criteria discussed in Section 2.6: consistency with
economic theory, innovation errors, data admissibility, constant parameters, weak
exogeneity of conditioning variables, and encompassing of competing specifications.
Because of the experimental design chosen in Hoover and Perez’s Monte Carlo simu-
lations, some of these criteria–such as theory consistency and weak exogeneity–are
irrelevant, allowing Hoover and Perez to focus on other aspects of the general-to-
specific approach. Their algorithm follows several search paths to obtain parsimo-
nious reductions of the general model that satisfy the standard diagnostic statistics.
Because variance dominance is necessary for parameter encompassing, the algorithm
then selects among those terminal models to obtain the one with the smallest equation
standard error.
Hoover and Perez simulate several DGPs that are similar to Lovell’s, and they

then examine how well their algorithm does in selecting the DGP as the procedure’s
final model. The DGPs include 0, 1, or 2 regressors and an error that is independently
and identically distributed normal or first-order autoregressive in such an error, with
observations spanning approximately 35 years of quarterly data. The potential re-
gressors are 18 standard economic variables, the first lag of those variables, and the
first four lags of the dependent variable. The algorithm uses tests at nominal sizes of
1%, 5% and 10%.
Hoover and Perez summarize their results, as follows.

• Their algorithm does remarkably well at simplifying to the DGP or to a model
very much like the DGP. For instance, when using a nominal size of 5%, their
algorithm typically chooses the DGP as its final model, albeit augmented by
about two irrelevant regressors on average. Noting that there are approximately
40 irrelevant regressors in the general model, a 5% nominal size for one-off t-tests
should retain about two irrelevant regressors on average. Overfitting–such as it
is–resembles the classical statistical calculation, not the one derived by Lovell.
However, Lovell did not consider general-to-specific modeling algorithms.

• A smaller nominal size typically reduces the number of falsely significant vari-
ables and retained insignificant variables, with little loss in power, although
power itself does depend upon the particular signal-to-noise ratios for the vari-
ables in the DGP. That said, the observed size-power tradeoffmay justify using
a nominal size for the algorithm’s tests that is smaller than the commonly used
5% value.

• The size and power of t-tests in the final model are not very much affected by
the search procedure.
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• Overfitting may be reduced by splitting the sample into two possibly overlapping
subsamples, applying the algorithm to each subsample separately, and selecting
the final model as the intersection of the two subsample models. Hoover and
Perez (in their Figure 1) find only a small reduction in empirical power for
subsamples that are at least 80% of the full sample.

In summary, Hoover and Perez show that general-to-specific modeling can often
attain a final specification that is the DGP or that nests the DGP and has few
spuriously included regressors. A judicious choice of the nominal size enhances their
algorithm’s ability in model search, whereas variables with low signal-to-noise ratios
pose challenges. Searches along multiple simplification paths–in conjunction with
encompassing comparisons of the resulting terminal models–can help the algorithm
avoid getting stuck in dead ends.

4.8.4 Improving on “Data Mining Reconsidered” by K.D. Hoover and
S.J. Perez by D.F. Hendry and H.-M. Krolzig (1999)

Hendry and Krolzig (1999) develop and analyze the econometrics software package
PcGets, which offers several improvements on Hoover and Perez’s (1999a)* algorithm
for model selection.

• PcGets expands the range of feasible paths searched by including block tests for
sets of potentially insignificant coefficients, rather than just individual coefficient
tests.

• The dimensionality of the general unrestricted model may be reduced by con-
ducting a pre-search simplification, which uses a significance level that is less
stringent than conventional. Pre-search simplification can reduce the number
of subsequent paths that need to be examined and so can help avoid overfitting.

• Tests of parsimonious encompassing help discern between distinct terminal
models arising from multiple search paths. If multiple search paths give rise
to distinct terminal models, PcGets constructs the most parsimonious union
model that nests those terminal models, tests each terminal model against that
union model, and retains only those terminal models that pass this test of
parsimonious encompassing. If more than one terminal model parsimoniously
encompasses that union model, a new union model is constructed, and the sim-
plification algorithm is applied to it. Parsimonious encompassing helps protect
against overfitting, and it can recover relevant variables that were accidentally
dropped during some search paths.

• If repeated simplification searches still obtain multiple parsimoniously encom-
passing terminal models, model choice relies on information criteria.

• If a diagnostic test is significant in the general unrestricted model, the test is
re-assessed at a more stringent significance level rather than being excluded
in subsequent simplifications. That modification can prevent rejection caused
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by overfitting and so can avoid simplifying to a poor specification because of
insufficient diagnostic testing.

• Significance tests over subsamples help bring to light variables that were adven-
titiously significant in the whole sample.

Hendry and Krolzig discuss Hoover and Perez’s experimental design, they consider
differences between the costs of search and the costs of inference for algorithmic model
simplification, and they enumerate key features of Hoover and Perez’s and PcGets’s
algorithms. Hendry and Krolzig compare PcGets with Hoover and Perez’s algorithm
for some of the equations in Hoover and Perez (1999a)*. Pre-search simplification in
particular increases the chances of finding the DGP and reduces the average number
of falsely included variables. For the simulations conducted, a better model often
would not have been chosen, even if the search had begun with the DGP as the
general unrestricted model.
Hendry and Krolzig also examine potential roles of data nonstationarity and data

non-orthogonality. Nonstationarity does not appear to affect the results because most
diagnostic test statistics are unaffected by nonstationarity. However, tests of some
reductions are affected, so Hendry and Krolzig (1999) suggest that these reductions
be based on suitable cointegration tests, and that appropriate transformations be
performed prior to applying PcGets. Regressor non-orthogonality can work adversely
by confusing model selection.
Hendry and Krolzig (1999) finish by modeling U.S. narrow money demand on

Baba, Hendry, and Starr’s (1992) data with PcGets. The selected model is remarkably
similar to the final model in Baba, Hendry, and Starr (1992) and is insensitive to
the use of pre-selection tests and the particular significance level chosen. Hendry
and Krolzig conclude that PcGets is a marked improvement on an already powerful
algorithm developed by Hoover and Perez (1999a)*. The empirical modeler still
plays a central role in modeling, including through the choice of economic theory,
the formulation of the general unrestricted model, and the parameterization of the
general unrestricted model.

4.8.5 Reply to Our Discussants by K.D. Hoover and S.J. Perez (1999b)

Hoover and Perez (1999b) identify and respond to several key issues raised by their
discussants.

• While Hoover and Perez (1999a)* failed to use heteroscedasticity-consistent
standard errors, such standard errors should not affect their results because
the dependent variable has been generated with homoscedastic disturbances.
Hendry and Krolzig (1999)* also discuss this point.

• Also, while Hoover and Perez (1999a)* did not use information criteria in their
algorithm, they could have done so, and Hendry and Krolzig (1999)* do so.

• In designing their algorithm, Hoover and Perez (1999a)* aimed to mimic certain
key features of the LSE approach, not capture it in its entirety.
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• Truth is relevant to econometric modeling for several reasons. In particular,
some notion of the truth is required for assessing the adequacy of a model.
Also, both policy analysis and forecasting require some notion of what the true
structure is like–specifically, about what aspects of structure are constant or
invariant. Conversely, predictive performance alone is insufficient for describing
how Hoover and Perez’s algorithm works. In Hoover and Perez’s simulations,
the DGP is in the model space, but it does not need to be so in empirical
practice. The central question is whether the DGP can be eventually uncovered
by the LSE approach; see also White (1990)*.

4.9 Empirical Applications

The following empirical applications represent several vintages of models across nu-
merous countries and different sectors of the economy. The different vintages high-
light the progressivity of the methodology. The range of sectors examined and the
range of countries–which include Argentina, Turkey, Venezuela, the United King-
dom, and the United States–emphasize the breadth of interest in and applicability
of coherent modeling approaches. While each paper focuses on different aspects of the
general-to-specific modeling approach, some common strands include dynamic speci-
fication, model evaluation and design criteria, parameter constancy and predictive
failure, sequential reductions and multiple-path searches, data mining, exogeneity,
and encompassing.
The first five papers–Trivedi (1970b), Davidson, Hendry, Srba, and Yeo (1978),

Davidson and Hendry (1981), Hendry (1979), and Ahumada (1985) [Volume II: Chap-
ters 25, 26, 27, 28, and 29, respectively]–capture the general-to-specific methodology
at various stages of development, initially focusing on model simplification and then
expanding to include diagnostic testing and encompassing. Trivedi (1970b)* illus-
trates the general-to-specific approach for a particular form of dynamic specification–
the Almon (1965) lag polynomial–with an application to the lag structure relating
orders to deliveries in the U.K. engineering industry. Davidson, Hendry, Srba, and
Yeo (1978)* model the U.K. consumption function, providing a pivotal and sub-
stantive empirical application that emphasizes both general-to-specific modeling and
encompassing. Davidson and Hendry (1981)* compare the final model in Davidson,
Hendry, Srba, and Yeo (1978)* with a similar model based on the rational expec-
tations hypothesis by deriving encompassing implications of both models. Hendry
(1979)* highlights the differences between simple-to-general and general-to-specific
approaches, modeling U.K. narrow money demand. In her modeling of the Argen-
tine balance of trade, Ahumada (1985)* illustrates various features of the evolving
general-to-specific methodology, such as empirical implementation of the theory of
reduction, and encompassing as a tool for assessing alternative models that result
from different path searches.
The next three papers–MacDonald and Taylor (1992), Johansen (1992b), and

Metin (1998) [Volume II: Chapters 30, 31, and 32, respectively]–add cointegration
analysis as a central feature in the general-to-specific methodology, with both cointe-
gration and weak exogeneity forming possible key reductions in modeling. MacDon-
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ald and Taylor (1992)* construct a congruent econometric model for U.S. real money
demand from an ADL, with cointegration determined in a VAR by the Johansen
procedure. Johansen (1992b)* applies his cointegration analysis to U.K. money de-
mand, emphasizing tests of weak exogeneity and the empirical determination of the
order of integration. The latter leads to an I(2) cointegration analysis, which is con-
trasted with the more common I(1) analysis. Metin (1998)* models the determinants
of Turkish inflation. Because no variables are weakly exogenous for her cointegration
vectors, Metin imposes the system-based estimates of the cointegrating coefficients in
her single equation analysis of inflation. The resulting model encompasses an extant
model in Metin (1995) with different economic foundations.
The final paper–Campos and Ericsson (1999) [Volume II: Chapter 33]–examines

and implements the general-to-specific approach with automated model selection pro-
cedures. Campos and Ericsson first examine the concept of data mining and show
that automated model selection procedures such as PcGets can help avoid data min-
ing in its pejorative senses. Campos and Ericsson then illustrate constructive data
mining by empirically modeling Venezuelan consumers’ expenditure, both manually
and with PcGets.

4.9.1 The Relation Between the Order-delivery Lag and the Rate of Ca-
pacity Utilization in the Engineering Industry in the United King-
dom, 1958—1967 by P.K. Trivedi (1970b)

Trivedi (1970b) investigates the lag structure involving orders in the U.K. engineer-
ing industry and the delivery of those orders in domestic and foreign markets over
1958Q1—1967Q2. Trivedi assumes that all orders are eventually delivered, and that
the speed at which orders are met depends upon the degree of capacity utilization.
The econometric models for deliveries are Almon (1965) polynomial distributed lag
models of orders received. Coefficients of a distributed lag are interpreted as the pro-
portions of orders delivered at the corresponding lags. Those coefficients are expected
to be non-negative, to add up to unity, and to depend on capacity utilization.
Trivedi (1970b) is methodologically important for its treatment of distributed lags

in a (albeit informal) general-to-specific framework. To determine the precise nature
of the distributed lags, Trivedi examines overall lag length, the order of the polyno-
mial, end-point constraints, dependence of the lag coefficients on capacity utilization,
and the functional form of the latter. These aspects are examined by extensive se-
quential simplifications that imply multiple search paths. Trivedi evaluates alterna-
tive simplifications by F-tests and t-tests, by comparison of residual variances (i.e.,
variance dominance), and by diagnostic tests.
Empirically, Trivedi finds that only equations in which the lag weights are linear

functions of utilized capacity are sensible. Models of home deliveries fit better than
those for foreign deliveries, mainly due to seamen’s strikes affecting the latter. The
proportion of home orders met in the first year is somewhat larger than the proportion
of foreign orders delivered over the same interval. Trivedi’s models omit lagged depen-
dent variables, although he does note a lack of success with rational distributed lag
models. In a companion paper, Trivedi (1970a) builds autoregressive distributed lag
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models with moving average errors for inventories of the U.K. manufacturing sector;
see also Trivedi (1973, 1975).

4.9.2 Econometric Modelling of the Aggregate Time-series Relationship
Between Consumers’ Expenditure and Income in the United King-
dom by J.E.H. Davidson, D.F. Hendry, F. Srba, and S. Yeo (1978)

Davidson, Hendry, Srba, and Yeo (1978) (often abbreviated DHSY) provide a com-
prehensive and unified treatment of the empirical relationship between consumers’
expenditure and disposable income in the United Kingdom. Their methodological
treatment and resulting empirical model have served as templates for much subse-
quent empirical economic modeling.
DHSYmake substantial contributions in several areas related to general-to-specific

modeling.

• Encompassing. DHSY explicitly adopt an encompassing approach to compare
different models and to explain why different models were obtained by their de-
signers. Specifically, DHSY first standardize three contending models to elim-
inate tangential differences arising from differing data samples, treatments of
seasonality, functional forms, and levels of data aggregation. DHSY then nest
those standardized models in a union model (DHSY’s equation (25)) and test
those models against the union model.

• Dynamic specification. The union model is an autoregressive distributed lag,
and tests of the contending models involve alternative claims about dynamic
specification, leading to a discussion of error correction models and their prop-
erties. DHSY also consider how seasonality and seasonal adjustment may affect
dynamic specification.

• Evaluation criteria. DHSY introduce and explicitly use a battery of test sta-
tistics for evaluating the contending models and their own (new) model. These
statistics include ones for testing parameter constancy, residual autocorrelation,
innovation error (relative to the ADL), validity of instruments, theory consis-
tency (through the role of the error correction term), and common factors.
Graphs of the data help clarify key features of the data that must be captured
by any congruent empirical model.

DHSY’s final empirical model is an error correction model, which reconciles pre-
viously observed low short-run income elasticities with a hypothesized (and testable)
unit long-run income elasticity. DHSY also observe that a nearly constant error cor-
rection termmay lead to the exclusion of the intercept, that effects of multicollinearity
may be dampened by adding variables, and that seasonal adjustment need not im-
ply low-order dynamics. DHSY fail to detect important liquidity effects, which are
investigated in Hendry and von Ungern-Sternberg (1981).
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4.9.3 Interpreting Econometric Evidence: The Behaviour of Consumers’
Expenditure in the UK by J.E.H. Davidson and D.F. Hendry (1981)

Davidson and Hendry (1981) focus on several areas central to general-to-specific mod-
eling: encompassing, dynamic specification, parameter constancy and predictive fail-
ure, model evaluation criteria, exogeneity, and model reduction. Davidson and Hen-
dry’s immediate aim is to reconcile the error correction models developed in Davidson,
Hendry, Srba, and Yeo (1978)* and Hendry and von Ungern-Sternberg (1981) with
claims by Hall (1978) that consumers’ expenditure is a random walk, as implied by
the rational expectations hypothesis. Davidson and Hendry update these error cor-
rection models on a longer data sample and show that these models encompass Hall’s
model. Davidson and Hendry also discuss some qualifications about white noise as
a criterion for data congruency, and they consider implications that result from the
random walk model being a derived process through model reductions.
Both in a Monte Carlo study and empirically with U.K. data, Davidson and

Hendry (1981) show how and why consumers’ expenditure might appear to be a
random walk, even when the data are generated by a conditional error correction
model. In essence, tests of deviations from the random walk hypothesis have low
power to detect the deviations implied by economically sensible values for parameters
in the DGP for an error correction mechanism. That said, Davidson and Hendry
do detect statistically significant improvements from adding additional variables to
the random walk model. Davidson and Hendry also discuss the potential effects of
endogeneity, measurement errors, time aggregation, and identities. While Davidson
and Hendry note that mis-specification and the lack of weak exogeneity both imply
predictive failure when data correlations change, the associated implications are not
fleshed out until Hendry (1988)* and Engle and Hendry (1993).

4.9.4 Predictive Failure and Econometric Modelling in Macroeconomics:
The Transactions Demand for Money by D.F. Hendry (1979)

Hendry (1979) designs an error correction model of narrow money demand in the
United Kingdom that encompasses extant models in levels and in differences, and
that remains constant, in spite of predictive failure by other models.
Hendry begins by empirically illustrating the simple-to-general approach and high-

lighting its difficulties. In particular, he notes how “every test is conditional on
arbitrary assumptions which are to be tested later , and if these are rejected, all
earlier inferences are invalidated, whether ‘reject’ or ‘not reject’ decisions” (p. 226).
Through this illustration, Hendry links such inappropriate modeling procedures to
(likely) model mis-specifications such as parameter nonconstancy.
Hendry then models U.K. narrow money demand following a general-to-specific

approach, sequentially simplifying from an autoregressive distributed lag to a parsi-
monious error correction model. That error correction model is empirically constant,
and it encompasses extant equations in levels and in differences. Hendry notes sev-
eral potential shortcomings of the general-to-specific approach: a general model that
is not general enough, inadequate information in the sample, multiple simplification
paths with different terminal models, and the costs of search and of inference.
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4.9.5 An Encompassing Test of Two Models of the Balance of Trade for
Argentina by H.A. Ahumada (1985)

Following a general-to-specific modeling approach, Ahumada (1985) formulates two
empirical models of the Argentine balance of trade–one based on the excess supply
of tradable goods and the other on the monetary model for the balance of trade–
and she compares the two models using encompassing tests. The first model appears
more satisfactory, both statistically and economically. Ahumada (1985) exemplifies
general-to-specific modeling in practice. Ahumada (1985) also highlights how an
empirical model can be designed to satisfy a range of criteria on a given dataset, even
while additional data may be informative against that model. This result reiterates
the value of encompassing tests.
Ahumada starts with a fourth-order ADL model for the trade surplus in terms

of income, agricultural output, the inverse of the real wage, and deviations from
purchasing power parity. She simplifies this ADL to a parsimonious ECM, setting
small and statistically insignificant coefficients to zero, and reparameterizing the ADL
as an ECM to achieve near orthogonality of the regressors. The model’s residuals
are innovations, its parameters are empirically constant, weak exogeneity appears
satisfied, and the model is consistent with an economic theory for the excess supply
of tradable goods.
Ahumada also formulates a fourth-order ADL model for the trade surplus in terms

of income, the money stock, and an interest rate, and she simplifies that ADL to an
ECM. The resulting ECM also appears congruent with the data, and it is generally
consistent with the monetary model for the balance of trade.
Ahumada uses a battery of encompassing tests to compare and evaluate the ECMs

based on the two different economic theories for the balance of trade. Overall, the
first ECM encompasses the second, but not conversely.

4.9.6 A Stable US Money Demand Function, 1874—1975 by R. MacDon-
ald and M.P. Taylor (1992)

Following a general-to-specific modeling approach, MacDonald and Taylor (1992)
construct a congruent econometric model for U.S. money demand from the annual
data in Friedman and Schwartz (1982). MacDonald and Taylor establish that a
second-order VAR in nominal money, prices, real income, and a long-term interest
rate satisfies various diagnostic statistics and, using the Johansen (1988) procedure,
they show that those variables are cointegrated. Long-run unit price homogeneity is
a statistically acceptable restriction, but jointly long-run unit price homogeneity and
long-run unit income homogeneity are not.
MacDonald and Taylor then develop a parsimonious congruent single-equation

error correction model that has long-run properties matching those obtained by the
Johansen procedure. MacDonald and Taylor start from an ADL in the VAR’s vari-
ables, with short-term interest rates added as well, and they then sequentially sim-
plify that ADL. MacDonald and Taylor demonstrate the super exogeneity of prices in
their money demand equation by showing that that equation is empirically constant,
whereas its inversion with prices as the dependent variable is not.
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4.9.7 Testing Weak Exogeneity and the Order of Cointegration in UK
Money Demand Data by S. Johansen (1992b)

Johansen (1992b) summarizes his 1988 procedure for testing cointegration of I(1) vari-
ables, his generalization of that procedure to include I(2) variables, and his 1992 test
of weak exogeneity for cointegrating vectors; see Johansen (1988), Johansen (1995,
Ch. 9), and Johansen (1992a). Each of these three contributions analyzes a reduction
or simplification in the data’s distribution, and all three appear highly important in
general empirical practice.
Johansen (1992b) also illustrates how to implement each contribution by consid-

ering Hendry and Ericsson’s (1991) quarterly data for narrow U.K. money demand.
Empirically, nominal money and prices appear to be I(2), and they cointegrate as
real money to become I(1). Real money in turn cointegrates with real total final
expenditure (the scale variable), interest rates, and inflation to generate an I(0) lin-
ear combination. Prices, income, and interest rates appear weakly exogenous for the
single I(1) cointegrating vector in the system, whereas money is clearly not exogenous.
In a closely related paper, Urbain (1992) derives conditions for weak exogeneity for

short- and long-run parameters in a single equation of a cointegrated VAR. Urbain
also clarifies the role of orthogonality tests in testing for weak exogeneity, and he
illustrates the procedures for testing weak exogeneity with two empirical applications.

4.9.8 TheRelationshipBetween Inflation and theBudget Deficit inTurkey
by K. Metin (1998)

Metin (1998) models the determinants of Turkish inflation, following a general-to-
specific approach. The resulting model encompasses an extant model in Metin (1995)
with different economic foundations.
Metin (1998) bases her empirical analysis on an economic theory for a closed econ-

omy that relates inflation to the budget deficit and real income growth. Metin’s coin-
tegration analysis of real income growth, inflation, the budget deficit, and base money
finds three cointegration vectors, interpretable as stationary real income growth, a re-
lationship between inflation and the budget deficit (augmented by base money), and
a relationship between inflation and the budget deficit (augmented by a trend). No
variables are weakly exogenous for the cointegration vectors, so Metin imposes the
system-based estimates of the cointegrating coefficients in her single equation analysis
of inflation.
Metin simplifies her initial ADL to obtain a parsimonious and congruent error

correction model of inflation. In the short run, changes in inflation depend on their
own past and on growth rates of the budget deficit, money base, and real income.
In the long run, inflation depends on the deficit and the money base through the
error correction terms for the two (non-trivial) cointegrating relationships. This error
correction model also encompasses Metin’s (1995) previous specification in which
inflation is driven by disequilibrium in money demand and deviations from purchasing
power parity and uncovered interest-rate parity.
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4.9.9 Constructive Data Mining: Modeling Consumers’ Expenditure in
Venezuela by J. Campos and N.R. Ericsson (1999)

Campos and Ericsson (1999) systematically examine the concept of data mining in
econometric modeling. Their discussion provides support for the automated model
selection procedures developed by Hoover and Perez (1999a)* and improved upon by
Hendry and Krolzig (1999)*. Campos and Ericsson illustrate these model selection
procedures by empirically modeling Venezuelan consumers’ expenditure.
Campos and Ericsson (1999) first distinguish between four pejorative senses of

data mining, which are repeated testing, data interdependence, corroboration, and
over-parameterization. Data mining, in each of its pejorative senses, is empirically
detectable. Campos and Ericsson show how Hoover and Perez’s (1999a)* modified
general-to-specific modeling strategy can counter each of these senses of data mining
in practice.
Campos and Ericsson then use PcGets to model Venezuelan consumers’ expendi-

ture over 1970—1985. In the selected model, income, liquidity, and inflation determine
expenditure in an economically sensible fashion; and that model is robust and has
constant, well-determined parameter estimates. Even with relatively few observa-
tions, high information content in the data helps counter claims of pejorative data
mining.
Campos and Ericsson identify two limitations to algorithmically based data min-

ing: the initial general model, and data transformations. Campos and Ericsson
demonstrate how these limitations are opportunities for the researcher qua econo-
mist to contribute value added to the empirical analysis.

5 Conclusions

This paper focuses on general-to-specific modeling–a central method for selecting use-
ful empirical models. Using this method, the modeler simplifies an initially general
model that adequately characterizes the empirical evidence within his or her theo-
retical framework. The papers reprinted in Campos, Ericsson, and Hendry (2005)
articulate many reasons for adopting a general-to-specific approach. In particular,
general-to-specific modeling implements the theory of reduction in an empirical con-
text; and it has excellent model selection abilities, as documented in empirical practice
and in Monte Carlo studies of automated general-to-specific modeling algorithms.
Studies of those algorithms have also clarified and helped resolve key issues in

general-to-specific modeling, including path simplification and path dependence, the
interpretation of mis-specification tests, the roles of recursive estimation, the value of
model selection procedures, and the distinction between the almost inevitable costs
of inference and the relatively low costs of search. This paper details how the subject
has advanced to its present stage of success and should convey the promise of these
developments for future empirical research.
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Appendix. A Selected Bibliography

This appendix lists the fifty-seven publications that are reprinted in Campos, Erics-
son, and Hendry (2005) and summarized in Section 4 above. The titles of the reprints
are listed in the order in which they appear in Campos, Ericsson, and Hendry (2005)
and Section 4, and are grouped into the nine parts that span the two volumes of
Campos, Ericsson, and Hendry (2005).
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