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Abstract

This paper considers the estimation of average autoregressive roots-near-unity in panels where

the time-series have heterogenous local-to-unity parameters. The pooled estimator is shown to

have a potentially severe bias and a robust median based procedure is proposed instead. This

median estimator has a small asymptotic bias that can be eliminated almost completely by a bias

correction procedure. The asymptotic normality of the estimator is proved. The methods proposed

in the paper provide a useful way of summarizing the persistence in a panel data set, as well as a

complement to more traditional panel unit root tests.
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1 Introduction

Few concepts have had such an impact on recent econometric practice as unit roots. The modern

asymptotic theory developed for integrated processes clearly shows that a failure to account for the

order of integration of the data can lead to flawed inference. However, many economic time-series

exhibit a nearly persistent behavior with the largest auto-regressive root close to one, which often

makes it difficult to distinguish between stationary and non-stationary series in practice. This has

led to the increasing popularity of so called nearly integrated processes as a modelling device; rather

than maintaining a strict dichotomy between integrated and non-integrated time-series, the largest

auto-regressive root is treated as being local-to-unity which allows for a smoother transition between

the stationary and non-stationary worlds.

Originally, nearly intergrated processes were mainly used for theoretical excercises, such as evalu-

ating the local power properties of unit-root tests (e.g. Phillips and Perron, 1988, and Elliot et al.,

1996). Lately, however, they have also become increasingly popular in practical inference (e.g. Ca-

vanagh et al., 1995, and Campbell and Yogo, 2003). Although the generalization from a standard

unit-root environment to a near integrated environment provides more flexibility, it suffers from the

drawback that the key characterstic parameter of such a model, the local-to-unity parameter, cannot

be estimated in a time-series setting.1 However, as shown in a series of papers by Moon and Phillips

(1999, 2000, and 2004), the local-to-unity parameter can be estimated using a panel of observations,

when all of the time-series have identical local-to-unity parameters. In practice, the assumption that

all of the time-series in the panel have an identical degree of persistence is obviously very restrictive.

In this paper I, therefore analyze the estimation of local-to-unity roots in panels where the degree of

persistence varies between the time-series.

The purpose of this paper is twofold. First, I consider the properties of the pooled estimator of local-

to-unity parameters proposed by Moon and Phillips (2000) in the case where the individual time-series

possess differing degrees of persistence. Second, I propose a new estimator for the average local-to-

unity root in a panel, based on applying the median operator to extract the crucial cross-sectional

information in the panel.

When there is no longer a common local-to-unity parameter in a panel, a desirable property of a

panel based estimator would be that it consistently estimates the mean, or average, parameter value in

1Phillips et al. (1998) do provide a method of estimating local-to-unity roots from a single time-series using a block
model. However, their specification of the local-to-unity model is somewhat different from the one typically adopted in
the literature.
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the panel. As is shown, however, the pooled estimator of Moon and Phillips (2000) can be a severely

biased estimator of the average parameter, even for relatively modest deviations from the case of

identical local-to-unity roots.

The basic idea of the pooled estimator is that a consistent estimator can be obtained by taking the

inconsistent OLS time-series estimator of the local-to-unity parameter and summing up over the cross-

section in both the numerator and the denominator. Since this method fails when the local-to-unity

parameters are no longer identical, I propose a more robust approach by applying the sample median

estimator, rather than the sample mean, in both the numerator and denominator of the time-series

estimator.

The bias and consistency properties of the resulting estimator cannot be analytically evaluated, but

results based on numerical integration are straightforward to obtain. After a simple bias correction,

the estimator is shown to be consistent in the case with identical local-to-unity parameters in the panel.

More importantly, under the additional assumption that the local-to-unity parameters are normally

distributed, it is shown that the estimator converges to a quantity that is very close to the average

local-to-unity parameter, regardless of the variance in the distribution of the local-to-unity parameters.

That is, in the case of identical near unit-roots in the panel, the estimator is consistent and it is very

close to consistent in the case of non-identical roots. The bias in the non-identical case is small, and

likely to be negligible compared to the variance of the estimates in any finite sample. The asymptotic

normality of the estimator is also shown, as well as the estimation of standard errors and confidence

intervals. Monte Carlo simulations support these results and also indicate that the estimator works

well in cases where the local-to-unity parameters are not normally distributed.

The results developed in this paper are useful along several dimensions. First, they highlight the

potential hazards of applying estimators of near-unit roots designed for the case of identical local-to-

unity roots throughout the panel, when there is in fact a possibility that the roots are non-identical.

Second, it is shown how to estimate the average near unit-root in a panel data set. This can be useful

both as a characterization of the data in itself, as well as a starting point for further empirical analysis.

It also provides a complement to panel unit-root tests, which have recently become very popular.2 The

methods in this paper provide a simple diagnostic addition to these tests by estimating the average

auto-regressive root in the panel. Since confidence intervals for this average root can also be computed,

further conclusions can also be obtained. For instance, a confidence interval that is strictly below zero

2See for instance Quah (1994), Maddala and Wu (1999), Choi (2001), Levin et al. (2002), Moon and Perron (2003),
and Moon et al. (2003).
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reveals that the average root is significantly less than zero; hence, some of the actual roots in the panel

must also be negative.

The rest of the paper is organized as follows. Section 2 details the setup and main assumptions

and Section 3 derives the bias properties of the pooled estimator. The main results of the paper are

developed in Section 4, where the asymptotic properties of the median based estimator are derived, and

Section 5 concludes. All proofs and details of the numerical calculations are found in the Appendix.

A word on notation, ⇒ denotes weak convergence of the associated probability measures and →p

denotes convergence in probability. I write (n, T →∞) when n and T go to infinity simultaneously

and (T, n→∞)seq when T goes to infinity first while keeping n fixed, and then letting n go to infinity.

2 Model and assumptions

Let the data generating process for each individual time series, zi,t, satisfy

zi,t = βi,0 + yi,t, i = 1, ..., n; t = 1, ..., T, (1)

yi,t = aiyi,t−1 + �i,t, ai = 1 +
ci
T
= 1 +

c+ ηi
T

,

where yi,t is a near integrated process with local-to-unity parameter ci = c+ ηi. The focus of interest

in this paper is the estimation of the average, or mean, local-to-unity parameter c.

The following assumptions on the error processes and the local to unity parameters, ci, will be

useful.

Assumption 1 �i,t are linear processes satisfying

(a) �i,t = Di (L)ui,t =
P∞

j=0Di,jui,t−j ,
P∞

j=0 j
b |Di,j | <∞ for some b ≥ 1, |Di (1)| 6= 0.

(b) ui,t are iid across i and over t with E (ui,t) = 0, E
¡
u2i,t
¢
= 1, and finite fourth order moments.

Let Di = Di (1), Ωi = D2
i , and Λi =

P∞
j=1Di,0Di,j , so that Ωi and Λi specify the long-run variance

and the one-sided long-run covariance matrix, respectively, of �i,t.

Assumption 2 The random variables ci, i = 1, ..., n are normally distributed with mean c and vari-

ance σ2c.

Under Assumption 1, it is well known that as T →∞, yi,[Tr]
±√

T ⇒ DiJi,ci (r) , where Ji,ci (r) =R r
0
e(r−s)cidWi (s) and Wi (r) is a standard Brownian motion (e.g. Phillips, 1987).
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3 The bias properties of the pooled estimator

I first show that the pooled estimator of c does not work well when the ci are non-identical for all i. To

keep the discussion as transparent as possible, consider the simple case where �i,t are iid
¡
0, σ2�

¢
across

i and t; the arguments presented could easily be modified to account for the general error processes in

Assumption 1. Also, to keep the discussion short, only sequential limit arguments are presented.

Noting that ai = 1 + ci
T = 1 +

c+ηi
T = a+ ηi

T , I consider estimators of the form ĉ = T (â− 1). The

pooled estimator of a is given by,

â =

Pn
i=1

PT
t=1 zi,t−1zi,tPn

i=1

PT
t=1 z

2
i,t−1

, (2)

and the corresponding pooled estimator of c is ĉ = T (â− 1). By equation (2),

T (â− a) =

"
1

n

nX
i=1

1

T 2

TX
t=1

¡
βi,0 + yi,t−1

¢2#−1

×
"
1

n

nX
i=1

1

T

TX
t=1

h¡
βi,0 + yi,t−1

¢ ³
(1− a)βi,0 + �i,t +

ηi
T
yi,t−1

´i#

⇒
"
1

n

nX
i=1

Z 1

0

Ji,ci (r)
2
dr

#−1
"
1

n

nX
i=1

Z 1

0

Ji,ci (r) dWi (r) +
1

n

nX
i=1

ηi

Z 1

0

Ji,ci (r)
2 dr

#
, (3)

as T → ∞. As shown below, both E
hR 1
0
Ji,ci (r)

2 dr
i
and E

h
ηi
R 1
0
Ji,ci (r)

2 dr
i
are finite when the

cis are normally distributed, and clearly E
hR 1
0
Ji,ci (r) dWi (r)

i
= 0. Thus, by the weak law of large

numbers (WLLN), as n→∞,

1

n

nX
i=1

Z 1

0

Ji,ci (r)
2 dr →p E

∙Z 1

0

Ji,ci (r)
2 dr

¸
, (4)

1

n

nX
i=1

Z 1

0

Ji,ci (r) dWi (r)→p 0, (5)

and
1

n

nX
i=1

ηi

Z 1

0

Ji,ci (r)
2
dr →p E

∙
ηi

Z 1

0

Ji,ci (r)
2
dr

¸
. (6)
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Combining these results, as (T, n→∞)seq

T (â− a)→p E

∙Z 1

0

Ji,ci (r)
2
dr

¸−1
E

∙
ηi

Z 1

0

Ji,ci (r)
2
dr

¸
. (7)

Under the assumption of normally distributed ηis, the two expectations in (7) can be calculated

more explicitly. Using the properties of conditional expectations and the moment generating function

(mgf) of the normal distribution, Mci (t) = E [etci ] = ect+σ
2
ct
2/2,

E

∙Z 1

0

Ji,ci (r)
2 dr

¸
=

Z 1

0

Z r

0

E
h
e2(r−s)ci

i
dsdr

=
1

8σ3c

h
2σc

³
1− e2(c+σ

2
c)
´

−
√
2πe
− c2

2σ2c

¡
c+ 2σ2c

¢µ1
i
Φ

µ
i

c√
2σc

¶
− 1

i
Φ

µ
i
c+ 2σ2√
2σ

¶¶¸
≡ Ψ1 (c, σc) . (8)

where Φ (x) = 2√
π

R x
0
e−t

2

dt denotes the error function and i =
√
−1. Further,

E

∙
ηi

Z 1

0

Ji,ci (r)
2
dr

¸
=

Z 1

0

Z r

0

³
E
h
cie

2(r−s)ci
i
− cE

h
e2(r−s)ci

i´
dsdr

=
1

8σ3c

h
−2σc

³
c− ce2(c+σ

2
c) + 2σ2c

´
+
√
2πe
− c2

2σ2c

¡
c2 − σ2c + 2cσ

2
c

¢µ1
i
Φ

µ
i

c√
2σ

¶
− 1

i
Φ

µ
i
c+ 2σ2√
2σ

¶¶¸
≡ Ψ2 (c, σc) . (9)

Thus, in sequential limits, as (T, n→∞)seq ,

ĉ− c = T (â− a)→p Ψ
−1
1 (c, σc)Ψ2 (c, σc) , (10)

and the pooled estimator, ĉ, provides inconsistent estimates of c. Define the function f (c, σc) as the

limit of ĉ,

f (c, σc) ≡ c+Ψ−11 (c, σc)Ψ2 (c, σc) . (11)
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Panel A in Table 1 gives the numerical values of the function f (c, σc) for various combinations

of c and σc. It is readily apparent that the asymptotic bias of the pooled estimator for c is already

large for fairly small values of σc and grows very large as σc increases. Panel B in Table 1 shows

the mean values of ĉ from a Monte Carlo simulation with n = 100 and T = 1, 000 using 10, 000

repetitions. The distribution of the cis is normal and the innovation processes, �i,t, are also iid normal

with σ2� = 1. Figure 1 shows the density estimates of ĉ, from the same simulation exercise, for the

cases where c = −10, 0, 5 and σc = 0, 5, 10. The graphs clearly illustrate that the pooled estimator

performs excellently for σc = 0, but that its density starts drifting to the right as σc increases. This

is by any measure a large panel, and the cis are drawn from a normal distribution, as was assumed

when deriving the asymptotic limit function f (c, σc).

By comparing the values in Panel A and Panel B in Table 1, it is obvious that the asymptotic limit

of ĉ, given by f (c, σc), provides a very poor approximation in finite samples as soon as the variance of

the local-to-unity parameter starts to increase; the size of the sample in the Monte Carlo simulation

was chosen to illustrate that this remains true also in very large samples. Two conclusions are thus

immediate. First, the asymptotic limit of ĉ given by f (c, σc) cannot be used as a basis for a bias

correcting procedure of ĉ since it does not provide a good approximation in finite samples. Of course,

even if f (c, σc) did provide a good approximation, any bias correction scheme based on it would be

complicated by the fact that σc is unknown. Second, the pooled estimator works very poorly as soon

as there is any variance, or heterogeneity, in the cis. Thus, applying the pooled estimator for c to

a panel, without any strong prior evidence or theory that the cis are nearly identical, could lead to

seriously biased inference.

How does one explain the poor finite sample performance of the asymptotic bias function? Observe

that the actual finite sample bias is typically much smaller than the asymptotic bias, as σc grows large.

However, the gap between the asymptotic results and the finite sample results is not merely a function

of the standard deviation, σc. For smaller values of c, a larger standard deviation is needed before the

asymptotic value deviates substantially from the finite sample result. In fact, for large negative values

of c, there is a very sharp increase in the asymptotic bias after σc exceeds some value. For example,

for c = −50, the asymptotic limit for σc = 7 is equal to −48.8, and for σc = 8 the limit is 76.3. Before

this breakpoint, the finite sample results are similar to the asymptotic ones, but afterwards, they are

vastly different. As c becomes less negative, this effect becomes less distinct, and the growth of both

the asymptotic bias and its deviation from the finite sample bias become smoother.
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Given these observations, a tentative explanation for the large difference between the asymptotic

and finite sample results is the following. When ci > 0, the corresponding process is non-stationary

and explosive. For positive ci, the quantities ηi
R 1
0
Ji,ci (r)

2
dr and

R 1
0
Ji,ci (r)

2
dr will therefore grow

very quickly in ci. Thus, their mean values will be highly influenced by the tail behavior, or maximum

value, of ci. This causes no problems when calculating their analytical means, of course, but leads

to problems when one tries to simulate them, which is essentially what is done in the Monte Carlo

simulation. If the mean value depends on the tail behavior, it might be the case that extremely large

sample sizes are needed before the simulated means approach the analytical ones.3 Since the functions

ηi
R 1
0
Ji,ci (r)

2
dr and

R 1
0
Ji,ci (r)

2
dr do not grow fast in ci for ci non-positive, the above-mentioned

problems only manifest themselves when there is a large enough probability for ci to be positive that

it will significantly affect the mean. Otherwise, the tail behavior will have less of an impact on the

mean. This would explain why a larger variance is needed for small ci before the gap between the

finite sample value and the asymptotic value grows large. This also provides some intuition for the

extremely large asymptotic biases from which the pooled estimator suffers.

The above reasoning suggests that the asymptotic bias approximation might perform better in

cases where the support of the distribution of the local-to-unity parameters is bounded from above.

To analyze this possibility, consider the case where the cis are uniformly distributed on an interval

(cl, cu). In this case, c = E [ci] = (cu + cl) /2 and the asymptotic bias function of the pooled estimator

can be written as

fu (cl, cu) =
cu + cl
2

+Ψu1 (cl, cu)
−1Ψu2 (cl, cu) , (12)

where Ψu1 (cl, cu) ≡ E
h
ηi
R 1
0
Ji,ci (r)

2
dr
i
and Ψu2 (cl, cu) ≡ E

h
ηi
R 1
0
Ji,ci (r)

2
dr
i
.

The numerical values for the function fu (cl, cu), obtained by using the mgf of the uniform distrib-

ution, are given in Panel A of Table 2. Panel B presents the corresponding mean pooled estimates of

c from a Monte Carlo simulation identical to the one described above, except that the local-to-unity

parameters are now uniformly distributed. If the asymptotic limit function fu (cl, cu) provides a good

approximation in finite samples, the corresponding values in Panel A and Panel B should be close.

They are indeed much closer than in the normal case, and the asymptotic results do provide a good

approximation to the finite sample values, lending some credibility to the explanation offered above.

However, though the asymptotic results correspond better to the finite sample values in the uniform

3Steele (2001) gives an illustrative example of the problems of simulating tail probabilities. He argues that if one
attempts to simulate the value of E [1 (x ≥ 30)], where x is standard normal, by naive methods, the number of simulations
needs to be of an order greater than 10100.
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case, any inference method relying on these results would face the problem that the limit function

fu (cl, cu) is not monotone in both cl and cu for all values of cl and cu; the limit of ĉ for cu = 10 is

constant for all values of cl that are considered. Though this does appear to be a problem for large,

positive cu, it may not be relevant in practical applications, where cu is likely to be less than or equal

to zero.

4 A median based estimator

4.1 Bias properties

Given the poor performance of the pooled estimator in the previous section, an alternative estimator

is proposed in this section. Rather than summing up over the cross-section, consider applying the

sample median instead. The intuition behind this approach is simple. The median is generally a more

robust estimator than the mean and can perform better in cases where the mean performs poorly.

Let Assumption 1 hold, and let Λ̂i and Ω̂i be consistent estimators, as T → ∞, of Λi and Ωi,

respectively (see Moon and Phillips, 2000, for details). Begin with the inconsistent estimator of ci,

c̃i = T (ãi − 1) =
1
Ω̂i

h
1
T

³PT
t=1 zi,t−1zi,t − T Λ̂i

´
− 1

T

PT
t=1 z

2
i,t−1

i
1
Ω̂i

1
T 2

PT
t=1 z

2
i,t−1

≡ m1,i,T

m2,i,T
, (13)

where T Λ̂i is the serial correlation bias correction term andm1,i,T andm2,i,T are defined in the obvious

manner. Define the median based estimator č as follows,

č =
med (m1,i,T )

med (m2,i,T )
, (14)

where med (·) denotes the sample median. As T →∞, for fixed i,

m1,i,T ⇒ ci

Z 1

0

Ji,ci (r)
2 dr +

Z 1

0

Ji,ci (r) dWi (r) = m1,i, (15)

and

m2,i,T ⇒
Z 1

0

Ji,ci (r)
2
dr = m2,i. (16)

The division by Ω̂i, in both the numerator and denominator in equation (13) enables the derivation

of standardized results that are independent of the Ωis; it is not necessary when the Ωis are identical
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for all i.

Define θ̂k, k = 1, 2, as

θ̂k = arg min
θk∈Θk

Hk,n,T (θk) +Op

µ
1

n

¶
= arg min

θk∈Θk

1

n

nX
i=1

|mk,i,T − θk|+Op

µ
1

n

¶
, (17)

and thus,

č = θ̂1

.
θ̂2. (18)

Let θ01 and θ02 denote the medians of m1,i and m2,i, so that

1

2
= Pr

¡
m1,i ≤ θ01

¢
and

1

2
= Pr

¡
m2,i ≤ θ02

¢
. (19)

Assumption 3 θ01, θ
0
2 ∈ Θ,and Θ is a compact subset of R.

Theorem 1 Under Assumptions 1 and 3, as (n, T →∞),

θ̂1 →p θ
0
1, θ̂2 →p θ

0
2, and č = θ̂1/θ̂2 →p θ

0
1/θ

0
2. (20)

So far, it has not been necessary to invoke Assumption 2; the above results hold for general

distributions of the cis. However, in order to calculate θ
0
1 and θ02, additional structure needs to be

added to the problem. Analytical expressions for the medians of m1,i and m2,i are most likely not

attainable, except for very special cases, but numerical results, given a distributional assumption on

the cis, can be obtained. Therefore, I now make use of Assumption 2, and calculate numerical values

for θ01 and θ02, for different combinations of c and σc. The numerical methods used are described in

the Appendix.

Panel A in Table 3 presents the numerical values of θ01
±
θ02, under Assumption 2, for various

combinations of c and σc. If č were a consistent estimator of c, regardless of σc, all these values should

equal their corresponding value for c. As is seen, this is not quite the case, but č still turns out to

have several desirable properties. First, for all combinations of c and σc recorded in Panel A of Table

3, which arguably covers most empirically interesting cases, the bias is seen to be small and below

1.3 in absolute value. Indeed, for positive values of c, the bias is almost zero. Second, and just as

importantly, for a fixed c, the bias varies only slightly with the variance parameter σc. The maximum

difference observed, between σc = 0 and σc = 10, is no larger than 0.3 in absolute value, and is likely

to be insignificant next to the variance of the estimates in any finite sample. This suggests that the
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same bias correction scheme can be used for a specific c, regardless of the value of σc. This is extremely

convenient, since no estimate of σc is then needed. Also, the bias correction is most naturally based

on the case of σc = 0, unless some specific prior information is available, for which the calculation of

the bias is greatly simplified as compared to the case σc > 0. Finally, for σc = 0, the ratio θ01
±
θ02 is a

monotone function of c, making bias correction feasible.

Given the experience with the pooled estimator, one would naturally wish to evaluate the cor-

respondence between the asymptotic results presented in Panel A in Table 3 and the finite sample

properties of the estimator. Panel B in Table 3 shows the results from a Monte Carlo study with a

relatively large panel. The setup is the same as that used in the pooled case. Each simulated panel

consists of n = 100 time series, with T = 1, 000 observations in each. The innovation processes are

normal iid (0, 1) and the cis are normally distributed. 10, 000 repetitions were performed and the mean

values of the estimates are reported in Panel B of Table 3, for each combination of c and σc. The

estimates have not been bias corrected in any way, and the serial correlation correction term of the

estimator is not included. Since the error terms all have the same variance, the division by Ω̂i in the

numerator and denominator is not performed either.

If the asymptotic results are valid finite sample approximations, the values in Panel A and Panel

B of Table 3 should be close for corresponding values of c and σc. This also turns out to be the case,

and the median estimator does appear to be robust with regard to the variance of the local-to-unity

parameter.

Since the asymptotic bias seems like a reasonable approximation of the finite sample bias, a simple

bias-correction scheme, based on the asymptotic results, can be implemented. Denote g (c) = θ01
±
θ02

for σc = 0. Table 4 tabulates the values of g (c) for c ∈ [−50, 10]. As is seen, g (c) is strictly increasing

in c. A bias corrected version of č, which we will denote č+, is now obtained by setting č+ = g−1 (č).

The estimator č+ is now a nearly consistent estimator of c, in the general case of σc > 0, and exactly

consistent for the special case of σc = 0. The bias correction scheme is particularly simple for the cases

of θ01
±
θ02 ≤ −8.78 and for θ01

±
θ02 ≥ 4.90. According to the results of Table 4, θ01

±
θ02 = c − 1.28 for

θ01
±
θ02 ≤ −8.78 and θ01

±
θ02 = c for θ01

±
θ02 ≥ 4.90.

Performing an identical Monte Carlo simulation as the one described above, the bias corrected

estimates č+ are calculated and the estimated densities of these estimates are plotted in Figure 2. The

densities of the estimates are centered very close to the true value of c, even for large values of σc.

Panels encountered in empirical practice are seldom as large as the ones used in the Monte Carlo
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simulation above. In Table 5 and Figure 3, I show the results from a Monte Carlo simulation with

n = 20 and T = 100. The local-to-unity parameters are once again drawn from normal distributions,

and the innovation processes are also iid normal, with unit variance. The mean values of the estimates

presented in Table 5 generally look good. Considering the estimated densities, shown in Figure 3, the

dispersion of the estimates for large values of σc is, of course, fairly large, given the small sample size.

But, for reasonable values, like σc = 5 and c = −10, the estimator still appears to perform acceptably,

given the sample size.

Simulation results not reported in this paper also illustrate that the estimator č+ works well for

estimating average local-to-unity parameters when the distribution of the cis is not normal. In the two

cases where the cis were drawn from either uniform distributions or Cauchy distributions, the estimator

č+ was shown to deliver nearly unbiased estimates in finite samples. These results are available from

the author upon request.

4.2 Asymptotic normality and standard error estimation

Having established convergence of č to θ01
±
θ02 as (n, T →∞), I now derive the asymptotic distribution

of the estimator. Since the bias corrected estimator č+ is merely a shifted version of č, it will have

the same asymptotic variance, but its distribution will be centered on g−1
¡
θ01
±
θ02
¢
, rather than on

θ01
±
θ02.

4

Theorem 2 Under Assumptions 1-3, as (T, n→∞)seq,

√
n
¡
č− θ01

±
θ02
¢

⇒ N

Ã
0,

1

4
¡
θ01
¢2
f1
¡
θ01
¢2 +

¡
θ01
¢2

4
¡
θ02
¢4
f2
¡
θ02
¢2 − v12

¡
θ01, θ

0
2

¢
2
¡
θ02
¢2
f1
¡
θ01
¢
f2
¡
θ02
¢
!
. (21)

where fk (θk) = d
dθk

Fk (θk), Fk (·) is the cumulative distribution function for mk,i for k = 1, 2, and

v12 (θ1, θ2) = E [sign (m1,i − θ1) sign (m2,i − θ2)] . (22)

In order to perform inference on č and č+, an estimate of the limit variance, given in equation

(21), is needed. If one is willing to work with a specific parametric distribution for the cis, such as

4The asymptotic normality of the estimator is only shown for sequential limits. Subject to some additional rate
restrictions on n and T the result also likely holds in joint limits as (n, T →∞) . However, due to the non-linear nature
of the median operator, the proof for joint limits becomes very technical and is not crucial to the relatively applied
discussion of this paper.
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the normal distribution, then the densities f1 (·) and f2 (·) can be calculated numerically for given θ1

and θ2, and estimates of f1
¡
θ01
¢
and f2

¡
θ02
¢
are given by numerical calculation of f1

³
θ̂1

´
and f2

³
θ̂2

´
.

Similarly, the expectation v12
¡
θ01, θ

0
2

¢
could be numerically calculated. These numerical calculations

are straightforward extensions of the methods used for finding the medians of m1 and m2, and will

not be detailed here.

However, by using non-parametric methods, estimates of the desired quantities can be obtained

without making any distributional assumptions. As argued above,

Fk,T (θk) = Pr (mk,i,T ≤ θk)→ Pr (mk,i ≤ θk) = Fk (θk) , (23)

as T → ∞, for k = 1, 2 and i = 1, ..., n. Since Fk (·) is continuously differentiable with a continuous

derivative fk (·), it follows that

fk,T (θk) =
d

dθk
Fk,T (θk)→

d

dθk
Fk (θk) = fk (θk) (24)

as T →∞. A consistent estimator for fk (θk) is given by the kernel density estimator,

f̂k (θk) =
1

nh

nX
i=1

K

µ
mk,i,T − θk

h

¶
, (25)

where K (·) is a kernel function and h is the bandwidth parameter. Consistent estimates of f1
¡
θ01
¢

and f2
¡
θ02
¢
are now given by f̂1

³
θ̂1

´
and f̂2

³
θ̂2

´
. Since the mk,i,T s are iid, standard results for

consistency of f̂k (θk) apply (e.g. Pagan and Ullah, 1999).

Finally, a consistent estimator of v12 (θ1, θ2) is given by

v̂12 (θ1, θ2) =
1

n

nX
i=1

sign (m1,i,T − θ1) sign (m2,i,T − θ2) , (26)

and a consistent estimate of v12
¡
θ01, θ

0
2

¢
is provided by v̂12

³
θ̂1, θ̂2

´
.

The non-parametric approach is obviously more robust than the parametric one first described and

is recommended in general. It is also the analogue of estimation procedures of the limiting covariance

matrix in standard Least Absolute Deviations (LAD) regressions.
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5 Conclusion

In this paper, I analyze the problem of estimating the average local-to-unity parameter from a panel

data set, where the local-to-unity parameters are treated as random variables. It is shown that the

generalization from the setup with identical local-to-unity parameters raises some real issues in terms

of consistency.

The pooled estimator for the average local-to-unity parameter is severely biased for even moderate

variations in the local-to-unity parameters and could provide very misleading results if used indiscrim-

inately. An alternative median based estimator is proposed instead. The idea behind this estimator

is simple. To obtain more robust estimates than those provided by the pooled estimator, the sample

median rather than the sample mean is used to extract the crucial cross-sectional information needed

to estimate the local-to-unity parameter. The median based estimator is analyzed for the specific case

of normally distributed local-to-unity parameters and is shown to exhibit a small asymptotic bias.

The bias, however, is almost independent of the variance of the local-to-unity parameters and a simple

bias-correction procedure is used to obtain nearly consistent estimates. The estimator is shown to

work well in finite samples and appears robust against deviations from the normality assumption.

One issue not considered in this paper is that of heterogenous deterministic trends. Moon and

Phillips (1999, 2000, and 2004) show that in the case of identical local-to-unity parameters, heteroge-

nous trends cause the standard pooled estimator to become inconsistent. The effect of deterministic

trends on the properties of the median based estimator proposed in this paper is left for future research.

A Appendix

A.1 Numerical calculation of the medians of m1,i and m2,i

First, note that

Ji,ci (1)
2 = 1 + 2ci

Z 1

0

Ji,ci (r)
2 dr + 2

Z 1

0

Ji,ci (r) dWi (r) ,

and, thus,

ci

Z 1

0

Ji,ci (r)
2
dr +

Z 1

0

Ji,ci (r) dWi (r) =
1

2

³
Ji,ci (1)

2 − 1
´
.

Further, from Phillips (1987),

Ji,ci (r)| ci = N

µ
0,
1

2ci

¡
e2rci − 1

¢¶¯̄̄̄
ci =

r
1

2ci
(e2rci − 1)N (0, 1)

¯̄̄̄
ci.
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Thus,

Pr
³
Ji,ci (r)

2 ≤ x2
´

=

Z ∞
−∞

[Pr (−x ≤ Ji,ci (r) ≤ x| ci)] fc (ci) dci

=

Z ∞
−∞

⎡⎣2Φ
⎛⎝ xq

1
2ci
(e2rci − 1)

⎞⎠− 1
⎤⎦ fc (ci) dci. (27)

The median of m1,i, which we denote θ1, is the solution to

1

2
= Pr (m1,i ≤ θ1) = Pr

µ
1

2

³
Ji,ci (1)

2 − 1
´
≤ θ1

¶
= Pr

³
−
p
2θ1 + 1 ≤ Ji,ci (1)

2 ≤
p
2θ1 + 1

´
.

θ1 is obtained by numerically evaluating the integral (27) and finding the value x which sets this

integral equal to one half. The median is then given by θ1 =
¡
x2 − 1

¢
/2.

In order to derive the median of m2,i, I use the characteristic function approach. By a result in

Tanaka (1996, chapter 4), the characteristic function of m2,i, for a fixed ci, is given by

φm2|ci (t) = E
£
eitm2,i

¯̄
ci
¤
= E

∙
exp

½
it

Z 1

0

Ji,ci (r)
2 dr

¾¯̄̄̄
ci

¸
=

e−ci/2q
cosλ (ci, t)− ci

sinλ(ci,t)
λ(ci,t)

¯̄̄̄
¯̄ ci,

where λ (ci, t) =
p
2it− c2i . By Lévy’s inversion theorem for nonnegative random variables,

Pr (m2,i ≤ x| ci) =
1

π

Z ∞
0

Re

∙
1− e−itx

it
φm2|ci (t)

¸
dt.

Thus, under the assumption of a random ci,

Pr (m2,i ≤ x) =

Z ∞
−∞

Pr (m2,i ≤ x| ci) fc (ci) dci =
Z ∞
−∞

1

π

Z ∞
0

Re

∙
1− e−itx

it
φm2|ci (t)

¸
dtfc (ci) dci.

This integral is evaluated numerically and θ2 is given by the solution to 1
2 = Pr (m2,i ≤ x).

A.2 Proofs of Theorems

Proof of Theorem 1. The first order condition for Hk,n,T (θk), is

Gk,n,T (θ1) =
1

n

nX
i=1

[1 {mk,i,T > θk}− 1 {mk,i,T ≤ θk}] = Op

µ
1

n

¶
.
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For fixed n, as T →∞, by the continuous mapping theorem (CMT),

Gk,n,T (θ1)⇒
1

n

nX
i=1

[1 {mk,i > θk}− 1 {mk,i ≤ θk}] = Gk,n (θk) .

The population moment condition for Gk,n (θk) is

0 = Gk (θk) = E [1 {mk,i > θk}]−E [1 {mk,i ≤ θk}] = 1− 2Fk (θk) ,

where Fk (·) is the cumulative distribution function for mk,i. By definition, G1
¡
θ01
¢
= G2

¡
θ02
¢
= 0.

To prove the uniform convergence of G1,n,T (· ), it is sufficient to show that

sup
θ1∈Θ1

¯̄̄̄
¯ 1n

nX
i=1

1 {m1,i,T ≤ θ1}− Pr (m1,i ≤ θ1)

¯̄̄̄
¯ = sup

θ1∈Θ1

¯̄̄̄
¯ 1n

nX
i=1

1 {m1,i,T ≤ θ1}−E [1 {m1,i ≤ θ1}]
¯̄̄̄
¯→p 0

uniformly in θ1, as (n, T →∞). Consider, for a fixed θ1,

1 {m1,i,T ≤ θ1} = 1
(
1

Ω̂i

1

T

TX
t=1

h¡
βi,0 + yi,t−1

¢ ci
T
yi,t−1 +

¡
βi,0 + yi,t−1

¢
�i,t − T Λ̂i

i
≤ θ1

)
.

For fixed i, by the continuous mapping theorem for almost surely continuous functions,

1 {m1,i,T ≤ θ1}⇒ 1 {m1,i ≤ θ1} = 1
½
ci

Z 1

0

Ji,ci (r)
2 dr +

Z 1

0

Ji,ci (r) dWi (r) ≤ θ1

¾
,

as T →∞, since Λ̂i →p Λi and Ω̂i →p Ωi. If the conditions of Corollary 1 of Phillips and Moon (1999)

are satisfied, it then follows that

1

n

nX
i=1

1 {m1,i,T ≤ θ1}→p E [1 {m1,i ≤ θ1}]

as (n, T →∞) for fixed θ1. Since 1 {m1,i,T ≤ θ1} is uniformly bounded, ||1 {m1,i,T ≤ θ1}|| is uniformly

integrable in T for all i (Billingsley, 1995) and the other conditions of Corollary 1 of Phillips and Moon

(1999) hold trivially. Pointwise convergence, for fixed θ1, as (n, T →∞), is thus established.

Since Θ is a compact space, to establish uniform convergence one only needs to show that

X1,n,T (θ1) =
1

n

nX
i=1

(1 {m1,i,T ≤ θ1}−E [1 {m1,i ≤ θ1}])

15



is stochastically equicontinuous. This follows by standard arguments and the proof is not detailed here.

The same arguments can be applied to G2,n,T (· ) and will not be repeated. Thus, as (n, T →∞),

Gk,n,T (θ1)→p 1− 2Pr (mk,i ≤ θk) ,

uniformly in θk and the desired result follows.

Proof of Theorem 2. Observe first, that for fixed n, as T →∞,

√
n

⎛⎜⎝ G1,n,T
¡
θ01
¢

G2,n,T
¡
θ02
¢
⎞⎟⎠⇒ 1√

n

nX
i=1

⎛⎜⎝ £
1
©
m1,i > θ01

ª
− 1

©
m1,i ≤ θ01

ª¤
£
1
©
m2,i > θ02

ª
− 1

©
m2,i ≤ θ02

ª¤
⎞⎟⎠ .

By the Lindeberg-Feller central limit theorem (CLT), as n→∞,

1√
n

nX
i=1

⎛⎜⎝ £
1
©
m1,i > θ01

ª
− 1

©
m1,i ≤ θ01

ª¤
£
1
©
m2,i > θ02

ª
− 1

©
m2,i ≤ θ02

ª¤
⎞⎟⎠⇒ N (0, V ) ,

where

V =

⎛⎜⎝ 1 E
£
sign

¡
m1,i − θ01

¢
sign

¡
m2,i − θ02

¢¤
E
£
sign

¡
m1,i − θ01

¢
sign

¡
m2,i − θ02

¢¤
1

⎞⎟⎠ .

Thus, as (T, n→∞)seq,

√
n

⎛⎜⎝ G1,n,T
¡
θ01
¢

G2,n,T
¡
θ02
¢
⎞⎟⎠⇒ N (0, V ) .

Next, for k = 1, 2, for fixed n, as T →∞,

νk,n,T (θ) =
√
n (Gk,n,T (θ)−Gk (θ))⇒

√
n (Gk,n (θ)−Gk (θ)) .

By standard arguments for LAD estimators,
√
n (Gk,n (θ)−Gk (θ)) is stochastically equicontious as

n→∞. It follows that νk,n,T (θ) is stochastically equicontious as (T, n→∞)seq.

From the expressions of F1 (θ1) and F2 (θ2), derived in Appendix A.1, it is obvious that they

are both differentiable, and, hence, so are G1 (θ1) and G2 (θ2). Having established the asymptotic

normality of Gk,n,T

¡
θ0k
¢
, and the stochastic equicontinuity of the normalized process νk,n,T (θ), the

asymptotic normality of
³
θ̂1, θ̂2

´0
now follows from standard results for extremum estimators with non-

16



smooth criterion functions (e.g. Theorem 7.1. in Newey and Mcfadden, 1994). The limiting covariance

matrix is given by

⎛⎜⎝ d
dθ0G1 (θ1)

d
dθ0G2 (θ2)

⎞⎟⎠
−1

V

⎛⎜⎝ d
dθ0G1 (θ1)

d
dθ0G2 (θ2)

⎞⎟⎠
−1

=

⎛⎜⎝ 1
f1(θ1)

2
v12(θ1,θ2)
f1(θ1)f2(θ2)

v12(θ1,θ2)
f1(θ1)f2(θ2)

1
f2(θ2)

2

⎞⎟⎠ .

The final result for θ̂1/θ̂2 folllows from the delta method.
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Table 1: The bias properties of the pooled estimator in the case of normally distributed local-to-unity
parameters. Panel A shows the numerical values for the limit function of the pooled estimator, f(c, σc).
Panel B shows the mean values of the pooled estimates of c, ĉ, from a Monte Carlo simulation with
n = 100 and T = 1, 000, using 10, 000 repetitions. The innovations are iid normal with variance equal
to one. The local-to-unity parameters are also drawn from normal distributions with mean c given by
the left most column and standard deviation σc given by the top row.

σc
c 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Panel A.
-50.0 -50.0 -50.0 -49.9 -49.8 -49.7 -49.5 -49.3 -48.8 76.3 110.5 148.7
-40.0 -40.0 -40.0 -39.9 -39.8 -39.6 -39.4 -39.1 56.2 86.5 120.7 158.7
-30.0 -30.0 -30.0 -29.9 -29.7 -29.5 -29.1 40.1 66.5 96.7 130.8 168.8
-20.0 -20.0 -20.0 -19.8 -19.5 -19.1 29.0 50.6 76.7 106.8 140.9 178.9
-10.0 -10.0 -9.9 -9.6 -8.7 20.3 38.7 60.8 86.9 116.9 150.9 188.9
-9.0 -9.0 -8.9 -8.5 -6.6 21.4 39.7 61.8 87.9 117.9 151.9 189.9
-8.0 -8.0 -7.9 -7.5 -2.6 22.5 40.8 62.8 88.9 118.9 152.9 191.0
-7.0 -7.0 -6.9 -6.4 3.8 23.6 41.8 63.9 89.9 119.9 153.9 192.0
-6.0 -6.0 -5.8 -5.2 8.5 24.7 42.8 64.9 90.9 120.9 155.0 193.0
-5.0 -5.0 -4.8 -3.8 10.9 25.7 43.8 65.9 91.9 122.0 156.0 194.0
-4.0 -4.0 -3.8 -2.1 12.4 26.8 44.9 66.9 92.9 123.0 157.0 195.0
-3.0 -3.0 -2.7 0.2 13.6 27.8 45.9 67.9 94.0 124.0 158.0 196.0
-2.0 -2.0 -1.6 2.8 14.7 28.9 46.9 69.0 95.0 125.0 159.0 197.0
-1.0 -1.0 -0.4 5.0 15.8 29.9 48.0 70.0 96.0 126.0 160.0 198.0
0.0 0.0 0.9 6.6 16.9 31.0 49.0 71.0 97.0 127.0 161.0 199.0
1.0 1.0 2.2 7.9 18.0 32.0 50.0 72.0 98.0 128.0 162.0 200.0
2.0 2.0 3.4 9.1 19.0 33.0 51.0 73.0 99.0 129.0 163.0 201.0
3.0 3.0 4.5 10.2 20.1 34.1 52.0 74.0 100.0 130.0 164.0 202.0
4.0 4.0 5.6 11.3 21.1 35.1 53.1 75.0 101.0 131.0 165.0 203.0
5.0 5.0 6.7 12.3 22.2 36.1 54.1 76.1 102.0 132.0 166.0 204.0

Panel B.
-50.0 -50.0 -50.0 -49.9 -49.9 -49.7 -49.5 -49.3 -49.1 -48.7 -48.4 -47.9
-40.0 -40.0 -40.0 -39.9 -39.8 -39.6 -39.4 -39.1 -38.8 -38.3 -37.8 -37.1
-30.0 -30.0 -30.0 -29.9 -29.7 -29.5 -29.2 -28.8 -28.2 -27.4 -26.0 -23.6
-20.0 -20.0 -20.0 -19.8 -19.6 -19.2 -18.6 -17.5 -15.3 -11.1 -5.5 0.3
-10.0 -10.0 -9.9 -9.6 -8.9 -7.0 -2.5 2.6 6.7 9.7 12.3 14.8
-9.0 -9.0 -8.9 -8.6 -7.7 -5.1 -0.2 4.6 8.0 10.7 13.3 16.0
-8.0 -8.0 -7.9 -7.5 -6.4 -3.0 2.1 6.1 9.1 11.7 14.3 16.9
-7.0 -7.0 -6.9 -6.4 -4.8 -0.7 3.9 7.5 10.2 12.8 15.4 17.9
-6.0 -6.0 -5.9 -5.3 -3.0 1.5 5.6 8.6 11.2 13.8 16.4 18.9
-5.0 -5.0 -4.8 -4.0 -1.1 3.5 6.9 9.7 12.2 14.8 17.3 19.7
-4.0 -4.0 -3.8 -2.6 1.0 5.0 8.1 10.7 13.2 15.8 18.3 20.9
-3.0 -3.0 -2.7 -1.1 2.9 6.3 9.1 11.7 14.2 16.9 19.4 21.8
-2.0 -2.0 -1.6 0.6 4.4 7.4 10.1 12.7 15.3 17.9 20.4 22.9
-1.0 -1.0 -0.4 2.3 5.7 8.5 11.1 13.7 16.3 18.8 21.4 23.9
0.0 0.0 0.8 3.7 6.8 9.5 12.1 14.7 17.3 19.8 22.3 24.9
1.0 1.0 2.0 5.0 7.9 10.6 13.2 15.7 18.3 20.8 23.4 25.8
2.0 2.0 3.2 6.1 8.9 11.5 14.2 16.8 19.3 21.7 24.4 26.8
3.0 3.0 4.3 7.1 9.9 12.6 15.2 17.8 20.3 22.8 25.3 27.9
4.0 4.0 5.4 8.2 10.9 13.6 16.1 18.7 21.3 23.9 26.3 28.9
5.0 5.0 6.4 9.2 11.9 14.6 17.2 19.7 22.2 24.8 27.3 29.8
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Table 2: The bias properties of the pooled estimator in the case of uniformly distributed local-to-unity
parameters, where cl is given by the left most column and cu by the top row. Panel A shows the
numerical values of the function fu(cl, cu). Panel B reports the mean values of the pooled estimates
of c from a Monte Carlo simulation with n = 100 and T = 1, 000, using 10, 000 repetitions. The local-
to-unity parameters are drawn from uniform distributions with parameters cl and cu. The numbers in
parentheses are the true values for c.

cu
cl -20.0 -15.0 -10.0 -5.0 0.0 5.0 10.0

Panel A.
-25.0 -22.4 -19.6 -16.4 -12.6 -6.5 4.2 9.4
-20.0 -17.4 -14.5 -10.9 -5.4 4.2 9.4
-15.0 -12.3 -9.2 -4.3 4.2 9.4
-10.0 -7.2 -3.1 4.2 9.4
-5.0 -1.8 4.3 9.4
0.0 4.3 9.4
5.0 9.4

Panel B.
-25.0 -22.4 -19.6 -16.5 -12.6 -6.7 3.8 9.2

(-22.5) (-20.0) (-17.5) (-15.0) (-12.5) (-10.0) (-7.5)
-20.0 -17.4 -14.5 -11.0 -5.6 3.9 9.2

(-17.5) (-15.0) (-12.5) (-10.0) (-7.5) (-5.0)
-15.0 -12.4 -9.2 -4.5 4.0 9.2

(-12.5) (-10.0) (-7.5) (-5.0) (-2.5)
-10.0 -7.3 -3.2 4.1 9.3

(-7.5) (-5.0) (-2.5) (0.0)
-5.0 -1.8 4.2 9.3

(-2.5) (0.0) (2.5)
0.0 4.3 9.4

(2.5) (5.0)
5.0 9.4

(7.5)
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Table 3: The bias properties of the median based estimator for normally distributed local-to-unity
parameters. Panel A shows numerical values for the limit function, θ01/θ

0
2, for different combinations

of c and σc. Panel B shows mean values of the median based estimates of c, č, from a Monte Carlo
simulation with n = 100 and T = 1, 000, using 10, 000 repetitions. The innovations are iid normal
with variance equal to one. The local-to-unity parameters are also drawn from normal distributions
with c given by the left most column and σc given by the top row. The estimates have not been bias
corrected.

σc
c 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Panel A.

-50.0 -51.3 -51.3 -51.3 -51.3 -51.3 -51.3 -51.3 -51.3 -51.3 -51.3 -51.3
-40.0 -41.3 -41.3 -41.3 -41.3 -41.3 -41.3 -41.3 -41.3 -41.3 -41.3 -41.3
-30.0 -31.3 -31.3 -31.3 -31.3 -31.3 -31.3 -31.3 -31.3 -31.3 -31.3 -31.3
-20.0 -21.3 -21.3 -21.3 -21.3 -21.3 -21.3 -21.3 -21.3 -21.3 -21.3 -21.3
-10.0 -11.3 -11.3 -11.3 -11.3 -11.3 -11.3 -11.2 -11.2 -11.2 -11.2 -11.2
-9.0 -10.3 -10.3 -10.3 -10.3 -10.3 -10.3 -10.2 -10.2 -10.2 -10.2 -10.2
-8.0 -9.3 -9.3 -9.3 -9.3 -9.3 -9.2 -9.2 -9.2 -9.2 -9.2 -9.2
-7.0 -8.3 -8.3 -8.3 -8.3 -8.3 -8.2 -8.2 -8.2 -8.2 -8.2 -8.2
-6.0 -7.3 -7.3 -7.3 -7.3 -7.2 -7.2 -7.2 -7.2 -7.2 -7.1 -7.1
-5.0 -6.3 -6.3 -6.3 -6.2 -6.2 -6.2 -6.2 -6.1 -6.1 -6.1 -6.1
-4.0 -5.3 -5.3 -5.2 -5.2 -5.2 -5.2 -5.1 -5.1 -5.1 -5.1 -5.1
-3.0 -4.2 -4.2 -4.2 -4.2 -4.1 -4.1 -4.1 -4.1 -4.1 -4.1 -4.0
-2.0 -3.2 -3.2 -3.2 -3.1 -3.1 -3.1 -3.1 -3.0 -3.0 -3.0 -3.0
-1.0 -2.1 -2.1 -2.1 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0
0.0 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9
1.0 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2
2.0 1.7 1.6 1.5 1.5 1.5 1.4 1.4 1.4 1.4 1.4 1.4
3.0 2.9 2.7 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6
4.0 4.0 3.8 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7
5.0 5.0 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8

Panel B.

-50.0 -51.0 -51.0 -51.0 -51.0 -51.0 -51.0 -51.0 -51.0 -51.0 -50.9 -51.0
-40.0 -41.0 -41.0 -41.0 -41.0 -41.0 -41.0 -41.0 -41.0 -41.0 -41.0 -41.0
-30.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0 -31.0
-20.0 -21.1 -21.1 -21.1 -21.1 -21.0 -21.1 -21.0 -21.0 -21.0 -21.0 -21.0
-10.0 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.1 -11.0 -11.0 -11.0
-9.0 -10.2 -10.1 -10.1 -10.1 -10.1 -10.1 -10.1 -10.1 -10.0 -10.0 -10.0
-8.0 -9.1 -9.2 -9.1 -9.1 -9.1 -9.1 -9.1 -9.1 -9.0 -9.0 -9.0
-7.0 -8.3 -8.2 -8.2 -8.1 -8.1 -8.1 -8.1 -8.1 -8.0 -8.0 -8.0
-6.0 -7.3 -7.2 -7.3 -7.2 -7.1 -7.1 -7.1 -7.1 -7.0 -7.0 -7.0
-5.0 -6.3 -6.2 -6.3 -6.2 -6.1 -6.1 -6.1 -6.0 -6.1 -6.0 -6.0
-4.0 -5.2 -5.2 -5.3 -5.2 -5.1 -5.1 -5.1 -5.1 -5.0 -5.0 -5.0
-3.0 -4.2 -4.2 -4.3 -4.1 -4.1 -4.1 -4.1 -4.1 -4.0 -4.0 -4.0
-2.0 -3.3 -3.2 -3.1 -3.1 -3.1 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0
-1.0 -2.1 -2.1 -2.1 -2.0 -2.0 -2.0 -2.0 -2.0 -1.9 -1.9 -1.9
0.0 -1.0 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 -0.8 -0.8 -0.8
1.0 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
2.0 1.7 1.6 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5
3.0 2.9 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7
4.0 4.0 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8
5.0 5.0 4.8 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.9 4.9
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Table 4: Numerical values for the limit function of the median based estimator, θ01/θ
0
2, for the homoge-

nous case σc = 0.
c θ01/θ

0
2 c θ01/θ

0
2 c θ01/θ

0
2 c θ01/θ

0
2 c θ01/θ

0
2 c θ01/θ

0
2

-50.00 -51.28 -14.00 -15.28 -6.80 -8.07 -3.20 -4.45 0.40 -0.42 4.00 3.98
-49.00 -50.28 -13.00 -14.28 -6.70 -7.97 -3.10 -4.35 0.50 -0.28 4.10 4.08
-48.00 -49.28 -12.00 -13.28 -6.60 -7.87 -3.00 -4.24 0.60 -0.15 4.20 4.18
-47.00 -48.28 -11.00 -12.28 -6.50 -7.77 -2.90 -4.14 0.70 -0.01 4.30 4.29
-46.00 -47.28 -10.00 -11.28 -6.40 -7.67 -2.80 -4.04 0.80 0.13 4.40 4.39
-45.00 -46.28 -9.90 -11.18 -6.30 -7.57 -2.70 -3.94 0.90 0.27 4.50 4.49
-44.00 -45.28 -9.80 -11.08 -6.20 -7.47 -2.60 -3.83 1.00 0.41 4.60 4.59
-43.00 -44.28 -9.70 -10.98 -6.10 -7.37 -2.50 -3.73 1.10 0.54 4.70 4.69
-42.00 -43.28 -9.60 -10.88 -6.00 -7.27 -2.40 -3.63 1.20 0.68 4.80 4.79
-41.00 -42.28 -9.50 -10.78 -5.90 -7.17 -2.30 -3.52 1.30 0.82 4.90 4.90
-40.00 -41.28 -9.40 -10.68 -5.80 -7.07 -2.20 -3.42 1.40 0.96 5.00 5.00
-39.00 -40.28 -9.30 -10.58 -5.70 -6.97 -2.10 -3.32 1.50 1.09 6.00 6.00
-38.00 -39.28 -9.20 -10.48 -5.60 -6.87 -2.00 -3.21 1.60 1.22 7.00 7.00
-37.00 -38.28 -9.10 -10.38 -5.50 -6.77 -1.90 -3.11 1.70 1.36 8.00 8.00
-36.00 -37.28 -9.00 -10.28 -5.40 -6.67 -1.80 -3.00 1.80 1.49 9.00 9.00
-35.00 -36.28 -8.90 -10.18 -5.30 -6.57 -1.70 -2.89 1.90 1.61 10.00 10.00
-34.00 -35.28 -8.80 -10.08 -5.20 -6.47 -1.60 -2.79 2.00 1.74
-33.00 -34.28 -8.70 -9.98 -5.10 -6.37 -1.50 -2.68 2.10 1.87
-32.00 -33.28 -8.60 -9.88 -5.00 -6.27 -1.40 -2.57 2.20 1.99
-31.00 -32.28 -8.50 -9.78 -4.90 -6.17 -1.30 -2.46 2.30 2.11
-30.00 -31.28 -8.40 -9.68 -4.80 -6.07 -1.20 -2.35 2.40 2.23
-29.00 -30.28 -8.30 -9.58 -4.70 -5.97 -1.10 -2.24 2.50 2.35
-28.00 -29.28 -8.20 -9.48 -4.60 -5.87 -1.00 -2.13 2.60 2.47
-27.00 -28.28 -8.10 -9.38 -4.50 -5.76 -0.90 -2.02 2.70 2.58
-26.00 -27.28 -8.00 -9.28 -4.40 -5.66 -0.80 -1.90 2.80 2.69
-25.00 -26.28 -7.90 -9.18 -4.30 -5.56 -0.70 -1.79 2.90 2.81
-24.00 -25.28 -7.80 -9.08 -4.20 -5.46 -0.60 -1.67 3.00 2.92
-23.00 -24.28 -7.70 -8.98 -4.10 -5.36 -0.50 -1.55 3.10 3.03
-22.00 -23.28 -7.60 -8.88 -4.00 -5.26 -0.40 -1.43 3.20 3.14
-21.00 -22.28 -7.50 -8.78 -3.90 -5.16 -0.30 -1.31 3.30 3.24
-20.00 -21.28 -7.40 -8.67 -3.80 -5.06 -0.20 -1.19 3.40 3.35
-19.00 -20.28 -7.30 -8.57 -3.70 -4.96 -0.10 -1.06 3.50 3.46
-18.00 -19.28 -7.20 -8.47 -3.60 -4.86 0.00 -0.94 3.60 3.56
-17.00 -18.28 -7.10 -8.37 -3.50 -4.75 0.10 -0.81 3.70 3.67
-16.00 -17.28 -7.00 -8.27 -3.40 -4.65 0.20 -0.68 3.80 3.77
-15.00 -16.28 -6.90 -8.17 -3.30 -4.55 0.30 -0.55 3.90 3.88
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Table 5: Mean values of the bias corrected median estimates of c, č+, from a Monte Carlo simulation
with n = 20 and T = 100, using 10, 000 repetitions. The innovations are iid normal with variance
equal to one. The local-to-unity parameters are also drawn from a normal distribution with c given
by the left most column and σc given by the top row.

σc
c 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

-50.0 -49.1 -49.1 -49.1 -49.1 -49.0 -49.1 -49.0 -49.0 -48.9 -48.9 -48.8
-40.0 -39.3 -39.3 -39.3 -39.3 -39.2 -39.2 -39.2 -39.1 -39.1 -39.1 -39.1
-30.0 -29.4 -29.4 -29.4 -29.4 -29.4 -29.4 -29.3 -29.4 -29.3 -29.2 -29.3
-20.0 -19.5 -19.5 -19.6 -19.5 -19.5 -19.5 -19.5 -19.4 -19.5 -19.4 -19.4
-10.0 -9.7 -9.7 -9.7 -9.7 -9.6 -9.6 -9.5 -9.5 -9.4 -9.4 -9.3
-9.0 -8.7 -8.7 -8.7 -8.7 -8.6 -8.6 -8.5 -8.5 -8.4 -8.4 -8.3
-8.0 -7.7 -7.7 -7.7 -7.7 -7.7 -7.6 -7.5 -7.5 -7.5 -7.4 -7.4
-7.0 -6.8 -6.7 -6.7 -6.7 -6.7 -6.6 -6.5 -6.5 -6.4 -6.4 -6.3
-6.0 -5.8 -5.8 -5.7 -5.7 -5.6 -5.6 -5.5 -5.5 -5.4 -5.5 -5.4
-5.0 -4.8 -4.8 -4.7 -4.7 -4.7 -4.6 -4.6 -4.5 -4.5 -4.5 -4.4
-4.0 -3.8 -3.8 -3.8 -3.7 -3.7 -3.6 -3.6 -3.5 -3.5 -3.5 -3.4
-3.0 -2.9 -2.9 -2.8 -2.7 -2.7 -2.6 -2.6 -2.6 -2.5 -2.5 -2.5
-2.0 -1.9 -1.9 -1.8 -1.8 -1.7 -1.7 -1.7 -1.6 -1.6 -1.5 -1.5
-1.0 -1.0 -0.9 -0.9 -0.9 -0.8 -0.8 -0.8 -0.7 -0.7 -0.6 -0.6
0.0 -0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.3 0.3 0.4 0.5
1.0 1.0 0.9 0.9 1.0 1.0 1.1 1.1 1.2 1.3 1.3 1.4
2.0 2.0 1.9 1.9 1.9 2.0 2.0 2.1 2.2 2.2 2.3 2.4
3.0 3.0 2.9 2.8 2.9 2.9 3.0 3.1 3.1 3.2 3.3 3.4
4.0 4.0 3.8 3.8 3.9 3.9 4.0 4.1 4.2 4.3 4.3 4.3
5.0 5.0 4.9 4.9 4.9 5.0 5.1 5.1 5.2 5.2 5.4 5.4
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Figure 1: Estimates of the density functions of the pooled estimates of c, ĉ, in a Monte Carlo simulation.
The sample size is n = 100 and T = 1, 000, using 10, 000 repetitions. The innovations are iid normal
with variance equal to one. The local-to-unity parameters are also drawn from a normal distribution
with the mean and variance given above each graph. In the right hand graphs, the dashed line
corresponds to σc = 5 and the dotted line to σc = 10.
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Figure 2: Estimates of the density functions of the bias corrected median estimates of c, č+, in a
Monte Carlo simulation. The sample size is n = 100 and T = 1, 000, using 10, 000 repetitions. The
innovations are iid normal with variance equal to one. The local-to-unity parameters are also drawn
from normal distributions with the mean and variance given above each graph. In the right hand
graphs, the dashed line corresponds to σc = 5 and the dotted line to σc = 10.
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Figure 3: Estimates of the density functions of the bias corrected median estimates of c, č+, in a Monte
Carlo simulation. The sample size is n = 20 and T = 100, using 10, 000 repetitions. The innovations
are iid normal with variance equal to one. The local-to-unity parameters are also drawn from normal
distributions with the mean and variance given above each graph. In the right hand graphs, the dashed
line correspond to σc = 5 and the dotted line to σc = 10.
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