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Abstract

We provide a first in-depth look at robust estimation of integrated quarticity (IQ) based
on high frequency data. IQ is the key ingredient enabling inference about volatility
and the presence of jumps in financial time series and is thus of considerable interest
in applications. We document the significant empirical challenges for IQ estimation
posed by commonly encountered data imperfections and set forth three complemen-
tary approaches for improving IQ based inference. First, we show that many common
deviations from the jump diffusive null can be dealt with by a novel filtering scheme
that generalizes truncation of individual returns to truncation of arbitrary functionals
on return blocks. Second, we propose a new family of efficient robust neighborhood
truncation (RNT) estimators for integrated power variation based on order statistics of
a set of unbiased local power variation estimators on a block of returns. Third, we find
that ratio-based inference, originally proposed in this context by Barndorff-Nielsen and
Shephard (2002), has desirable robustness properties in the face of regularly occurring
data imperfections and thus is well suited for empirical applications. We confirm that
the proposed filtering scheme and the RNT estimators perform well in our extensive
simulation designs and in an application to the individual Dow Jones 30 stocks.
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1 Introduction

Important progress in measuring and forecasting return volatility has been obtained through
techniques exploiting the information in intraday price movements. The use of high-
frequency data is, however, not without its problems. The main complication is the pro-
nounced inhomogeneity of the intraday return series as diurnal patterns interspersed with
news events and market microstructure frictions complicate direct modeling of the high fre-
quency dynamics and introduce a variety of idiosyncratic features that are largely irrelevant
for inference about inter-daily volatility. The realized volatility (RV) approach “solves” this
problem by aggregating the intraday return observations to a daily frequency in a manner
that retains the majority of the inherent volatility information while mitigating the impact
of noise and diurnal patterns. The RV approach has been widely adopted ever since its
formal introduction as a nonparametric estimator of the return variation in Andersen and
Bollerslev (1998).1 In parallel, a large body of theoretical work on model-free estimation
and inference for components of the realized return variation process has arisen. Initial
econometric issues are addressed in Andersen, Bollerslev, Diebold and Labys (2001, 2003)
and Barndorff-Nielsen and Shephard (henceforth BNS) (2002).2

Conceptually, realized volatility differs from the standard notion of volatility by focus-
ing on ex-post measurement of the realization of the (stochastic) return variation rather
than the (ex-ante) return variance. Once attention shifts to the actual volatility realiza-
tions, new questions arise. For example, how do we assess the accuracy of our (daily)
ex-post measures of the integrated return variation and how do we identify the impact of
jump components. Such features are critical for a variety of issues in real-time financial
management, including volatility forecasting, analysis of the dynamic properties of jumps
and news events, derivatives pricing, estimation of return correlations, determination of
return-volatility asymmetries (the leverage effect), and developing insights into the inter-
play between return volatility and the macroeconomic environment.

The key ingredient for inference regarding the return variation and the presence of
jumps is the so-called integrated quarticity (IQ). To illustrate the importance of accurate
IQ measures we review a few results from the RV literature. We denote the continuously
evolving log-price for a financial asset by Yt. Under general conditions, the log-price con-
stitutes a semi-martingale with respect to an underlying filtered probability space. The
associated ex-post realized quadratic variation, QV , for Yt over [0, t] may be decomposed

1Corresponding measures were previously considered on an ad hoc basis, see, e.g., Schwert (1989), Hsieh
(1991) and Zhou (1996).

2Additional work regarding inference on the jump and continuous components of the return variation is
developed in BNS (2004b, 2006), while general methodological insights were provided by Jacod and Protter
(1998). Subsequently, market microstructure complications were addressed as part of the drive to exploit
tick level data, see, e.g., Zhang, Mykland and Ait-Sahalia (2005), Bandi and Russell (2008), and Barndorff-
Nielsen, Hansen, Lunde and Shephard, henceforth BNHLS, (2008).
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into an integrated (diffusive) volatility, IV , and a residual (jump) component, JV ,

dYt = at dt + σt dBt + dJt (1)

QVt =
∫ t

0
σ2
u du︸ ︷︷ ︸

IV

+
∑

0≤u≤t
(∆Ju)2

︸ ︷︷ ︸
JV

where at and σt denote the instantaneous drift and diffusion coefficients, while Bt and Jt
are adapted Wiener and finite activity jump processes, respectively.

For a given trading day, t ∈ [0, 1], we consider the ideal scenario in which we observe N
equally-spaced (log) returns, ri = Y i

N
− Y i−1

N
, i = 1, · · · , N . In this case, the realized

volatility (RV) is a consistent nonparametric estimator of QV, as the number of intraday
observations diverges, N →∞ (in-fill asymptotics),

RVN =
N∑
i=1

r2
i → QV .

Moreover, absent price jumps, the limiting distribution is a Gaussian mixture,
√
N (RVN − IV ) → N (0, 2 IQ)

where IQ =
∫ 1

0 σ4
u du , which, as observed by BNS (2002), can be consistently estimated

from the high-frequency data themselves via the Realized Quarticity (RQ) statistic:

RQN = N

3

N∑
i=1

r4
i → IQ

Clearly, accurate inference about the integrated variance hinges on reliable estimates
for IQ. Unfortunately, IQ estimation is challenging. It involves estimating fourth order
return moments from noisy intraday return series impacted by the confounding effects of
market microstructure frictions, diurnal patterns, outliers, and other data irregularities. For
example, it is well known that the RQ estimator is highly imprecise and non-robust to such
features, even if jumps are absent. Moreover, when discrete price changes do occur, RV is no
longer consistent for IV, and the RQ statistic diverges: RQN → ∞ as N → ∞. Given the
compelling evidence for jumps, this is critical in practice. In response, various jump-robust
IQ estimators have been developed, but they are subject to potentially serious finite sample
biases. At present, there simply is no systematic evidence regarding the performance of
alternative jump-robust procedures for empirically realistic scenarios.

Recognizing these issues, a variety of ad hoc IQ estimation procedures have been im-
plemented in the empirical literature. Before the jump-robust theory was developed, the
RQ statistic was used, but only with relatively coarse sampling. For example, BNS (2004a)
exploit 10-minute foreign exchange returns, while Bandi and Russell (2008) recommend
computing RQ from 15- or 20-minute returns, as sparse sampling mitigates the impact of
outliers and microstructure noise. Later, BNS (2004b) and Huang and Tauchen (2005)
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rely on 5-minute returns for constructing jump-robust estimators of IQ.3 Finally, due to
the distortions arising from market microstructure effects, Jiang and Oomen (2008) opt for
simply squaring their jump-robust IV estimator to obtain an IQ estimator, thus settling for
a substantial Jensen inequality bias, but aiming to reduce estimation uncertainty.

To illustrate the practical importance of jump robustness, consider drawing inference
about the IV of IBM stock returns across three days in February 2008 using the non-jump
robust RQ/RV measures versus a pair of jump robust measures, as shown on Figure 1.4

[Insert Figure 1 about here.]

The jump on 2/26/2008 is readily identified visually and easily detected using a jump
robust test statistic. In fact, the robust MedRV estimates and associated standard error
bands, based on MedRQ, suggest a relative stable volatility process across the three trading
days. In contrast, the regular RV estimate for IV is greatly inflated on 2/26/2008, and
the confidence band is huge, reflecting a diverging RQ statistic. Hence, the reliance on non
jump-robust statistics has two consequences. First, when jumps are present the IV estimate
is upward biased because the jump component in QV is attributed to IV.5 Second, the
associated confidence band is grossly overstated, indicating very poor estimation precision
whereas, in fact, the robust estimate appears quite reliable. Hence, non-robust inference
may produce excessively erratic IV estimates and convey a sense of exaggerated imprecision
associated with these techniques. While the misleading inference afforded by the regular
RV and RQ estimators is apparent in Figure 1, at least when contrasted with the robust
inference and a depiction of the price path, it can be less obvious in cases with higher
volatility levels and relatively smaller jumps. As such, it is important to develop feasible
robust and efficient procedures for estimating IQ and conducting inference for IV.

One main contribution of this paper is to provide a first in-depth exploration of the
virtues and drawbacks of alternative jump-robust estimation procedures for IQ, including
their robustness to a variety of realistic features of the return generating process. A point of
emphasis is the use of wide pre-averaging windows for controlling the impact of microstruc-
ture noise on the inference. This enhances robustness and simplifies the distribution theory
as the impact of noise is annihilated asymptotically. A second contribution is the devel-
opment of a new class of robust neighborhood truncation (RNT) estimators that generalize
existing nearest neighbor and Quantile RV estimators. They involve the application of a
second layer of order statistics to suitably chosen return functionals, thus robustifying the
inference for IQ with only a minor loss of efficiency. We find such RNT estimators to perform

3Both studies explore the reliability of the procedures, but only under relatively ideal circumstances and
not with a focus on the IQ estimator but rather the jump test statistic.

4We rely on the MedRV/MedRQ estimators of Andersen, Dobrev and Schaumburg (2009) here, but any
other sensible pair of robust IV and IQ estimators would suffice in this particular case as the evidence for
a single significant jump is compelling and the associated empirical inference problem thus very straightfor-
ward. The robust estimators will be introduced later in the paper.

5As a consequence, real-time predictions regarding the expected volatility over the following trading days
will likely also be exaggerated on 2/26/2008 because the jump component of QV typically is much less
persistent than the IV component, see, e.g., Andersen, Bollerslev and Diebold (2007).
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admirably, especially when used in combination with the ratio statistic, IQ/IV 2, which is
known to provide improved finite sample inference for IV. Moreover, these principles apply
generally and can be used to enhance the robustness of inference from alternative classes of
estimators. A third novelty is the use of an outlier filtering procedure that operates directly
on an estimation functional of interest rather than on individual returns. This functional
filtering principle adapts the filter to the specific assumptions underlying a given estima-
tor. Hence, it controls the impact, and potential distortion, of abnormal outliers within
the exact metric in which they contribute to the ultimate estimator. In applications to
individual equity return data we find this filter indispensable for rendering entire classes
of promising candidate IQ estimators viable. The unifying theme behind our new estima-
tors and universal filtering procedure is to operate directly on the functional space of local
power variation estimates rather than the individual returns. Nonetheless, the latter, and
common, approach may be obtained as a special case of our procedure.

The remainder of the paper is structured as follows. Section 2 reviews the modern ap-
proach to robust estimation of integrated power variation. Section 3 develops our robust
neighborhood truncation estimators. In Section 4, we discuss additional procedures applied
to obtain robustness against jumps and noise. Section 5 illustrates the importance of com-
mon data features for IQ inference through an extensive simulation study. Finally, Section
6 provides evidence using high-frequency returns on the Dow Jones 30 stocks, while Section
7 concludes. All proofs are relegated to the Appendix.

2 Overview of Jump-Robust Power Variation Estimation

This section summarizes the modern approach to power variation estimation. We outline
the theoretical setting and review some existing estimators which are later used in our
simulation study and empirical investigation. In the process, we discuss practical trade-offs
that must be confronted in estimating objects involving high powers of volatility.

2.1 The Theoretical Setting

We focus on a single asset traded continuously in a frictionless market over the period [0, 1],
referred to as a trading day. If it is a limited-liability asset with an expected positive payoff
at some future date, the price will remain strictly positive. No-arbitrage conditions then
ensure that the log-price process constitutes a semimartingale with respect to the underly-
ing filtered probability space, see, e.g., Back (1991) and Andersen, Bollerslev and Diebold
(2010). Hence, for most of our analysis we invoke the following conditions.

Assumption 1 The continuously compounded return process, rt , is governed by a jump-
diffusive semimartingale,

rt = Y0 +
∫ t

0
au du +

∫ t

0
σu− dBu + Jt , (2)
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where a is a locally bounded and predictable process, σ is an adapted cadlag process bounded
away from zero, and J is a finite activity jump process.

Assumption 1A The volatility process, σt, follows a jump-diffusive semimartingale,

σt = σ0 +
∫ t

0
ãu du +

∫ t

0
σ̃u− dBu +

∫ t

0
ṽu− dWu + J̃t,

where ã is locally bounded and predictable, σ̃, ṽ are cadlag, the Brownian motions B, W
are uncorrelated, and J̃ is a finite activity jump process.

If the Brownian component in Assumption 1 is non-zero, the return innovation is an
order of magnitude larger than the expected return over short time intervals, implying
that the drift term typically does not affect the asymptotic distribution of power variation
estimators based on high-frequency data. Hence, we ignore the drift term in this section.6

Another key implication of Assumptions 1 and 1A is that we may derive the asymp-
totic properties of many relevant estimators assuming that the intraday returns are locally
Gaussian. To operationalize this approach, the trading period is broken into K smaller
blocks. For each block, we treat volatility as constant, even if the actual return variation
evolves stochastically and the price path contains finite activity jumps. If N equally-spaced
continuously compounded returns are available, and each block contains m ≥ 1 returns, we
assume, without loss of generality, that N = K ·m. Notice that each block covers 1

K

th of
the trading period and each return reflects the price evolution over an interval length of 1

N .
The above insight simplifies matters greatly, as nonparametric jump-robust estimators

now are easy to devise. One simply selects a suitable unbiased estimator for the (power of)
volatility within each block under the null hypothesis of i.i.d. Gaussian returns, and then
cumulate the estimates across blocks to obtain the overall power variation. The distribution
theory is developed using standard in-fill asymptotics, letting N grow indefinitely, while
requiring m

K → 0. In most cases, m is fixed and K diverges proportionally with N .

2.2 Estimating Power Variation under the Diffusive Null Hypothesis

We first consider the case where there is no jump component. Given the assumptions
invoked above, we focus on the null hypothesis that the returns within a small block are
i.i.d. Gaussian. A generic estimator of the pth order return variation, for p an even positive
integer, is now obtained as the average of local estimates of σ p based on a functional f
operating on blocks of m adjacent returns. For each integer i, 1 ≤ i ≤ N − m + 1, we
have a return block, ri,m = (ri, ri+1 , . . . , ri+m−1 ). Under the null, these returns are i.i.d.
N (0, σ 2

i /N). We let fi = f
(
ri,m

)
denote the functional exploited by a given estimator

to obtain an unbiased estimate of σ pi for the i’th block. If Assumption 1 holds, the power
6Of course, the proofs for all our new results, provided in Appendix A, allow for a general drift term.
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variation estimator is consistent. Heuristically, the law of large numbers implies, as N →∞,

1
N −m+ 1

N−m+1∑
i=1

fi ≈
1

N −m+ 1

N−m+1∑
i=1

σ pi →
∫ 1

0
σ pu du .

A corresponding central limit theory may typically be devised if we invoke Assumption 1A.
The simplest estimator within this framework is the realized Power Variation (PV)

measure. It does not exploit multi-return blocks, so m = 1. It takes the form,

fPVi (p;N) = f(ri ) = µ−1
p N

p
2 r pi , where µp = E|Z|p , for Z ∼ N (0, 1) .

The normalization constant is given by µp = 2p/2 Γ((p+1)/2)
Γ(1/2) , for any p > 0.

For p = 2, this produces the regular RV, or PVN (2), estimator with µ2 = 1, while p = 4
yields the RQ, or PVN (4), estimator from Section 1 with normalizing constant µ4 = 3.

A couple of comments are warranted. First, the setting ignores data errors and market
microstructure frictions. Higher order return moments are particularly sensitive to faulty
price observations or inappropriate assumptions regarding the evolution of the high fre-
quency returns. We discuss these issues in the context of the simulation and empirical
sections below. Second, in contrast to the realized power variation estimator, the func-
tional fi will in the following be designed to be jump-robust, i.e., provide valid asymptotic
inference for the power variation, even in the presence of finite activity jumps. However,
jumps often have a severe adverse effect on the finite sample properties of the estimators,
especially for p > 2. Many of the practical complications below arise from this feature.

2.3 Jump-Robust Power Variation Estimation

We now outline the basic principles behind the construction of power variation estimators
that are robust to the presence of finite activity jump processes. Asymptotically, as the
block sizes shrink towards zero and the number of blocks grows indefinitely, there will be
a finite number of blocks containing one single jump each. Hence, in the limit, the power
variation associated with the blocks containing jumps is negligible. It follows that the power
variation can be estimated consistently as long as the contribution from the “jump blocks”
is an order of magnitude less than the overall power variation measure which, of course, is
O(1). However, the jumps are also of order O(1), so the functional f must ensure that the
jumps are dampened sufficiently to eliminate their impact asymptotically.

Formally, for any given sampling frequency, we denote the set of indices corresponding
to returns for which the associated block contains a jump by IJ . Thus, for i ∈ IJ , there is
a jump in the return block ri,m. We then write the generic power variation estimator as,

1
N −m+ 1

N−m+1∑
i=1

fi = 1
N −m+ 1

 N−m+1∑
i=1, i/∈IJ

fi +
∑
i∈IJ

fi

 .
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The first term estimates the integrated power variation consistently, i.e.,

1
N −m+ 1

N−m+1∑
i=1, i/∈IJ

fi −→
∫ 1

0
σ pu du , as N −→ ∞ .

The contribution from the blocks containing jumps is negligible, in the limit, only if
each such block is of order less than O(1). Thus, the associated power variation estimator
is consistent as long as fi ∼ o(N), for i ∈ IJ .7. This is accomplished in different ways
by alternative jump-robust estimators. Moreover, their practical effectiveness is largely
determined by the degree to which they accomplish sufficient dampening of the jump con-
tributions in finite samples.

2.4 Alternative Jump-Robust Power Variation Estimators

2.4.1 Multi-Power Variation Estimators

The first (finite activity) jump-robust power variation estimators were the Realized Multi-
Power Variation (MPV) statistics, inspired by BNS (2002). Expressed in terms of the
functional applied to successive return blocks, the estimator takes the form,

fMPV
i (m, p ;N) = f

(
ri,m

)
=

(
µp/m

)−m
N

p
2

m−1∏
j=0
|ri+j |

p
m .

For m = 1 and p = 2 or p = 4, the estimator reduces to the (non jump-robust) RV or
RQ estimator, respectively. Prominent (jump robust) special cases include (m, p) = (2, 2),
which defines the bipower variation statistic, and various IQ estimators, such as tripower
(m, p) = (3, 4), quadpower (m, p) = (4, 4), and quintpower (m, p) = (5, 4).

As described earlier, the actual estimator is now obtained by averaging the value of the
functional across the available blocks,

MPVN (m, p) = f
MPV (m, p ;N) = 1

N −m+ 1

N−m+1∑
i=1

fMPV
i (m, p ;N) .

The MPV estimator is consistent and affords an associated CLT, as long as m is chosen
sufficiently large relative to p. This produces an inevitable bias-variance trade-off. A larger
m implies more dampening of the jump term, so the finite sample bias induced by the jump
is alleviated. On the other hand, for a given sampling frequency, a larger block size, m,
implies that the functional is less localized, so the constant volatility assumption provides
a poorer approximation, and the estimator becomes less efficient.

7Naturally, additional dampening is required to establish a CLT for the power variation measures. In
this case, fi ∼ o(N

1
2 ), for i ∈ IJ
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2.4.2 Truncated Power Variation Estimators

An estimator closely related to the PV and MPV statistics is the Realized Truncated Power
Variation (TPV) measure. Mancini (2009) introduces the threshold realized volatility and
quarticity estimators, while Corsi, Pirino and Reno (2010), henceforth CPR, consider a
bipower variant of these statistics. These estimators achieve jump robustness by truncating
observations exceeding a pre-specified threshold. Under in-fill asymptotics, we may stipu-
late that the threshold converges toward zero slowly enough (slower than 1

N log(N)) that
the limiting distribution of the resulting estimators is identical to their non-truncated coun-
terparts. In particular, Truncated RV, or TRV, is asymptotically most efficient among all
jump robust IV estimators, and similarly the Truncated RQ, or TRQ, is the most efficient
jump-robust estimator for IQ. Moreover, it is evident that the (finite sample) jump distor-
tion is determined by the size of the truncation threshold and thus is under direct control in
designing the estimator. The block-functional defining the truncation multi-power variation
estimator of order m with truncation threshold, ϑi−j > 0, takes the form,

fTPVi (m, p ;N) =
(
µp/m

)−m
N

p
2

m−1∏
j=0
|ri+j |

p
m · 1{r 2

i+j ≤ϑi−j}
,

where 1{A} is an indicator function, taking the value of one if the statement A is true, and
zero otherwise. As before, the actual TPVN (m,p) estimator is obtained by averaging the
functional values across the available return blocks for the trading period.

The choice of threshold can be delicate. It is beneficial to truncate aggressively to reduce
the jump distortion by choosing a low threshold, but the non-jump returns are then also
truncated with non-trivial probability. CPR suggest a finite-sample scaling to correct for
this bias. They develop an iterative scheme aiming to obtain a fixed point at which the
expectation of the truncated estimator equals the true (estimated) volatility under the null
hypothesis. The approach is conceptually appealing, but has drawbacks. First, the modified
estimator is no longer linear in the unobserved σ2 and thus suffers from a downwards bias,
due to Jensen’s inequality, even in the ideal Brownian case. Second, they use a sizeable two-
sided window (e.g., 50 observations) to obtain a local volatility estimate, thereby rendering
it susceptible to an additional bias due to time variation in volatility across the block.

2.4.3 Neighborhood Truncation Estimators

Andersen, Dobrev and Schaumburg, henceforth ADS, (2012) introduce a couple of IV es-
timators, MinRV and MedRV, designed to improve on the trade-off between jump robust-
ness and efficiency confronting the MPV estimators. MinRV and MedRV are based on an
endogenous “nearest neighbor” truncation which is particularly helpful in alleviating the
finite-sample impact of isolated large jumps. We now extend this theory to cover general
power variation estimation. We start out by introducing notation that allows us to identify
various order statistics associated with a given return block.

First, we denote the ith block, consisting of absolute returns raised to the pth power, by

8



|r pi,m| = ( |ri| p , · · · , |ri+m−1| p ), i = 1, . . . , N −m + 1. Next, qj
(
|r pi,m|

)
, j = 1, · · · , m,

indicates the jth order statistic of the block |r pi,m| , so q1(|r pi,m|) ≤ . . . ≤ qm(|r pi,m|) . As
the returns are assumed i.i.d.N ( 0, σ2

i /N ), we may also write N
p
2 · |r pi,m| = σ pi · |Z

p
i,m|,

highlighting the fact that all estimators for the block ultimately are functionals operating
on the realization of an m-dimensional standard normal random vector.

We now readily obtain m separate unbiased estimators for σ pi , namely one for each
order statistic. We denote these “Neighborhood Truncation” estimators, or NTN (j,m,p).
As before, we construct them by averaging the appropriate block functional across the
trading period. The functional takes the form,

fNTi (j,m, p ;N) =
(
µ(j,m)
p

)−1
N

p
2 qj

(
|r pi,m|

)
, j = 1, . . . , m ,

where µ(j,m)
p = E [qj (|Z1|p, · · · , |Zm|p)] , Zi ∼ i.i.d.N (0, 1), i = 1, . . . ,m. This normal-

ization ensures that the functional provides an unbiased estimator for σ pi . Since the scaling
factors are inversely related to the expected value of the order statistics, we have the rank-
ing, µ(1,m)

p > . . . > µ
(m,m)
p . For high values of p and m, these factors become quite large

for the lower order statistics, while they are very small for the higher order statistics.8

The class of neighborhood truncation estimators generalize the MinRV and MedRV
estimators, as we have, MinRV = NTN (1, 2, 2)) and MedRV = NTN (2, 3, 2).9 Under
appropriate conditions the NT estimators are consistent and afford a CLT. We confirm this
result when we introduce an even wider class of robust estimators in Section 3.

2.4.4 Combining Power Variation Estimators

It seems natural to combine some of the estimators introduced above to obtain superior
asymptotic properties and, possibly, improved finite-sample performance. It is, however,
outside the scope of the current paper to pursue this topic in depth. Nonetheless, we do
develop the framework and notation to accommodate such combination estimators, as it is
useful for our introduction of a new class of robust estimators in the next section.

Assume we have a candidate set of K separate jump-robust power variation estimators
which all are unbiased, consistent and afford a CLT under the local Gaussian null hypothesis.
We denote this set of estimators, E = { E1, . . . , EK }. Almost trivially, it is then, in theory,
feasible to improve the performance of any single estimator by combining it with others.10

8For IQ estimation based on a block with five returns, we have µ(1,5)
4 = 35.0, µ(2,5)

4 = 5.74, µ(3,5)
4 =

1.44, µ(4,5)
4 = 0.40, andµ(5,5)

4 = 0.086. Hence, the largest normalization constant exceeds the smallest one
by a factor of several hundred; see Table 1 for additional information.

9For the integrated variance, these estimators may be interpreted as a redesigned version of the original
Quantile Realized Variation, or QRV, estimator of Christensen, Oomen and Podolskij (COP) (2008), where
it is applied to quantiles based on absolute rather than raw returns. The adaptation of QRV to cover the
ADS (2012) nearest neighbor truncation estimators is discussed in COP (2010). This was also previously
proposed during a conference discussion of COP (2010) by Kevin Sheppard, see also the comments in the
realized_quantile_variance function in his Oxford MFE Toolbox.

10In practice, finite sample complications can render the procedure less successful. One may want to
avoid estimators that are highly sensitive to microstructure noise or jumps. Likewise, high correlation across
estimators can generate optimal combinations that are extreme which may induce a degree of instability.
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We formalize the selection of a subset of the estimators by introducing a “selection”
vector, identifying the elements in E used to construct a given (combination) estimator.
Hence, we let the 1xH vector I = ( k1 , . . . kH ), 1 ≤ H ≤ K , consisting of an ordered
subset of integers from {1, · · · , K}, indicate that the combination estimator is based on
the set EI = (Ek1 , · · · , EkH ). Denoting the set of all possible selector vectors I, any subset
is now uniquely identified by I ∈ I, where I ranges from a scalar (using a single estimator),
at the one extreme, to the full vector {1, · · · , K} (using them all), at the other extreme.

A natural way to preserve the desirable properties of the individual estimators is to
exploit linear combinations with non-negative weights that sum to unity. For example,
focusing exclusively on a set of NT estimators constructed using a return block of size m,
we have E = { E1, . . . , Em }, where each element represents an unbiased estimator based on
the corresponding (absolute return) order statistic. Picking a specific NT estimator amounts
to, a priori, selecting a given integer j ∈ {1, · · · , m}. There are a total of 2m − 1 distinct
non-empty subsets of E from which to construct a combination estimator. It is a routine
exercise to extend our asymptotic results to cover the case of any such linear combination
of NT estimators.11 Conceptually, it is likewise straightforward to derive corresponding
results for linear combinations involving alternative types of jump-robust estimators.

In summary, within the ideal setting of Assumptions 1 and 1A, superior asymptotic
performance can be obtained by combining the information associated with all available
estimators. However, this must be weighed against the robustness objective of ensuring
reliable finite sample inference in the presence of jumps as well as other potential sources
of noise. Such robustness concerns motivate the introduction of an even broader class of
combination estimators in the following section, obtained by nonlinearly combining suitably
chosen unbiased estimators via a second layer of order statistics.

3 Robust Neighborhood Truncation Estimation

Our major objective is to develop a reliable jump-robust procedure for estimating measures
associated with the integrated quarticity. Most of the estimators reviewed in the previous
section were developed for IV, even if they can be adapted for higher order power variation
measures. It is worth recognizing that the relative importance of factors impacting the
trade-off between statistical efficiency and robustness changes substantially as we estimate
higher order power variation measures. In fact, our simulation evidence demonstrates, quite
strikingly, that the most suitable approach for IV estimation is unlikely to be preferable
when estimating IQ. Consequently, we now introduce a novel inference procedure which
enhances the robustness to common sources of finite-sample distortions and allows for a
great deal of flexibility in implementation so that the estimator can be tailored to the
specific features of a given return series and market environment.

11This is analogous to the use of linear combinations for the QRV estimator explored by COP (2008).
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3.1 Theory

This section proposes estimating integrated power variation via a nonlinear combination of
existing unbiased estimators, obtained by invoking an additional layer of order statistics. We
develop the theory for neighborhood truncation estimators, but the principles apply for any
set of unbiased estimators. The emphasis is on finite sample robustness to microstructure
noise and jumps, so we label them “Robust Neighborhood Truncation,” or RNT, estimators.

For a return block of size m, there are m distinct NT estimators, namely one for each
order statistic. One may combine any subset of these to produce an estimator that exploits
more sampling information than can be utilized by any individual one. The set of alternative
selections is the set, I, of non-empty subsets of {1, · · · , m}. A specific choice is given by
I = ( k1 , . . . kH ), 1 ≤ H ≤ m. The corresponding NT estimators are defined via the
functionals they apply to the underlying return blocks. To facilitate the exposition, we use
the following short-hand notation for these functionals, applied to the ith return block,

fNT
i,I

(m, p ;N) =
(
fNTi (k1,m, p ;N), . . . , fNTi (kH ,m, p ;N)

)
.

The rationale behind the NT estimators is to alleviate the impact of extreme returns –
large or small – which may be incompatible with the i.i.d. Gaussian assumption. The
robust neighborhood truncation principle takes the reasoning one step further by producing
an estimator for σ pi based on a suitable order statistic among the subset of selected NT
estimators. Formally, we have,

fRNTi (I; j,m, p ;N) =
(
µ(j,I)
p

)−1
qj
(
fNT
i,I

(m, p ;N)
)
, j = 1, . . . , H ,

where µ
(j,I)
p = E [ qj (|Z1|p, · · · , |ZH |p) ] , Zh ∼ i.i.d. N (0, 1), h = 1, . . . , H.

Normalization is required, even if each NT estimator is individually unbiased, because
selection conditional on observed realizations induces a bias. This is corrected by scaling
with (the inverse of) the expected value of the corresponding order statistic for a standard
normal Hx1 vector. This normalization factor is not available in closed form, but may be
determined, to any degree of accuracy, by numerical integration or simulation.

As before, the actual estimator is obtained by averaging the estimates across all blocks
in the trading periods, so we have,

RNTN (I; j,m, p) = f
RNT (I; j,m, p ;N) = 1

N −m+ 1

N−m+1∑
i=1

fRNTi (I; j,m, p ;N) .

Notice that the RNT procedure involves two layers of order statistics: we first construct
consistent NT estimators from the order statistics of a block of absolute returns (which
readily may be extended to any set of consistent estimators), and then obtain the RNT
estimator from another order statistic applied to a subset of these NT estimators. This
provides a great deal of flexibility in alleviating the impact of extreme returns. In line
with the logic behind the MinRV and MedRV measures, the RNT estimator is consistent
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if we exclude the largest order statistic from I. Asymptotically, this ensures that none of
the NT estimators are generated from a (scaled) jump return. Alternatively, this is also
guaranteed if we avoid constructing the RNT estimator from the largest realization of the
NT estimators, i.e., j < H in the second step.

Proposition 1 Let a family of H distinct NT estimators, indexed by I, be generated from
absolute return blocks of size m. The largest order statistic used for constructing any of
these NT estimators is denoted kH , kH ≤ m. Next, consider the RNT estimator obtained
from the jth order statistic applied to this family of NT estimators, j ≤ H.

If (i) Assumption 1 holds; (ii) kH < m and/or j < H ; and (iii) p is a positive, even
integer; then, as N →∞,

RNTN (I; j,m, p) P−→
∫ 1

0
σpu du .

If, in addition, Assumptions 1A applies, we obtain, for η (I; j,m, p) a known constant,

√
N

(
RNTN (I; j,m, p) −

∫ 1

0
σ pu du

)
StableL→ N

(
0, η(I; j,m, p)

∫ 1

0
σ 2p
u du

)
.

The proposition warrants a few comments. First, the distributional convergence is stable
with a mixed Gaussian limit, i.e., a normal distribution conditional on the realization of
the integrated power variation, PV (q) =

∫ 1
0 σ

q
u du, where, importantly, the limiting normal

variate is independent of the (random) power variation process.12 Second, the convergence
result is qualitatively similar to those established for existing power variation estimators,
with the “efficiency factor” η(I; j,m, p) determining the relative asymptotic efficiency of the
estimator. Third, the main objective is not efficiency per se, but good performance along
with (finite sample) robustness to jumps, noise, and other data irregularities. Fourth, the
results apply for the Neighborhood Truncation and Nearest Neighbor Truncation estimators,
as these constitute special cases involving a particular choice for the vector I . Fifth, the
results are likely to extend to the infinite activity jump case, given suitably tight constraint
on the size of the associated (jump) activity index.13

3.2 Illustration

The simulation and empirical work in the following sections exploit fairly small blocks of
m ≤ 5 in order to retain resiliency relative to rapidly changing volatility levels during the
trading day. In addition, we find it useful to eliminate estimators that stem from the lowest

12See, e.g., Jacod and Shiryaev (2003), Chapter IX, for an introduction to stable convergence.
13We intend to apply these estimators in a setting with microstructure noise. As discussed in Section

4.2, this can be accommodated in the finite activity jump scenario via pre-averaging with a relatively large
window size, resulting in a suboptimal convergence rate, but added robustness to noise. The literature on
inference in the presence of infinite activity jumps and noise is limited. However, the findings for MPV
estimators in Podolskij and Vetter (2009) and Hautsch and Podolskij (2010) suggest constructive results are
feasible. Establishing formal results for this case falls outside the scope of the present paper.
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order statistics of the absolute returns as these are relatively more affected by market
microstructure noise such as price discreteness and bid-ask bounce. This is a particular
concern, because these estimates are bias-corrected by scaling the original small returns
by a large factor, implying that microstructure distortions may be amplified. Likewise, we
typically satisfy the formal constraint on the order statistics by picking j < H, so we avoid
basing the RNT estimator on the largest realization among the relevant NT estimators.

For a 5-dimensional return block, the construction of the RNTN ((3,4,5); 1, 5, 4) and
RNTN ((3,4,5); 2, 5, 4) estimators are exemplified in Figure 2. The notation becomes quite
involved so, for brevity, we refer to the two estimators in the diagram as RMinRQ and
RMedRQ, respectively.14 Both play a significant role in our subsequent exposition. For
these estimators, the two smallest absolute returns are discarded, while the remaining three
are used to compute the corresponding NT estimators. Among those, we pick the lowest,
respectively median, realization and scale it to construct the associated RNT estimator.

[Insert Figure 2 about here.]

A few features are worth emphasizing. First, we display the NT estimators obtained
from the first two order statistics along with the rest, even if they are excluded from the
construction of the estimator. Hence, the third box displays all five returns taken to the
fourth power. An extreme right skew is evident, with values spanning 0 to 915.1, even if
the initial returns are not particularly scattered. A zero return is, of course, common due
to the discreteness of the price grid. Second, between box 3 and 4 we apply the relevant
scaling factors for the NT estimators, see Panel B of Table 1. Strikingly, the large factor
(5.74 = (0.1741)−1) for the second order statistic produces, by far, the largest realized
estimator in box 4 (466.2). Finally, excluding the NT estimators originating from the two
smallest absolute returns (0, 466.2), we pick the minimum and median of the remainder
and scale these statistics (78.9 and 163.3) suitably with the scaling factors provided in
Panel D of Table 1 (2.611 = (0.38303)−1 and 1.214 = (0.82367)−1) to obtain the local RNT
estimators for σ 4

i of 206.1 given by RMinRQ, respectively 198.3 given by RMedRQ. These
realizations happen to stem from the two largest order statistic of the original return block
(5.5 and 4.5), but the low scaling factors for these order statistics (0.086 = (11.59249)−1

and 0.398 = (2.51102)−1) imply that the associated (unbiased) NT estimators in box 4 are
the smallest among the relevant subset. It reflects the relatively low spread between the
three largest absolute return realizations of 4.0, 4.5, and 5.5. In general, these procedures
tend to moderate the local estimates relative to estimators which rely more directly on the
raw fourth powers in box 3.

[Insert Table 1 about here.]
14In this notation, the initial “R” references the RNT estimator, “Min” (“Med”) signals that we exploit

the smallest (median) realization of the underlying NT estimators, and “RQ” (“RV”) indicates realized
quarticity (realized variance) estimation, that is p = 4 (p = 2). It remains implicit that we take m = 5, but
retain only the three largest absolute returns in constructing the estimator.

13



4 Robustification towards Noise and Errors

In estimating higher order return power variation measures, we deal with procedures that
can be highly sensitive to erroneous outliers as well as the presence of noise. Hence, we
adopt various techniques that mitigate the impact of such features on the inference. Our
strategy includes standard pre-filtering for obvious data errors, pre-averaging to reduce the
magnitude of the noise in the returns, and conducting inference on the ratio of IQ versus
IV 2 rather than directly for IQ. However, most inference techniques continue to display
excessive sensitivity to data irregularities. Consequently, we supplement the above steps
with a novel filtering method, specifically designed for robust power variation estimators
operating on return blocks. This section reviews the techniques we employ to enhance the
robustness of our inference towards data errors and noise.

4.1 Eliminating Obvious Errors in the Tick-by-Tick Data

Any large set of raw transactions data is invariably subject to recording errors that infuse
noise into the high-frequency returns. Most dramatically, faulty prices create artificial
outliers, causing so-called “bounce-backs” in returns, as there is a “jump” both when the
flawed price first appears and later, often shortly thereafter, when the price reverts to the
correct level. Hence, the need for effective cleaning procedures has long been acknowledged.
BNHLS (2009) lay out a systematic framework for dealing with trade data from NYSE-TAQ.
In their terminology, we apply the filters P1-P3 and T1-T4.15 These filters are arguably
mild and uncontroversial and simply aim to eliminate obvious data errors.

4.2 Pre-Averaging

The assumption that (observed) high-frequency returns embody a diffusive component is
systematically violated at the tick-by-tick level due to various market microstructure fea-
tures, including the finite price grid and the bid-ask spread. As a result, tick-by-tick price
changes are often an order of magnitude larger than what is consistent with a diffusive
characterization. One effective approach to mitigating the impact of such noise is to apply
pre-averaging, as originally suggested by Podolskij and Vetter (2009a). This is achieved by
transforming the noisy observations on ultra high-frequency returns into a smaller set of
kernel-averaged, and thus less erratic, “smoothed” returns. In particular, each of the m re-
turns within a block are obtained via kernel-averaging based on separate, non-overlapping
subsets of tick-by-tick returns. The benefit is a reduction in the impact of idiosyncratic
noise and, especially, distortions induced by bounce-backs. The drawback is a substantial
drop in the underlying sampling frequency. The latter impacts the choice of the window

15P1: Retain only observations with time stamps between 9:30am and 4:00pm. P2: Retain only trades
with positive prices. P3: Retain only trades originating from the main exchange (NYSE for all stocks except
MSFT and INTL for which it is NASDAQ). T1: Delete entries with corrected trades. T2: Delete entries
with abnormal sale condition. T3: If multiple trades occurred with the same time stamp, use the median
price. T4: Delete entries with prices above the ask (or under the bid) by more than one bid-ask spread.
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width, m, as the (diffusive) volatility fluctuates more widely across longer blocks.
Our implementation of pre-averaging, detailed in Appendix C, is based on a relatively

conservative choice of sampling frequency. This has the effect of emphasizing noise ro-
bustness over efficiency. Importantly, it also simplifies the analysis, as the impact of noise
may be largely ignored in the asymptotic theory. First, the pre-averaging estimator has an
asymptotic bias, but if the (pre-averaged) returns are not sampled at very high frequencies,
the bias is, effectively, negligible. Second, if there are N original high-frequency returns,
the optimal convergence rate for pre-averaged estimators in the presence of noise is typi-
cally N1/4. The associated asymptotic variance reflects both the sampling variance of the
true returns and the noise variance. This result is obtained if the number of returns per
pre-averaging block, 2 · K, grows at the asymptotic rate N1/2, so that the total number
of pre-averaged returns without overlap, n, also is of order N1/2. This allows the conver-
gence rate – as usual – to equal the square-root of the number of (pre-averaged) returns,
i.e.,
√
n = N1/4. But if K is larger, asymptotically rising at the rate N q for 1

2 < q < 1,
the number of pre-averaged returns grows more slowly, n ∼ N1−q, implying a convergence
rate of

√
n = N

1−q
2 , e.g., N

1
5 for q = 3

5 . At the same time, the noise will be averaged
more aggressively and vanishes asymptotically at a faster rate. The bottom line is that, by
appealing to a slower asymptotic convergence rate relative to the number of original high-
frequency returns, the (asymptotic) efficiency is lower, but the asymptotic variance of the
pre-averaging estimator becomes identical to the one for the no-noise case with n returns.
However, this equivalence holds only for pre-averaged return series based on non-overlapping
blocks without sub-sampling. The additional efficiency gain attainable by sub-sampling, as
in Appendix C, is not identical with and without pre-averaging, differs from one estimator
to another, and generally is not known in closed form.16 Nonetheless, the efficiency of each
pre-averaged and sub-sampled estimator in the presence of noise is very close to its efficiency
in the absence of noise, as long as the pre-averaging window size is sufficiently large relative
to sample size. We monitor the latter prediction in the simulations below to verify that it
provides a useful characterization of the relevant features of the finite sample distribution.

In summary, we appeal to an asymptotic theory guided by a slightly slower convergence
rate than the “optimal” N1/4 for pre-averaged estimators. This enhances robustness to noise
while allowing the asymptotic theory for the no-noise case to be the relevant benchmark.
In practice, we choose a relatively large return block so our procedure is compatible with
the theoretical setting in this regard. This has the convenient implication that the theory
in Sections 2 and 3 provides the appropriate basis for assessing the limiting behavior of
our estimators computed from pre-averaged returns, even if it ignores the presence of noise.
Thus, henceforth, we simply treat the pre-averaged returns as if they were the original raw
returns and, with slight abuse of notation, we redefine N to denote the relevant number of

16Analogous to the scaling factors induced by the pre-averaging kernel, the efficiency with subsampling
depends on the pre-averaging scheme as well as the length of the pre-averaging window relative to sample
size. Hence, applications involving subsampling must develop a suitable estimate of the terms involving the
efficiency factor η in Section 3. One feasible approach is simulation.
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(pre-averaged) returns, while accommodating the effect of sub-sampling in the conventional
fashion.

4.3 Filtering via Truncation of Return Functionals

Even for returns based on pre-averaged tick data and sampled at moderate frequencies, mi-
crostructure features and other data irregularities may induce inhomogeneous and serially
correlated observations that blatantly violate our distributional assumptions. For quartic-
ity estimation, in particular, it is paramount to control the impact of this type of data
imperfections to achieve a beneficial trade-off between robustness and efficiency.

This section briefly outlines a general truncation principle for return functionals that
enhances the robustness of integrated power variation estimators operating on return blocks.
It provides an extension of existing techniques that employ truncation to alleviate the impact
of jumps or data errors. However, the philosophy and implementation are very different.
Existing procedures truncate returns based on whether a single observation constitutes a
significant outlier under the local Brownian null. Moreover, the truncation is an essential
step in rendering the estimator robust as it dampens, and asymptotically eliminates, the
distortion induced by price jumps on the estimated power variation. For this to be effective,
the detection of larger jumps must be reliable, and it is common to apply a threshold for
jumps that correspond to “three sigmas” or a p-value of about 0.3%. As a result, the
procedure generates a non-trivial incidence of type I errors because diffusive returns based
on high-frequency return data inevitably are subjected to unwarranted truncation.17

In contrast, we develop a filtering procedure that operates directly on the jump-robust
functional and more broadly alleviates distortions induced by deviations from the null that
the block consists of i.i.d. draws from a normal distribution. In this scenario, jump ro-
bustness is, in principle, already assured by the choice of an appropriate functional. Hence,
the filtering is merely intended to eliminate truly excessive ex post estimates of local power
variation, driven by functional values incompatible with the maintained null hypothesis. As
such, we rely on an extremely conservative threshold for truncation, typically with p-values
around 10−6 or below. This is sufficiently low that we expect, under the null hypothesis,
to truncate less than a single realization of the return functional across our entire sample.
In practice, the underlying assumptions are violated and truncation occurs with non-trivial
frequency which helps control the associated distortion in the power variation estimators.

To introduce this filtering procedure, we recall that fi = f(r i,m) is a functional provid-
ing an unbiased estimator of the local power variation, σ pi under the null hypothesis. Next,
for a sufficiently small α, e.g., 10−6, we let Q (1−α)[g] denote the (1 − α)th-quantile of the
distribution of a random variable g. We then define the corresponding truncated functional

17Recognizing the downward bias, CPR develop an iterative rescaling procedure to alleviate this effect.
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f
(1−α)
i ,

f
(1−α)
i =

{
fi if fi σ

−p
i ≤ Q (1−α) [ fi · σ−pi ]

0 else.

Accordingly, the realized truncated estimator based on f (1−α) is given by,

1∑N−m+1
i=1 I{ fi · σ−p < Q (1−α)[ fi · σ−p ]}

N−m+1∑
i=1

f
(1−α)
i ,

where I{A} equals one if the expression A is true and zero otherwise. Setting α = 0 we
obtain the usual realized estimator based on f without truncation. Moreover, if m = 1 our
functional filtering is equivalent to the usual return filtering at the significance level α.

A feasible version of the filter is developed in Andersen, Dobrev and Schaumburg (2011).
The procedure exploits a local estimate of volatility based on preceding observations to
provide the appropriate truncation level – exactly as done for the standard truncation RV
estimator – while simulation is performed to obtain the critical values, taking into account
the presence of estimation error for local volatility.

4.4 Using the Ratio
√

ÎQ / ÎV for Robust IV Inference

The primary applications of IQ estimation is to draw inference about IV and to test for
jumps under the null hypothesis of no jumps. For these procedures to perform well, it is
essential that the IQ estimator has good efficiency and finite sample jump robustness.

Let ÎV , ÎQ be suitable jump-robust estimators of IV and IQ. A natural approach for
drawing inference about IV follows directly from its limiting distribution,

√
N
[
ÎV − IV

]
√
η ÎQ

StableL→ N (0, 1) ,

where the “efficiency” factor, η, depends on the specific choice of estimator.
Letting RV denote the realized volatility estimator, which is the efficient estimator of

IV under the null, the natural Hausman test statistic for the presence of jumps, see BNS
(2004) and Huang and Tauchen (2005), is given by

√
N
[
R̂V − ÎV

]
√

(η − 2) ÎQ
StableL→ N (0, 1) .

An asymptotically equivalent set of test statistics with better finite sample properties, pro-
posed by BNS (2002), can be derived by applying the delta method to the log-transform
of the volatility measures. This has the benefit that IQ enters only in terms of the ratio
√
IQ/IV which, as also demonstrated in our empirical investigation below, has a stabilizing

17



effect on the variance of log ÎV .
√
N [ log( ÎV )− log(IV ) ]√

η ÎQ

ÎV
2

StableL→ N (0, 1) .

The corresponding Hausman test statistic for the presence of jumps is
√
N [ log( R̂V )− log(ÎV ) ]√

(η − 2) ÎQ

ÎV
2

StableL→ N (0, 1) .

While the literature has documented superior performance of this ratio for jump-robust
inference in a frictionless setting, it is evident that the ratio also will impact the way market
microstructure noise affects the inference. In Appendix B, we provide an illustration based
on computations involving the non-robust versions of the IQ and IV estimators. The findings
point towards favorable properties of the ratio statistic relative to the raw statistic along this
dimension as well. The intuition is as before: the realized IV 2 and IQ statistics tend to be
impacted by noise in similar ways so the ratio provides a partial cancelation of errors. The
issue is further pursued within the simulation set-up entertained in the following section.

5 Finite Sample Simulation Evidence

We design a series of Monte Carlo experiments, each focusing on a distinct feature of the
data generating process that may affect the finite sample behavior of the estimators. The
emphasis is on the qualitative impact of each feature in isolation. In reality, multiple
features interact, creating complex patterns in tick-by-tick data. The joint presence of
various factors, partially reinforcing or counteracting each other, render it difficult to infer
the significance of individual features. Hence, our simulation design is not intended to
replicate the empirical results in all dimensions, but to assist in identifying the features
that create differential patterns in the results obtained from alternative estimators.

5.1 Estimators

We adopt the novel filtering procedure, based on (mildly) truncating the local power vari-
ation functional, for all estimators except those already truncating individual returns more
aggressively, i.e., the truncation power variation estimators. For the latter, the impact of an
additional layer of mild truncation is negligible.18 For the truncation estimators, we follow
the approach advocated by CPR, as they document it improves on existing implementations.
Overall, we consider the following IV and IQ estimators,

1. Multi-Power Variation: We denote MPVN (m,2) by MPVm and MPVN (m,4) by
MPQm. We include MPV3 and MPV5, as well as MPQ3 and MPQ5 in our

18We confirm that our filtering procedure under the BM null, applied to pre-averaged returns, is active
for about 1-in-106 return blocks, while the CPR filter is applied to roughly 1-in-103 returns on average.
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analysis. This type of estimators was introduced by BNS (2004);

2. Truncated Power Variation: We use TRV = TPVN (1,2) and TRQ = TPVN (1,4),
as well as Truncated Bipower Variation, TBV = TPVN (2,2) and Truncated Bipower
Quarticity, TBQ = TPVN (2,4). They are discussed by, e.g., Mancini (2009) and CPR;

3. Neighborhood Truncation: We consider MedRV = NTN (2,3,2) and the corre-
sponding quarticity estimator MedRQ = NTN (2,3,4). They are developed in ADS
(2012) and in this paper;

4. Robust Neighborhood Truncation: We useRMinRV = RNTN ((3,4,5); 1, 5, 2),
RMedRV = RNTN ((3,4,5); 2, 5, 2), RMinRQ = RNTN ((3,4,5); 1, 5, 4), and
RMedRQ = RNTN ((3,4,5); 2, 5, 4). They are developed in this paper.

In addition, when investigating IV estimators, we include the standard RV estimator, serving
as a non jump-robust benchmark, along with the QRV estimator of COP (2010). We omit
an IQ counterpart of QRV from our analysis because we find the block size of 20 or more
returns, necessary in order to establish the quantiles, to be prohibitively large for reliable
inference on actual data subject to irregular sampling and pronounced intraday variation
in volatility. Moreover, as discussed previously, one may interpret our NT estimators as
modified QRV estimators based on the absolute returns over very small blocks.

Finally, taking into account the need to apply suitable noise-reduction technique when
conducting inference in practice, we focus our Monte Carlo analysis exclusively on the pre-
averaged implementation of all estimators, as defined in detail in Appendix C, including
the efficiency gain from sub-sampling. The use of pre-averaging necessitates a somewhat
conservative choice of sampling frequency. We report results based on 30, 120 and 600
second return observations.19

5.2 Simulation Results

We largely follow the comprehensive simulation design in ADS (2012) adopted for comparing
IV estimators. We calibrate the unconditional daily IV to 0.000159, or roughly 20% per
year, across all scenarios. For each scenario we simulate 250,000 trading days, corresponding
to about 1,000 years, from 9:30 am to 4:00 pm with new prices arriving every 3 seconds on
average, so we have 7,800 distinct prices each day.

We consider three major departures from the Gaussian benchmark: (i) microstructure
noise: bid-ask bounce, recording errors, irregular trade intervals, and price decimalization
(discreteness); (ii) time-varying volatility: stochastic and deterministic (diurnal) vari-
ation in volatility along with volatility jumps; (iii) jumps in returns: one or multiple
intraday price jumps. Each scenario is briefly described below, with additional details avail-
able in ADS (2012). We focus on estimators of IV , IQ, and the ratio

√
IQ/IV , with the

19These return intervals span the range that is relevant for our empirical application. Findings based on
a more comprehensive set of frequencies are reported in ADS (2011).
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latter computed using the same type of estimator for the numerator and denominator.20

For brevity, we often – including in the tables – refer to the ratio as estimated by, say,
MPQ3, when it is estimated by

√
MPQ3/MPV 3.

5.2.1 The Brownian Motion Benchmark

This is our baseline scenario with sampling on an equispaced time grid. It is an ideal setting
in which we expect the finite sample performance of all estimators to closely mimic the
underlying asymptotic theory. Panel A of Tables 2 and 3 verify that most of the estimators
are unbiased for IV and IQ. The exception is the minor downward bias in TRV, TBV, TRQ
and TBQ. This stems from noise in the truncation and bias-correction procedures applied
in constructing these estimators. They truncate individual returns at three (estimated)
standard deviations, so a scaling is needed to mitigate the impact of erroneous truncation
of diffusive returns and this introduces some estimation error, even under the BM null. All
other estimators rely on the very conservative truncation level (p-value of 10−6) associated
with our functional filtering, described in Section 4.3. As intended, the impact of this filter
is negligible under the null hypothesis, so the estimators remain unbiased.

In terms of efficiency, the ordering of the jump-robust estimators is as prescribed by
theory, with TRV superior in terms of RMSE for IV (matching RV), followed by RMedRV,
QRV, RMinRV, and TBV. For IQ, TRQ is best, followed very closely by RMedRQ, and
then RMinRQ, and TBQ at the higher frequencies.21 In summary, the RNT estimators
perform well and, in particular, come close to matching the efficiency of TRQ for IQ. It
suggests that this type of estimator can enhance robustness to noise and jumps without any
significant loss of efficiency in general.

Finally, turning to the estimates for
√
IQ/IV in Table 4, Panel A, we notice a small

downward bias at the lowest sampling frequency in almost all cases. This is caused by a finite
sample Jensen effect.22 More remarkably, in terms of efficiency, the TRQ estimator now
performs relatively poorly. Instead, RMinRQ and RMedRQ outperform the alternatives
by a substantial margin. The dramatic shift in relative efficiency reflects the fact that
cancelation of outlier terms in the numerator and denominator is particularly effective
under the robust neighborhood truncation principle where the largest return realizations
are prevented from exerting any significant impact. Likewise, the MPQ5 estimator performs
quite well due to the effective dampening of outliers. We conclude that, even under ideal
circumstances, the RNT estimators provide an attractive alternative to existing procedures,
especially for inference and jump tests based on the

√
IQ/IV ratio.

[Insert Tables 2, 3, 4 about here.]
20This choice facilitates effective cancelation of noise and outliers across the numerator and denominator.
21Recall, we abandon the QRV style estimators for IQ due to the rapidly deteriorating performance in

estimating higher order return variation under realistic market conditions.
22The improved performance for TBQ is due to a fortuitous cancelation of the biases of the numerator

and denominator under the BM null.
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5.2.2 Jumps in Returns

To assess finite sample jump-robustness, we augment the BM model with return jumps of
the Poisson-Gaussian type that are independent of volatility and account for 20% of the
daily QV (25% of IV). We focus on two cases, one with a single jump per day, the “BM + 1
Jump” scenario, and one with four jumps per day, the “BM + 4 Jumps” scenario, but the
overall jump contribution to the daily variance is identical for the two cases.

Panels B and C in Table 2 show that TRV, TBV, QRV, RMinRV and RMedRV provide
the best robust IV inference in terms of RMSE. Moreover, the relative performance within
this group shifts as we move from a single to four jumps with, in particular, RMinRV and
TBV improving their standing as the jump intensity increases. This tendency is even more
pronounced for IQ estimation, where panels B and C in Table 3 reveal that RMinRQ is the
best performer in both jump scenarios at the 2-minute frequency.

Finally, and very strikingly, panels B and C of Table 4 show that the pairing of RMinRQ
and RMinRV dominate all other estimators by a significant margin in terms of estimating
the ratio

√
IQ/IV , which governs the precision of log(IV). Thus, from the perspective

of finite sample jump-robustness, the RNT estimators seem to offer attractive efficiency
improvements, especially for the estimation of IQ and

√
IQ/IV .

Juxtaposing Panel B or C in Tables 3 and 4, we also note that the distortions induced
by jumps are much less pronounced for the ratio statistic than for IQ. Again, the partial
cancelation of the (upward) bias in the numerator and the denominator is operative. Thus,
ratio-based inference is likely preferable regardless of the choice of estimator. In summary,
estimating the ratio statistic using RMinRQ emerges as a natural part of practical jump-
robust inference for IV or testing for jumps. Below, we explore whether this estimator is
robust to other common “irregularities” in high-frequency return data as well.

5.2.3 Time-varying volatility

Pronounced intraday variation as well as seemingly abrupt changes (jumps) in spot volatil-
ity are prevalent in high-frequency returns. This poses a challenge for power variation
estimation, as jump-robust estimators may not be able to distinguish sharply between
rapidly shifting volatility and return jumps. For example, in the context of IV estima-
tion, ADS (2012) document sizeable finite sample distortion in IV estimators when the
intraday volatility is stochastic and subject to a diurnal U-shaped pattern. This section
extends this analysis and draws broader conclusions for estimation of IQ and

√
IQ/IV by

exploring two distinct scenarios that violate the (locally) constant volatility assumption.
Our first scenario, “SV-U,” is a modification of the corresponding design in ADS (2012).

The diurnal pattern is calibrated to the average volatility of tick-time sampled trades of the
stocks analyzed in the next section. In particular, we simulate a two-factor affine stochastic
volatility model and superimpose an asymmetric diurnal pattern (Hasbrouck, 1999) for
which the variance at the open is more than four times the midday and end-of-day variance.

The second scenario, “BM + 1 Volatility Jump,” involves a six-fold spike in the intraday
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variance at a random point in time, uniformly distributed across the trading day. Volatility
is constant before the jump, and then constant at the new higher level following the jump.
In this way, the scenario approximates the effect of sudden bursts in market activity that
have inspired the development of alternative volatility jump specifications.

The striking similarity between Panels D and E of Tables 2-4 indicates that these two
distinct forms of time variation in volatility have a qualitatively similar impact on the
estimators in terms of finite sample bias and RMSE. Effectively, both scenarios render
neighboring returns inhomogeneous, resulting in a downward bias due to scaling factors
that are incorrectly sized as well as inappropriate truncation of diffusive returns that are
misclassified as jumps due to the fluctuating level of the return variance. The less “local”
estimators are more exposed to such heterogeneity. This explains the ordering of the biases
of the IV and IQ estimators in Panels D and E of Tables 2 and 3, with estimators relying on
block size one to three being the least biased, those based on blocks of four or five returns
being slightly more biased, and finally the estimators relying on substantially larger block
sizes (such as 20 for QRV in Table 2) being most biased.

In summary, Panels D and E of Table 3 provide evidence against the use of sparser
sampling frequencies, such as ten minutes or lower, for IQ estimation. This runs counter
to suggestions in the literature, indicating that biases in IQ estimation may be alleviated
through sparse sampling. We find, in contrast, that the bias is much lower, and quite
tolerable, at the two minute frequency, regardless of the block size of the IQ estimator.

Most importantly, Panels D and E in Table 4, confirm that the biases for the ratio
√
IQ/IV are less pronounced and more uniform across the full range of estimators, as may

be expected given that we obtain partial cancelation of the downward biases which affect
both the numerator and denominator. Moreover, the ratio estimator based on RMinRQ
and RMinRV again performs best from an efficiency standpoint in spite of the block size
of five. For comparison, increasing the block size of the MPQ and MPV estimators from
three to five enlarges the RMSE for

√
IQ/IV in the “BM + 1 Volatility Jump” scenario.

Consequently, the superior efficiency in estimating
√
IQ/IV stems from the design of the

robust neighborhood truncation principle rather than from the increased block size.
We conclude that inference based on the ratio

√
IQ/IV appears to be attractive also

under time-varying volatility. Moreover, the RMinRQ estimator provides quite compelling
performance in this setting as well for the higher sampling frequencies.

5.2.4 Microstructure Noise

There is a tradeoff in the choice of sampling frequency with jump robustness improving
and resiliency to microstructure noise deteriorating as the return interval shrinks. We now
explore the effectiveness in dealing with the adverse impact of various noise features by ap-
plying pre-averaging, as detailed in Appendix C, and sampling at moderate frequencies. In
fact, as outlined in Section 4.2, our asymptotic theory is developed in a noise-free setting, so
we seek to determine whether this provides a suitable approximation for practical inference.
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We consider four separate market imperfections. First, in our “BM + IID Noise” sce-
nario, Panel F, Tables 2-4, we simulate Gaussian i.i.d. noise with a noise-to-signal ratio
of λ = 0.25, in line with what is typical for trade data on individual stocks. Second, we
consider a “BM + 1 Bounceback” scenario, Panel G, Tables 2-4, in which (isolated) errors
in the recorded price induce so-called “bounce-backs” in returns, i.e., two large adjacent
jumps of opposite sign due to immediate price reversals. We calibrate the magnitude of the
bounce-back to match 20% of the daily QV (25% of IV). The third source of noise is irreg-
ular sampling, and the associated results are captured by our “BM + Sparcity” scenario,
Panel H, Tables 2-4. It is generated via random arrivals of the 7,800 distinct quotes by
sampling without replacement from the numbers in the range of 1 through 23,400. While
not necessarily realistic, this model is helpful in exploring the potential distortion of the
estimators when applied on non-homogeneously sampled returns, effectively inducing spu-
rious variations in their volatility. Finally, in our “BM + Discrete Pricing” scenario, Panel
I, Tables 2-4, we mimic price decimalization by rounding all intraday prices to the nearest
cent with a starting price of $50. Price discreteness is a major reason for the presence of
multiple zero returns in high-frequency samples, leading to pronounced downward biases of
many jump-robust estimators.23

First, the reported relative biases in Panels F, G, H, and I of Tables 2-4 reveal that,
irrespective of the noise scenario, it is necessary to avoid sampling at the highest frequency,
i.e., 30 seconds, to obtain reasonably unbiased estimates of IV and IQ, while the ratio
√
IQ/IV is unbiased for all scenarios except the “sparsity” setting. However, once we reach

2 minutes, all the relevant quantities are estimated without bias, except for a minor bias
for IQ in the sparsity scenario.

Second, for the 2-minute frequency, the MSE is nearly identical for the Brownian motion
case and the various noise scenarios, highlighting the efficacy of the pre-averaging, filter-
ing and subsampling procedures. In particular, for the ratio statistic, the MSE is literally
identical across all scenarios and estimators at the 2-minute frequency except for the sparse
sampling case. That is, noise has no discernible impact on the asymptotic errors of the
estimators at this moderate frequency, apart from minor distortions arising from inhomo-
geneous sampling of the returns. In the empirical work below, we mitigate this effect by
sampling in tick time which renders the return variability more uniform across observations.

Third, across all noise scenarios, the relative bias and MSE for the ratio
√
IQ/IV are

dramatically lower than for the IQ estimators. Thus, the cancelation of outliers in the
numerator and denominator helps robustify the ratio statistic in the presence of noise.

Finally, we note that the pre-averaging is extremely effective for the “BM + 1 Bounce-
back” scenario. This is due to the near perfect cancelation of adjacent jumps of opposite
sign when constructing the individual pre-averaged returns. In what follows, we rely on pre-
averaging as implemented in our simulation experiments to suppress the impact of noise
also in our empirical illustrations on real market data.

23MPV and MPQ, in particular, as they are based on products of adjacent (absolute) returns.
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6 An Illustration for the Dow Jones 30 Stocks

Since the “true” values of IV and IQ are latent, there is no simple way to directly compare the
performance of alternative estimators. Moreover, for IQ in particular, there is a great deal of
uncertainty regarding the actual precision of existing estimation procedures. The preceding
analysis has focused on bringing out the features that render estimation inaccurate as well
as non-robust, and then developing new approaches that should improve the inference. We
now seek to establish whether the issues we have identified actually do pose a challenge for
practical estimation and if the suggestions and procedures we have proposed appear helpful.

Consequently, this section explores properties of competing estimators of IV , IQ, and
√
IQ/IV for the Dow Jones 30 stocks using tick time sampling of NYSE/TAQ trade data.24

We split our sample period into a low volatility period, January 2005 - May 2007, and a
high volatility period, June 2007 - July 2009. This serves as a robustness check against
different noise-to-signal ratios and liquidity levels in the two periods.25 The focus is on the
estimates for IQ and

√
IQ/IV , while the IV results provide a benchmark for assessing the

RNT estimators as well as the impact of our new filtering scheme relative to prior findings.

6.1 Truncation of Return Functionals

As documented in Section 5.2.4, power variation estimators can be quite sensitive to devia-
tions from the local diffusive null, arising from microstructure features or recording errors.
Common data filtering procedures may eliminate extreme outliers, but they are not suffi-
cient to ensure sensible IQ estimates in practice for many candidate estimators of interest.

[Insert Figure 3 about here.]

Panel A of Figure 3 depicts signature plots for a group of IQ estimators, obtained by
averaging the daily IQ estimates across the entire sample period and all of the thirty stocks.
By construction, the figure speaks to mean and bias effects rather than efficiency. It shows
that the estimators generally are quite similar although it also reveals some significant vari-
ation. First, at the highest frequencies a few estimators, especially MPQ5, appear severely
downward biased. Hence, the noise-reduction associated with pre-averaging, sub-sampling
and filtering has been successful in stemming the upward bias of the raw estimators. The
remaining effects are consistent with the impact of irregular or sparse sampling of the re-
turns at the highest frequencies, see Table 3, Panel H. The other striking feature is the
slow decline in the plots as we move towards lower frequencies. The most likely explanation
is the impact of time-varying volatility within the sampling interval, as indicated by the
results in Table 3, Panels D and E. We pursue this issue in detail in the following section.

24When using tick sampled data, we are implicitly converting the calendar time scale to a tick scale, where
time evolves linearly in tick time. This implies that the estimators are consistent for IQ in tick time, but
not in calendar time. Importantly, in this setting the (tick time) IQ represents the relevant quantity for
assessing the asymptotic variance of the (tick time based) IV estimator and for inference regarding jumps.

25Ex post, we find no qualitative differences in results between the two samples, so we only report findings
for the initial sample. The full set of results may be gleaned from ADS (2011).
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Nonetheless, it is noteworthy that the signature plots are quite flat and largely coincide for
the various estimators in the range of 90-150 seconds.

By contrast, Panel B of Figure 3 offers widely diverging results. Here, none of the estima-
tors are subject to functional filtering, so only TRQ and TBQ provide uniform truncation of
stark outliers. The consequence is apparent. Apart from the extreme dampening achieved
by MPQ5, the remaining estimators are wildly upward biased at the higher frequencies.
This speaks to the lack of robustness of IQ estimators that do not exploit direct truncation
of individual returns. The problem of excessive variability, or noise, in IQ estimates has
been noted sporadically in the empirical literature and it has motivated some authors to
rely on low, and relatively inefficient but less error prone, frequencies for IQ estimation,
e.g., BNS (2004a) and Bandi and Russell (2008). Similarly, Jiang and Oomen (2008) uses
the squared IV as a simple approximation to IQ, thereby accepting a significant bias in
exchange for variance reduction of the IQ estimator.

Thus, it is very encouraging that the functional filtering regularizes the IQ estimators.
The nominal size of our filter is 10−6, so only gross violations of the Gaussian null is flagged.
However, obviously, the null hypothesis is not satisfied for actual high-frequency data, so the
truncation frequency is substantially larger in practice. For our equity data, the fraction of
observations filtered ranges from 0.01% to 0.05% for the 60-180 second range, depending on
the frequency and sample period. Overall, more than 70% of the stock days are untouched
by our functional truncation. In contrast, TBQ truncates at least one observation on
99.9% of the days.26 Overall, the evidence is compatible with our objective, namely that
the functional filtering should control major data irregularities while avoiding excessively
intrusive, and potentially distorting, truncation of the underlying returns.

6.2 The Intraday Volatility Pattern

One benefit of tick-time sampling of transactions data is that it tends to mitigate the
intra-day U-shape pattern in volatility. Figure 4 demonstrates that the tick-time sampling
succeeds in straightening the volatility pattern across the main part of the trading day, but
there is little impact on the elevated level of volatility in the first 60-90 minutes of trading.
Our Monte Carlo experiments found such intraday volatility variation to be a potent source
of systematic biases in power variation estimates, with the ratio statistic

√
IQ/IV being

less sensitive to such distortions than the raw IQ and IV measures.

[Insert Figure 4 about here.]

To systematically assess the empirical relevance of intra-day volatility fluctuations, and
in particular the diurnal volatility pattern, we split our equity sample into sub-groups

26Of course, this reflects the different philosophy behind the mild functional truncation filtering relative
to TRQ and TBQ. The latter employ truncation of single returns as the primary tool for achieving jump
robustness, and thus need to ensure that - asymptotically - all jumps are prevented from impacting the
IQ estimator. This requires aggressive truncation and, inevitably, some truncation of diffusive returns,
motivating the CPR adjustment to mitigate the resulting finite-sample bias, as discussed in Section 5.
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consisting of stock-day combinations representing the top and bottom deciles with respect
to a simple scale-free proxy for the intraday variation in volatility. This proxy, denoted
V oV (volatility-of-volatility), is constructed by splitting the trading day into 26 blocks,
and then obtaining the median 30 second absolute returns within each block after first
having eliminated all zero returns. Our V oV proxy is then defined as the coefficient of
variation (standard deviation divided by mean) of these 26 medians.27 Importantly, the
V oV measure is designed to pick up any significant variation in intra-day volatility and not
just the commonly occurring U-shape. In the following section, we provide signature plots
that broadly support our interpretation of the simulation evidence.

6.3 Signature Plots for Integrated Power Variation

Panel A of Figure 5 provides signature plots for the IV estimates averaged across all days
and stocks. They are plotted as a function of the sampling frequency implied by the size
of the pre-averaging window and the intensity of the transactions (in tick time). The RV
estimator is included as a reference point and, as expected, lies above the jump-robust IV
estimators which are bundled closely together across most of the frequencies.28 The main
outliers are MPV5 at frequencies higher than 120 seconds and QRV at frequencies lower
than 90 seconds. At high frequencies, the drop in MPV5 and, to a lesser extent, MPV3 may
be explained by the presence of zero returns, due to discreteness, which has a pronounced
impact on these estimators. Consistent with this explanation, RV is the only estimator not
to display a tendency to fall off at the highest frequencies. At lower frequencies, the striking
downward bias of QRV is in line with the evidence from the simulation experiments. While
all the jump-robust measures feature downward sloping signature plots, QRV is, by far,
subject to the most significant distortion.

The IQ estimators, shown in Panel A of Figure 6, display a similar but more pronounced
pattern of decline at the lowest sampling frequencies, consistent with the simulation sce-
narios that incorporate time-varying volatility. In particular, the estimators are roughly
ordered by block size, with the 5-block estimators at the bottom and the 3-block estimators
at the top. The truncation based IQ estimators, although nominally based on a short block,
are disproportionately impacted by time variation in volatility due to the wide window nec-
essary for determining the truncation thresholds, explaining the relatively sharp decline in
their signature plots. We do not include an IQ analogue to the QRV estimator as it displays
downward biases that are an order of magnitude larger than for the others.

The signature plot for the
√
IQ/IV ratio in Panel A of Figure 7 displays a relatively flat

but distinct monotonically declining pattern. This suggests that the microstructure effects,
afflicting estimators at the highest frequencies, cancel out quite effectively at moderate
frequencies consistent with the simulation evidence. The multi-power variation estimators
display clear abnormalities at the highest frequencies, primarily due to an imperfect offset

27We confirm that alternative robust volatility-of-volatility measures lead to qualitatively similar results.
28The distance from the (non-functional filtered) RV curve to the set of robust IV measures provides an

estimate of the average jump contribution to the quadratic return variation.
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of the zero returns in the denominator. At sampling frequencies of 60 seconds or lower,
however, all the estimators are tightly clustered and downward sloping in accordance with
the findings from the simulation scenarios with time-varying volatility.

To further explore the impact of time-varying volatility, Panels B and C of each figure
depict signature plots, respectively, for the top and bottom deciles with respect to our
volatility-of-volatility proxy, V oV , across the combined stock-day sample. It is evident that
both the IQ and IV signature plots on high VoV days are dramatically more steeply sloped
than on low VoV days, corroborating the hypothesis that the slope is caused primarily by
time-varying volatility due to factors like the intraday U-shape pattern, volatility jumps,
and volatility bursts associated with news effects. For the ratio statistic in Figure 7, the
signature plot for low VoV days is essentially flat, with the exception of the multi-power
estimators, when viewed on the scale of the high VoV days, highlighting the fact that time
variation in volatility also has a significant impact on the ratio statistic.

While the above evidence makes a fairly compelling case that VoV has a pronounced
impact on the slope of the signature plots, it is based on grand averages across stocks and
days and does not allow for formal statements about statistical significance. To provide a
more rigorous analysis, controlling for the potential impact of a few outlier stocks, we have
also run a series of panel regressions with stock fixed effects, capturing the average effect of
VoV on the slope of the signature plot for each individual stock. These regressions confirm
the strong significance of VoV on the slope of the signature plots.29

Given the accumulated evidence we consider a sampling frequency around 90-120 seconds
as a sensible choice for inference about IV and jump tests based on the

√
IQ/IV ratio across

most of the estimators. At higher frequencies, the microstructure effects start impacting
the estimators quite severely, while employing lower frequencies entails a significant loss of
efficiency and ultimately also generates a severe downward bias, especially for days with
turbulent market conditions when volatility-of-volatility fluctuates greatly. Furthermore,
among the set of estimators we consider, the RNT estimators, RMinRQ and RMedRQ,
appear to possess advantages in both efficiency and robustness.

[Insert Figures 5, 6, 7 about here.]

7 Conclusion

We provide a first in-depth look at robust estimation of integrated quarticity (IQ) based
on high frequency data. The sensitivity of many existing IQ estimators to pervasive data
irregularities inspires us to introduce a novel set of jump-robust estimators that are defined
in terms of order statistics of suitable return functionals and generalize the existing nearest
neighbor truncation estimators of ADS (2012). This new class of robust neighborhood

29For each individual robust estimator, we regressed the difference of the daily realized power variation
estimate across the distinct frequencies against the daily VoV measure, allowing for a separate intercept
term but enforcing a common slope across the stocks. The detailed results are available in ADS (2011).
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truncation (RNT) estimators can be designed to enhance the robustness properties vis-à-
vis microstructure noise features of the data as well as reducing the finite sample sensitivity
to outliers. The identical principle can more generally be applied also to other consistent
estimators to enhance jump- and noise-robustness. We find that the novel RNT estimators
outperform existing estimators by a considerable margin in terms of finite sample efficiency
in estimating the key ratio of IQ/IV 2. This quantity is extremely useful for robust inference
regarding IV and for testing for price jumps.

In the empirical implementation, we emphasize the importance of appropriate filtering
for gross violations of the particular null hypothesis associated with a given estimation
procedure. In particular, we apply a novel functional filtering scheme for local power vari-
ation estimators, which generalizes truncation of individual returns to truncation of return
functionals and is easy to apply for a broad range of popular estimators. By invoking this
approach at the level of the local power variation estimators, the threshold can be set very
conservatively, thereby avoiding systematic biases arising from aggressive truncation and
thus eliminating the need for ex-post bias correction. We also emphasize the use of pre-
averaging based on a wide pre-averaging window. This allows for important robustness to
extreme outliers, like the so-called bounce-backs, and it simplifies the associated distribution
theory as the impact of noise vanishes asymptotically.

The unifying theme behind the new class of estimators, as well as the universal filtering
procedure applied to them, is to operate directly on the functional space of local power
variation estimates instead of restricting attention to the underlying individual returns. In
fact, we may view the latter as a special case, arising from a block size of unity. Combining
the functional filtering with the novel RNT class of estimators enables efficient inference in
an extensive simulation design and generates supportive evidence from an empirical appli-
cation using the Dow Jones 30 stocks. Overall, the study provides a set of new guidelines
for the construction of practical robust and efficient estimation and inference regarding IV
and IQ.
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A Proofs of Propositions
This appendix provides proofs of Proposition 1 and related results for the general case of estimating the
integrated power variation of order p, where p is a positive and even integer. The proofs are initially given
for the MinPV and MedPV type estimators and subsequently shown to extend to the RNT estimators in
Lemma 9 below.

The (integrated) power variation, PV (p), is formally defined as,

PV (p) =
∫ 1

0
σpu du . (3)

Obviously, p = 4 corresponds to the theoretical quantity relevant for the MinRQ and MedRQ estimators
while p = 2 refers to the integrated variance underlying the MinRV and MedRV estimators. The higher
order integrated power variation estimators are less commonly used but do appear in the recent literature.
For example, p = 8 is required to assess the (asymptotic) precision of integrated quarticity estimators.

A.1 Basic Setting
Let Yt be the log price process following a Brownian semimartingale

Yt = Y0 +
∫ t

0
au du+

∫ t

0
σu− dBu , (4)

where a is a locally bounded and predictable process and σ is adapted, cadlag and bounded away from
zero. Without loss of generality, we further assume that the functions a, σ are uniformly bounded and
inft>0 σt > 0 a.s.30 The extension allowing for finite activity jumps in Yt is dealt with Section A.6 below.

When discussing central limit theorems (CLTs) we require in addition that the volatility process follows
a generalized Itô process:

Assumption (A1) : σt = σ0 +
∫ t

0
ãu du+

∫ t

0
σ̃u− dBu +

∫ t

0
ṽu− dWu ,

where ã is locally bounded and predictable and σ̃, ṽ are cadlag and the Brownian motions B, W are uncor-
related. We impose, without loss of generality, that the functions ã, σ̃, and ṽ are uniformly bounded as well
as inft>0 σ̃t > 0 and inft>0 ν̃t > 0 a.s. We further note that, when the volatility process {σt}t≥0 satisfies
Assumption A1, then the power variation process, {σ2

t }t≥0, also conforms to this general characterization.
We assume Y is observed atN+1 evenly spaced time points spanning the interval [0; 1]. Below, we denote

these observations by Yi/N , i = 0, . . . , N , and the associated log-returns by ∆N
i Y = Yi/N − Y(i−1)/N , i =

1, . . . , N . The proofs involve sequences of standardized return observations and corresponding approximating
sequences for which volatility is fixed across one or more returns. Hence, we introduce non-overlapping blocks
of M ≥ 1 returns for which the volatility process is constant. We assume we have K = N/M such blocks in
the sample. Consequently, we define the quantities,

χNi =
√
N ∆N

i Y , (5)

βN,Mi =
√
N σ b (i−1)/M cM

N

∆N
i B =

√
N σ b (i−1)/M c

K

∆N
i B , (6)

where b·c indicates the integer part of an expression. Hence, for each of the K return blocks, corresponding
to βN,Mi , the volatility remains fixed at the value it attains at the beginning of the block.

30As argued in Barndorf-Nielsen, Graversen, Podolskij, Jacod and Shephard (2006), henceforth BNGJPS,
this follows from working with the stopped versions of the processes: T (k)

t = Yt∧Tk and σ(k)
t = σt∧Tk where

Tk = inf{t||at|+ |σt− | ≥ k} and Tk ↗∞ a.s.
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A.2 The Min and Med Power Variation Estimators
Let p be a fixed positive even integer and let gmin,p : R2 7→ R+ be given by,

gmin,p(a) = dmin,p min ( |a1|p, |a2|p ) , where the scaling constant takes the form, (7)

dmin,p = (E [min ( |Z1|p, |Z2|p ) ] )−1 , and Z1, Z2 ∼ i.i.d.N (0, 1)

For example, we have dmin,2 = π
π−2 and dmin,4 = π

3π−8 .
Similarly, we define the median-based function gmed,p : R3 7→ R+ and scaling factors,

gmed,p(a) = dmed,p med ( |a1|p, |a2|p, |a3|p ) , where

dmed,p = (E [med ( |Z1|p, |Z2|p ), |Z3|p) ] )−1 , and Z1, Z2, Z3 ∼ i.i.d.N (0, 1) .

In this case, dmed,2 = π

6−4
√

3+π and dmed,4 = 3π
9π+72−52

√
3 .

For any even positive integer, p, we define the nearest neighbor truncation estimators of the p’th order
power variation by,

MinPVN (p) = dmin,p
1

N − 1

N−1∑
i=1

min
(
(χNi )p, (χNi+1)p

)
= 1

N − 1

N−1∑
i=1

gmin,p
(
χNi , χ

N
i+1
)
,

MedPVN (p) = dmed,p
1

N − 2

N−2∑
i=1

min
(
(χNi )p, (χNi+1)p, (χNi+2)p

)
= 1

N − 2

N−2∑
i=1

gmed,p
(
χNi , χ

N
i+1, χ

N
i+2
)
.

For the cases of primary interest, i.e., p = 2 and p = 4, these estimators are identical to the Min and
Med estimators introduced in Section 2.1. Specifically, we have

MinPVN (2) = MinRVN , MedPVN (2) = MedRVN ,

MinPVN (4) = MinRQN , MedPVN (2) = MedRQN .

A.3 Additional Notation and Preliminary Results
We provide a detailed proof of the results in Propositions 1 and 2 concerning the MinPVN (p) estimator. The
proofs for MedPVN (p) may be derived similarly. Moreover, we henceforth consider a fixed even, positive
integer, p, so the gmin,p function is uniquely defined. We refer to it simply as g below.

First, we observe that, for any bivariate vectors, a = (a1, a2) and b = (b1, b2), we have the following
useful bound,

| g(a) − g(b) | ≤ dmin,p ( | ap1 − b
p
1 | + | ap2 − b

p
2 | ) , (8)

and furthermore that, except on the null set {(a1, a2) ∈ R2|a1 = a2}, we have

lim
ε→0

1
ε

[ min( ap1, a
p
2 + ε z) − min( ap1, a

p
2 ) ] =

{
z if |a2| < |a1|
0 if |a2| > |a1|

(9)

The proofs of Propositions 1 and 2 revolve around the sequences,

VN = 1
N

N−1∑
i=1

g
(
χNi , χ

N
i+1
)

and UM
N = 1

N

N−1∑
i=1

g
(
βN,Mi , βN,Mi+1

)
.

Since MinPVN (p) = N
N−1VN , the VN sequence is asymptotically equivalent to our MinPV estimator, while

UMN is an approximating sequence as, for large N, χNi ≈ βN,Mi .
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For any adapted, integrable, d-dimensional cadlag process, X , and for N ≥ j > i − 1 ≥ 0 , we define the
expectation conditional on information at time i−1

N
:

Ei−1

[
X j
N

]
= E

[
X j
N
|F i−1

N

]
(10)

A useful implication of our ability to focus on the case with uniformly bounded drift and volatility functions
is that, using the Burkholder-Davis-Grundy inequalities, we have,

Ei−1
[
|χNi |q

]
≤ C and Ei−1

[
|βN,Mi |q

]
≤ C , (11)

where q > 0 and C denotes a generic positive constant which we (with slight abuse of notation) allow to
take on disparate values in different places.

We decompose our estimators for the power variation, PV (p), into a sum of conditional expectations
and the associated martingale difference sequences: VN = V1N + V2N and UMN = UM1N + UM2N where,

V1N = 1
N

N−1∑
i=1

Ei−1
[
g
(
χNi , χ

N
i+1
)]
, V2N = 1

N

N−1∑
i=1

{
g(χNi , χNi+1)− Ei−1

[
g(χNi , χNi+1)

]}
UM

1N = 1
N

N−1∑
i=1

Eb i−1
M
cM

[
g
(
βN,Mi , βN,Mi+1

)]
, UM

2N = 1
N

N−1∑
i=1

{
g(βN,Mi , βN,Mi+1 )− Eb i−1

M
cM

[
g(βN,Mi , βN,Mi+1 )

]}
.

When M = 1 we will use the shorthand βNi ≡ βN,1i , UN ≡ U1
N and similarly for the individual pieces

U1N and U2N . These definitions allow us to decompose the main estimator:

VN = U1N +U2N + (V1N −U1N ) + (V2N −U2N ) (12)

Consistency of VN can then be obtained by showing consistency of the estimator applied to the approx-
imating Brownian path with piecewise constant volatility (UN = U1N + U2N ) and then showing that the
difference VN − UN (the last two terms in (12) above) is asymptotically negligible. This is what we do in
Section A.4 below. To prove a CLT, we exploit a different decomposition (similar to Mykland and Zhang
(2007)), in which we show the CLT for our estimator applied to an approximating Brownian motion for
which volatility is piecewise constant over blocks of length M . We then proceed to show that the difference
between the original estimator and the estimator applied to the approximating process is negligible. This
analysis is carried out in Section A.5 based on the decomposition:

√
N (VN − PV (p) ) =

√
N (V1N −U1N ) +

√
N (V2N − U2N ) +

√
N (U1N − PV (p) )

+
√
N (U2N − UM

2N ) +
√
N UM

2N (13)

A.4 Proposition 2: Consistency
We proceed by analyzing equation (12) term by term through a series of lemmas. For brevity, we focus
on the features that are specific to our estimator, while referring to proofs in the extant literature when
feasible. This also serves to highlight the underlying structural similarities between our PV (p) measure and
previously proposed power variation estimators and, in particular, IV and IQ estimators.

Lemma 2 Under the maintained assumptions we have,

U1N
P→ PV (p) (14)

Moreover, if Assumption (A1) holds we obtain,

√
N (U1N − PV (p) ) P→ 0 (15)
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Proof. First, note that

g
(
βNi , β

N
i+1
)

=
[
g
(
βNi , β

N
i+1
)
− g

(
βNi ,
√
Nσ i−1

N
∆N
i+1B

)]
+ g

(
βNi ,
√
Nσ i−1

N
∆N
i+1B

)
so we may write

U1N = 1
N

N−1∑
i=1

Ei−1

[
g
(
βNi , β

N
i+1
)
− g

(
βNi ,
√
Nσ i−1

N
∆N
i+1B

)]
+ 1
N

N−1∑
i=1

σpi−1
N

(16)

The first sum in (16) tends to zero in probability. To see this, note that the bound (8) implies the following
limit in L2-norm:

E

∣∣∣∣∣ 1
N

N−1∑
i=1

Ei−1

[
g
(
βNi , β

N
i+1
)
− g
(
βNi ,
√
Nσ i−1

N
∆N
i+1B

)] ∣∣∣∣∣
2

≤ C

N
E

[
N−1∑
i=1

|σpi
N

− σpi−1
N

| 2
]
→ 0

(17)

where the convergence (17), and thus also convergence in probability, follows from the fact that σpt has
finite quadratic variation (since σt is a cadlag semimartingale). In addition, since {σpt } t≥0 is uniformly

bounded and cadlag, the pointwise dominated convergence of
(
σpu − σpbuNc

N

)
→ 0 for u ∈ [0; 1] follows

and Lebesgue’s theorem yields

N−1∑
i=1

[∫ i
N

(i−1)
N

(
σpu − σp(i−1)

N

)
du

]
a.s.→ 0 (18)

Together (17) and (18) imply PV (p) − U1N → 0 , which establishes (14). To show (15) we need the
stronger assumption (A1). Define the sequence of independent standard normals Zi =

√
N ∆N

i B , then
Assumption (A1) yields

Ei−1

[
(σ pi

N

− σ pi−1
N

)Zpi+11|Zi+1|<|Zi|

]
= Ei−1

[
(σ pi

N

− σ pi−1
N

)ϕ(Zi)
]

= OP (1/N) (19)

since ϕ(Zi) = Ei[Zpi+11|Zi+1|<|Zi| ] is an even function of the Brownian path {Bt}(i−1)/N<t<i/N . Now the
property (9) yields

Ei−1

[
g
(
βNi , β

N
i+1
)
− g
(
βNi ,
√
Nσ i−1

N
∆N
i+1B

)]
= OP (1/N) (20)

This ensures that the first term in (16) is asymptotically negligible, even when scaled up by
√
N . Hence,

the remaining task is to show,

√
N

(
1
N

N−1∑
i=1

σpi−1
N

− PV (p)

)
P→ 0 .

However, this is analogous to the common task of showing that

√
N

(
1
N

N−1∑
i=1

σ2
i−1
N
− IV

)
P→ 0.

in the IV literature and the method of proof is, by now, well established; see, e.g., BNGJPS where the
result is shown in a general setting (allowing for infinite activity jumps) of which the current framework is
a special case. A more intuitive and detailed exposition is provided by Barndorff-Nielsen, Graversen, Jacod,
and Shephard (2006), henceforth BNGJS.
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Lemma 3 Under the maintained assumptions, we have

U2N
P→ 0 (21)

Proof. To simplify notation, define the martingale difference sequence
{

1
N
ηNi , F i

N

}
i≥0

:

ηNi = g(βNi , βNi+1) − Ei−1
[
g(βNi , βNi+1)

]
Note that E[ (ηNi )2|F i−1

N
] ≤ C , so applying the Cauchy-Schwartz inequality,

V

[
1
N

N∑
i=1

ηNi

]
= 1

N
E

[
1
N

N∑
i=1

(
(ηNi )2 + 2ηNi ηNi+1

)]
≤ C

N
E

[
1
N

N∑
i=1

E[ (ηNi )2|F i−1
N

]

]
≤ C

N
→ 0 .

The L2 convergence implies 1
N

∑N

i=1 η
N
i

P→ 0 .

Lemma 4 Under the maintained assumptions, we have,

(V1N − U1N ) P→ 0 . (22)

Under Assumption (A1), we obtain,

√
N (V1N − U1N ) P→ 0 . (23)

Proof. We must show,

V1N − U1N = 1
N

N−1∑
i=1

Ei−1
[ (
g(χNi , χNi+1)− g(βNi , βNi+1)

) ]
→ 0 as N → ∞ . (24)

Using the bound (8), it follows that,

V1N − U1N ≤ 1
N

E

[
N−1∑
i=1

| g(χNi , χNi+1) − g(βNi , βNi+1) |

]

≤ C

N
E

[
N∑
i=1

∣∣ (χNi )p − (βNi )p
∣∣ ] = C

N

N∑
i=1

(
Ei−1

∣∣∣h(
√
N∆N

i Y ) − σpi−1
N

∣∣∣ )
where we have defined the function h(x) = xp. This formulation maps directly into the setting of BNGJPS
where the results of this lemma are proven in a more general setting and for a generic h(x) function subject
to regularity conditions. In particular, our h function trivially satisfies the continuous differentiability and
polynomial growth conditions necessary for the applicability of their analysis. An accessible, albeit lengthy,
account of the steps of the argument may be found in BNGJS (2006, pp. 713-719). So while this proof is
quite involved, the above reformulation of the relevant inequalities, as they arise within our specific setting,
allows us to simply refer to previously published work for the result.

Lemma 5 Under the maintained assumptions, we have,

(V2N − U2N ) P→ 0 . (25)

Moreover, we may strengthen this result further to obtain,

√
N (V2N − U2N ) P→ 0 . (26)
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Proof. In order to demonstrate the second result of the lemma, which obviously implies the first, we define,

ξNi = (1/
√
N)
[
g
(
χNi , χ

N
i+1
)
− g

(
βNi , β

N
i+1
) ]

,

and we must then prove that,

N−1∑
i=1

(
ξNi − Ei−1[ ξNi ]

) P→ 0 .

This is a martingale difference sequence with respect to the filtration F i
N
, so it suffices to show,

N−1∑
i=1

E
[

(ξNi )2 ] = E

[
N−1∑
i=1

Ei−1
[

(ξNi )2 ] ] → 0 as N → ∞ .

Mimicking the type of steps undertaken in the proof of the previous lemma, including application of the
uniform bound on moments of χNi and βNi , we obtain,

N−1∑
i=1

E
[

(ξNi )2 ] = 1
N

E

[
N−1∑
i=1

Ei−1
∣∣ g(χNi , χNi+1) − g(βNi , βNi+1 )

∣∣2 ]

≤ C

N
E

[
N∑
i=1

Ei−1

[ (
h(χNi )− h(βNi )

)2
]]

.

As for the previous lemma, our reformulation of the task maps the problem into the corresponding task in
BNGJPS (2006) who prove a corresponding lemma in a more general setting. A detailed account of the
requisite steps to complete this part of the proof may again be gleaned from BNGJS (2006, pp. 704-706).

Taken together, Lemma 2 - 3 and the first parts of Lemma 4 - 5 imply the consistency of our estimator
under the minimal maintained assumptions. The second parts of Lemmas 4 - 5 are critical for the proof of
the central limit theorem below.

A.5 Proposition 3: The CLT
Lemma 6 Under assumption (A1), we have

√
N UM

2N
stable D−→ N

(
0, ν

∫ 1

0
σ2p du

)
(27)

where the constant ν = Var [g(Z0, Z1] + 2Cov [g(Z0, Z1), g(Z1, Z2)] for Z0, Z1, Z2 ∼ i.i.d.N (0, 1).

Proof. Consider splitting the N scaled return observations into K blocks, the kth of which is the vector
χMk = {

√
N∆N

i Y }i∈{(k−1)M+1,...,kM}. The corresponding vector of observations from the approximating
Brownian motion where volatility is held constant over the block is βN,Mk = {βN,Mi }i∈{(k−1)M+1,...,kM}.
Next, define by gM (·) : RM 7→ R the block estimator of volatility:

gM (βN,Mk ) = 1
M

kM−1∑
i=(k−1)M+1

g(βN,Mi , βN,Mi+1 ) (28)
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We wish to apply Theorem IX.7.28 in Jacod and Shiryaev (2003) to
√
N UM

2N . Defining the martingale
difference sequence ψN,Mk =

√
M
(
gM (βN,Mk )− M−1

M
σ2

(k−1)
K

)
we can write

√
N UM

2N = 1√
K

K∑
k=1

ψN,Mk + 1√
N

K−1∑
k=1

(
g(βN,MkM , βN,MkM+1) − E k−1

K

[
g(βN,MkM , βN,MkM+1)

] )
= 1√

K

K∑
k=1

ψN,Mk + oP (1) (29)

The last equality follows from the fact that each term in the second sum is centered and has bounded variance
(given the uniform bound on σt). Thus the sum divided by

√
N will tend to zero provided K = oP (N).

We must now verify conditions (7.27)-(7.31) of Theorem IX.7.28. First note that E[ψN,Mk | F k−1
K

] = 0
so that condition (7.27) is trivially satisfied. Condition (7.28) follows from the fact that

1
K

K∑
k=1

E

[{√
M

(
gM (βMk ) − M − 1

M
σ p(k−1)

K

)}2

| F k−1
K

]
= ν

K

K∑
k=1

σ2p
k−1
K

P→ ν

∫ 1

0
σ2p
u du (30)

where the convergence in probability (and in fact a.s.) is a consequence of the volatility process being
cadlag and uniformly bounded. Next, we turn to condition (7.29). Let ∆M

k B =
(
B k
K
−B (k−1)

K

)
, then

E
[
ψN,Mk ∆M

k B
∣∣F k−1

K

]
= 0, which follows from the fact that the variables ψN,Mk are centered and that gM

is an even function. Condition (7.30), stating that E
[
(ψN,Mk )2 1|ψN,M

k
|>ε

]
P→ 0, follows straightforwardly

from the fact that σ is uniformly bounded.
Finally, let {Nt}t∈[0;1] be a bounded martingale orthogonal to B (i.e. the covariation 〈B,N〉t = 0 a.s.).

We want to show that, for each block k, E[ψN,Mk

(
N k
K
−N (k−1)

K

)
|F k−1

K
] = 0. For t > k−1

K
consider

the martingale difference sequence Mt = E
[
ψN,Mk

∣∣Ft]. By the martingale representation theorem, Mt =

M k−1
K

+
∫ k
K
k−1
K

ϕu dBu for some predictable process ϕu. Therefore the processes {Mt}t> k−1
K

and {Nt −
N k−1

K
}
t> k−1

K
are orthogonal and the product, {Mt(Nt−N k−1

K
)} is again a martingale which must then have

mean zero. This verifies condition (7.31) and Theorem IX.7.28 in Jacod and Shiryaev (2003) states that as
N (and hence K and M) tend to infinity:

√
N UM

2N
stable−→ N

(
0, ν

∫ 1

0
σ2p du

)
(31)

Lemma 7 Under the maintained assumptions, we have

√
N
(
U2N − UM

2N
) P→ 0 (32)

Proof. Defining ηN,Mi = g(βN,Mi , βN,Mi+1 )−Eb(i−1)/McM
[
g(βN,Mi , βN,Mi+1 )

]
, we note that

{
1√
N

(ηNi − ηN,Mi )
}
i≥1

is a martingale difference sequence with respect to the filtration {Fi/N}. To show that
√
N
(
U2N −UM

2N
)

=∑N−1
i=1 (ηNi − ηN,Mi )/

√
N → 0 in probability, it therefore suffices (by Doobs inequality, e.g. Revuz and Yor

(1999)) to show that

1
N

E

[
N−1∑
i=1

∣∣g(βNi , βNi+1) − g(βN,Mi , βN,Mi+1 )
∣∣2] → 0 (33)
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By the bound of g(·) we have

1
N

E

[
N−1∑
i=1

∣∣ g(βNi , βNi+1) − g(βN,Mi , βN,Mi+1 )
∣∣2 ] ≤ C

N
E

[
N∑
i=1

Ei−1
∣∣ (βNi )p − (βN,Mi )p

∣∣2 ]

≤ C

N
E

[
N∑
i=1

∣∣∣∣σpi−1
N

− σpb(i−1)/McM
N

∣∣∣∣2
]

= C E
∫ 1

0

(
σpbuN c

N

− σpbuK c
K

)2

du = oP (1) , (34)

where the last inequality follows from the uniform boundedness of σt and Lebesgues theorem.

Importantly, the specification of the volatility process in Assumption (A1) may be extended to include
finite as well as infinite activity jump processes subject only to the regularity conditions stipulated in
BNGJPS. This follows from the fact that the only terms in (13) affected by the inclusion of jumps are the
terms

√
N(V1N−U1N ) and

√
N(V2N−U2N ) which map into the corresponding terms in BNGJPS as outlined

in the proofs above. As such, the distributional results of the paper cover a wide range of underlying return
generating processes.

A.6 The Asymptotic Distribution under Jump Alternatives
Suppose now the log price process is given as X = Y +J , where Y is a Brownian semimartingale of the form
(4) while J is a finite activity jump process. We show below that the above results continue to hold.31 The
key is that

√
N |Y i

N
− Y i−1

N
| = OP (| log(N)|1/2), which follows readily from Levy’s modulus of continuity

theorem for Brownian motion. This immediately yields:

Proposition 8 When J is a finite activity jump process, the asymptotic distribution of the minPV (p)
and MedPV (p) estimators applied to the processes {Xt} and {Yt} are identical.

Proof. As before, we deal only with the MinPV case as the MedPV case is analogous. On a given
realization of the path there is a finite number of jumps, so (asymptotically) at most one of the terms
|X i

N
−X i−1

N
| or |X i+1

N
−X i

N
| includes a jump. Therefore, each term in the estimator (up to a normalizing

constant) is

min
(
|X i

N
− X i−1

N
|p, |X i+1

N
− X i

N
|p
)

= OP

(
(logN)p/2

N

)
regardless of whether a (single) jump occurred or not over [ i−1

N
, i+1
N

]. Since only finitely many terms differ,

N∑
j=1

[
min

(
|X i

N
−X i−1

N
|p, |X i+1

N
−X i

N
|p
)
− min

(
|Y i
N
− Y i−1

N
|p, |Y i+1

N
− Y i

N
|p
)]

= OP

(
(logN)p/2

N

)
= oP ( 1√

N
)

so neither consistency nor convergence in distribution is affected by the presence of finite activity jumps.

A.7 Robust Neighborhood Truncation Estimators
We consider the family of robust neighborhood truncation (RNT) estimators on a block of m i.i.d. N (0, σ2)
returns, {Z1, . . . , Zm}. The estimator is then constructed by taking the jth quantile ofH unbiased estimators
of σp on the block. Denoting these primitive estimators by E1, . . . , EH , we can write the RNT estimator as

RNT
(j,I)
N (p) = d(j,I)(p)

1
(N −m+ 1)

N−m+1∑
i=1

qj [ E1 , . . . , EH ]

31As for the volatility process, the specification may be generalized to infinite activity jump processes
along the lines of Barndorff-Nielsen et al (2006c).
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where the d(j,I)(p) is a scaling factor.

Lemma 9 Let p be a positive even integer and assume that the estimators E1, . . . , EH satisfy the conditions
of Proposition 1 and Proposition 2, then the robust neighborhood truncation estimator, RNT (j,I)

N (p), defined
in (35) is consistent for σp and satisfies a CLT.

Proof. We need to verify the three properties,(8)-(9) and symmetry, of the g(·) function used in the theorem
are satisfied when g(·) = RNT

(j,I)
N (p). We deal with each condition in turn.

Clearly, if each primitive estimator Ei is symmetric, so is RNT (j,I)
N (p). Moreover, if each Ei satisfies a

bound of the type (8), so will RNT (j,I)
N (p) as it is simply an order statistic of such bounded functionals.

Finally, assume that each Ei satisfies (9). Except on a null set, there exists a neighborhood around each
m-tuple (z1, . . . , zm), on which RNT (j,I)

N (p) = Ei(zp1 , . . . , zpm) for some 1 ≤ i ≤ H. Therefore it follows that
also RNT (j,I)

N (p) satisfies (9).

Remark 10 Since the NT estimators (up to a scale factor) essentially are a special case of RNT, the lemma
applies to these as well.

B Noise Robustness Properties of the Ratio IQ/IV 2

The ratio IQ/IV 2 plays an important role for both IV inference and jump attribution in finite samples. This
section extends the analysis of Huang and Tauchen (2005) to show that the ratio IQ/IV 2 has certain desirable
robustness features in the presence of microstructure noise. Following Ait-Sahalia and Mykland (2005), we
assume that the true price process (p∗i ) is observed at N + 1 discrete points in time with an independent
stationary (possibly autocorrelated) measurement error (ui) that results in an MA error structure in observed
returns:

pi = p∗i + ui ⇒ ri = r∗i + εi where εi = ui − ui−1

For simplicity, we focus the discussion here on the (RV,RQ) pairing and denote:

ÎV =
N∑
i=1

r2
i , IV

∗ =
N∑
i=1

r∗2i , ÎQ = N

3

N∑
i=1

r4
i , IQ

∗ = N

3

N∑
i=1

r∗4i

The presence of microstructure noise produces a bias in both the IQ and IV estimators of the form:

E[ÎQ] = E[IQ∗] + N2

3 E[ε4
i ] + 2NE[IV ∗]E[ε2

i ]

E[ÎV
2
] = E[IV ∗2] +NE[ε4

i ] +N(N − 1)(E[ε2
i ])2 + 2(N + 2)E[IV ∗]E[ε2

i ]

+2
N−1∑
m=1

(N −m)Cov(ε2
1, ε

2
1+m) (35)

In the special case where ui ∼ N (0, σ2
u) is serially uncorrelated and denoting the noise to signal ratio

λ = σ2
u/( 1

N
E[IV ∗]), the expressions above simplify to,

E[ÎQ] = E[IQ∗] + 4E[IV ∗2](λ+ λ2)

E[ÎV
2
] = E[IV ∗2] + 4E[IV ∗2](λ+ λ2) +O

( 1
N

)
(36)

Under the null of no jumps, ˆIQ, ˆIV are asymptotically unbiased and consistent and,

ÎQ

ÎV
2

P−→ IQ∗ + 4IV ∗2(λ+ λ2)
IV ∗2 + 4IV ∗2(λ+ λ2) , as N →∞

The downward bias of the limiting ratio depends on the noise-to-signal ratio λ and preaveraging of
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returns therefore plays an important role in reducing λ and the associated distortions.32 Moreover, for
sufficiently pre-averaged returns, there is very little evidence of serial correlation, as pointed out by COP
(2010), and the serially uncorrelated noise case considered above is therefore the empirically most relevant
case.33 In finite samples, this downward bias is further compounded by a pure Jensen (concavity) effect
as readily seen from the Monte Carlo results for the Brownian motion scenario Path by path, the Cauchy-
Schwartz inequality of course implies that ÎQ/ÎV

2
≥ 1

3 must hold regardless of the noise structure or other
imperfections.

In the presence of other deviations from the Brownian null, forming the ratio ÎQ/ÎV
2
may have a

stabilizing effect provided that the resulting distortion is uniform and roughly proportional to squared
returns since this will lead to a cancelation in numerator and denominator. We see this effect at work in the
simulations with price discreteness but in other instances, e.g., sparsity, it clearly fails. In cases involving
additive distortions such as jumps, there will be no cancelation of biases and the ratio will tend to (in the
case of upward biases) diverge at high frequencies due to the scaling by N in the numerator.

C IV and IQ estimators based on pre-averaged returns
GivenN equally-spaced (log) returns, ri = Y i

N
−Y i−1

N
, i = 1, · · · , N , we define corresponding pre-averaged

returns for any pre-averaging window size 2K ≤ N :

ri = 1
K

2K−1∑
j=K

Y i+j
N
− 1
K

K−1∑
j=0

Y i+j
N
, i = 1, · · · , N − 2K + 1 . (37)

An equivalent definition with analytically more tractable expression is given by:

ri = 2
2K−1∑
j=1

g
(
j

2K

)
ri+j , i = 1, · · · , N − 2K + 1 , (38)

where g(x) = x∧(1−x) , x ∈ [0, 1] is the pre-averaging kernel. We further define ψK = 1
2K
∑2K−1

j=1 4 g
(
j

2K

)2

as the finite sample analog of the variance scaling factor ψ =
∫ 1

0 4 g(u)2du = 1
3 induced by the pre-averaging

kernel.34

Consider the following 2K sub-samples of non-overlapping pre-averaged returns:

S1 =
{
r1+2(s−1)K : s = 1, ...,

⌊
N

2K

⌋}
S2 =

{
r2+2(s−1)K : s = 1, ...,

⌊
N − 1

2K

⌋}
...

S2K =
{
r2K+2(s−1)K : s = 1, ...,

⌊
N − 2K + 1

2K

⌋}

Let ÎV
[
Si
]
and ÎQ

[
Si
]
, i = 1, · · · , 2K denote the raw IV and IQ estimates obtained on each sub-

sample of pre-averaged returns. Then the pre-averaged (and sub-sampled) estimators ÎV [r·] and ÎQ [r·] for

32By Hölder’s inequality, IQ ≥ IV 2, so that the distortion due to microstructure noise in general will
result in a downward bias in the limiting ratio.

33In the general case where εi is a MA(q) process: εi = νi +
∑q

k=1 θkνi−k, we have

E[ÎQ] = E[IQ∗] + E[IV 2]
(
θ2

1 + . . .+ θ2
q + 1

) 2λ2 + 2E[IV 2]
(
θ2

1 + . . .+ θ2
q + 1

)
λ

E[ÎV
2
] = E[IV ∗2] + E[IV 2]

(
θ2

1 + . . .+ θ2
q + 1

) 2λ2 + 2E[IV 2]
(
θ2

1 + . . .+ θ2
q + 1

)
λ+O

( 1
N

)
34Note that the factor 4 arises from the multiplication by 2 in equation (38).
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the full set of pre-averaged returns r· = {ri}N−2K+1
i=1 can be defined as follows:

ÎV [r·] = 1
2K

2K∑
i=1

1
ψ
ÎV
[
Si
]

ÎQ [r·] = 1
2K

2K∑
i=1

1
ψ2 ÎQ

[
Si
]

After incorporating finite sample bias correction, these take the following final form that we use in our
pre-averaged implementation of all estimators:

ÎV
Adj

[r·] = 1
2K

2K∑
i=1

1
ψK

N
2K⌊

N−i+1
2K

⌋ ÎV [Si]
ÎQ

Adj
[r·] = 1

2K

2K∑
i=1

1
ψ2
K

(
N

2K

)2⌊
N−i+1

2K

⌋2 ÎQ
[
Si
]

Consistency and asymptotic normality are clearly preserved by pre-averaging and sub-sampling, while
noise-robustness improves. In particular, bounce-backs are near perfectly annihilated given that adjacent
returns are subject to almost identical kernel weights. For further details on pre-averaging please refer to
Podolskij and Vetter (2009) and Jacod, Li, Mykland, Podolskij and Vetter (2009) among others.
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D Figures and Tables
Figure 1: IV inference using non-jump robust RQ/RV measures versus jump-robust
MedRQ/MedRV measures. We plot prices (blue line), the IV point estimate (red line), the inter-
quartile range (blue box) as well as two standard deviation IV confidence bands (black whiskers) for
IBM for three trading days in February 2008.
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Figure 2: Schematic representation of the construction of the RMinRQ and RMedRQ
estimators of σ4 on a block of five adjacent returns.

Take 4th power
{0.0, 81.0, 256.0, 410.1, 915.1}

Retain largest 3
{0.0, 3.0, 4.0, 4.5, 5.5}

Ordered abs returns
{0.0, 3.0, 4.0, 4.5, 5.5}

Scale to unbiased est.
{0.0, 466.2, 369.0, 163.3, 78.9}

Apply Min
78.9

Scale to unbiased est.
206.1

RMinRQ

Take 4th power
{0.0, 81.0, 256.0, 410.1, 915.1}

Retain largest 3
{0.0, 3.0, 4.0, 4.5, 5.5}

Ordered abs returns
{0.0, 3.0, 4.0, 4.5, 5.5}

Scale to unbiased est.
{0.0, 466.2, 369.0, 163.3, 78.9}

Apply Med
163.3

Scale to unbiased est.
198.3

RMedRQ

Retains the three largest absolute returns

Raises the retained returns to the fourth power

Scales each term to an unbiased estimator of σ4

Selects suitable low order quantile, e.g. Min or Med

Scales the result to yield unbiased final estimate
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Figure 3: IQ signature plots. In Panel A, the estimation is performed as described in the paper
and, in particular, all estimators, except TRQ and TBQ, are subject to the functional filtering
procedure detailed in Section 4.3. In contrast, Panel B depicts the estimators without functional
filtering. TRQ and TBQ are identical in the two panels, as they are based solely on truncation of
individual returns. The average is across all stocks in the DJ30 index during January 2005-May
2007 and all estimates are pre-averaged and sub-sampled based on tick-time sampling.

Panel A: Mean of IQ for filtered estimators (truncated local functionals).
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Panel B: Mean of IQ for non-filtered estimators (non-truncated local functionals).
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Figure 4: Diurnal volatility pattern for intraday trade data across the DJ30 stocks
between January 1, 2005 and May 31, 2007. We plot the diurnal U-shape variance factors
across stock-days based on local estimates of σ2 in one minute buckets using tick time (Panel A)
or calendar time (Panel B) sampling. On each stock-day, the factor in each one-minute bucket is
computed by normalizing by the average of the 390 variance estimates on that day. The average
variance factor is then computed by averaging across all stock-days.
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Figure 5: Average estimates of IV across the DJ30 stocks between January 1, 2005 and May 31, 2007.
We provide signature plots for the mean of each pre-averaged estimator of IV as a function of pre-averaging window
size matching the sampling frequency (measured in seconds on the x-axis). Panel A plots the mean across all days.
Panel B plots the mean across the top 10% days with respect to intraday variation in volatility. Panel C plots the
mean across the bottom 10% days with respect to intraday variation in volatility. Intraday variation in volatility is
measured by the V oV measure of volatility of volatility described in Section 6.

Panel A: Mean of IV for all days.

30 60 90 120 150 180 225 300 450 600

0.5

1

1.5

2

2.5

Frequency (sec)

M
ea

n 
x 

10
4

 

 

RV MPV 3 MPV 5 MedRV TRV TBV QRV RMinRV

Panel B: Mean of IV for the top 10% days in terms of intraday variation of volatility.
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Panel C: Mean of IV for the bottom 10% days in terms of intraday variation of volatility.
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Figure 6: Average estimates of
√
IQ across the DJ30 stocks between January 1, 2005 and May 31,

2007. We provide signature plots for the mean of each pre-averaged estimator of
√
IQ as a function of pre-averaging

window size matching the sampling frequency (measured in seconds on the x-axis). Panel A plots the mean across
all days. Panel B plots the mean across the top 10% days with respect to intraday variation in volatility. Panel C
plots the mean across the bottom 10% days with respect to intraday variation in volatility. Intraday variation in
volatility is measured by the V oV measure of volatility of volatility described in Section 6.

Panel A: Mean of
√
IQ for all days.
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Panel B: Mean of
√
IQ for the top 10% days in terms of intraday variation of volatility.
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Panel C: Mean of
√
IQ for the bottom 10% days in terms of intraday variation of volatility.
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Figure 7: Average estimates of
√
IQ/IV across the DJ30 stocks between January 1, 2005 and May

31, 2007. We provide signature plots for the mean of each pre-averaged estimator of
√
IQ/IV as a function of

pre-averaging window size matching the sampling frequency (measured in seconds on the x-axis). Panel A plots the
mean across all days. Panel B plots the mean across the top 10% days with respect to intraday variation in volatility.
Panel C plots the mean across the bottom 10% days with respect to intraday variation in volatility. Intraday variation
in volatility is measured by the V oV measure of volatility of volatility described in Section 6.

Panel A: Mean of
√
IQ/IV for all days.
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Panel B: Mean of
√
IQ/IV for the top 10% days in terms of intraday variation of volatility.
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Panel C: Mean of
√
IQ/IV for the bottom 10% days in terms of intraday variation of volatility.
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Table 1: Tabulation of Moments of Order Statistics for Standard Gaussian Return Blocks of up to Five
Returns. We compute the second and fourth moments of order statistics based on blocks of powers of independent
standard normals, Zi ∼ N (0, 1), whose inverse represent the scaling factors of the NT and RNT estimators defined
in sections 2.4.3 and 3.1. Panel A: Expectation of order statistics of squared normals (NTV estimators). Panel
B: Expectation of order statistics of normals raised to the 4th power (NTQ estimators). Panel C: Expectation of
quantiles of rescaled squared order statistics of normals (RNTV estimators). Panel D: Expectation of quantiles of
rescaled order statistics of normals raised to the 4th power (RNTQ estimators).

Panel A: 2nd moments defining the inverse scaling factors for corresponding NTV estimators

Block Size Z2
(1) Z2

(2) Z2
(3) Z2

(4) Z2
(5)

2 µ
(1,2)
2 ≈ 1.6366198 µ

(2,2)
2 ≈ 0.36338023

= π−2
π

= 2+π
π

3 µ
(1,3)
2 ≈ 0.19279847 µ

(2,3)
2 ≈ 0.70454374 µ

(3,3)
2 ≈ 2.1026578

= −6+2
√

3+π
π

= 6−4
√

3+π
π

= 1 + 2
√

3
π

4 µ
(1,4)
2 ≈ 0.12070214 µ

(2,4)
2 ≈ 0.40908747 µ

(3,4)
2 = 1 µ

(4,4)
2 ≈ 2.4702104

= 1 + 4(4
√

3−9)
3π = 12−8

√
3+π

π
= 1 + 8√

3π

5 µ
(1,5)
2 ≈ 0.083077313 µ

(2,5)
2 ≈ 0.271201456 µ

(3,5)
2 ≈ 0.61591649 µ

(4,5)
2 ≈ 1.2560557 µ

(5,5)
2 ≈ 2.7737491

Panel B: 4th moments defining the inverse scaling factors for corresponding NTQ estimators

Block Size Z4
(1) Z4

(2) Z4
(3) Z4

(4) Z4
(5)

2 µ
(1,2)
4 ≈ 0.45352091 µ

(2,2)
4 ≈ 5.5464791

= 3− 8
π

= 3 + 8
π

3 µ
(1,3)
4 ≈ 0.13874649 µ

(2,3)
4 ≈ 1.0830697 µ

(3,3)
4 ≈ 7.7781838

= 3 + 26−24
√

3√
3π

= 72−52
√

3+9π
3π = 3 + 26√

3π

4 µ
(1,4)
4 ≈ 0.057664089 µ

(2,4)
4 ≈ 0.38199370 µ

(3,4)
4 ≈ 1.7841458 µ

(4,4)
4 ≈ 9.7761964

= 3 + 4(4(13
√

3−27)π−9)
9π2 = 3 + 4(9+(36−26

√
3)π)

3π2 = 3− 12
π2 = 3 + 4(9+26

√
3π)

9π2

5 µ
(1,5)
4 ≈ 0.028554808 µ

(2,5)
4 ≈ 0.17410122 µ

(3,5)
4 ≈ 0.69383242 µ

(4,5)
4 ≈ 2.5110214 µ

(5,5)
4 ≈ 11.592490

Panel C: 2nd moments defining the inverse scaling factors for corresponding RNTV estimators

Block Size min(
Z2

(3)

µ
(3,5)
2

,
Z2

(4)

µ
(4,5)
2

,
Z2

(5)

µ
(5,5)
2

) med(
Z2

(3)

µ
(3,5)
2

,
Z2

(4)

µ
(4,5)
2

,
Z2

(5)

µ
(5,5)
2

)

5 µ
(1,(3,4,5))
2 ≈ 0.62084 µ

(2,(3,4,5))
2 ≈ 0.94544

Panel D: 4th moments defining the inverse scaling factors for corresponding RNTQ estimators

Block Size min(
Z4

(3)

µ
(3,5)
4

,
Z4

(4)

µ
(4,5)
4

,
Z4

(5)

µ
(5,5)
4

) med(
Z4

(3)

µ
(3,5)
4

,
Z4

(4)

µ
(4,5)
4

,
Z4

(5)

µ
(5,5)
4

)

5 µ
(1,(3,4,5))
4 ≈ 0.38303 µ

(2,(3,4,5))
4 ≈ 0.82367
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Î
V
−
√
I
Q
/
I
V

)2 /
(√
I
Q
/
I
V

)2 ,
w
he
re
I
V

an
d
I
Q

ar
e
th
e
tr
ue

sim
ul
at
ed

in
te
gr
at
ed

va
ria

nc
e
an

d
in
te
gr
at
ed

qu
ar
tic

ity
fo
r
ea
ch

da
y.

Es
ti
m
at
or
:

M
PQ
3

M
PQ
5

TR
Q

TB
Q

M
ed
RQ

RM
in
RQ

RM
ed
RQ

M
PQ
3

M
PQ
5

TR
Q

TB
Q

M
ed
RQ

RM
in
RQ

RM
ed
RQ

Pa
ne
l	A
:	B
M 30
	se
c

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
05

0.
04

0.
05

0.
05

0.
06

0.
03

0.
02

12
0	
se
c

1.
00

1.
00

0.
99

1.
00

1.
00

1.
00

1.
00

0.
18

0.
15

0.
18

0.
18

0.
22

0.
11

0.
10

60
0	
se
c

0.
98

0.
98

0.
98

1.
00

0.
98

0.
98

0.
98

0.
76

0.
64

0.
75

0.
76

0.
89

0.
48

0.
42

Pa
ne
l	B
:	B
M
	+
	1
	Ju
m
p

30
	se
c

1.
03

1.
01

1.
00

1.
00

1.
00

1.
00

1.
00

0.
43

0.
09

0.
05

0.
05

0.
06

0.
03

0.
04

12
0	
se
c

1.
03

1.
01

1.
02

1.
01

1.
00

1.
00

1.
01

1.
09

0.
30

0.
25

0.
23

0.
26

0.
16

0.
19

60
0	
se
c

1.
01

0.
99

1.
03

1.
02

0.
99

1.
00

1.
00

1.
60

0.
79

1.
12

1.
01

1.
12

0.
64

0.
70

Pa
ne
l	C
:	B
M
	+
	4
	Ju
m
ps

30
	se
c

1.
04

1.
01

1.
02

1.
01

1.
01

1.
01

1.
01

0.
59

0.
12

0.
12

0.
07

0.
09

0.
05

0.
09

12
0	
se
c

1.
04

1.
01

1.
04

1.
02

1.
01

1.
01

1.
02

1.
01

0.
32

0.
59

0.
34

0.
51

0.
26

0.
51

60
0	
se
c

1.
01

0.
99

1.
04

1.
02

1.
01

1.
00

1.
01

1.
24

0.
75

1.
24

1.
16

1.
56

0.
74

0.
92

Pa
ne
l	D
:	S
V‐
U

30
	se
c

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
27

0.
26

0.
22

0.
25

0.
28

0.
20

0.
19

12
0	
se
c

0.
98

0.
97

0.
97

0.
98

0.
98

0.
97

0.
97

0.
71

0.
66

0.
56

0.
64

0.
75

0.
53

0.
50

60
0	
se
c

0.
94

0.
93

0.
94

0.
95

0.
94

0.
94

0.
94

1.
81

1.
74

1.
55

1.
44

1.
94

1.
45

1.
36

Pa
ne
l	E
:	B
M
	+
	1
	V
ol
at
ili
ty
	Ju
m
p

30
	se
c

1.
00

0.
99

0.
99

0.
99

1.
00

0.
99

1.
00

0.
35

0.
36

0.
31

0.
34

0.
38

0.
28

0.
26

12
0	
se
c

0.
98

0.
98

0.
97

0.
98

0.
98

0.
98

0.
98

1.
14

1.
21

1.
17

1.
13

1.
20

0.
97

0.
92

60
0	
se
c

0.
93

0.
91

0.
90

0.
93

0.
93

0.
92

0.
93

4.
07

4.
75

5.
14

3.
88

4.
22

4.
02

3.
75

Pa
ne
l	F
:	B
M
	+
	II
D
	N
oi
se

30
	se
c

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
05

0.
04

0.
05

0.
05

0.
05

0.
03

0.
02

12
0	
se
c

1.
00

1.
00

0.
99

1.
00

1.
00

1.
00

1.
00

0.
18

0.
15

0.
17

0.
18

0.
22

0.
11

0.
10

60
0	
se
c

0.
98

0.
98

0.
98

1.
00

0.
98

0.
98

0.
98

0.
76

0.
64

0.
75

0.
76

0.
89

0.
48

0.
42

Pa
ne
l	G
:	B
M
	+
	1
	B
ou
nc
eb
ac
k

30
	se
c

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
06

0.
04

0.
05

0.
05

0.
06

0.
03

0.
03

12
0	
se
c

1.
00

1.
00

0.
99

1.
00

1.
00

1.
00

1.
00

0.
18

0.
15

0.
18

0.
18

0.
22

0.
11

0.
10

60
0	
se
c

0.
98

0.
98

0.
98

1.
00

0.
98

0.
98

0.
98

0.
76

0.
64

0.
75

0.
76

0.
90

0.
48

0.
42

Pa
ne
l	H
:	B
M
	+
	S
pa
rc
it
y

30
	se
c

1.
02

1.
01

1.
03

1.
02

1.
03

1.
02

1.
02

0.
13

0.
07

0.
27

0.
17

0.
20

0.
10

0.
11

12
0	
se
c

1.
00

1.
00

1.
00

1.
01

1.
00

1.
00

1.
00

0.
19

0.
16

0.
17

0.
20

0.
24

0.
12

0.
11

60
0	
se
c

0.
98

0.
98

0.
98

1.
00

0.
98

0.
98

0.
99

0.
76

0.
64

0.
75

0.
77

0.
90

0.
48

0.
42

Pa
ne
l	I
:	B
M
	+
	D
is
cr
et
e	
Pr
ic
in
g

30
	se
c

1.
02

1.
07

1.
00

1.
00

1.
00

1.
00

1.
00

0.
11

1.
06

0.
05

0.
05

0.
05

0.
03

0.
02

12
0	
se
c

1.
00

1.
00

0.
99

1.
00

1.
00

1.
00

1.
00

0.
18

0.
15

0.
18

0.
18

0.
22

0.
11

0.
10

60
0	
se
c

0.
98

0.
98

0.
98

1.
00

0.
98

0.
98

0.
98

0.
76

0.
64

0.
75

0.
76

0.
89

0.
48

0.
42

Re
la
ti
ve
	B
ia
s

Re
la
ti
ve
	M
SE

50




