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Abstract

Economists have long used overlapping generations models to explore important
empirical and theoretical issues in public �nance, development, international
trade, savings and monetary policy. Recently, some researchers have criticized
the way these and other models characterize the long run tendency of the econ-
omy. If the equations which codify the assumptions in the models can display
bizarre behavior, the models could give misleading forecasts of the behavior of
the economy. By studying the mathematical equations which economists use to
codify and apply these models, I am investigating the relationship between the
empirically determined parameters and the corresponding long run properties
of the models.

This paper shows how symbolic algebra programs can facilitate the analysis
of the dynamics of these non-linear equation systems. I have used the sym-
bolic algebra capabilities of Mathematica to develop a collection of programs
for analyzing the asymptotic behavior of economic models. These symbolic
programming algorithms implement a set of algorithms orignally designed for
numerical processing. The paper shows how to use these tools to derive formu-
lae for characterizing the long run dynamics of overlapping generations models.
The powerful symbolic and algebraic manipulation tools make it possible to
analytically explore the subtle transitions between generic classes of long run
behavior for these models. The paper develops formulae for characterizing the
asymptotic behavior of the model for plausible ranges of the parameters. These
results provide insights about features of these models which are useful for both
theoretical and empirical economists.



1 Introduction

Nonlinear dynamic models have served as important tools for much of modern
macroeconomics[. blanchard �scher , sargeant dynamic .]. The Ramsey neoclas-
sical growth model, and overlapping generation models are but two examples
of mainstream macroeconomic models which posit a nonlinear speci�cation of
the relationship between economic variables over time. Economists use these
models in the class room, in theoretical and empirical analysis of important
aggregate relationships, and for investigating the potential impact of monetary,
and �scal policy. The continued increase in computing speed and declining cost
of computing for economists probably means nonlinear models will become even
more important for future econometric and policy analysis.

Some of these nonlinear models come from dynamic optimization of the
choice problem facing individual economic agents or a central planner. Economists
often use �rst order conditions from dynamic optimization problems and a sim-
plifying certainty equivalence assumption to characterize the behavior of eco-
nomic agents. This approach leads to models which possess the \saddle point
property." Simulation and estimation of these models involves solving a nonlin-
ear two point boundary value problem with one endpoint arbitrarily far o� in
the future.

Although dynamic nonlinear models can have very complicated behavior[.
guckenheimer holmes .] , economists who use these models often implicitly
assume that these mainstrem economic models have a �xed point to which
model solutions converge. Unfortunately, it is di�cult to guarantee that a given
nonlinear speci�cation will have the appropriate asymptotic properties for all
plausible values of model parameters. It is becoming clear that it is important to
be aware of and accommodate a more comprehensive set of possible asymptotic
solutions when applying these models or while searching parameter space when
estimating the coe�cients in such models.

1.1 Complicated Dynamics are Potentially Present in Tra-

ditional Economic Models

Recently, some economists have begun to embrace the potentially complex non-
linear asymptotic behavior of nonlinear dynamic economic models as an impor-
tant topic of investigation. Gale �rst pointed out the existence of equilibrium
cycles in overlapping generations models[. gale .]. Benhabib and Rustichini[.
benhabib rustichini .] describe a neoclassical growth model with equilibrium
limit cycles with the idea of convincing his colleagues that this is not unusual
for dynamic nonlinear models. Jullien[. jullien .] investigates bifurcations
of solutions of a nonlinear model to establish the existence of cycles. Jullien
demonstrates the equivalence of an overlapping generations model and a one
dimensional system to prove that equilibrium cycles and chaotic solutions are
possible.

Grandmont[. grandmont .] studies the existence of sunspot equilibria in non-
linear models by investigating their potentially complex asymptotic dynamics.
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Laitner describes how complicated dynamics is a prerequisite for the existence
of sunspot equilibria[. laitner sunspot .]. James Peck performs similar analysis
on overlapping generations models to identify situations where there are sunspot
equilibria[. peck .].

The possible existence of complicated long run dynamics has several poten-
tially important implications for the use of nonlinear models in economics.

1.1.1 Implications for Econometrics

The existing methodologies for simulating and estimating these models often
encounter problems which are hard to diagnose. During the model development
process economists conceive models with appropriate asymptotic properties,
but during estimation, hill climbing routines control the parameters and the
asymptotic properties. A �xed point with the appropriate stability property
may evolve into a periodic point, or disappear or loose the saddle point property
frustrating the function evaluation phase of the estimation process.

A robust method for simulating and estimating these models must carefully
investigate the asymptotic behavior of the models in order to identify problems
caused by a failure of the solution methodology, poor model speci�cation, bad
parameter selection, or programmer error.

1.1.2 Implications for Our Basic Understanding of a Competitive

System

Analysis of the overlapping generations model and neoclassical growth models
suggests that a competitive system may have an endogenous business cycle.
Benhabib and Rustichini[. benhabib rustichini .] describe a neoclassical growth
model with equilibrium limit cycles. They show that the perfect competition
assumption does not rule out persistent endogenous cycles.

There is a close relationship between the existence of multiple solutions, in-
determinacy of perfect foresight paths and bifurcations of �xed points on the
one hand and the existence of sunspot equilibria on the other[. muller wood-
ford, peck, laitner sunspots .]. When there are sun spot equilibria, self ful�lling
expectations are often insu�cient to uniquely determine the future values of
economic variables. In this case, it may be impossible for individual agents to
learn the underlying fundamental parameters of the model by observing eco-
nomic timeseries. In such a world, \animal spirits" can play an important role
in conditioning economic agents' expectations of the evolution of economic vari-
ables.

1.2 Tools and Methodology From Dynamic Systems Anal-

ysis Useful in Diagnosing or Exploiting Complicated

Dynamic Behavior of Nonlinear Economic Systems

When nonlinear models possess �xed points or limit cycles, a linear algebraic
analysis of asymptotic properties can often determine the local existence and
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uniqueness of convergent paths. The local analysis of a nonlinear dynamical
system should begin with a study of the �rst order or linear behavior of the
equation system[. devaney, guckenheimer holmes .].1

For \saddle point" models, linear algebraic analysis of the asymptotic behav-
ior provides linear restrictions on the solution paths that are useful for comput-
ing nonlinear solutions. Economically meaningful solutions require appropriate
asymptotic convergence properties. Laitner[. laitner de�nition .] provides a def-
inition of stability for nonlinear perfect foresight models. Anderson-Moore[. an-
derson linear algebraic .] describe a technique for checking the appropriateness
of the asymptotic properties of linear models. The Anderson-Moore technique
is easily extended to nonlinear systems, and Mathematica, a symbolic algebra
program, provides powerful tools for automating the symbolic computations
involved in applying these asymptotic stability checks.

2 Nonlinear Dynamic Economic Model Speci�-

cation

2.1 General Formulation

Consider the model

h(xt�� ; xt��+1; :::; xt+��1; xt+�) = 0 (1)

t = 0; : : : ;1

where x 2 <L and h : <L(�+1+�) ! <L. We want to determine the solutions to
equation system 1 with initial conditions

xi = �xi for i = ��; :::;�1

satisfying

1. A �xed point

lim
t!1

xt = x�:

or

2. A Limit Cycle

lim
k!1

2
6664

xpk
xpk+1

...
xpk+(p�1)

3
7775 =

2
6664

x�0
x�1
...

x�p�1

3
7775

Where p is the periodicity of the limit cycle.
The literature contains many models which are special cases of equation

system 1.

1
Terms higher than �rst order must be considered at nonhyperbolic periodic points.
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2.2 Several Example Dynamic Nonlinear Economic Mod-

els

2.2.1 The Overlapping Generations Model of Benhabib and Laroque

Benhabib and Laroque[. benhabib laroque .] present an overlapping genera-
tions model with money, labor, and a good which workers can consume or store
as capital. Benhabib and Laroque demonstrate that there is a one to one cor-
respondence between competitive equilibria of this model and solutions to the
three equation system

fk(kt; lt+1)fl(kt�1; lt)U
0

1(fk(kt; lt+1)fk(kt�1; lt)lt)�

U 02(lt) = 0 (2)

kt +Mqt � fl(kt�1; lt) = 0

qt+1 � fk(kt; lt+1)qt = 0

Benhabib and Laroque use this model to demonstrate that cyclical equilibria
exist, and to develop an interpretable parameterization of the model. They
study the behavior of their model near the golden rule equilibria and apply
results from bifurcation theory to show the existence of limit cycles.

2.2.2 The Overlapping Generations Model of Jullien

Jullien[. jullien .] also studies an overlapping generations model with production
where mt represents real money balances, kt represents capital, W (kt) is a
wage function re
ecting the marginal product of labor from a constant returns
production function, and S(W (kt); f

0(kt)) is a savings function obtained from
intertemporal utility maximization. His system is also of the form of equation
system 1.

mt + kt = S(W (kt�1); f
0(kt))

mt+1 = f 0(kt)mt

He demonstrates the possibility of cyclical and chaotic behavior by recasting the
model as a one dimensional system and using well known results characterizing
the global properties of one dimensional maps.

2.2.3 A Certainty Equivalence Formulation of a Real Business Cycle

Model

McCallum[. barro business cycle.] describes a real business cycle model:

ct + kt = ztf(nt; kt�1) + (1� �)kt�1

u1(ct; 1� nt)� �t = 0

u2(ct; 1� nt) = �tztf1(nt; kt�1)

�t = ��t+1 [zt+1f2(nt+1; kt) + 1� �]

(zt � z�) = �(zt�1 � z�)

This model is also of the form of equation system 1.
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2.2.4 A Money Demand Model

Consider the three equation nonlinear system

ln
mt

pt
= �+ � ln(�+ (

pt+1 � pt

pt
))

mt �mt�1 = 
(mt�1 � �) + �st

st = �st�1(1� st�1)

Where � = 1; � = 1; and 0 � �; � < 0 ; � < 0 ; � > 0; 
 < 0 ; and m� > 0
exogenously given.

This example augments a simple forward looking money demand model with
a quadratic map. The quadratic map is a much studied nonlinear function whose
asymptotic properties are well known[. devaney .]. As we vary the parameter �
we can study a model with �xed points, limit cycles, and with more complicated
invariant sets.

There are several widely know techniques for computing solutions to equa-
tion system 1 when h is linear[. blanchard kahn .]. This paper adopts the method
of Anderson-Moore[. anderson linear algebraic .] to determine the existence,
and local uniqueness of the solutions to equation system 1.

3 A General Methodology for Analyzing the

Asymptotic Properties of Nonlinear Dynamic

Economic Models

3.1 The Anderson-Moore Linear Algebraic Technique for

Solving Linear Perfect Foresight Models

Anderson-Moore[. anderson linear algebraic .] present a fail-safe method for
analyzing any linear perfect foresight model. They describe a procedure which
either computes the reduced form solution or indicates why the model has no

reduced form.
Anderson-Moore[. anderson linear algebraic .] outline a procedure that

computes solutions for structural models of the form

�X
i=��

Hi Xt+i = 0 ; t � 0 (3)

with initial conditions

Xi = xi ; i = �� ; : : : ; �1

where both � and � are non-negative, and Xt is an L dimensional real vector.
Anderson-Moore[. anderson e�cient .] provides a constructive proof of the

following theorem.
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Theorem 1 If the L by L real coe�cient matrices Hi : i = ��; : : : ; � satisfy the

following two restrictions:

1. The origin is the unique steady state of equation 3. That is, if

(

�X
i=��

Hi)X
� = 0; ) X� = 0

2. Corresponding to any initial conditions Xi = xi : i = ��; :::;�1 , equa-

tion 3 has a unique solution Xt : t � 0 such that

lim
t!1

Xt = 0

then the model has a reduced-form representation

Xt =

�1X
i = ��

BiXt+i ; t > 0

generating the unique solution Xt : t � 0 such that

lim
t!1

Xt = 0:

Anderson-Moore[. anderson linear algebraic .] presents a constructive proce-
dure for analyzing linear perfect foresight models. Given the coe�cient matrix

[ H�� : : : H� ]

the procedure computes the reduced form coe�cient matrix

[ B�� : : : B�1 ]

for any model satisfying assumptions 1 and 2. If the model does not satisfy
assumptions 1 and 2, the procedure indicates whether there are no convergent
solutions or a multiplicity of convergent solutions.

In order to compute the matrix B the algorithm �rst computes a matrix Q
which embodies constraints which come from computing a state space transition
matrix and linear constraints that guarantee asymptotic convergence to the
saddle point. The algorithm described in section 3.2 uses this matrix Q.

3.1.1 Summary of the Procedure

This section summarizes the procedure presented in Anderson Moore[. anderson
linear algebraic .]
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Initialization

1. Verify that
�P�

i = �� Hi

�
is full rank. If it is singular, the steady state is

not unique; stop.

2. If it is non-singular, initialize

H(0) := [ H�� : : : H� ]

Q(0) := nullmatrix;

Auxiliary Initial Conditions

1. Compute the singular values,f�i : i = 1; : : : ; Lg, and singular vectors, V, of

H
(k�)
� . Sort the �i small-to-large and order the columns of V conformably.

If �i 6= 0; i = 1; : : : ; L; then H
(k�)
� is non-singular; go to step 1 of the

paragraph on stability conditions below.

2. H
(k�)
� is singular. Premultiply the coe�cient matrix by V T to annihilate

L-rank(H
(k�)
� ) rows of H

(k�)
� .

~H(k) := V TH(k)

3. Partition the coe�cient matrix as

r

0q
:= ~H(k)

The matrix q has L-rank(H
(k�)
� ) rows and L( � + � ) columns; r has

rank(H
(k)
� ) rows and L( � + 1 + � ) columns.

4. Include q among the auxiliary initial conditions

Q(k+1) :=
q

Q(k)

Now, shift the sub-matrix q L columns to the right in H,

H(k+1) :=
r

0 q

Repeat these four steps until H
(k)

� is non-singular. Let k� denote this �nal
value of k
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Stability Conditions

1. H
(k�)

� is non-singular. Solve for coe�cients expressing Xt+� in terms of
Xt�� : : : Xt+��1.

� := �(H
(k�)
� )�1

h
H

(k�)
�1 : : : H

(k�)

(��1)

i

2. Construct the �rst order state space transition matrix

A :=

�
0 I

�

�

3. Compute W, a matrix of row vectors spanning the left invariant subspace
of A associated with roots outside the open unit disk. One can use the
routine HQR3 presented by G. Stewart[. stewart hqr3 .]. The matrix W
contains the stability conditions which guarantee the saddle point prop-
erty[. anderson e�cient .].

Reduced Form

1. Concatenate the auxiliary initial conditions with the stability conditions.

Q :=
W

Q(k�)

2. Partition Q. �
QL QR

�
:= Q

where QL has L� columns and QR has L� columns.

3. Let n be the number of rows in Q.

(a) If n < L�, then assumption 2 is violated; there are many solutions
converging to the origin for any initial condition. Stop.

(b) If n > L� or n = L� and QR is singular, then assumption 2 is
violated; there exist initial conditions for which there are no solutions
converging to the steady state. Stop.

(c) If n = L� and QR is non-singular, then set

[ B�� : : : B�1 ] := the �rst L rows of �Q�1R QL and

Xt =

�1X
i=��

BiXt+i; t � 0

is the unique solution converging to the steady state for any initial
conditions. Stop.

End.
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3.2 A Nonlinear Extension of the Anderson-Moore Tech-

nique

An investigation of the asymptotic dynamics of nonlinear di�erence equations
can usefully begin with an analysis of the asymptotically linear behavior near
�xed points and limit cycles[. guckenheimer holmes, laitner de�nition, laitner
steady states econometrica .].

Since h is nonlinear, we will compute approximate solutions to equation
system 1 by linearizing the nonlinear h constraints in equation system 1 at the
�xed point or limit cycle.

3.2.1 Fixed Points

Compute the steady state value x� satisfying

h(x�; :::; x�) = 0

Near the steady state, the linear �rst-order Taylor expansion of h about x�

provides a good approximation to the function h.

h(xt�� ; :::; xt+�) �

�X
i=��

Hijx� (xt+i � x�)

We can apply the techniques presented in[. anderson linear algebraic .] to
determine the existence and uniqueness of perfect foresight solutions near the
steady state.

That stability analysis will produce a matrix Q which restricts values of the
endogenous variables to the stable subspace of the linearized system. For tra-
jectories which approach a steady state, we can ultimately replace the nonlinear
system with the constraints codi�ed in the matrix Q.

Q

2
6666664

xT�� � x�

...
xT � x�

...
xT+� � x�

3
7777775
= 0

3.2.2 Limit Cycles

Compute the periodic points x�1; x
�

2; : : : ; x
�

p satisfying

2
6664

h(x�
�� ; : : : ; x

�

1; : : : ; x
�

�)
h(x�1�� ; : : : ; x

�

2; : : : ; x
�

1+�)
...

h(x�p�� ; : : : ; x
�

p; : : : ; x
�

p+�)

3
7775 = 0
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Near a limit cycle, the linear �rst-order Taylor expansion of h about x�t provides
a good approximation to the function h.

h(xt�� ; :::; xt+�) �

�X
i=��

Hijx�
i��

:::x�
i+�

(xt+i � x�i )

De�ne (�� + 1) matrices of dimension pL� pL

�H0 =

2
664

H�� jx�
1��

:::x�
1+�

: : : Hp�� jx�
1��

:::x�
1+�

. . .
...

H�� jx�
p��

:::x�
p+�

3
775 (4)

�H1 =

2
664

Hp��+1jx�
1��

:::x�
1+�

: : : Hp��+pjx�
1��

:::x�
1+�

...
...

...
H��+1jx�

p��
:::x�

p+�

: : : Hp��+1jx�
p��

:::x�
p+�

3
775 (5)

...

�H�� =

2
664

H��jx�
1��

:::x�
1+�

...
. . .

H��pjx�
p��

:::x�
p+�

: : : H�jx�
p��

:::x�
p+�

3
775 (6)

where �� is the smallest integer greater than (� +�+p)=p. The �H0; : : : ; �H�� make
up a linear system of the form explored in[. anderson linear algebraic .].

Analysis of this system will produce a matrix of constraints, Q, which guar-
antee that the trajectories near the limit cycle converge to the limit cycle. For
trajectories of the original system which converge to this limit cycle, we can ulti-
mately replace the nonlinear system of equations with the matrix of constraints,
Q.

Q

2
6666664

x�� � x�
��

...
x0 � x�0

...
xp� � x�p�

3
7777775
= 0

Although the algorithm and all the models presented here are discrete time
models, the technique is easily modi�ed to accommodate continuous time mod-
els.

The asymptotic linearization of a nonlinear system provides a succinct char-
acterization of evolution of trajectories so long as the magnitudes of the eigen-
values are not equal to one. The asymptotic behavior of nonlinear models at so
called non hyperbolic points is more subtle[. guckenheimer holmes .]. Methods
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for characterizing the asymptotic behavior still rely on identifying hyperbolic
points by linear algebraic means and renormalizing the system to analyze the
behavior of higher order terms in the subspace associated with the unit modulus
eigenvectors. Nonhyperbolic points are important in dynamic economic models
because, as Laitner[. laitner steady perfect foresight .] and Peck[. peck .] have
noted, there is a close association between nonhyperbolicity and the existence
of sunspot equilibria. In addition, Benhabib and Laroque[. benhabib jafarey .],
Reichlin[. reichlin .] have emphasized the role of nonhyperbolicity in construct-
ing equilibrium cycles at the critical bifurcation values of model parameters.

3.3 Symbolic Processing Routines

This section describes the several symbolic processing routines developed to
carry out the analysis of non-linear economic models. 2

3.3.1 derivativesOfVectorFunction

This routine takes a list of functions and a list of variables as inputs and returns
a matrix of derivatives.

derivativesOfVectorFunction[f; x]!
@f

@x

3.3.2 makeSymbolicAsymptoticHMatrix

This routine takes a non linear model speci�cation, and a periodicity as input
and generates a symbolic matrix representing the asymptotic �Hi described in
equations 4 - 6.

makeSymbolicAsymptoticHMatrix[(f; x; �; (�; �)); p]!
�
�H0 : : : �H��

�
3.3.3 stateSpaceTransitionMatrix

This routine takes a matrix of coe�cients corresponding to the Hi matrices of
equation 3 and returns the three matrix results of the auxiliary initial conditions
phase of the Anderson Moore algorithm: the matrix A, the matrix Q(k�), and
the matrix H(k�)

stateSpaceTransitionMatrix[[H�� : : :H�]]! (A;Q(k�); H(k�))

3.3.4 eliminateInessentialLags

This routine identi�es super
uous columns and rows in the transition matrix
thereby reducing the dimension of the state vector. It takes a transition matrix
and an indicator vector of the same dimension as input. The routine returns

2
These routines are available via anonymous ftp from info.umd.edu. Alternatively, one

can contact the author via e-mail at gary s anderson@umail.umd.edu to request copies of the

programs.
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a reduced dimension transition matrix with the corresponding elements deleted
from the indicator vector.

eliminateInessentialLags[(A; i)]! ( �A;�i)

3.4 The Analytic Implementation of the Anderson-Moore

Saddle Point Analysis Routine Applied to the Exam-

ple Nonlinear Models

The algorithm described above was originally designed for use in estimation of
linear rational expectations models and for estimation of nonlinear certainty
equivalence models. In that context, it is usually necessary and appropriate to
use numerical linear algebra routines to compute the required matrices. How-
ever, here, Mathematica provides tools for automating symbolic computation.
In the present context it has proven worthwhile to use this symbolic algebra
program to compute the matrices analytically.

3.4.1 The Money Demand Model

Now

H�1 =

2
4 0 0 0
�(1 + 
) 0 0

0 0 �(2st�1 � 1)

3
5

H0 =

2
4 1

mt

�pt+1��pt�(pt+1�pt)

pt(�pt+(pt+1�pt))
0

1 0 ��
0 0 1

3
5

H1 =

2
4 0 ��

�pt+(pt+1�pt)
0

0 0 0
0 0 0

3
5

We want to investigate the model with initial conditions

m0 = �m0

p0 = �p0

s0 = �s0

and terminal conditions

lim
t!1

2
4 mt

pt
st

3
5 =

2
4 m�

p�

s�

3
5
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with s� = 0; ��1
�

m� = �� ��s�



p� = m� exp�(�+� ln(�)); so that when j�j < 1

the �xed point,

H�1jx� =

2
4 0 0 0
�(1 + 
) 0 0

0 0 �(2s� � 1)

3
5

H0jx� =

2
4 1

m�

���
�p�

0

1 0 ��
0 0 1

3
5

H1jx� =

2
4 0 ��

�p�
0

0 0 0
0 0 0

3
5

so that applying the methods of [. anderson linear algebraix .] near the �xed
point, the state space transition matrix is

A =

2
4 (1 + 
) 0 ��(2s� � 1)

�=�

m�=p�
���
�

0

0 0 ��(2s� � 1)

3
5

The Q matrix consists of two shifted equations and one unstable left eigenvector
if � > 1

Q =

2
664
�(1 + 
) 0 0 1 0 ��

0 0 �(2s� � 1) 0 0 1

0 0 0
��=�

m�=p�

�
(���)

�
+ (1 + 
)

�
��

�=�

m�=p�

(
���

�
+�)

3
775

So that

B =

2
4 1 + 
 0 ��� 2��s�

(1+
)�p�

(�
+�)m�
0

���(��+�)p�(�1+2s�)

(�
+�)m�(������+2��s�)

0 0 �� 2�s�

3
5

In this simple example I have grafted a nonlinear equation with known
asymptotic properties onto a simple model which typically has only �xed points
in order to demonstrate how the numerical and symbolic tools can be applied
to determine the asymptotic behavior of a nonlinear model. We �nd that this
simple model inherits the asymptotic properties of the quadratic map. There
are typically two �xed points, only one of which is an attracting �xed point.

When � = 3:5, for example, neither �xed point has the appropriate saddle
point property. This does not mean that the model has no plausible perfect fore-
sight solution. Then, the solution with the appropriate saddle point properties
is a limit cycle of period three.

13



3.4.2 The Jullien Overlapping Generations Model

H�1 =

�
� (SwW

0) 0
0 0

�

H0 =

�
1� Sr f

00 1
� (f 00m�) �r�

�

H1 =

�
0 0
0 1

�

A =

"
�(SwW 0)+f 00m�

�1+Sr f 00
r�

�1+Sr f 00

f 00m� r�

#

The eigenvalues are

r� +
�(SwW 0)+f 00m�

�1+Sr f 00
�

r�
�r� �

�(SwW 0)+f 00m�

�1+Sr f 00

�2
� 4

�
� f 00m�r�

�1+Sr f 00
+

r�(�(SwW 0)+f 00m�)

�1+Sr f 00

�
2

One and only one of these must be greater than 1 for a unique solution
converging to the steady state. If both are larger than one, then the trajectory
of capital and money would converge to a limit cycle or behave chaotically.

Jullien [. jullien .] transforms this small dimensional system into a one di-
mensional system to prove that cycles and chaotic trajectories are possible. His
global analysis exploits what is known about one dimensional maps to charac-
terize the asymptotic properties of OLG models.

3.4.3 A Certainty Equivalence Formulation of McCallum's Real Busi-

ness Cycles Model

McCallum [. barro business cycle .] describes a real business cycle model

ct + kt = ztf(nt; kt�1) + (1� �)kt�1

u1(ct; 1� nt)� �t = 0

u2(ct; 1� nt) = �tztf1(nt; kt�1)

�t = ��t+1 [zt+1f2(nt+1; kt) + 1� �]

(zt � z�) = �(zt�1 � z�)

One can obtain an analytic expression for the state space transition matrix for
solutions near a �xed point. The general expression is rather complicated, but
particular functional forms would produce more easily interpretable expressions.
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4 The Symbolic Computation Implementation

of the Anderson Moore Saddle Point Analysis

Routine Applied to the Overlapping Genera-

tions Model

This paper uses linear algebraic techniques to enhance the certainty equivalence
solution techniques now in use. When non-linear models possess �xed points or
limit cycles, a linear algebraic analysis of asymptotic properties can determine
the local existence and uniqueness of convergent paths. In addition, linear al-
gebraic analysis of the asymptotic behavior provides linear restrictions on the
solution paths that are useful for computing non-linear solutions. The availabil-
ity of symbolic algebra packages simpli�es the once burdensome programming
task associated with using non-linear models.

Augmenting the nonlinear certainty equivalence solution techniques with
linear algebraic analysis of the asymptotic behavior helps to disentangle the
several subtlety interacting sources of error which can arise in estimating non-
linear dynamic models and provides useful diagnostic tools and parameters for
controlling the estimation routines.

The algorithm described above was originally designed for use in estimation
of linear rational expectations models and for estimation of nonlinear certainty
equivalence models. In that context, it is usually necessary and appropriate to
use numerical linear algebra routines to compute the required matrices. In the
present context it has proven worthwhile to use symbolic algebra programs to
compute the matrices analytically.

In Benhabib and Laroque's model[. benhabib laroque .], individuals work in
the �rst half of their lives and consume in the last half. Time t workers choose
lt; ct+1; kt to maximize a separable utility function given by

U(ct+1; lt) = U1(ct+1)� U2(lt)

subject to the budget constraints

kt +Mqt = wtlt

ct+1 = rt+1kt +Mqt+1

Benhabib and Laroque analyze the model with the �rms production tech-
nology given by

f(kt�1; lt) = A(�l��t + (1� �)k��t�1)
�
1
� + (1� �)kt�1

Following Benhabib and Laroque, a certainty equivalence competitive equi-
librium has

� (lt; ct+1; kt) is an optimal action for the consumer born at time t given the
price system (M;wt; rt+1; qt; qt+1).

15



Figure 1:

� (kt�1; lt) maximizes the pro�t of the �rm under the technological con-
straint, given (Rt;Wt).

� F (kt�1; lt) = ct + kt for all t.

The intratemporal variable interactions are displayed in �gure 1

4.1 The Basic Model

The Benahabib and Laroque equation system 1.1 consists of:
Consumer budget constraint:

kt � FL(kt�1; lt)lt +Mqt = 0 (7)

Consumer arbitrage condition:

� (FK (kt; lt+1)qt) + qt+1 = 0 (8)

Consumer maximization �rst order condition:

FK (kt; lt+1)FL(kt�1; lt)U
0(FK (kt; lt+1)FL(kt�1; lt)lt)�V 0(lt) = 0 (9)

Lines 1 through 20 in appendix B show the mathematica commands which
establish this equation system.

We need assumptions similar to those in Benhabib and Laroque to guarantee
the existence of a �xed point.

Assumption 1 U is a strictly increasing concave function from <+ to < and

lim
C!0

U(C) = +1:

V is a strictly increasing convex function from [0; �L] into <. It is smooth on

[0; �L) and
V 0(0) = 0; lim

L!�L
V 0(L) = +1

Assumption 2 F is a strictly concave function from <2
+ into <+. It is homo-

geneous of degree 1. It is smooth on the interior of <2
+ and

lim
K!1

F (K;L)=K � (1� �) < 1

lim
K!0

FK(K;L) =1 8 L > 0

lim
L!0

FL(K;L) =1 8 K > 0
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Figure 2:

4.2 Fixed Points

4.2.1 Existence and Uniqueness

The �xed points for the system given by equations 8 -9 are given by the solution
to:3

�V 0 +U 0r�w� = 0

k� +Mq� � l�w� = 0

q� � q�r� = 0

where

w� = FL[k
�; l�]

r� = FK [k
�; l�]

Thus there are two types of �xed point solutions.

� Monetary Solutions: q� 6= 0; r� = 1

� Non-Monetary Solutions: q� = 0

I will illustrate the use of the symbolic processing techniques by analyzing
the monetary solutions.

Monetary Solutions: r? = 1 Assuming constant returns to scale we can
�nd the marginal product of labor and the capital labor ratio corresponding to
a marginal product of capital equal to one. In addition there exists a �K such
that FK( �K; �L) = 1. As a result, we can express �1(k) = w�U 0 and �2(k) = V 0

as functions of k. Figure 2 presents graphs illustrating the functions �1 and
�2. �1(k) will be monotonically downward sloping with an asymptote for small
values of k and low consumption while �2(k) will be monotonically upward
sloping with an asymptote at large values of k and high labor.

The value of the capital stock where the functions �1 and �2 cross constitutes
a �xed point. Uniqueness follows from the convexity of V and the concavity of
U.

3
Lines 20 through 40 develop the equations presented here.
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Asymptotic Stability of Monetary Fixed Points

U 0 + U 00l�w� 6= 0 Assuming constant returns to scale so that FKL !
w�

�y�

and after making the simplifying substitutions U 0 + U 00l�w� ! � and V 00 �
U 00w�2 ! � we can write the minimal dimension OLG System transition matrix
when � 6= 0 as:

2
6664

0 1 0 0
k�+Mq���y�

�y�
l�w�

k�
� (k�+Mq���y�)(k��w�

+l���y�)

l���w�y�
�M

� 1
w�

l�

k�
k��w�

+l���y�

l��w�2 0

� q�

�y�
0 q�(k��w�

+l���y�)

l���w�y�
1

3
7775

2
664
kt�2
kt�1
lt�1
qt�1

3
775

The characteristic polynomial is � times

1 +
l��

�w�

�

�
�1�

k�

l�w�
�

l��

�w�
�
M l�q��

k��w�
�

l�w�

k�
�
��y�

�w�2

�

�2
�
1 +

k�

l�w�
+

l�w�

k�
+
��y�

�w�2

�

��3

Since this equation is a cubic, we can obtain a closed form expression for
each of the eigenvalues. Because such an expresssion would be rather long
and complicated, subsection 4.2.2 will explore properties of the solutions by
determining bifurcation values for the linearized system.

We can make further simpli�cations for monetary solutions. We can write
the minimal dimension OLG System transition matrix as:2

6664
0 1 0 0

��1+�+�
�

�1 + 1
�

� (�1+�+�)(�+��)w�

(�1+�)�
�M

� 1

w�
��1+�

�w�
��+��
�1+�

0
�1+2�
M�

0 (�1+2�)(�+��)w�

M(�1+�)�
1

3
7775

where � = k�

y�
when the marginal product of capital is 1.

The characteristic polynomial is � times4

1 + �

4
This is the same as Benhabib and Laroques' equation 3.1 if we set fr

�
! 1g and

f� ! �
��w�

l�
; � !

l
�
w
�

�y�
g
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Bifurcations of Monetary Solutions r� = 1 Constant Returns to Scale

� = (1) �1 + 2� 6= 0 ^ � = 0 _ 2� = 1

� = (�1) 1� �+ 2�� 6= 0 ^ � = �2
1��+2��

� complex j�j = 1 ( 1
2
< � < 1)^ (� = 1�2�

�1+�+�
) _ (� = 1^�� = �1)

Table 1:

�

�
��

1

�
�
�

�
�

�

1� �
�

��

1� �

�

�2
�
1

�
+

�

1� �
+

��

1� �

�

��3

4.2.2 Bifurcations

The asymptotic dynamics of the system near the �xed point are determined
by the three parameters �; �, and �. So long as there are exactly two roots
outside the unit circle, there are unique trajectories which converge to the steady
state. Combinations of parameters which correspond to unit roots are important
because they trace out the border between regions where the �xed point has the
appropriate stability properties and those regions where the stability properties
are inappropriate.

We can use symbolic algebra programming to solve for combinations of the
parameters which correspond to roots of unit modulus. Lines 140 to 179 solve
for the combinations of parameters which characterize the bifurcation surface.
Flip bifurcations occur when � = �1. This occurs when � = �2

1��+2��
. Hopf

bifurcations occurs for values of � > (1=2) when � = 1�2�
�+��1

. When � = (1=2)
or � = 0 there is a root � = 1. Table 1 summarizes these results. The table
generalizes the results Benhabib and Laroque obtained for a speci�c production
to any constant returns to scale production function.

This paper demonstrates the feasibility and utility of applying symbolic numer-
ical algebra programming for analyzing the asymptotic dynamics of non-linear
economic models. The paper shows how one can adapt a numerical analysis
program to produce analytic expressions for the asymptotic behavior of the
nonlinear equation system. The symbolic algebra program provides a powerful
tool for manipulating and solving the equation systems, verifying the solutions
and recording the results. I have written the symbolic algebra programs in
Mathematica and I have made them available via \anonymous ftp".

The paper also generalizes some of the results obtained by Benhabib and
Laroque [. benhabib and laroque .]. The paper shows that, for any constant
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returns to scale production function, three parameters completely character-
ize the asymptotic behavior of the �xed points of the overlapping generations
model. The paper provides formulae characterizing the combination of the three
parameters where the asymptotic behavior of the model changes.
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