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Abstract

Recent empirical research concerning the relationship between in
ation and unemploy-

ment, a relationship that is central to the design of monetary policy, has been characterized

by an active debate about the precision of relevant parameter estimates such as the esti-

mated natural unemployment rate. This paper studies the optimal monetary policy in the

presence of uncertainty about the natural rate and the short-run in
ation-unemployment

tradeo� in a simple macroeconomic model. Two con
icting motives drive the optimal pol-

icy. In the static version of the model, uncertainty provides a motive for the policymaker

to move more cautiously than she would if she knew the true parameters. In the dynamic

version, uncertainty also motivates an element of experimentation in policy. I �nd that the

optimal policy that balances the cautionary and activist motives typically exhibits gradual-

ism, i.e. it is less aggressive than a policy that disregards parameter uncertainty. Exceptions

occur when uncertainty is very high and in
ation close to target.
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1 Introduction

The short-run relationship between unemployment and in
ation has long been central to the

design of monetary policy. In implementing policy based on this relationship, policymakers

have to rely on empirical estimates of the natural unemployment rate (or NAIRU)1 and the

slope of the short-run in
ation-unemployment tradeo�. Estimates of these parameters have

changed over time and their precision is the subject of a continuing active debate.2 Indeed,

Staiger, Stock and Watson (1997a, 1997b) investigate a variety of empirical speci�cations

and �nd that a typical 95% con�dence interval for the natural rate in 1990 was about

2.5 percentage points wide. The width of this con�dence interval is closely related to

the standard error of the slope of the short-run Phillips curve|most clearly in a linear

framework, where estimates of the natural rate are obtained from the ratio of intercept and

slope.

This paper investigates how a policymaker who believes in the existence of a short-run

tradeo� between in
ation and unemployment should adjust policy given her uncertainty

about actual parameter values. Using a simple macroeconomic model I derive the optimal

policy in the presence of uncertainty about the natural unemployment rate and the short-run

in
ation-unemployment tradeo�. Two con
icting motives drive the optimal policy. In the

static version of the model, Phillips curve uncertainty provides a motive for the policymaker

to move more cautiously than she would if she knew all the parameter values. In the dynamic

version with learning on the part of the policymaker, uncertainty also motivates an element

of experimentation in policy.

Analysis of the motive for cautionary policy due to multiplicative parameter uncertainty

goes back to Brainard (1967) and has been used to justify a gradualist approach to monetary

policy. For example, Alan Blinder (1995, p.13), when he was vice-chairman of the Board

of Governors, argued that \a little stodginess at the central bank is entirely appropriate",

1
An acronym for non-accelerating in
ation rate of unemployment.

2
See Gordon (1996), Staiger, Stock, and Watson (1997a) and (1997b), Blanchard and Katz (1997),

Fuhrer (1995), Akerlof, Dickens and Perry (1996), Eisner (1996), Phelps and Zoega (1997), Debelle and

Laxton (1996) and others.
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and proposed in his Marshall lectures that \central banks should calculate the change in

policy required to get it right and then do less".3 However, there are a number of reasons to

believe that such a Brainard-type analysis overstates the case for gradualism. For example,

Caplin and Leahy (1996) show that in a game between a policymaker who attempts to

stimulate the economy and potential investors, a cautious policy move may be ine�ectual,

because investors anticipate lower interest rates in the future. Another reason, investigated

in this paper, is that a more aggressive policy move may generate more information, which

would improve the precision of future estimates and thereby future policy performance.

Policymakers have noted this link between policy and learning. For example, Stiglitz (1997),

when Chairman of the Council of Economic Advisers, recognized that \ a fuller discussion

(of NAIRU uncertainty) would take into account factors such as costs of adjustment and of

variability in output and unemployment, and dynamic learning e�ects" and then asked the

question: \are there policies that can a�ect the degree of uncertainty about the value of the

NAIRU or of policy tradeo�s?"

This paper makes the following three contributions. First, the static analysis of the cau-

tionary motive extends Brainard's analysis of optimal policy under multiplicative parameter

uncertainty by including uncertainty about the natural rate. Speci�cally, I show that the

covariance between estimates of the intercept and slope of the Phillips curve importantly

a�ects the optimal policy and provide an economic interpretation of this e�ect. This e�ect

also implies a form of gradualism, because it leads policy to gradually move out of disin
a-

tionary (or rein
ationary) episodes even at the expense of temporarily under-shooting (or

over-shooting) the in
ation target.

Second, the paper provides numerical results concerning the optimal policy in a dy-

namic model with learning. The reason why analytical results concerning optimal policies

under parameter uncertainty are largely absent from the literature is the nonlinear nature of

the dynamic learning problem. Furthermore, numerical analysis by dynamic programming

methods is complicated, because modelling the policymaker's beliefs increases the dimen-

3
See also Blinder (1998) for a discussion of this strategy.
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sion of the state space and the nonlinear updating equations induce multiple optima and

discontinuities in the optimal policy.4 The analysis in this paper builds on earlier work on

simple controlled regressions in Wieland (1996a,1996b) extending that framework to allow

for a lagged dependent variable and a time-varying intercept. I �nd that even when parame-

ter uncertainty is relatively low, the optimal policy incorporates a quantitatively signi�cant

degree of experimentation as indicated by a more aggressive policy response than under the

cautionary Brainard-type policy. However, the optimal policy typically remains less aggres-

sive than a certainty-equivalent policy which completely disregards parameter uncertainty.

Thus, in most cases the recommendation for gradualist policymaking under parameter un-

certainty still applies in the dynamic model with learning. Only, when uncertainty is very

high and in
ation close to target, does the optimal policy imply a more aggressive response

than a policy that disregards parameter uncertainty.

Third, the policy functions derived in this paper can be related to the type of interest

rate reaction functions, which have been the focus of the recent literature on monetary

policy rules.5 So far, this literature has studied the performance of monetary policy rules in

di�erent macroeconometric models under the assumption that all structural parameters are

known with certainty. Uncertainty about the parameters of the Phillips curve has important

implications for the response coe�cients in these rules. In the presence of parameter uncer-

tainty optimal monetary policy would imply time-varying response coe�cients on in
ation

and resource gaps that are typically smaller than for a policy that disregards parameter

uncertainty. In most situations, the optimal interest rate rule would respond gradually

to in
ation and unemployment deviations with the degree of gradualism varying with the

degree of parameter uncertainty.

The remainder of this paper is organized as follows. The next section �rst reviews

4
The current state of analytical and numerical approaches to optimal learning in the literature is reviewed

in the next section.
5
See for example Taylor (1993), Henderson and McKibbin (1993), Bryant, Hooper and Mann (1993),

Brayton, Levin, Tryon and Williams (1996), Rotemberg and Woodford (1997), McCallum (1997), Clarida,

Gali and Gertler (1997,1998), Orphanides, Small, Wieland and Wilcox (1997), Williams (1997) and many

others.
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NAIRU estimation in the linear framework that is widely used in the empirical literature

and then also discusses the current state of the literature on uncertainty and learning on the

part of the policymaker. Section 3 introduces a simple macroeconomic model that forms

the basis for the subsequent analysis of optimal policy under uncertainty about the param-

eters of the Phillips curve. In section 4 the cautionary policy, which is myopic because it

disregards dynamic learning e�ects, is derived analytically. Section 5 extends the model to

incorporate learning and a tradeo� between current stabilization and information. A quan-

titative comparison of the optimal, cautionary and certainty-equivalent policies is provided

in section 6. In section 7, the asymptotic properties of beliefs and policies are discussed.

Section 8 concludes.

2 Literature review

2.1 NAIRU estimation in the empirical literature

The standard framework for estimating the natural unemployment rate is the expectations-

augmented Phillips curve. This relationship is often estimated in the following linear form:6

�t = �
e
t +B(L)(u�t � ut) + CXt + �t (1)

where �et is the public's expectation of in
ation and may be approximated by survey ex-

pectations, or simply by lags of the in
ation rate. This regression equation usually includes

several lags of the unemployment rate and a vector Xt that contains proxy variables for

supply shocks and dummies for the Nixon wage and price controls. Estimates of the nat-

ural unemployment rate can be computed as functions of the estimated parameters. For

example, an estimate of a constant natural rate u�t = u� 8 t, can be obtained from the ratio

of the estimated regression constant and the sum of the coe�cients on current and lagged

6In the past, the linear framework has been found to describe the historical process of U.S. in
ation

remarkably well (eg. Gordon (1977) and (1982)). Recently, Gordon (1996) has presented new estimates of a

time-varying natural rate, which has declined somewhat over recent years, but is more precisely estimated

than in Staiger et al.. Eisner(1996), Debelle and Laxton (1996), and Akerlof et al. (1996) present evidence

that various (perhaps con
icting) nonlinear speci�cations of the Phillips curve may �t the U.S. in
ation

process better than a linear speci�cation.
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unemployment rates B(.).7 Because the NAIRU estimate is computed as the ratio of the

intercept and the slope estimates, its precision is importantly related to the precision of

estimates of the slope of the Phillips curve.8 Thus any speci�cation of the policymaker's

decision problem, which addresses the issue of uncertainty about the natural rate must

also consider uncertainty about the slope of the Phillips curve, i.e. about the (sum of)

coe�cient(s) on the unemployment rate(s).

Figure 1 illustrates the degree of uncertainty associated with the relationship between

in
ation and unemployment. It graphs year-to-year changes in in
ation ��t against the

preceding year's unemployment rate ut�1 (annual observations (1955-1995)). The motiva-

tion for plotting the change of in
ation is that last year's in
ation rate is taken as a proxy

for the public's expectation of in
ation in the current year. All other dynamics and lags

are neglected. For illustration, the chart contains a linear Phillips curve with a slope of -0.5

and a natural unemployment rate of 6 percent. These values are within the range of values

discussed in the empirical literature and are quite close to the estimates one would obtain

from an ordinary least squares regression based on this data. I will use these values later

on in the numerical analysis of optimal and cautionary policies.

This chart suggests that unemployment variations only explain a fraction of the ob-

served changes in in
ation. As shown in the empirical literature, the �t of the regression

improves when one includes more lags of in
ation and unemployment, measures of in
a-

tion expectations and additional variables that account for wage and price controls, supply

shocks and import prices. Furthermore, in a framework with a time-varying natural rate,

some of the variation that is apparent in the cloud of observations scattered around the

7
An approximate measure of the variance of the estimated NAIRU can be calculated by the delta method,

which involves taking a �rst-order Taylor series approximation to the nonlinear function and computing the

variance of this approximation.
8
Note that while the estimates of the intercept and slope have a multivariate normal distribution under

the assumption of Gaussian errors, the ratio of the intercept and the sum of slope coe�cients has a doubly

non-central Cauchy distribution with dependent numerator and denominator for which means and variances

do not exist. Such a distribution may be skewed and heavy-tailed. Staiger et al. (1997b) point out that

when the slope is estimated imprecisely, normality as implied by the delta method can provide a poor

approximation to the distribution of this ratio. They provide an alternative method to calculate con�dence

intervals which are exact under the assumption of exogenous regressor and normal errors.
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linear relationship in �gure 1 would be accounted for by variations in the natural rate.

Nevertheless, the debate about the value of the natural rate is far from settled. The main

thrust of the recent empirical literature has been to consider alternative explanations for the

observed variation in in
ation, such as structural shifts in the natural rate (eg. Staiger et

al. and Gordon) and nonlinearities in the short-run or long-run Phillips curve (eg. Eisner,

Akerlof et al. and Debelle and Laxton).

2.2 The literature on uncertainty and learning by the policymaker

The tradeo� between current stabilization and exploration for the sake of better control in

the future has been the focus of a theoretical literature on optimal learning as well as an

engineering-related literature on dual control. The theoretical optimal learning literature

has primarily studied the asymptotic properties of beliefs and actions.9 The dual control

literature instead has focussed on numerically computing payo�s and optimal policies based

on linear approximation.10

In terms of monetary policy, recent studies of the implications of the tradeo� between

current control and learning have been conducted by Bertocci and Spagat (1993), Balvers

and Cosimano (1994) and Wieland (1996b).11 Among these, Wieland (1996b) considers the

most general learning framework, namely a simple linear regression equation with two un-

known parameters, and numerically computes optimal policies. The asymptotic properties

of beliefs and policies in this framework have been studied by Easley and Kiefer (1988) and

Kiefer and Nyarko (1989), who have shown that incomplete learning may occur.12 Wieland

9
See for example Taylor (1974), Lai and Wei (1982), Easley and Kiefer (1988), Kiefer and Nyarko (1989),

Nyarko (1991) and Aghion et al. (1993). The applicability of these results to the framework considered here

is discussed in more detail in section 7.
10
See for example Tse and Bar-Shalom (1973), Kendrick (1981), Kendrick (1982), Mizrach (1991), Amman

and Kendrick (1995), Tucci (1996)).
11Bertocci and Spagat have argued that a �xed money supply rule is not optimal in the context of uncer-

tainty about the parameters of a Lucas-type supply curve, because learning leads to adjustments in monetary

policy. However, they impose stringent simplifying restrictions on the type of uncertainty in the model and

do not derive the optimal learning policy. Balvers and Cosimano consider a more general model with two

unknown time-varying parameters and show that even when learning is taken into account the optimal

transition from high to low in
ation is still a gradual one. However, they impose simplifying restrictions on

the type of uncertainty and the form of the objective function, which imply that the policymaker only cares

about the variance but not the expectation of in
ation.
12
Using this incomplete learning result Kasa (1996) shows that a central bank that starts out thinking
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(1996b) has evaluated the speed of learning under alternative policies as well as the fre-

quency with which a persistent bias in money growth and in
ation may arise due to such

self-reinforcing incorrect beliefs subsequent a structural change such as German uni�cation.

The reason, why analytical results concerning optimal policies under parameter uncer-

tainty are largely absent from the literature and numerical results are rare, is the nonlinear

nature of the dynamic learning problem. Compared to the simple regression framework

considered in previous work, the problem studied in this paper is further complicated by

the existence of lagged dependent variables. The associated nonlinear stochastic dynamic

optimization problem is attacked using an extended version of the numerical algorithm

developed in Wieland (1995).13 It is described in more detail in the appendix.

As mentioned above, numerical approaches to solving this class of optimal learning

problems have been studied extensively and for some time in engineering. Termed \dual

control", these methods have been further developed and applied to economic problems by

Kendrick (1981) and (1982), Norman (1976), Mizrach (1991), Amman and Kendrick (1995)

and others. There are several important di�erences between dual control and the dynamic

programming algorithm used here: (i) while the dual control algorithm typically involves a

�rst- or second-order linear approximation, the DP algorithm used here directly takes into

account the nonlinearity of the updating equations which are at the center of the learning

problem; (ii) while the dual control algorithm approximates ex-post payo�s for a given

initial belief about the unknown parameters for alternative sequences of shocks as in Monte

Carlo simulations, the DP algorithm used here approximates ex-ante payo�s and policies

for a range of initial beliefs and any possible sequence of shocks.

Finally, it is important to note that the framework in this paper abstracts from the

interaction between the public's and the policymaker's learning processes. By allowing the

wage setters' and the policymaker's beliefs to depend on di�erent information sets, it would

that there is a long-run tradeo� between in
ation and unemployment, may be led to implement a policy

that reinforces this belief even though the true Phillips curve is vertical.
13
In this earlier work I have generalized the numerical DP approach used by Prescott (1972) for a one

unknown parameter - one state variable problem to a problem with two unknown parameters and �ve state

variables.
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be possible to jointly address questions of credibility, time consistency and learning by the

policymaker. While these questions have not yet been studied in a macroeconomic model

with parameter uncertainty and rational learning such as the one considered in this paper,

they have partly been addressed in two alternative frameworks. Caplin and Leahy (1996)

study a game between a monetary policymaker who attempts to get the economy out of a

recession and potential investors that are waiting for lower interest rates.14 Sargent (1998a)

considers a framework with a policymaker and a public that are learning about the nature

of the Phillips curve but are both 'boundedly rational'.15 Rather than learning optimally,

both, the policymaker and the public, learn adaptively and use forecasting rules as in the

least squares learning literature. There exist self-con�rming equilibria that depend on the

actual and perceived relationships between unemployment and in
ation (not without some

similarity to the self-reinforcing beliefs in the optimal learning literature).

3 A simple macroeconomic model

The starting point of the analysis is a standard linear Phillips curve:

�t = �
e
t + �(u�t � ut) + �t (2)

where �t is the in
ation rate, �et is the in
ation rate expected by the public (which may

be di�erent from the policymaker's expectation of in
ation) and �t � N(0; �2� ) are random

shocks. The slope parameter � characterizes the short-run in
ation-unemployment tradeo�.

The natural unemployment rate u�t is assumed to evolve according to:

u
�

t = u
�

t�1 + �t (3)

where �t � N(0; �2�). For �
2
� > 0, this speci�cation implies that the natural rate follows a

random walk. For �2� = 0, it implies a constant natural rate u�t = u�0 8 t. For simplicity, I

14The policymaker is uncertain about the investors' response to a speci�c value of the interest rate. She

has to resolve the dilemma that an overly aggressive move may lead to overheating (too much investment)

while an overly cautious move may be ine�ectual, because investors anticipate lower interest rates in the

future and delay investment.
15
A related framework was studied by Sims (1988) and Chung (1990).
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assume that the public forms expectations about in
ation adaptively:16

�
e
t = �t�1 (4)

The policymaker is endowed with a standard loss function which is quadratic in in
ation

and unemployment:17

L(�t; ut) = Et�1[(�t � �
�)2 + !(u�t � ut)

2] (5)

where �� is the target in
ation rate.

Two additional equations are needed to close the model. First, according to \Okun's

Law" changes in the unemployment rate are related to deviations of real GDP growth �yt

from its trend growth rate �y�t :
18

�ut = ��(�yt ��y�t ) (6)

Second, monetary policy a�ects unemployment and in
ation through the interest rate chan-

nel and aggregate demand. Deviations of the real interest rate rt from its equilibrium value

r� are negatively related to the output gap:

yt � y
�

t = 
(rt � r
�) (7)

where yt and y�t denote the logarithms of actual and trend (potential) output. The poli-

cymaker is assumed to choose rt based on her knowledge of the state of the economy and

16This assumption will simplify the subsequent numerical analysis of optimal policy under uncertainty.

However, other than computational complexity there is no fundamental reason for excluding the possibility

of rational expectations (or rational learning) on behalf of the price-setter. Alternatively, one could consider

the \backward and forward-looking components" model of the Phillips curve (eg. Buiter and Miller (1985),

Fuhrer and Moore (1995), and Clark, Goodhart and Huang (1996)):

�t = ��t�1 + (1� �)Et�1�t + �(u
�

t � ut) + �t

The backward-looking component re
ects inertia in in
ation due to overlapping wage contracts or adaptive

expectations of a subset of price-setters and guarantees that monetary policy still has real e�ects. The

public's rational expectation of in
ation Et�1[�t] is a function of observable data as well as the policy rule

and can be computed by the policymaker conditional upon her policy choice as long as they share the same

information set.
17
The quadratic speci�cation is a natural starting point for analyzing optimal policy under uncertainty

because of its prevalence in the policy literature. However, the numerical dynamic programming algorithm

used here could be applied to non-quadratic speci�cations of the policymaker's preferences. In this case

higher-order moments may in
uence the optimal policy.
18
For a textbook discussion of this empirical regularity see Dornbusch and Fischer (1990).
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its structural parameters but before the shocks �t and �t are realized.19 She can predict

impending changes in in
ation and unemployment based on the observations from the pre-

ceding period and respond appropriately.

As a �rst step, I consider a static version of this model, in which the policymaker

minimizes the expected loss in the current period. If all parameters are known, including

the natural rate u�t�1 and the slope of the short-run Phillips curve �, the optimal policy is

a linear feedback rule of the following form:

rt = rt�1 +
1

�


�

(! + �2)
(�t�1 � �

�) +
1

�

(u�t�1 � ut�1) (8)

This rule sets the current real interest rate based on past in
ation and unemployment

gaps. The optimal response depends on the structural parameters, the in
ation target ��

and the weight ! which the policymaker assigns to unemployment deviations relative to

in
ation deviations. If in
ation is above target, the policymaker raises the interest rate, if

unemployment is above the NAIRU, she lowers the interest rate.

In solving her optimization problem, the policymaker balances the expected marginal

loss from unemployment against the expected marginal loss from in
ation. It is instructive

to take a look at the associated �rst-order condition after substituting in the feedback rule

(8):

Et�1[u
�

t � ut] = �
�

! + �2
(�t�1 � �

�) = �
�

!
Et�1[�t � �

�] (9)

Note that as long as the preceding period's in
ation gap is zero, the optimal interest rate

setting implies that both, the expected unemployment gap and the expected in
ation gap

for period t, are set to zero.

If the policymaker focuses exclusively on stabilizing in
ation (i.e. ! = 0), the optimal

policy induces an expected in
ation rate equal to the in
ation target Et�1[�t] = �� and

corresponds to a policy of \in
ation forecast targeting" as de�ned by Svensson (1997a).

19
Of course, in practice the central bank sets the nominal short-term interest rate rather than the real

rate. However, the rigidity in in
ation that is embodied in the short-run Phillips curve gives the policymaker

short-run control over real interest rates.

10



The optimal setting of the nominal interest rate results in an unemployment gap that is

expected to o�set the in
ation gap inherited from the preceding period.

4 Uncertainty as a motive for cautious policymaking

The preceding policy rule cannot be implemented directly if the natural unemployment rate

u�t and the slope of the short-run in
ation-unemployment tradeo� � are unknown. However

the policymaker can obtain estimates from the following regression equation:

�t � �t�1 = �t � �ut + �t (10)

This is a simple version of the type of equation estimated in the empirical literature. The

intercept is a function of both the unknown slope parameter and the unknown NAIRU, and

may therefore vary over time.

�t = �u
�

t = �u
�

t�1 + ��t = �t�1 + �t (11)

where �t � N(0; �2�). I denote the means of the intercept and slope parameters based on

information up to time t-1 as follows:

Et�1�t = atjt�1 = at�1 (12)

Et�1� = bt�1

Since u�t =
�t
�
, the empirical literature uses the ratio of the means as an estimator for the

NAIRU.

û
�

t =
at�1

bt�1
(13)

The degree of uncertainty about the unknown intercept and slope parameters based on

information at t-1 is characterized by the following variance-covariance matrix:

�tjt�1 =

 
va
tjt�1

vabt�1

vabt�1 vbt�1

!
=

 
vat�1 + �2� vabt�1

vabt�1 vbt�1

!
(14)

The �ve variables (at�1; bt�1;�tjt�1) de�ne a bivariate normal distribution which comprises

all relevant information about the unknown parameters (�t; �) at time t-1. This distri-
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bution represents the policymaker's beliefs about the location and slope of the in
ation-

unemployment tradeo�.20

Throughout the remainder of this paper I will focus exclusively on uncertainty about

the relationship between in
ation and output and maintain the assumption that all other

parameters are known to the policymaker. The policy rule (8) can then be rendered imple-

mentable by replacing the actual values of u�t�1 and � by the best available estimates
at�1
bt�1

and bt�1.

rt = rt�1 +
1

�


bt�1

(! + b2t�1)
(�t�1 � �

�) +
1

�


�
at�1

bt�1
� ut�1

�
(15)

This \certainty-equivalent" policy rule will serve as a benchmark for comparison. An op-

timal rule in the presence of parameter uncertainty can be derived from the following one-

period optimization problem:

Min

rt
E

h
(�t � �

�)2 + !(u�t � ut)
2 j (�t�1; ut�1; at�1; bt�1;�t�1)

i

s.t. �t = �t�1 + �t � � ut + �t (16)

ut = ut�1 + �
 (rt � rt�1)

where Okun's law has already been substituted into the aggregate demand equation. The

expected current period loss L(�t; ut) is a function of the state variables at t-1, which

comprise in
ation, unemployment, the interest rate and the policymaker's beliefs about the

unknown Phillips curve. It will be denoted by L(�t�1; ut�1; rt�1; at�1; bt�1;�t�1) from here

on.

The policy that minimizes expected one-period loss is best described as a cautionary

policy, because it takes into account parameter uncertainty. Clearly, it is not necessarily

optimal in a dynamic context. It is a \myopic" policy, because it disregards the e�ect

20
Note that for mathematical convenience, the variances of the normally distributed shocks �2� ; �

2

� are

assumed to be known. This is a standard assumption in the optimal learning literature (see Easley and

Kiefer (1988), Kiefer and Nyarko (1989)). It guarantees that given a normal prior, the posterior belief will

also be a normal distribution.
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of the current interest rate setting on future parameter estimates and policy performance.

This cautionary policy takes the form of a feedback rule, which is linear in in
ation and

unemployment:

rt = rt�1 +
1

�


bt�1

(b2t�1 + vbt�1 + !)
(�t�1 � �

�) +
1

�


�
at�1

bt�1
� ut�1

�

(17)

+
1

�


 
vabt�1 � vbt�1

at�1
bt�1

b2t�1 + vbt�1 + !

!

Neither the variance of the estimated intercept, vat�1, nor the variance of the natural un-

employment rate explicitly enter the feedback rule, although they a�ect the expected loss.

This is not surprising. Since the model is linear and the loss function is quadratic, certainty-

equivalence applies and additive uncertainty does not a�ect the optimal policy. However,

the variance of the slope estimate vbt�1 as well as the covariance vabt�1 of the intercept and

slope enter the rule in two di�erent places in a nonlinear way.

First, the variance vbt�1 shows up in the denominator of the response coe�cient on the

in
ation gap. Thus, as long as vb is greater than zero, the cautionary policy rule recommends

a more muted response to the preceding in
ation gap than the certainty-equivalent rule

(15). This muted policy response implies a gradualist approach to disin
ation in the face of

uncertainty about the slope of the Phillips curve. It mirrors the seminal result by Brainard

(1967) concerning cautionary policy under multiplicative parameter uncertainty.21 As the

slope estimate becomes more and more precise, policy will tend to respond to in
ation more

aggressively as prescribed by the certainty-equivalent rule.

Second, there is a new term in the feedback rule, which is a function of the variance

vbt , the covariance vabt�1 and the point estimate of the natural rate
at�1
bt�1

. This term may

result in a negative or a positive adjustment to the interest rate. While the �rst result

is intuitive, the second is somewhat puzzling. It implies that even in a situation where

the observed in
ation rate is on target and the unemployment rate equals the estimated

21Other papers that have looked at this e�ect recently are Svensson (1997b), Clarida, Gali and Gertler

(1997) and Estrella and Mishkin (1998). Sack (1997) studies how parameter uncertainty can explain the

high degree of serial correlation in interest rates.
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natural rate, the central bank would pursue a policy that drives unemployment away from

the estimated natural rate in expectation. One might have expected that the policymaker

would abstain from any action, when unemployment is at the estimated natural rate and

in
ationary pressures are absent. In fact, this would still be the case if the covariance vabt�1

were to satisfy the following condition:

v
ab
t�1 = v

b
t�1

at�1

bt�1
= û

�

t v
b
t�1 (18)

It may seem at �rst that nothing more can be said about this covariance e�ect. Fortunately

however, one can make use of the fact that the covariance and variance of the intercept

and slope estimates are functions of the historical data on in
ation and unemployment. For

example, if the natural rate is assumed to be constant, u�t = u�08t, the estimates at and bt of

the parameters � and � can be obtained by ordinary least squares. The covariance of these

least squares estimates is simply the product of the variance of the slope and the sample

mean of the unemployment rate:

v
ab
t�1 = �ut�1v

b
t�1 (19)

where �ut�1 =
Pt�1

i=0 ui denotes the sample mean of the historical unemployment path.22

Whenever �ut�1 equals the estimated natural rate û�t�1 then (18) holds and the cautionary

policy rule will keep unemployment as close as possible to the natural rate in the absence

of in
ationary pressures. The di�erence between û�t�1 and �ut�1 is a function of the sample

mean of the change in in
ation, which is equal to the trend in in
ation over the data period:

at�1

bt�1
� �ut�1 =

1

bt�1
��t�1 =

1

bt�1

�t�1 � �0

t� 1
(20)

This implies that the optimal approach to controlling in
ation under uncertainty is to

gradually ease out of in
ationary or disin
ationary episodes rather than attempt to end

them abruptly. For example, having observed an upward trend in in
ation, the policymaker

22For a derivation see Greene (1993) pp 155-157. In the case of a time-varying natural rate, the covariance

and variances of the parameter estimates would be related to an appropriately weighted average of the

historical unemployment rate rather than the simple average. The Kalman �lter generates the appropriate

weighting.
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concludes that in the past the unemployment rate has on average been below the natural

rate. Rather than pushing unemployment aggressively above the natural rate to reverse

the trend and bring in
ation back to target as quickly as possible, policy will be leaning

towards the historical mean of unemployment and respond more gradually.

To provide some economic intuition for this result, I turn to the case where the poli-

cymaker is exclusively concerned with in
ation stabilization (! = 0). The expected loss

can then be decomposed into two terms, the conditional expectation of in
ation deviations

from target squared and the conditional variance of in
ation:

L(�t; ut) = (Et�1[(�t�1 � �
�) + �(u�t � ut)])

2 + V art�1[�t � �
�] (21)

If the preceding period's in
ation gap is zero, the �rst term|the squared conditional

expectation|will be minimized by a policy that drives the unemployment rate to the esti-

mated natural rate ut =
at
bt
. However this is not true for the second term|the conditional

variance of in
ation:

V art�1[�t � �
�] = v

a
t�1 + v

b
t�1u

2
t � 2vabt�1ut + �

2
� (22)

The conditional variance is minimized for ut =
vab
t�1

vb
t�1

, which is equal to the sample mean

and may well di�er from the estimated natural rate. Thus, the covariance e�ect in the

cautionary policy rule arises because the policymaker balances the loss from a deviation of

the conditional expectation of in
ation from target against an increase in the conditional

variance of in
ation. This tradeo� is illustrated graphically in �gure 2. The solid line

represents the estimated Phillips curve based on point estimates of the intercept and slope.

It intersects the horizontal axis at the estimated natural unemployment rate û� and also

goes through the point de�ned by the sample means �� and �u when estimated by ordinary

least squares. Since the parameter estimates are imprecise, the true Phillips curve may

be steeper or 
atter than the estimated one; and the in
ation rate that results from a

speci�c value of the unemployment rate is uncertain. The dotted lines in �gure 2 are one

standard deviation bands of in
ation conditional on unemployment. As can been seen,
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uncertainty about in
ation is minimized when the unemployment rate equals the sample

mean. Consequently, the unemployment rate which minimizes the loss function must lie

between the sample mean and the natural rate whenever the preceding period's in
ation

gap is zero. Its value can easily be derived from the �rst-order condition:

Et�1[u
�

t � ut] = �
bt�1

b2t�1 + vbt�1

(�t�1 � �
�)�

(vabt�1 � vbt�1
at�1
bt�1

)

(b2t�1 + vbt�1)
(23)

If (�t�1 � ��) is zero, the unemployment rate that is consistent with the optimal policy in

the static model is a weighted average of the sample mean and the estimated natural rate:

ut(rt) =
b2t�1

b2t�1 + vbt�1

û
�

t�1 +
vbt�1

b2t�1 + vbt�1

�ut�1 (24)

Finally, it can be shown that the cautionary policy rule (17) formalizes the recipe for

gradualist policymaking provided by Blinder (1995). For example, suppose that in
ation

exceeds the target rate by x percentage points, the unemployment rate equals the estimated

natural rate and the sample mean of unemployment is z percentage points below the esti-

mated natural rate (which would be consistent with a past upward trend in in
ation). The

change in policy required to \get it right" given the parameter estimates and the policy-

maker's objective function would be to raise the interest rate by
bt�1

(�
)(!+b2
t�1

)
x. However,

under uncertainty about the parameters of the Phillips curve the policymaker will \do less".

How much less? As shown above, there are two adjustments, the �rst is a function of the

in
ation gap x and the second is a function of the di�erence between the sample mean of

unemployment and the natural rate z. The �rst adjustment reduces the prescribed inter-

est rate change by x
bt�1v

b
t�1

(�
)(!+b2
t�1

)(!+b2
t�1

+vb
t�1

)
. The second adjustment further reduces the

interest rate prescription by an amount equal to z
vb
t�1

(�
)(!+b2
t�1

+vb
t�1

)
.

As a consequence of these adjustments, in
ation will decline more gradually towards

the target rate. This is best illustrated by computing the expected disin
ation path when

the in
ation rate is above target. An example is shown in �gure 3. The associated initial

conditions for in
ation and unemployment are (x = 1; z = 0:4; �u = 5:6; û = 6; ut�1 = û),

the prior belief is (a = 3; b = 0:5; va = 5:22; vb = 0:16; vab = 0:896; �u = 5:6; û = 6) and
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the known parameters are set to (� = 0:5; 
 = 1; ! = 0; �2� = 0; �2� = 1). Thus, initially

in
ation is one percentage point above target, unemployment equals the estimated natural

rate, uncertainty about the Phillips curve is very high and both, the e�ect due to slope

uncertainty and the covariance e�ect, come into play. The covariance e�ect is related to

the di�erence between the sample mean of unemployment and the estimated natural rate,

z, which equals 0.4 percentage points and is consistent with a �ve-year upward trend in

in
ation of one percentage point.

The three panels in the top row of �gure 3 show the expected paths of in
ation,

unemployment and interest rates under the certainty-equivalent and cautionary policy re-

spectively. The certainty-equivalent policy raises real interest rates and unemployment by 4

and 2 percentage points respectively, so that in
ation is expected to return to target within

a year. The cautionary policy responds more slowly and initially raises interest rates and

unemployment by less than the certainty-equivalent rule. In terms of the interest rate, the

total downward adjustment in the �rst period is 1.9 percentage points with 1.6 percentage

points due to the slope uncertainty e�ect and 30 basis points due to the covariance e�ect.

As a consequence, in
ation, unemployment and interest rates are expected to return more

gradually towards their steady-state values over the course of the next four years. Note

that under di�erent initial conditions, speci�cally when the initial sample mean of unem-

ployment is very low, unemployment and the interest rate may �rst increase gradually over

a few periods and then again decrease gradually.

The dynamic simulation of the expected disin
ation path in �gure 3 takes into account

that the policymaker will be able to reestimate the Phillips curve every time new in
ation

and unemployment observations become available. This raises the question whether the

policymaker should expect her beliefs about the unknown parameters to change based on

the expected path of in
ation and unemployment. It turns out that the point estimates of

the intercept and slope are martingales; and the policymaker would not expect that they

will change. This property of the point estimates, which has important implications for

their asymptotic behavior, will be discussed in more detail in section 7. The variances and
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covariances however, are deterministic functions of the sum of squared deviations of the

unemployment rate from its sample mean, and the policymaker would expect that they

change along the expected path for unemployment. This is re
ected in the bottom row

of panels in �gure 3. All three elements of the covariance matrix are expected to decline

monotonically during the disin
ation.23 The temporary increase in the unemployment rate

generates information and is expected to raise the precision of the parameter estimates.

The more aggressive the initial increase in interest rates and unemployment, the more

rapid will be the reduction in uncertainty. While the certainty-equivalent policy implies a

higher conditional variance of in
ation than the cautionary policy in the current period, it

may well lead to a lower variance of in
ation in future periods due to the rapid reduction

in parameter uncertainty. A forward-looking policymaker may want to take this dynamic

learning e�ect into account and adjust policy in an optimal manner. It remains to be seen

whether the recommendation for gradualist monetary policy survives in a dynamic setting

with learning.

5 The optimal balance between caution and experimentation

As new observations on in
ation and unemployment become available the policymaker

may reestimate the regression and update her estimates of the unknown parameters. The

relevant updating equations for the policymaker's beliefs (at�1; bt�1;�tjt�1) can be cast in

form of the Kalman �lter: 
atjt

btjt

!
=

 
atjt�1

bt�1

!
+�tjt�1

 
1

ut

!
F
�1(�t � �t�1 � atjt�1 + bt�1ut)

�tjt = �tjt�1 � �tjt�1

 
1

ut

!
F
�1
�
1 ut

�
�tjt�1 (25)

where F =
�
1 ut

�
�tjt�1

 
1

ut

!
+ �

2
�

Under the assumption that the error terms are normally distributed with known variances

�2� and �
2
� , (25) is equivalent to Bayesian updating of the bivariate normal distribution that

23
If the NAIRU is assumed to be time-varying, then the variance of the intercept would be expected to

be renewed every period by �2�.
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represents the policymaker's belief about �t and �. Under the assumption of a constant

natural unemployment rate, these updating equations are also equivalent to recursive least

squares.24 The current choice of the interest rate will a�ect the precision of the point

estimates as well as the point estimates themselves through its impact on unemployment

and in
ation in (25). By choosing the interest rate appropriately, the policymaker can raise

the precision of parameter estimates and improve future performance, albeit at the expense

of higher current variability of in
ation and unemployment. The optimal policy in this

model solves the following dynamic optimization problem:

Min

[rt]
1
t=0

E

"
1X
t=0

�
t
�
(�t � �

�)2 + !(u�t � ut)
2
�
j (�0; u0; a0; b0;�0)

#

s.t. �t = �t�1 + �t � �ut + �t (26)

ut = ut�1 + �
(rt � rt�1)

and s.t. (25)

This is a dynamic discrete-time stochastic control problem, which can be rewritten as

a dynamic program. A nonstandard feature of this dynamic problem is that decisions

a�ect the expectations operator itself. However, one can still use a standard contraction

mapping argument as in Kiefer and Nyarko (1989) to show that a unique value function

exists, which solves the dynamic program and corresponds to the in�mum of the sum of

expected current and discounted future losses in (26). To simplify notation, I will use the

vector �t�1 to denote the policymaker's beliefs about the unknown parameters at time t-1,

�t�1 = (at�1; bt�1;�t�1). The value function is then denoted as V (�; u; �) and the associated

Bellman equation is:

24
This dynamic learning model extends earlier analysis of optimal learning byWieland (1996a) and (1996b)

in a simple regression framework in two ways. It allows for a time-varying intercept and, more importantly, it

includes a lagged dependent variable, which raises the number of state variables and increases computational

complexity.
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V (�t�1; ut�1; rt�1; �t�1) =
Min

rt
L(�t�1; ut�1; rt�1; �t�1)

+ �

Z
V (�t; ut; rt; �t)f(�tj�t�1; ut�1; �t�1) d�

(27)

=
Min

rt
L(�t�1; ut�1; rt�1; �t�1)

+ �

Z
V (�t; �; �t; rt ; �t�1; ut�1; rt�1; �t�1)

p(�t; �j�t�1; �t�1)q(�) d� d� d�

First focus on the upper equation in (27) and note that (�; u; r; �) are state variables. The

two terms on the right-hand side of this equation characterize the tradeo� between current

control and estimation. L(:) is the expected current loss, while the second term denotes next

period's expected loss and is multiplied by the discount factor � . This term incorporates

the value of information. Note that �t, the vector of beliefs at time t, is stochastic and can

only be calculated once time t unemployment and in
ation observations become available.

f(�tj:) is the corresponding predictive distribution of in
ation.

In the lower equation in (27), time t values of in
ation, unemployment and beliefs have

been substituted out using the respective transition equations, including (25). They are

functions of the previous period's in
ation rate, unemployment and beliefs, and also of the

unknown parameters and random shock �t. Expectations are taken with respect to the

unknown parameters and the random shock. p(�t; �j:) is the bivariate normal distribution

that describes the policymaker's beliefs about �t and �. q(�) refers to the normal density

function of the price shocks in the Phillips curve.

Associated with this functional equation is a stationary optimal policy. This policy

function maps the state variables into a value for the real interest rate:

rt = rt�1 �
1

�

ut�1 +

1

�

H(�t�1 � �

�
; �t�1) (28)

It is the dynamically optimal counterpart of the certainty-equivalent and cautionary feed-

back rules (15), (17) that were derived analytically in the preceding section. As long as
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the aggregate demand parameters are considered known to the decision maker, the current

unemployment rate is a deterministic function of the lag of unemployment as well as the

lag and the current value of the interest rate. Thus, determining the optimal response of

the current interest rate to the lagged unemployment rate is straightforward. The di�culty

lies in determining the optimal response of the interest rate to lagged in
ation and the

policymaker's beliefs as denoted by the nonlinear function H(.). Unfortunately analytical

solutions for H(.) are not available due to the nonlinear nature of the dynamic decision

problem. However, one can use numerical dynamic programming methods to approximate

the value function and the optimal policy.

The functional equation (27) de�nes a contraction mapping with a unique �xed point,

which is the value function. Starting from an initial guess of the value function, one can

obtain successively better approximations by repeatedly solving the optimization problem

on the right-hand side of (27). As is well known, this iterative method can be implemented

numerically. Its application is hampered by the \curse of dimensionality" which implies

that the number of necessary computations increases geometrically with the number of state

variables. The numerical algorithm used here combines such value function iterations with

policy iterations to speed up convergence. Nevertheless, this optimal learning problem,

which has at least six state variables,25 is at the borderline of what is computationally

feasible even with very powerful workstations.

6 Numerical Results

In the following I investigate the properties of the optimal policy rule. Two questions arise

naturally:

25Note that the lag of the unemployment rate, and the lag of the interest rate are not crucial for ap-

proximating the optimal decision rule. Since the coe�cients of the aggregate demand equation are treated

as known, the policymaker can always adjust the interest rate setting by the appropriate amount for any

observed value of the lagged unemployment rate and lagged interest rate. E�ectively, one can treat the

current unemployment rate as the control variable in this problem and does not need to consider the lagged

unemployment and interest rates in computing the optimal policy.
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1. To what extent does the optimal policy incorporate experimentation, or in other

words, to what extent does it di�er from the cautionary policy rule?

2. Does the optimal policy exhibit gradualism, or in other words, does it imply a less

activist policy response than the certainty-equivalent rule?

Answers to these questions can be provided based on numerical approximations of the H(.)

mapping in (28). I have obtained such approximations under the simplifying assumptions

that the natural unemployment rate is constant, �2� = 0, and the policymaker focuses

exclusively on stabilizing in
ation, ! = 0. I consider two di�erent values for the discount

factor, � = 0:75 and � = 0:95, and set the variance of price shocks to �2� = 1:0.

The dynamic programming algorithm provides numerical approximations for the value

and policy functions over a wide range of the state space. However, to keep the number of

charts in this section manageable I restrict attention to a comparison of di�erent policies

at a few points in the state space. As initial estimates of the intercept and slope of the

Phillips curve I consider at�1 = 3:0 and bt�1 = 0:5. The implied estimate of the natural

unemployment rate is 6%. These values correspond to the line drawn in �gure 1 and are

reasonable values given the di�erent estimates in the recent empirical literature.26

As to the degree of uncertainty, I will �rst consider four scenarios with very low, low,

moderate and high uncertainty. The four sets of variances would imply t-statistics in the

Phillips curve regressions of about 2.5 (very low uncertainty), 2 (low uncertainty), 1.875

(moderate uncertainty) and 1.5 (high uncertainty). In all four scenarios, the respective

covariances are chosen to be equal to the product of the variance of the slope and the esti-

mated natural rate as in (18). As established earlier, under these conditions of uncertainty,

the covariance e�ect discussed in section 4 does not come into play. Also, the comparison

of the response coe�cients in (15) and (17) shows that under such conditions of uncertainty

the cautionary policy rule implies a more muted response to the observed in
ation gap than

the certainty-equivalent rule.

26
Results for alternative values of the slope and natural rate can easily be provided upon request. While

the qualitative nature of these results is the same, there are of course quantitative di�erences.
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Figure 4 compares the policy response to the in
ation gap under the optimal policy

with the cautionary and certainty-equivalent policies. The four panels correspond to the

four di�erent degrees of uncertainty. The horizontal axis in each panel measures the size of

the observed in
ation gap. The vertical axis measures the unemployment rate which occurs

in the current period as a consequence of the interest rate set by the policymaker in response

to the observed in
ation gap. For illustrative purposes, these panels focus on the policy

response when in
ation is above target and show unemployment rates equal or above the

estimated natural rate of 6%. The relationship between unemployment and in
ation when

in
ation is below target is symmetric. In each panel the solid line is associated with the

certainty-equivalent policy, the dashed line with the cautionary policy and the dashed-dotted

line with the optimal policy. In case of the certainty-equivalent and cautionary policies

the relationship between unemployment and in
ation shown in the panels corresponds to

the �rst-order conditions (9) and (23). The slope of the lines is given by the respective

coe�cient on the in
ation gap in (9) and (23),which is a function of the reaction coe�cients

in the certainty-equivalent and cautionary policy rules. The slope under the certainty-

equivalent policy is 2 in all four panels, since the policy reaction coe�cient is not a�ected by

uncertainty. The relation between unemployment and in
ation under the cautionary policy

is not as steep because the reaction coe�cient for the cautionary rule is smaller. The four

panels illustrate that the cautionary policy reacts less and less aggressively as uncertainty

increases, opening up an increasingly wider wedge between the certainty-equivalent and the

cautionary policies. The cautionary policy at �rst only responds partially to an increase in

in
ation and results in gradualist approach to disin
ation.

Figure 4 provides several new results concerning the optimal policy response (dashed-

dotted line). First, as one would expect, the optimal policy turns out to be more aggressive

than the cautionary policy due to the incentive for experimentation. In all four panels, the

unemployment rate that results from the optimal policy response to a rise in in
ation lies

above the unemployment rate resulting from the cautionary policy. The most interesting

point to notice in �gure 4 is that the optimal policy typically lies inside the wedge made up
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of the cautionary and certainty-equivalent policies. To the extent that the optimal policy

implies active exploration for the purpose of gathering information, it is more aggressive

than the cautionary policy but typically remains less aggressive than the certainty- equiv-

alent policy. In other words, the policy recommendation of gradualism under parameter

uncertainty is still appropriate.

However, there are exceptions as can be seen in the lower right panel. When uncertainty

is high and in
ation relatively close to target, the gains from experimentation are large

enough to justify a more aggressive increase in unemployment than would be required

to keep the expected in
ation rate on target. Even though current in
ation is close to

target, the policymaker realizes that shocks are likely to drive the in
ation rate away from

the target in the future and future stabilization policy will be more e�ective under reduced

uncertainty. Note that this relationship is symmetric and that when in
ation is below target

the optimal policy will lower the unemployment rate more aggressively than the cautionary

policy. Finally, in all four panels the relative importance of experimentation declines as

the observed in
ation gap increases. If in
ation is substantially above target then even the

cautionary policy will result in a substantial increase in unemployment. Such an increase is

expected to generate quite a bit of information about the in
ation-unemployment tradeo�

and the location of the natural rate. Consequently, in relative terms there is less incentive

to perturb unemployment further for the purpose of improving the quality of the parameter

estimates.

Clearly, the extent of optimal experimentation depends on how forward-looking the pol-

icymaker is. The results shown in �gure 4 are for a discount factor � = 0:95, which implies

a reasonable discount rate for an annual model. Figure 5 provides a comparison with a

more short-term oriented policymaker with a discount factor of 0:75. The two top panels

apply to the low uncertainty scenario and the two bottom panels to the high uncertainty

scenario. In both cases the optimal policy incorporates a lesser degree of experimentation

with a smaller discount factor. The optimal policy remains well inside the wedge created

by the cautionary and certainty-equivalent policies.
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As noted above, the recommendation of gradualism fails to apply when uncertainty is

high and in
ation is close to target. Under extreme uncertainty the optimal policy may

even exhibit a discontinuity at an in
ation gap of zero as shown in �gure 6. In this case,

policy allows unemployment to fall below (or rise above) the estimated natural rate, even

though current in
ation is close to target, solely for the purpose of reducing uncertainty and

improving policy performance in the future. The policymaker knows that in a stochastic

economy there will be a need for stabilization policy in the future and desires more precise

knowledge about the nature of the in
ation-unemployment tradeo� and the location of the

natural rate.

So far I have focussed on comparing the di�erent policies in states where the covariance

satis�es (18) and does not directly a�ect the optimal policy. As shown earlier, in a world

with a constant natural rate, this state is equivalent to a situation in which the estimated

natural rate is equal to the sample mean of the unemployment rate. Of course, this does

not need to be the case in practice. In fact an observed up-drift (decline) in in
ation may

well have been the result of a period during which unemployment remained persistently

below (above) the natural rate. This means the sample mean of unemployment would

have been below (above) the estimated natural rate. The cautionary policy derived in

the static analysis in section 3 responds to this situation by keeping unemployment on

average somewhat lower (higher) than it otherwise would. This is apparent in �gure 7,

which shows two scenarios with low and very low uncertainty under alternative values of

the covariance. The lower covariances in the two right-hand side panels imply that the

sample mean of unemployment is 1.5 percentage points below the estimated natural rate of

6%. The covariance e�ect is clearly apparent in the cautionary policy (dashed line) which

has shifted downwards compared to the left-hand side panels. The optimal policy again

lies well in between the cautionary and certainty-equivalent policies. When in
ation is

close to target the covariance e�ect almost completely disappears under the optimal policy.

However, when in
ation is further away from target, the optimal policy is again closer to

the cautionary policy.
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7 Convergence of Beliefs and Policies

A remaining question is whether the policymaker will eventually learn the true parameter

values as more and more data becomes available. This question has been the focus of a

theoretical literature on optimal learning in a controlled regression framework (eg. Easley

and Kiefer (1988) and Kiefer and Nyarko (1989)). The learning problem considered here

di�ers from the regression framework studied in that literature in two important ways:

(i) the intercept may be time-varying, and (ii) the regression includes a lagged dependent

variable.

In a framework where the natural unemployment rate is time-varying, the need for

learning and adjusting policy in response to changes in parameter estimates persists through

time. A policymaker who considers that the NAIRU may change, will always attach a

positive variance to her beliefs about the unknown intercept and adjust policy accordingly.

Uncertainty about the intercept is renewed in every period and the policymaker will never

learn the true natural rate because it will keep changing.

In the case of a constant natural rate, one can bring some of the convergence results

obtained by Kiefer and Nyarko (1989) (KN) to bear on this problem. In this case, the

parameters of the accelerationist Phillips curve can be estimated by means of a simple

regression

��t = �� �ut + �t (29)

with the change rather than the level of in
ation as dependent variable. The parameter

estimates and covariance are updated according to (25), which corresponds to Bayesian

updating of bivariate normal beliefs. KN provide a general convergence result that applies

to this class of regression equations. They show that under general assumptions concerning

the form of beliefs and the shock process, the process of posterior beliefs always converges

with probability 1 (Theorem 4.1., p. 577). However, the limiting belief may or may not

be centered on the true values. The proof of this theorem relies on an application of the

martingale convergence theorem. It is straightforward to con�rm that the point estimates
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at and bt in (25) follow a martingale relative to the decisionmaker's information. Since

Et�1[��t � at�1 + bt�1ut] = 0,27 it follows that Et�1[at] = at�1 and Et�1[bt] = bt�1. This

property of the point estimates was previously alluded to in the discussion of the expected

disin
ation shown in �gure 3. The policymaker does not expect her estimate of the natural

unemployment rate or the slope of the Phillips curve to change during the disin
ation.

Whether the process of posterior beliefs converges to the truth or not, depends on the

behavior of the series of unemployment rates ut. KN provide two results that hold for simple

regressions. First, if ut does not converge, then the process of posterior beliefs converges

to the point mass on the true parameter values (Theorem 4.2., p. 577). Second, if ut does

converge to a limit value, then the posterior beliefs may converge to a limit belief that does

not coincide with the true parameter values. This introduces the possibility of incomplete

learning. At a minimum however the decision maker learns the mean of the dependent

variable that corresponds to the limiting value of ut (Theorem 4.3., p. 578). KN then

characterize the set of possible (including incorrect) limit beliefs and policies. However,

without solving for the optimal policy, KN cannot determine the frequency with which

incomplete learning may occur. This question has been addressed in Wieland (1996a) and

(1996b).28

With a constant natural rate the model considered in this paper generates complete

learning of the unknown parameters under all of the three policy feedback rules. Because

the centerpiece of the model|the accelerationist Phillips curve|contains a unit root, any

policy that attempts to permanently lower (raise) the unemployment rate below (above) the

natural rate, would imply that the rate of in
ation goes towards +(-) in�nity. Furthermore,

a policy that stabilizes unemployment exactly at its natural rate, would render the in
ation

27
This is true because ut is a deterministic function of ut�1; rt�1 and the policy instrument rt and is

e�ectively part of the policymaker's information set at t-1.
28
Wieland (1996a) using numerical methods has characterized the value function and optimal policy for

controlling a simple regression with two unknown parameters as in KN. Optimal experimentation was found

to be most pronounced in the neighborhood of potentially self-reinforcing incorrect beliefs. Wieland (1996b)

has shown that a myopic, passive-learning policy in a model with unknown money demand may frequently

be uninformative and induce a long-lasting bias in the setting of the policy instrument that would not emerge

under the optimal policy.
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process a random walk. In
ation only remains under control if the policymaker pursues

an active stabilization policy that responds to past values of the in
ation rate. Using

this property of the model, one can appeal to theorems 4.1. and 4.2. in KN to prove that

complete learning will occur. First, theorem 4.1. implies that the process of posterior beliefs

(at; bt;�t) about the unknown parameters � and � in (29) converges with probability one

to a limit belief (a1; b1;�1) as t ! 1. For any given belief, the unemployment that

obtains under the cautionary policy, is a function of the means, the variance of the slope,

the covariance, and the preceding period's in
ation rate. For example, in any time period

t the unemployment rate associated with a given belief (a1; b1;�1) would be:

ut =
a1

b1
+

b1

b21 + vb1
(�+ �ut�1 + �t�1 � �

�) +
(vab1 � vb1

a1
b1

)

(b21 + vb1)
(30)

Because policy responds to the preceding period's in
ation rate, the unemployment rate

e�ectively is a function of the preceding period's price shock �t�1. In each time period, a

new � shock is realized. Thus, even if the policymaker's beliefs were to remain constant, the

unemployment rate would keep changing over time. Consequently, ut does not converge;

and, according to theorem 4.2 in KN, the process of posterior beliefs converges to the point

mass on the true parameter values, (at; bt; v
a
t ; v

b
t ; v

ab
t )! (�; �; 0; 0; 0) with probability 1 as

t!1.

To build further intuition concerning the asymptotic properties of beliefs and policies

it is useful to consider the relationship between posterior beliefs and the sequence of un-

employment rates more directly. The elements of the covariance matrix are related to the

sequence fuig
t
i=0 as follows:

v
b
t =

�2�
tP

i=0

(ui � �ut)2

v
ab
t = �utv

b
t (31)

v
a
t =

�2�

t
+ �u2t v

b
t

where �ut is the sample average. Clearly, whether the covariance matrix converges to the

zero matrix as t ! 1, will depend on the behavior of the sum of squared deviations of

28



unemployment from its sample mean
tP

i=0

(ui � �ut)
2. This is a non-decreasing series and as t

increases it may either go towards in�nity or towards a positive numberK. If unemployment

varies su�ciently so that
tP

i=0

(ui � �ut)
2 ! 1 as t ! 1, then �t ! 0. Then also the

point estimates (at; bt) ! (�; �) as a consequence of the martingale convergence theorem.

Alternatively, if the sequence of unemployment rates ut were to settle down to a �xed value

fairly soon,
tP

i=0

(ui � �ut)
2 ! K, then the deviation between ut and its sample mean would

go towards zero and uncertainty about the parameter estimates would remain even in the

limit. As argued above, this case will not arise here, because under the hypothesis of an

accelerationist Phillips curve, controlling in
ation requires an active stabilization policy and

thus continuing variations in unemployment.

8 Conclusion

The preceding analysis provides several new results concerning optimal monetary policy

when there is uncertainty about the parameters of the Phillips curve. I consider both,

a static and a dynamic versions of a simple macroeconomic model, which incorporates a

short-run in
ation-unemployment tradeo� and a time-varying natural unemployment rate.

In the static model, parameter uncertainty induces a cautionary policy stance that responds

gradually to in
ation deviations due to the uncertainty about the slope of the Phillips curve.

Because of the linear-quadratic nature of the baseline model, certainty-equivalence applies;

and additive uncertainty|such as about the intercept of the Phillips curve and implicitly

the natural rate|does not a�ect the optimal policy rule. However, the covariance of the

intercept and slope estimate (and implicitly the covariance of the natural rate and the

slope estimate) has an important e�ect on the optimal policy in the static model. This

covariance e�ect also implies a form of gradualism, because it recommends a policy that

gradually moves out of disin
ationary (or rein
ationary) episodes even at the expense of

temporarily under-shooting (or over-shooting) the in
ation target.29

29
A note of caution is in order when it comes to the relationship between caution and gradualism. In

the framework with parameter uncertainty considered here, caution leads to gradualism because it reduces
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In the dynamic model with learning, the policymaker recognizes that there is a tradeo�

between current control and exploration for the sake of reducing uncertainty and improving

future stabilization policy. She then needs to strike the optimal balance between caution

and experimentation. The optimal policy is found to incorporate a quantitatively signif-

icant degree of experimentation, but typically remains less aggressive than a policy that

disregards uncertainty. Thus, under a moderate degree of uncertainty the recommendation

of gradualist policymaking survives in the dynamic model with learning. Only when un-

certainty is very high and in
ation relatively close to target, does optimal learning require

a policy that responds more aggressively to in
ation than the certainty-equivalent policy

which disregards parameter uncertainty. In this situation optimal policy signi�cantly in-

creases current variability in both, unemployment and in
ation.

Of course, any normative conclusions that may be drawn from these results depend on

the maintained hypothesis that a short-run in
ation-unemployment tradeo� and a natural

unemployment rate exist. However these results are also useful in a positive sense for

explaining the gradualist policy conducted by policymakers who believe that such a tradeo�

exists but are uncertain about the relevant parameter values.

In terms of future research it would be helpful to allow for nonlinearities in the Phillips

curve, for a non-quadratic loss function, and for interactions between the policymaker's and

the public's learning processes. First, when the Phillips curve is nonlinear, then uncertainty

about the natural rate has �rst-order e�ects.30 For example, if the short-run Phillips curve

is convex, then increased variability of the unemployment gap will imply a higher average

rate of unemployment. The associated optimal policy will likely be asymmetric. Similarly,

the contribution of parameter uncertainty to the conditional variance of in
ation. Caution however may

also mean guarding against worst-case alternatives, which may require aggressive rather than gradualist

policymaking. An earlier discussion of such cases is by von zur Muehlen (1982). More recently, Sargent

(1998b), using a robust control framework with Knightian uncertainty, shows how caution can lead to more

aggressive policy when this caution is exercised relative to a worst-case serial-correlation pattern of the shock

process.
30
Clark, Laxton and Rose (1996) and Debelle and Laxton (1996) provide some evidence for convexity. Bean

(1996) studies the �rst-order implications of uncertainty for the case of such a convex short-run in
ation-

unemployment relationship. Eisner (1996) and Stiglitz (1996) argue that this relationship may be locally

concave.
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with non-quadratic preferences, higher-order moments will matter to the policymaker and

a�ect the optimal policy rule. Finally, allowing the wage setters' and the policymaker's

learning processes to depend on di�erent information sets would make it possible to jointly

address questions of credibility, time consistency and learning by the policymaker.
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Appendix: The Numerical Dynamic Programming Algorithm

The algorithm used in this paper computes the value function and stationary optimal

policy by iterating over the functional equation of this dynamic programming problem. It

takes advantage of the contraction mapping de�ned by the following functional operator T

TW =
Min

u

�
L(�; u; �) + �

Z
W (�0; u; �0)f(�0j�; u; �)d�0

�
(32)

where � and � are last period's values of the in
ation rate and the policymaker's beliefs,

which are the state variables of this DP problem, u is the current unemployment rate

and e�ectively the control variable. �0 is the in
ation rate to be realized subsequent the

policy action and �0 refers to the policymaker's beliefs and the end of the period based

on the new in
ation and unemployment observations. The relevant updating equations for

these state variables are shown in (25) and (26). f(�0j�; u; �) is the predictive distribution

of the in
ation rate and is a normal distribution, because both the error terms and the

policymaker's beliefs are normal distributions. L(:) denotes the expected current loss while

W (:) refers to a continuous function de�ned on the state space.

Successive application of the operator T will generate a sequence of functions Wn that

will converge to the value function V , if T is a contraction mapping. Note that the space of

continuous bounded functions is a complete and separable metric space in the sup metric

de�ned:

�(Wn;Wn+1) =
Sup

(�; �)
jWn(�; �)�Wn+1(�; �)j (33)

Standard arguments can be used to show that Blackwell's su�ciency conditions are satis�ed

and T is a contraction mapping in the space of continuous and bounded functions (see for

example Kiefer and Nyarko (1989)) such that:

�(TWn+1; TWn) � ��(Wn+1;Wn) (34)

Thus, T has a unique �xed point V , which is the value function and a stationary optimal

policy H(�; �) exists. This optimal policy corresponds to the set of u's which minimize the

right-hand side of (32) based on the current state (�; �).

V can be computed by value iteration, meaning successive application of the operator T,

since TnW ! V uniformly for any continuous bounded function W . A convenient starting

valueW0 is the single period loss function L(:) or alternatively a constant. IfWn+1 = TWn,

then �(Wn+1;Wn) � (Wn;Wn�1) and after iterating �(Wn+1+i;Wn+i) � �1+i�(Wn;Wn�1).

This implies an upper bound on the error in approximating V by Wn:

�(V;W n) �
X

�(W n+1+i
;W

n+i) �
�

1� �
�(W n

;W
n�1) (35)

This upper bound can easily be calculated since it only depends on the discount factor and

the distance between the approximations obtained from the last and the preceding iteration.

The time needed for convergence within a maximal error bound can be reduced signi�cantly

by introducing policy iterations in between every value iteration. A policy iteration implies

the application of the following operator:

T
P
Wn = L(�;Hn(�; �); �) + �

Z
W (�0;Hn(�; �); �

0)f(�0j�;Hn(�; �); �)d�
0 (36)
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where Hn(�; �) is the approximation of the policy function obtained from the preceding

value iteration n.

The computational algorithm then proceeds as follows: �rst, compute starting values

W0 for a grid of points in the state space (�; �) and save them in a table; secondly, calculate

W1 by applying the operator T to W0 and update said table. This second step requires

calculating the minimum in u for each of the grid values of the state variables (�; �). For

this purpose next period's expected value is calculated by evaluating the following integral:Z
W0(�

0
; u; �

0)f(�0j�; u; �)d�0 (37)

The functions W(:) and the updating equations to obtain �0 and �0 are known functions

and the conditional density of �0 is normal. Thus the integral can be calculated using

Gaussian quadrature and values of W0 from the table, where W (:) is evaluated in between

grid points by linear interpolation.

Given an approximation for this integral the minimization problem on the right-hand

side of the functional equation can be solved by standard numerical optimization proce-

dures. However the search for the minimum turns out to be di�cult because there may

exist multiple local minima. As a consequence there may be kinks in the value function

and discontinuities in the optimal policy. Therefore I use a slow but secure optimization

procedure such as golden section search supplemented by a rough initial grid search. For

each value of (�; �), the minimum in u gives the value of W1() used to update the table.

The maximum of jW1(�; �)�W0(�; �)j is used to calculate the upper bound of the approx-

imation error. Finally, the whole procedure is repeated to obtain W2 and so on until the

di�erence between two successive approximations is su�ciently small (< 0:5%).

Computation Costs

The numerical dynamic programming problems dealt with in this paper require an

immense computational e�ort largely because of the so-called curse of dimensionality. Since

each of the six state variables is approximated based on N grid points, the integration and

optimization procedures described above have to be carried out N6 times to complete one

value iteration. The optimization step is especially time-consuming because of the existence

of multiple local optima.

Two steps have been taken to reduce computation time: (i) the introduction of policy

iterations, which reduce the number of value iterations needed for convergence, and thus the

number of times that the optimization procedure has to be executed; (ii) as shown below, I

use a trick to reduce the number of state variables by one, which means that the integration

and optimization steps only have to be carried out N5 times per value iteration.

The policy functions presented in the paper have been approximated for a grid of 10 to

20 grid points for each of the �ve remaining state variables. Convergence as de�ned by a

0.5% maximal di�erence between the two �nal approximations was achieved after almost

2 days on a SPARC 20 (multi-processor) work station. Depending on the discount factor

such an approximation required between 5 and 8 value iterations and a declining number

of policy iterations (50 or less) in between every value iteration.
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Transforming the DP Problem to Reduce the Number of State Variables

Any simpli�cation which makes it possible to reduce the number of relevant state vari-

ables substantially reduces the computation time required for convergence of the DP algo-

rithm. As shown here, one can ignore one state variable when dealing with a simple loss

function such as (� � ��)2. In this case the value function V (�; a; b; va; vb; vab) is given by

the supremum of

E

"
1X
i=t

�
i(�i � �

�)2jat; bt;�t

#
where �i = �i�1 + �+ �ui + �i (38)

Proposition: The value function V (�t; at; bt; v
a
t ; v

b
t ; v

ab
t ) has the following property (for any

k):

V (�t; at; kbt; v
a
t ; k

2
v
b
t ; kv

ab
t ) = V (�t; at; bt; v

a
t ; v

b
t ; v

ab
t ) (39)

Proof: Consider the transformed problem

�t = �t�1 + �+ ���ut + �t where �� = k� and �u =
u

k
(40)

If the prior on (�; �) is the bivariate normal distribution N(at; bt; v
a
t ; v

b
t ; v

ab
t ), then the

prior on (��; ��) is N(at; kbt; v
a
t ; k

2vbt ; kv
ab
t ). Since these two problems are equivalent, the

proposition follows.

For example, by setting k = (vbt )
�

1

2 and replacing it in the above equation one obtains:

V (�t; at; bt(v
b
t )
�

1

2 ; v
a
t ; 1; v

ab
t (vbt )

�
1

2 ) = V (�t; at; bt; v
a
t ; v

b
t ; v

ab
t ) (41)

Thus it is su�cient to approximate the value function for a grid of �ve state variables. Such

a transformation was used in computing the optimal policies shown in this paper.
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Figure 1

The Change in Inflation and the Unemployment Rate
1955-1995: Annual Observations

 

Unemployment Rate (t-1)
Note: Inflation is measured from the fourth quarter of the previous year to the fourth quarter of the
current year.  The unemployment rate is from the fourth quarter of the previous year.
Note: Inflation is measured from the fourth quarter of the previous year to the fourth quarter of the
current year.  The unemployment rate is from the fourth quarter of the previous year.

Slope = -0.5

Natural Rate = 6%

(t-1)π−π

*u
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 Figure 2

The Conditional Variance of Inflation Due to Parameter Uncertainty

∆π

∆π
__

_
u

Unemployment Rate

*^u  = a_
b

+/- Standard Deviation Bands for Inflation

Estimated Phillips Curve

Note:
      : the average change (or trend) in inflation∆π
__

u : sample mean of unemployment
_

u* : estimated natural rate^

a : estimated intercept
u* : estimated slope
The conditional variance of inflation is minimized when unemployment equals its sample mean
        (assuming a constant natural rate).
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Figure 4

Policy Reponse to the Inflation Gap
(Discount Factor = 0.95)
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Figure 5

Alternative Discount Factors

Discount Factor = 0.75
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Figure 6

Policy Under Extreme Uncertainty
(V   = 16, V  = 0.66)

Discount Factor = 0.95
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Figure 7

Covariance Effect
(Discount Factor = 0.95)
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