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Abstract 

Recent papers by Kim and Nelson (1999) and McConnell and Perez-Quiros (2000) uncover a 
dramatic decline in the volatility of U.S. GDP growth beginning in 1984.  Determining whether 
the source is good luck, good policy or better inventory management has since developed into an 
active area of research.  This paper seeks to shed light on the source of the decline in volatility by 
studying the behavior of the U.S. automobile industry, where the changes in volatility have 
mirrored those of the aggregate data.  We find that changes in the relative volatility of sales and 
output, which have been interpreted by some as evidence of improved inventory management, 
could in fact be the result of changes in the process driving automobile sales. We first show that 
the autocorrelation of sales dropped during the 1980s, and that the behavior of interest rates may 
be the force behind the change in sales persistence. A simulation of the assembly plants’ cost 
function illustrates that the persistence of sales is a key determinant of output volatility. A 
comparison of the ways in which assembly plants scheduled production in the 1990s relative to 
the 1970s supports the intuition of the simulation.  
_____________________ 
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I. Introduction 

Recent papers by Kim and Nelson (1999) and McConnell and Perez-Quiros (2000) 

uncover a dramatic decline in the volatility of the U.S. economy beginning in 1984.  The 

volatility of GDP growth since 1984 has been 50 percent lower than it was in the post-war period 

before 1984.  Interestingly, statistical tests point to a structural break in the first quarter of 1984 

rather than to a gradual decline.  The phenomenon also appears to extend beyond U.S. borders.  

Blanchard and Simon (2001) and Stock and Watson (2003a) show that all G-7 countries save 

Japan have experienced a decline in volatility in recent periods, though the timing and nature of 

the declines vary by country.   

This discovery raises an important question: Has output volatility declined in a 

meaningful and permanent way, or have we simply enjoyed a reprieve from the turbulence of the 

1970s and early 1980s?  Possible answers to this question depend on which of the three leading 

explanations for the decline in volatility is most accurate:  (1) Good Luck, (2) Good Policy, or 

(3) Structural Change.  The "Good Luck” hypothesis argues that the decline in volatility is a 

result of a fortuitous decline in the volatility of shocks hitting the economy (e.g. Ahmed, Levin, 

and Wilson (2000), Stock and Watson (2002)).  Advocates of the “Good Policy” hypothesis 

argue that a systematically more decisive and more transparent monetary policy has been the key 

source of the decline in volatility of the U.S. economy (e.g. Clarida, Galí, and Gertler (2000), 

Boivin and Giannoni (2002) and McCarthy and Zakrajšek (2003)).  Finally, the “Structural 

Change” hypothesis refers to the innovations in manufacturing technology and inventory 

management that allow smooth production along the supply chain (e.g. Kahn, McConnell and 

Perez-Quiros (2002) and Irvine and Schuh (2002)).  This potential source has recently received a 

lot of attention, as the decline in the volatility of aggregate output exceeds that of final sales. 

Despite a rapidly developing literature in this area, answering this question in a definitive 

way has proven to be difficult.  First, a significant reduction in volatility has been discovered 

almost universally across the U.S. economy.  Aggregate volatility patterns thus provide little help 

in narrowing the focus to a particular change in the economic environment or to the contribution 
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of a particular input.1  Second, the conclusions reached from time-series analysis on aggregate 

data have been difficult to interpret.  The reduction in GDP volatility seems to stem from a 

decline in the volatility of shocks, which are typically the forecast errors that result from a vector 

autoregression model of the U.S. economy.  To further associate these forecast errors with 

measurable shocks, such as monetary and fiscal shocks, productivity shocks, supply shocks, etc., 

however, has not met with success.2    

This study addresses the decline in U.S. GDP volatility in the context of decisions made 

at the plant level in an industry at the forefront of this change – the U.S. automobile industry.  

Not only has the automobile industry experienced a sharp decline in its volatility during the 

1980s, but it is also an industry often examined by economists such as Blanchard (1983) to 

understand the interaction between inventories and the volatility of output.  Using aggregate 

automobile industry data as well as a new disaggregated dataset that tracks weekly production 

scheduling at automobile assembly plants between 1972 and 2001, we investigate the extent to 

which the decline in volatility stems from structural changes in the process governing sales 

versus structural changes in the process governing production.  We conclude that the decline in 

output volatility is linked to (1) a decline in the measured persistence of sales shocks and (2) 

plant-level non-convexities in production scheduling.  In particular, sales are far less serially 

correlated after 1984 than they were during the 1970s and early 1980s, and interest rates appear 

to be a source of the change.  We demonstrate that an inventory model involving non-convex 

costs predicts that a decline in the persistence of sales shocks leads to a decline in the variance of 

production relative to the variance of sales and to a decline in the covariance of inventory 

investment and sales.  Finally, we show that the type of data used by other researchers may hide 

a change in persistence in other parts of the economy.  Thus, recent evidence suggesting no 

change in the persistence of final sales overall may be an artifact of the data.  

The organization of this paper is as follows:  Section II explains the connection between 

output volatility, inventory investment and improvements in information and production 

                                                           
1 Stock and Watson (2002) test 168 U.S. macroeconomic time-series and discover the pervasiveness of this volatility 
decline in measures of output, employment, investment and inflation.  Manufacturing has been more impacted that 
services, however, and durable goods output volatility has experienced a particularly steep reduction. 
 
2 Stock and Watson (2002) search over several identifiable shocks in the U.S., and Stock and Watson (2003a) do so 
again for all G7 countries.  In both cases, the behavior of observable shocks is quite different from that of the 
forecast errors of GDP growth. 
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technologies.  Section III demonstrates that the automobile industry is suitable for this case study 

and presents evidence that the process governing automobile sales has changed noticeably in the 

post-1984 period.  Section IV addresses how a change in sales persistence interacts with 

production decisions in a simulation featuring the non-convex production costs typical in this 

industry.  Section V confronts our theory with a panel of production scheduling variables across 

U.S. assembly plants.  Section VI discusses whether the automobile industry results may be 

extended to the rest of the economy, and Section VII concludes. 

II. The Information Technology Explanation 

Innovations in information and production technology have transformed U.S. 

manufacturing in many important ways in recent decades. The current question is whether 

technological change also underlies the moderation in GDP volatility.  Kahn, McConnell and 

Perez-Quiros (2002), hereafter KMPQ, give perhaps the most compelling evidence that it has.  

They argue that the decline in GDP volatility is most closely matched in magnitude and in timing 

by a similar reduction within the durable goods sector.3  KMPQ further argue that the adoption 

of new machine tool technologies and inventory control systems occurred most rapidly during 

the 1980s within the durable goods sector.  Thus, the “Information Technology Hypothesis” 

posits that production lines and inventory distribution systems now respond more rapidly to sales 

conditions than they used to, and this improvement has moderated the response of production to 

sales shocks. 

Two of the most striking pieces of statistical evidence presented by KMPQ in favor of 

this hypothesis are the differential declines in final sales versus production volatility and the 

changing covariance of inventory investment with final sales.  To see how this evidence relates 

to inventory management, consider the standard inventory identity Y S , where Y is 

production, S is sales, and ∆ I is the change in inventories.  For stationary variables, we have the 

following relationship between the variance of production and the variance of sales: 

t t I= + ∆ t

                                                          

 

 
3 Kim, Nelson, and Piger (2001) present evidence of structural breaks across broad sectors.  McConnell and Perez-
Quiros (2000), Warnock and Warnock (2000), and Kahn, McConnell, and Perez-Quiros (2002) offer evidence that 
the durable goods sector plays the most important role.  Stock and Watson (2002) claim residential fixed investment 
played an equally large role as durable goods production. 
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(1) ( ) ( ) ( ) 2 ( , )t t t tVar Y Var S Var I Cov S It= + ∆ + ∆  . 

 

The standard version of the production-smoothing model of inventories predicts that the variance 

of production should be less than the variance of sales.  Thus, the covariance of inventory 

investment and sales should be negative.  Historically, the opposite has been true. 

KMPQ apply a version of this formula to growth rates of chain-weighted production, 

sales, and inventory investment in the durable goods industry and find that the variance of 

production fell by a much larger share from the pre-1984 period to the post-1984 period than did 

the variance of final sales.  Moreover, the covariance of inventory investment and sales in 

durable goods turned from being positive in the early period to negative in the post-1984 period.4  

Instead of contributing to the volatility of the economy as they once did, inventories now appear 

to stabilize production. 

The connection between the “Information Technology (IT)” hypothesis and the 

covariance of inventories with sales is as follows: Information technology innovations, such as 

electronic scanning of bar codes, allow for automatic restocking based on real-time sales 

information and facilitate higher efficiency along the entire supply line.  Elements of flexible 

manufacturing, such as computer numerically controlled machine tools, have additionally led to 

a reduction in set-up times required to produce different specifications of goods.  This change in 

set-up costs lowers optimal batch size, which varies inversely with inventory levels.  Both of 

these innovations would be expected to reduce desired inventory-sales ratios.  A reduction in the 

desired inventory-sales ratio should weaken or eliminate the tendency for inventories to be so 

pro-cyclical, and hence so destabilizing. 

The volatility and covariance measurements suggest that an explanation of the decline in 

aggregate output volatility must be consistent with the following observations: (1) The source 

must have particularly strong effects on the durable goods sector as opposed to nondurables and 

services; and (2) the effect on production should be more pronounced that the effect on final 

sales.  KMPQ argue that these observations cast doubt on the “better monetary policy” 

explanation since one should expect it to work mostly through sales.   

While the changes observed in variance and covariance are consistent with the hypothesis 

that information technology and inventory management are the source of the decline in volatility, 
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this conclusion is not supported by specific studies of inventory control methods and their effects 

on output volatility.  McCarthy and Zakrajšek (2003) cite numerous articles from the operations 

research literature that do draw a connection between improved inventory control methods and a 

lower inventory-to-sales ratio at various stages of processing, but fail to find significant effects 

on output volatility.  Similarly, Feroli (2002) models the optimal inventory-to-sales ratio as a 

function of input prices, where inventories serve as an input to production that is substitutable 

with equipment and software.  While declines in the relative user cost of information technology 

can explain a declining inventory-to-sales ratio quite well, the impact on output volatility is 

small. 

Patterns in U.S. inventory data also pose two puzzles for the IT hypothesis.  The first is 

why technology adoption, which usually follows an S-curve, should show up as a one-time 

structural break in volatility.  The second concerns the inventory-sales ratio. As discussed above, 

we would expect information technology innovations to reduce both the inventory-sales ratio and 

the volatility of output in a similar way if they were the source of these changes.  The data do not 

give such a clear picture.  

Figure 1 shows the ratio of nonfarm inventories to final sales since 1947.  The data are in 

chained dollars, which best measure the real trend since the current-dollar ratio’s trend is driven 

by relative price changes (see Ramey and Vine (2004)).  Two distinct features in the graph are 

important.  First, there is a large run-up in the inventory-sales ratio that begins in the late 1960s 

and lasts through the early 1980s.  Second, there is an overall decline in the inventory-sales ratio 

in the early 1980s through the present. While some industries may currently hold historically low 

levels of inventory relative to sales, the aggregate inventory-sales ratio since the early 1980s is 

still higher on average than it was during the 1950s and 1960s.  KMPQ demonstrate that the 

volatility of GDP and durable goods was approximately equal across the periods 1953–1968 and 

1969–1983, before falling in 1984.  Thus, the behavior of the inventory-sales ratio does not line 

up very closely with the changes in volatility over time. 

In sum, while the changes in relative variances and covariances are consistent with a 

change in production management, other parts of the story are not necessarily consistent with the 

data.  As we show below, even the observed changes in relative variances and covariances are 

not necessarily indicative of changes in production management. 

                                                                                                                                                                                           
4 Golob (2000) first discovered this switch in the sign of the covariance term. 
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III. Structural Change in the U.S. Automobile Industry 

As noted by KMPQ, the way in which output volatility declined says a great deal about 

what may have lead to this change.  Before we discuss the ways in which sales volatility impacts 

production volatility as agents minimize an inter-temporal cost function, this section studies 

historical patterns in the volatility of production, sales, and inventories in the automobile 

industry.  We first show that the automobile industry exhibits volatility changes that are even 

more dramatic than the aggregate, but qualitatively similar.  We then show that other features of 

aggregate inventory and production behavior are also present in the automobile industry.  

Finally, we uncover a structural change in the process governing sales. 

III.A Variances and Covariances of Production, Sales and Inventories 

 Table 1 shows the volatility of output growth in the aggregate economy as well as in the 

key sectors of durable goods and motor vehicles.  Following the strategy of McConnell and 

Perez-Quiros (2000), we first test the variance of quarterly real (chain-weighted) motor vehicle 

output growth for a structural break.  The estimated break date occurs in the first quarter of 1984, 

which corresponds to the break-date discovered by McConnell and Perez-Quiros (2000) for the 

volatility of aggregate GDP.  All variables are 1996 chain-weighted data from the NIPA 

accounts of the BEA, and volatility is measured as the standard deviation of annualized growth 

rates.  The analysis begins in 1967 because of constraints on the availability of data for the motor 

vehicle sector.  As the first row of the table shows, the volatility of aggregate GDP growth has 

declined by 53 percent from the pre-1984 period to the post-1984 period. 5  The decline for 

durable goods is just under 50 percent while the decline for motor vehicles is 60 percent.  The 

last row shows that the decline in GDP volatility is slightly muted when motor vehicles are 

excluded.  

The results of this variance comparison suggest that the motor vehicle industry represents 

an ideal case study of the decline in volatility.  Its volatility behavior is similar to, but more 

dramatic than, the behavior of GDP and durable goods overall.  Thus, understanding the decline 

                                                           
5 The volatility of aggregate GDP growth in the truncated early period is similar to the volatility of the extended 
period from 1953 – 1983 as shown in Kahn, McConnell and Perez-Quiros (2002). 
 

 



 8

in volatility in the automobile industry is likely to shed light on the decline in aggregate 

volatility. 

Another reason to study the automobile industry is the high quality of its data.  While 

Table 1 uses quarterly chain-weighted data for comparison purposes with aggregate GDP, data 

for the motor vehicle sector are available in physical units and at higher frequencies.  Not only 

do physical unit data have the advantage that they do not suffer from index number problems as 

one compares inventories, production and sales numbers over a long period of time, but, as we 

demonstrate later in the paper, physical unit data can reveal time series properties that are hidden 

by chain-weighted data.  Thus, we use physical unit data for the remainder of the analysis. 

Figure 2 depicts monthly sales and production of domestic cars and light trucks in the 

U.S. from 1967:01 through 2003:12, using physical unit data.6  Several features in these plots are 

noteworthy.  First, car production is less volatile in the late portion of the sample than in the 

early portion.  A second feature visible in Figure 2 is the difference between the secular trends 

for passenger car sales, which have no trend, and light truck sales, which have grown steadily 

since 1980.  Since there are obvious differences in the conditional means of these market 

segments, we treat them separately in most of the analysis.   

In order to investigate whether the automobile industry displays changes in inventory, 

production and sales behavior similar to the changes in durable goods discovered by KMPQ, 

Table 2 reports the variance decomposition for physical unit data on cars and trucks in the U.S. 

from 1967:01 through 2003:12.7  One important difference between the time-series properties of 

physical unit data and NIPA data used in other studies is that stationarity tests on the logarithm 

of physical unit variables reject a unit root in favor of a deterministic trend, with perhaps a break 

in trend around 1984 for trucks.  Thus, variance here is based on deterministically detrended 

                                                           
6 Data for light truck production is not available before 1977.  The data appendix describes the data sources for all of 
the data used. 
 
7 The variances and covariances do not add up because we have excluded imports and exports to and from Canada 
and Mexico.  When these elements are included in the analysis, production volatility drops even further as the new 
Big Three plants in Mexico produce in a fashion that is negatively correlated with U.S. production.  U.S. Exports to 
Canada and Mexico have little impact on the variance of sales.  While import/export activity within North America 
raises additional interesting questions, it further augments the results obtained here and does not cause them. 
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data.8  Within the class of trucks, we would also prefer to focus solely on light trucks, since they 

are mostly a consumer product like cars.  Unfortunately, complete data on production and 

inventories back to 1967 are only available for all trucks.  Heavy trucks represented 22 percent 

of truck production in 1967 but only 7 percent in 2000 as light truck production grew. 

Consider first the case of cars, shown in the top panel of Table 2.  Both seasonally 

adjusted and unadjusted data show that the variance of production and the variance of sales fall 

after 1984.  Moreover, the variance of production falls by a larger percentage than sales, and the 

covariance of inventory investment with final sales become more negative after 1984.  

The results for trucks, shown in the bottom panel of Table 2, are similar in the seasonally 

adjusted data, but not in the unadjusted data.  In the unadjusted data, the variances of both 

production and sales fall in the second period, but the variance of production falls by 

proportionally less than the variance of sales so that the variance of production relative to sales is 

higher in the second period.  As is evident in Figure 2, the seasonality of light truck production is 

much greater in the second period.  As trucks were increasingly marketed as consumer vehicles, 

production fluctuations due to model year changeovers became more pronounced. In both 

adjusted and unadjusted data, however, the covariance of inventory investment with final sales 

does become more negative after 1984, just as in the case of cars. 

Thus, physical unit data in the automobile industry exhibit the same changes in the 

relative variances and covariances highlighted by KMPQ in the chain-weighted durable goods 

data. The automobile industry has also implemented many of the technological changes 

showcased by KMPQ in their advocacy of the “Information Technology Hypothesis.”  It 

developed many of the advances in assembly line technology and was one of the first industries 

to adopt just-in-time inventory management in the 1980s.  Therefore, if advances in information 

technology have revolutionized the fundamentals of U.S. manufacturing and distribution, and 

have delivered unprecedented economic stability as a consequence, a natural place to look for 

plant-level evidence is within the automobile industry. 

Yet, the lack of a trend in the inventory-to-sales ratio is even more apparent within the 

automobile industry than within the entire nonfarm sector.   Figure 3 depicts this ratio in terms of 

                                                           
8 To be specific, we calculate the variances and covariances of the terms in 
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the number of month’s worth of sales (in physical units) in the domestic inventory stock of cars 

and light trucks.9  While this ratio shows a great deal of seasonal and business cycle variation, 

the average has been remarkably stable.  Thus, the behavior of inventory-sales ratios does not 

support this version of the information technology story. 

It is therefore interesting to explore an alternative explanation for the changes in 

production and sales volatility.  In particular, is it possible that the decline in production 

volatility relative to sales stems from changes in the nature of the sales process rather than from 

changes in the structure of production and inventories?  We investigate this possibility in several 

steps.  The next subsection first uncovers changes in the sales process.  The remainder of the 

paper then demonstrates how changes in the sales process can explain the observed patterns 

without recourse to structural change in the way firms manage production. 

III.B Persistence of Aggregate Light Vehicle Sales 

The decrease in the volatility of U.S. motor vehicle sales depicted in the tables above 

arises from two potential sources:  (1) a reduction in the magnitude of shocks to this series, and 

(2) a change in the dynamic process that propagates these shocks.  Since production decisions are 

made in accordance with forecasts of future sales, the volatility of production depends not only 

on the variance of the shocks to the sales process, but also on the persistence of these shocks (see 

Blanchard (1983)). Additional insight is therefore found by comparing the persistence and 

volatility of sales shocks between the two periods.  Within the automobile industry, such an 

exercise reveals that the sales shocks since 1984 have been less persistent than those prior to 

1984. 

Consider the following univariate model of the process for monthly domestic sales data 

from 1967:1 through 2003:12: 

 

(2)  log( ) log( ) log( )1 1 2 0 1 1 2Sales Sales trend D D Sales D trendt o t t t t tt t tα α α β β β= + ⋅ + ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅ +− − ε  

 where  ( )tD⋅+ 3
2,0 βσNt ~ε  

  

                                                           
9 Because data for inventories of light trucks are not available before 1972, the pre-1972 numbers are for cars only. 
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This model allows a change in 1984:1 for all parameters, which include the coefficient on 

lagged sales, the constant, the slope of the trend, and the variance of the residual.  We estimate 

this model via maximum likelihood for cars alone, light trucks alone, and for the combination of 

cars and light trucks, which we call “light vehicles.”  In all cases the regression is estimated with 

the logarithm of seasonally adjusted unit sales from the BEA. 

Table 3 shows the results of this exercise, and the coefficient estimates indicate 

significant changes have occurred in the process governing sales.  The constant term and the 

lagged sales coefficient are different across the two periods for all three aggregates.  The trend 

(which is not significant for the entire period) changes in the cases of light trucks and light 

vehicles.  As for the variance of the shocks, there is a significant decline for light trucks, but not 

for cars or the light vehicle aggregate. 

Of particular interest to our analysis is the change in the coefficient on lagged sales, 

which measures the persistence of shocks to monthly sales.  For all three vehicle categories the 

first-order autocorrelation of sales falls between the early and the late periods.  For passenger 

cars this parameter falls from 0.85 to 0.55, and for trucks it falls from 0.9 to 0.7.  When all light 

vehicles are grouped together, this estimate declines from almost 0.9 to 0.6. 

This reduction in the first-order autocorrelation of car and light truck sales in the time 

domain is also visible in the frequency domain, where the spectral density portions out total 

variance among cycles of various frequencies.  Figure 4 plots the spectral densities for U.S. 

monthly sales of domestic cars (left side) and light trucks (right side) in physical units for the 

pre- and post-1984 periods in the upper set of graphs.10  In the lower graphs, the solid line is the 

log ratio of the two densities (early-to-late) at each frequency, and the dashed line is the log ratio 

of the total variance in the two periods, which represents the change in the average height of the 

spectra.  Thus, frequencies for which the spectral ratio is greater than the variance ratio 

contribute more than proportionately to the reduction in total variance.  Frequencies for which 

the spectral ratio lies below the variance ratio represent cycles that contribute less than 

                                                           
10 Spectral densities are constructed for sales as the deviation from trend of the logarithm of physical units.  The 
densities are smoothed with the Bartlett kernel with window length equal to the square root of the sample size. 
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proportionately to the decline in total variance.  When the spectral ratio lies below zero, cycles in 

this range of frequencies actually cause more variance in the late period than in the early period.   

In the case of cars, the total sales variance attributable to cycles with frequencies below 

0.4×π are markedly lower in the post-1984 period than in the pre-1984 period, while cycles with 

higher frequencies appear to have increased in variance.  A frequency of 0.4×π in monthly data 

corresponds to a period of five months.  In the case of light trucks, the log ratio of early-to-late 

spectra lies above zero at all frequencies, but the variance decline again is particularly stark at 

lower frequencies.  These observations in the frequency domain are consistent with the reduction 

in serial correlation measured in the time domain above for car and light truck sales, and to the 

reduction in innovation variance measured for light truck sales.  

To determine whether more disaggregated sales data also show a change in persistence, 

the AR(1) model is estimated on unit sales at the company and division levels.  Ideally, one 

would like to examine sales at the assembly-plant level, since this is most important for 

production scheduling.  The distribution of models across plants, however, makes it difficult to 

calculate plant-level sales.   Not only does each assembly plant source multiple vehicle models, 

but most models are produced by several plants, and companies sometimes shift models across 

plants.  While monthly sales are available at the model level, these are often not suitable for 

analysis because many have short life cycles, and these life-cycle patterns affect the estimates of 

persistence. 

Thus, Equation 2 is estimated with sales for the companies and divisions that exist in both 

periods.  Because disaggregated sales data are available only for cars in the earlier period, we 

estimate the equation only for cars and not light trucks.  Table 4 displays the results of this 

disaggregated exercise.11  The decline in the persistence of sales shocks similar to that measured 

in the aggregate data is found in the division-level data for General Motors and Ford.  Every 

division shows a decline in persistence, with magnitudes similar to those found for the aggregate 

for cars.  Only a few cases show any significant change in the variance of the innovations.12  

                                                           
11 Because strikes have large effects on particular companies, we include a dummy variable for each month affected 
by the strike plus the month afterward.  (See the data appendix for details on strike dates.)  The econometric model 
is otherwise the same as the one used for the aggregate industry data.  Monthly sales are seasonally adjusted with the 
BEA’s seasonal adjustment factor for cars. 
 
12 We do not put as much weight on the change in variance estimates because of the inclusion of the strike dummy 
variables.  All of the major strikes occurred in the early period, and we used 13 dummy variables to eliminate their 
effects.  The dummy variables serve to decrease the estimated variance of the innovation. 
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Sales at Chrysler, however, do not follow this pattern.  Only one of its divisions shows a 

marginally significant change in sales persistence. 

In summary, for aggregate light vehicle sales as well as for most company divisions, the 

sales process in the post-1984 period returns to its mean much more quickly following a surprise 

than was previously the case in earlier decades.  It is also clear that most of the change in the 

unconditional variance of sales described in the tables above comes from a change in the 

propagation mechanism for sales rather than in the variance of sales shocks. 

These results beg the question: why did the persistence of automobile sales decline?  One 

might suspect that the change in the sales process owes to changes in foreign trade.  For 

example, domestic sales of domestically produced vehicles include not only the sales of Big 

Three vehicles, but also foreign nameplates that are produced domestically.  Since the number of 

the vehicles in this category has grown steadily during the 1990s, one might suspect that changes 

in the definition of “domestic sales” are responsible for the change in their persistence.  When 

estimating the sales process of Big Three-only vehicles, however, the first-order autocorrelation 

declines by 0.33, an almost identical amount to the estimates for all domestic sales.  The same is 

true when the definition of sales is expanded to domestic sales of all autos (including imports), 

and when exports are included in total sales of domestic manufacturers.  Thus, including or 

excluding imports, exports and transplants does not change the basic results. 

Ideally, one would do a structural analysis of a dynamic stochastic equilibrium model of 

this durable goods oligopoly to determine the source of the change.  Data and space limitations 

prevent us from doing a full structural analysis here.  Instead, we offer some reduced form 

evidence that may be suggestive of the source of the decline. 

Likely candidates for the change in sales persistence are changes in the variables that 

affect automobile demand, such as: (1) firms’ pricing behavior; (2) interest rates, perhaps due to 

changes in the conduct of monetary policy; and (3) aggregate income.  Suppose that automobile 

sales depend on prices, aggregate income, interest rates, and an unobservable shock.  When we 

estimate a univariate AR process on auto sales alone, the estimated autocorrelation depends on 

the data generating processes of these other variables as well as shocks to demand.  Suppose that 

automobile companies began to aggressively offer incentives and price discounts in the 1980s on 

certain vehicles to rekindle sagging demand.  If these price incentives represent a significant 

change of practice, are used only at key points in time and have been successful in their aim, then 
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sales shocks in the univariate model would appear less persistent.  Alternatively, if the monetary 

authority has become more aggressive in using interest rates to respond to underlying 

demand-side shifts in the economy that also affect automobile sales, then the measure of sales 

persistence in the univariate model would again appear to have declined. 

To determine whether any of these variables can account for the reduction in the 

autocorrelation of sales observed above, we augment Equation 2 (using aggregate automobile 

sales) with the current value and four lags of real automobile prices, real income, and nominal 

interest rates.13 Assuming that automobile firms do not adjust their prices to the current month’s 

sales shock, this equation can roughly be viewed as a demand equation.  The aim of this exercise 

is to test whether including any of these other variables makes the estimated persistence 

parameter constant across the periods, thus indicating that the behavior of the extra variable was 

the source of the difference.   

Table 5 displays the results.  The first row shows the estimated change in persistence for 

the baseline with no other variables.  For all classes of vehicles, the change in the persistence 

across periods is significantly negative.  The second row adds real motor vehicle prices.  For 

every class, the estimates are similar to the baseline and remain negative and significant.  The 

third row adds real income instead, which does reduce the magnitude of the change after 1984, 

but the estimated change is still statistically significant.  The results in the fourth row indicate 

that the interest rate has the largest impact on the change in the AR(1) estimate.  The magnitude 

of the change falls noticeably relative to the baseline, and 1984 no longer represents a 

statistically significant break date for cars or for light vehicles.  These changes become even 

smaller when all three variables are included.  For cars and light vehicles, the estimates are less 

than half what they were in the baseline case and are not significant.  In the case of light trucks, 

the estimates are less than in the baseline case, but are still significant. 

In summary, it appears that the change in persistence in sales owes in part to the behavior 

of interest rates and perhaps income over the two periods.  Surprisingly, including prices does 

not have any explanatory power.  

                                                           
13 The demand for automobiles should depend on the rental cost in theory.  Rental cost variables have less 
explanatory power than the components (interest rates and prices) entered separately. 
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IV. The Effect of Sales Persistence on Production Decisions 

The crux of the IT hypothesis proposed by KMPQ rests on technological innovations in 

the production process that change the way production is scheduled and inventories are managed, 

given a fixed sales process.  Their presentation of evidence implicitly assumes there is a fixed 

relationship between the variance of production and the variance of sales in the absence of 

structural change.  In this section, we show how a change in the sales process alone modifies the 

relationship between production, inventories and sales.  This is true in the standard production 

smoothing model when cost functions are convex (see Blanchard (1983), Ramey and Vine 

(2003b)), but is more likely when cost functions are non-convex.  Here we examine the more 

realistic plant-level model with non-convex costs and lumpy production margins.  Specifically, 

we show that a decline in the persistence of sales shocks decreases the relative variance of 

production over sales even without IT effects on production scheduling.  Using a model 

calibrated to the cost parameters of the U.S. automobiles industry, we show that the sales 

persistence changes found in the data are sufficient to explain the changing relative volatilities of 

production and sales. 

IV.A Production Margins in Automobile Assembly Plants 

In order to understand the sources of output volatility and the inventory management 

techniques in the automobile industry, it is critical to first understand the institutional structure of 

the automobile industry, its labor union, and the mechanical processes involved on the assembly 

line.  Managers of auto assembly plants have several margins at their disposal to change 

production, many of which involve altering the period of production as opposed to the rate of 

production. 

Let Qit represent the monthly output volume for plant i.  Qit is then a product of the 

following margins: (1) the number of weeks in month t the plant is open; (2) the days per week 

the plant operates; (3) the number of shifts working each day; (4) the length of each shift; and (5) 

the line speed in terms of jobs per hour.  This is shown in Equation 3. 

 

(3) 
hour
jobs

shift
hours
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shifts
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open days
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The institutional structures in automobile manufacturing have various implications for the 

marginal costs of using and for the fixed costs of changing these margins.  Aizcorbe (1990, 

1992), for example, documents the implications for marginal cost found in the labor contract 

between automobile manufacturers and the United Auto Workers.  Bresnahan and Ramey (1994) 

and Hall (2000) both study the ways in which production margin changes impact the volatility of 

plant output.  A conclusion that is common to these as well as other automobile industry studies 

is that the constraints placed on production scheduling by union rules and the high cost of 

retooling an assembly line make the plant’s cost function non-convex over many ranges of 

output. 

Consider first the number of hours an assembly plant works each week.  Changes in 

regular (non-overtime) hours most often take the form of closing the plant for an entire week.  

This is called intermittent production, which is often preferable to operating a curtailed schedule, 

called a short week, because plants are required by union contract to pay short-week 

compensation to workers with at least one year of service.  This is 85 % of a workers' regular pay 

for each hour less than 40 they did not work.  Closing the plant for the entire week, on the other 

hand, entails laying workers off, in which case they receive 95% of their straight week pay 

through a combination of state Unemployment Insurance (UI) and Supplemental Unemployment 

Benefits (SUB).14   

The length of a workweek may be extended temporarily with overtime hours.  Overtime 

hours take the form of one or two extra hours at the end of a regular eight-hour shift or as a Sat-

urday shift.  Employees who work more than eight hours per day or more than forty hours per 

week receive a 50% wage premium for the extra hours.  Overtime hours are intended to be 

temporary and assembly plants are prevented from using overtime permanently in lieu of hiring 

additional workers.  Frequent discontinuous spells of overtime, however, are not uncommon. 

Long-term adjustments to production may involve adding or dropping the night shift.  

Most auto assembly plants operate with one or two shifts, though U.S. automakers began 

designing three-shift schedules in the early 1990s to increase capacity at certain facilities.  The 

                                                           
14 The state governments pay UI, and assembly plants contribute indirectly according to their experience rating.  
SUBs are negotiated between the automakers and the UAW, and the plants support this fund on an employee-hour 
basis.  Hall (2000) estimates that assembly plants pay 60 cents for each dollar distributed with UI and SUB. 
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second shift pays a 5% shift premium and the third shift a 10% premium.  Adding a shift 

involves a negotiation process with the UAW and an increase in the number of production and 

overhead workers on the payroll.  Thus, adding a shift obliges the plant to increase their outlay of 

employee benefits.  These benefits depend on the size of the payroll and not on whether these 

workers are actually on the job in a given week.  A plant's long-run liabilities change 

substantially when new workers are hired. 

Finally, the rate of production may be changed directly by slowing or accelerating the line 

speed.  Line speed changes require a reorganization of the assembly line, which implies a period 

of downtime before the redesigned line is complete. Workers do not simply assemble cars faster 

when line speeds increase.  Instead, each shift hires more workers. The UAW typically becomes 

involved with changes in the line speed as well.15 

IV.B Cost Function Simulation with Inventories 

Not surprisingly, the nature of assembly line technology and the language written into the 

UAW contract imply several levels of production that are either prohibitively expensive or 

physically impossible to attain.  As a result, it is perfectly rational for production decisions to 

yield output volumes that fluctuate much more than sales.  Most notably, managers can close an 

assembly line at weeklong intervals, which is an option they exercise regularly, and they may 

also add and pare entire shifts. 

This section takes the cost function for an automobile assembly plant described by 

Bresnahan and Ramey (1994) and Hall (2000) and investigates how properties of the sales 

processes feed into the cost-minimization objective function and determine production.  In 

particular, the optimal production behavior from a sales process with persistent shocks is 

compared with the production behavior from a sales process with more transitory shocks.  The 

conclusion is that the relationship between the volatility of production and the volatility of sales 

is non-linear and depends on the dynamic properties of sales.  

                                                           
15 In the third quarter of 2001, Ford negotiated with the UAW in order to reduce production capacity for the Ford 
Explorer built at its Kentucky Truck facility, and the Ford Taurus / Mercury Sable, both built in Atlanta, GA and 
Chicago, IL.  While Ford preferred to pare shifts at all of these facilities, the UAW instead urged that line speeds be 
reduced and the number of tag-relief workers trimmed.  (The Wall Street Journal, December 18, 2001) 
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IV.B.1  The Automobile Assembly Plant Production Cost Environment 

In order to minimize the discounted present value of short-run production costs while 

meeting vehicle sales, the plant manager schedules the workweek of the plant by choosing the 

number of shifts scheduled in week t, Sht, the number of days the plant will open in week t, Dt, 

and the length of each shift, ht.  The line speed, lst, in terms of vehicles per hour, combines with 

the workweek variables to determine the weekly level of output as in Equation 4. 

 

(4)                                    ttttt lshDShQ ×××=  

 

The line speed can be thought of as the plant’s production function, as it is the flow of 

output made possible by employing capital, kt, and the labor services of production workers, nt.  

In this simulation we follow Hall’s (2000) characterization of the line-speed as a Cobb-Douglas 

production function shown in Equation 5.  The fact that a certain quantity of workers is 

necessary to achieve any positive level of output is reflected in the presence of overhead 

production workers, n . 

   

(5)                                      ( )γγ nnkls ttt −⋅= −1  

 

The plant manager then solves a dynamic program built from this production identity and 

a series of weekly cost functions.  The particular cost function used in this simulation is depicted 

in Equation 6.  
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The combination of production margins the plant manager chooses to obtain Q vehicles 

in week t will determine the value of each line in Equation 6.  The first line contains the regular 

hours wage bill, while the second line captures the 85% short-week compensation that must be 

paid to workers who spend more than 0 but less than 40 hours per week on the job.  The number 

of shifts is chosen in the prior week from the set of 1, 2 or 3.  The hourly wage for the jth shift is 

denoted wj, and I is an indicator variable that returns a value of 1 when the expression in 

parentheses is true.  The third and fourth lines are the 50% overtime premia charged to the plant 

when daily work hours exceed eight or the number of days scheduled exceeds five.  The fifth line 

captures the costs associated with opening and closing the plant for the entire week, where the 

first term represents the cost of laying workers off and the second term is the fixed cost of 

opening the plant each week, δ.  

The production schedule chosen each week depends on the following variables:  (1) the 

level of sales in the current week, (2) expected level of sales in future weeks, (3) the plant’s 

operating status in the prior week and (4) the level of inventory available in week t to help meet 

current and future sales.  The stock of inventory carried from period t to t+1, therefore, is one 

channel through which past production decisions enter into the current environment.  Equation 7 

is the inventory identity used in this exercise, which simply states that the inventory level at the 

end of the current period, It, is equal to last period’s inventory plus current production, Qt, minus 

current sales, St. The stock of inventory is constrained to lie within an interval depicted in 

Equation 8. 16  Inventory holding enters the cost function in terms of its deviation from a desired 

level, which is determined by the target inventory-to-sales ratio, ω*.17 

 

(7)                                                      tttt SQII −+= −1  

 

(8)                                                   0  ;   allfor  ≥≤≤ ItIII t  

 
                                                           
16 In a stochastic sales setting, this no stock-out condition is equivalent to requiring that the inventory stock after 
current period production but before current period sales is large enough to accommodate the largest possible 
realization of sales. 
 
17 This accelerator term is common in many inventory models, and is particularly well-suited to the automobile 
industry. Not only do the automakers and auto trade publications track and respond to this statistic (days’ supply) 
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The second channel through which the plant’s history affects current decisions involves 

the fixed adjustment costs the plant incurs when the production schedule is changed.  Bresnahan 

and Ramey (1994) present evidence that changing the line speed or the number of shifts working 

entails high adjustment costs, while changing other margins, such as scheduling overtime hours 

and closing the plant for week-long intervals, involves relatively low adjustment costs.  In our 

exercise, changing the number of shifts entails a fixed adjustment cost, αSh. 

The total cost incurred in week t is a combination of c(ht , Dt| Sht), which includes the 

intra-period wage bill and the fixed cost of opening the plant each week, the inventory carryover 

charge governed by the parameter αI, and the fixed adjustment cost of changing the number of 

shifts working, αSh. The inter-temporal cost function denoted as C(ht , Dt , Sht+1|It-1, St,  Sht) is in 

Equation 9. 

 

(9)              ( ) ( )[ ]2*
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IV.B.2  Dynamic Program Simulations 

In order to understand the production behavior implied by the cost minimization problem 

under different sales conditions, this section simulates the dynamic cost minimization problem 

the plant manager solves in making short-run production decisions.  In particular, it is of interest 

to compare the optimal production path chosen when changes to sales are persistent with the path 

chosen when changes to sales are transitory.  In this sense, the first simulation mimics the 

automobile industry environment of the 1970s, while the second closely resembles the 1990s. 

Due to the prevalence of discontinuities, non-convexities and non-differentiable points in 

the plant's weekly wage bill (as a function of units of output), the fixed-point theorems necessary 

to solve the Bellman equation analytically for a time-invariant optimal policy function are not 

satisfied.  It is precisely the influence of these troublesome points that is of interest in this 

exercise.  As an alternative, the plant's problem is structured as a series of 156 discrete weeks (3 

years) over which the plant manager must choose the workweek variables from a discrete state 

space. 

                                                                                                                                                                                           
very actively, but previous automobile studies have deemed it an important part of the industry’s inventory behavior 
as well.  See Blanchard (1983) and Kashyap and Wilcox (1993). 
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To make the dynamic program tractable for numerical solution, the decision variables are 

limited to the number of shifts hired for the next week, Sht+1, the number of days open in the 

current week, Dt, and the hours scheduled per shift per day, ht.  The grids that define the possible 

values for each of these choice variables allow the plant manager a reasonable degree of 

flexibility in planning the workweek of the plant, but still maintain a state-space of reasonable 

dimension for a grid-search solution.18  In particular, it is possible to schedule overtime either 

through opening the plant for a sixth day or by scheduling the shift length to exceed 8 hours.  

Inventory adjustments can take the form of either a shift reduction or a weeklong plant closure.  

A short week is also available through many combinations of production margins. 

The line speed in each period is taken as exogenous and is not a choice variable in this 

exercise.  One can think of line speed as a long-run margin, whose optimal value is determined 

by the encompassing profit-maximization problem the auto manufacturer has previously solved 

when it designed the plant and chose the type of vehicles it would produce in the current model 

year.  The set of decision variables in this exercise then determine the workweek of the plant, 

given the plant’s configuration and a realized path of sales.19 

Sales evolve as a first-order Markov process, where the realization in any given period 

may take one of nine possible values.  Restricting the realizations of sales to a grid of modest 

size is necessary if sales are to be stochastically determined in a grid-search solution algorithm.  

The inventory grid consists of points compatible with the sales grid and the production 

possibilities, and its boundaries range from a fourteen days’ supply to a ninety days’ supply of 

the mean sales rate.  The nine sales grid points along with the Markov transition-probability 

matrix χ( s’ | s ) are parameterized to mimic a desired AR(1) sales process using Tauchen’s 

(1986) procedure.  The unconditional mean of sales, µS, is set to the number of vehicles produced 

on two shifts using regular-time hours, and thus both scenarios represent a plant that has 

correctly matched its full-time capacity with the mean sales rate.  Mismatches between the 

                                                           
18 Shifts may take the value of 1, 2 or 3. Days open per week are chosen from the integers 0 through 6.  Hours per 
day are available in increments of 2 ranging from 0 through 10. 
 
19 Taking sales as given in the cost minimization problem does not imply that sales are exogenous to the firm.  
Rather, we are using a standard micro result that allows us to focus on only the cost minimization part of the overall 
profit maximization problem.  Automakers often use vehicle-specific incentives to boost weak sales, however it is 
the assembly plants’ objective to keep dealers stocked with vehicles in demand, and their relationship becomes 
strained when the company promotes unavailable vehicles. 
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capacity of a plant and its realized mean sales are also very important in the determination of 

production volatility, and the implications of such occurrences are the subject of Hall (2000). 

Since the evidence we have presented above indicates that the most pronounced change 

to light vehicle sales between the periods 1967 – 1983 and 1984 – 2003 has been a reduction in 

its serial correlation, this exercise consists of two simulations: Simulation #1 solves the plant’s 

cost minimization problem with a persistent monthly sales process (AR(1) = 0.85), and 

simulation #2  solves the same problem with the AR(1) coefficient reduced to 0.55.  These 

parameters match the estimated declines in persistence in the aggregate automobile data.  To 

determine the pure effect of a change in persistence with no overall change in unconditional 

variance, we raise the variance of the innovations in the second simulation so that the 

unconditional variance of sales is unchanged between simulations.  Thus, these simulations give 

a lower bound on how much of the relative change in output volatility we can explain.  

The parameter values used throughout this exercise come from the labor contracts 

between automakers and their union, parameterizations of assembly plant cost functions from 

previous studies (notably Hall (2000)), and from the relatively stable inventory-to-sales ratio 

measured in industry data.  Parameters that are more difficult to discern, such as the fixed cost of 

changing shifts and the marginal cost of deviating from desired inventories, were chosen so that 

the solution to the high-persistence version of the model mimics the production behavior 

observed among assembly plants in the 1972 – 1983 period as closely as possible.20 21 

The sequence of decisions and the arrival of information are as follows:  At the beginning 

of week t, the plant receives its sales orders for week t, after which the managers schedule the 

workweek by choosing values for Dt and ht as well as Sht+1 subject to the relevant constraints.  

The orders are then filled and the new level of inventory is carried forward into the next period.  

The inter-temporal cost minimization problem is then described as follows: 
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20 β  = .999 (weekly discount factor); u = 65% (firm’s share of unemployment compensation); αI = 0.0024; αSH = 
2.4 weeks of regular-hours wage; ω* = 60 (days’ supply); γ = 0.62; n1 = 364; n2 = 58; 1 10.54 [40 ( )]w n nδ = ⋅ ⋅ +  
(54% of the first shift’s wage bill). 
 
21 Shift changes occur too frequently in the simulation relative to actual data, but the other margins are matched 
quite closely. 
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where  is defined as in Equation 9.  The solution is subject to the 

constraints: 

( tttttt ShSIShDhC ,,|,, 11 −+ )

 

 [ ]
1
   for all  0,

t t t
Q S I t T

−
≥ − ∈  

[ ]T0,  allfor     ∈≤≤ tIII t , 

 

where Qt is defined as in Equation 4, and the evolution of final sales 
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and the initial inventory level 

 

SI µω ⋅= *
0 . 

 

The dynamic program is then solved backwards with value functions.  1000 different 

paths of sales shocks are generated with a length of 3 years, and in each case the realizations of 

sales are constructed for both the persistent (AR(1) = .85) and the more transitory (AR(1) = .55) 

sales scenarios.22  The plant solves its weekly cost minimization problem, which determines the 

optimal paths for the workweek variables as well as for production and inventory stock.  These 

solution paths are then aggregated from a weekly to a monthly frequency and their volatility 

properties investigated. 

The simulation results are summarized in Table 6, which also includes 95% confidence 

intervals for certain point estimates and for the changes in the point estimates between scenarios.  

In both the high persistence case and in the low persistence (but higher innovation variance) 

case, the average (unconditional) standard deviation of monthly sales across simulations is 

27.0% of the mean sales rate. The average standard deviation of the optimal production path, 

however, changes significantly between the two scenarios.  The standard deviation of production 

 
22 The Markov process that generates weekly sales was calibrated so that, on average, monthly sales exhibited the 
desired first-order autocorrelation. 
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falls from 40.5% of the mean sales rate per month in the first simulation to 28.0% in the second 

simulation.  While the average volatility of sales remains unchanged by design between the first 

and second simulations, the volatility of production falls.  Accordingly, the ratio of the variance 

of production over the variance of sales falls from 2.39 to 1.07. 

The simulations also generate a change in the covariance of inventory investment and 

sales.  As Table 6 shows, when sales have a persistence parameter of 0.85, the correlation 

between inventory investment and sales is 0.34.  In contrast, when sales have a persistence 

parameter of 0.55, the correlation becomes -0.15.  The intuition is the same as in the standard 

production smoothing models of inventory investment.  If a sales shock is thought to be very 

persistent, then the firm increases its production dramatically in order to maintain its desired 

inventory-sales ratio, since it knows sales are likely to stay high for awhile.  In contrast, if the 

shock is more transitory, the firm is willing to allow a deviation from the desired inventory-sales 

ratio since it expects the deviation to be short-lived. 

In order to assess from which workweek variables the change in volatility behavior 

originates, Table 7 shows the weekly frequency with which various changes to production were 

made.  Weeklong shutdowns for inventory adjustment, for example, occur in 10.5% of the weeks 

when a shock to sales has a persistent effect, and that figure declines just slightly to 9.7% when 

the persistence is reduced.  Shift reductions, alternatively, are much more common when the 

persistence of sales is high.  Shift changes occur in 3.8% of the weeks in the high persistence 

case, and only in 0.1% of the weeks in the low persistence case.  The frequency of the use of 

overtime hours, on the other hand, increases from 14.3% in the high persistence scenario to 

21.3% in the low persistence simulation.  Short-weeks in both scenarios are non-existent.   

The conclusion of this simulation exercise is that the variance of output and the 

covariance of inventory investment and sales are highly impacted by the nature of the sales 

process.  When changes in sales are believed to be persistent, the plant often responds by adding 

and paring shifts.  Alternatively, when changes in sales are transitory, the plant is more likely to 

respond with temporary and smaller measures, such as scheduling overtime hours.  Thus, if a 

given change in the variance of sales stems from a reduction in the persistence of the shocks to 

sales, this can lead to a large decline in the variance of output relative to sales.  The result is 

reached in a simplified production model with certain non-convex costs, but it features no 
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changes to the cost function parameters, inventory targets or improvements in the flow of future 

sales information. 

The next section investigates changes in production scheduling that have actually taken 

place at domestic assembly plants.  The changes observed in plant-level data line up quite well 

with the model’s predictions. 

V. Evidence on Production Scheduling from Plant-Level Data 

Our hypothesis states that the change in the nature of the sales process is decreasing the 

need to use the non-convex margins that contribute so much to the volatility of production.  A 

particularly illuminating example of this change is found in Figure 5, which plots weekly posted 

production in physical units at Ford’s St. Louis, MO assembly plant during 1972 – 1983 in the 

upper panel, and during 1990 – 2001 in the lower panel.23   A feature common to both eras is the 

relatively high frequency of weeks where output is zero, which illustrates the intermittent 

production behavior discussed above.  In addition to shutdowns, however, Ford eliminated the 

night shift on two occasions in the early period – once between 1974 and 1976, and then again 

between 1980 and 1982.  In the late period, the St. Louis assembly plant ran two shifts the entire 

time and maintained stable line speeds near 50 vehicles per hour in all model years but 1995.  

Weekly production in the late period often exceeds the 4000 vehicles produced on two regular 

shifts, however, and the source is the frequent use of daily and weekend overtime hours.      

In order to measure changes in production behavior more generally among all Big Three 

assembly plants between the 1970s and 1990s, we construct a dataset from industry trade 

publications that report production behavior at U.S. and Canadian assembly plants on a weekly 

basis over the two time periods: 1972 – 1983 and 1990 – 2001.  Bresnahan and Ramey (1994) 

collected the data covering the 50 domestic car assembly plants operating in the period 1972 – 

1983, and this data set has been significantly extended to include all 103 car and light truck 

assembly plants operating within the two periods listed above.24 25 

                                                           
23 Posted production can differ from actual production in instances of unreported deviations from line speed and 
unreported overtime hours.  These are not an important source of volatility, as described by Bresnahan and Ramey 
(1994). 
 
24 The period 1984 to 1989 was excluded only because we did not have access to Automotive News from that period 
when we were collecting the data. 
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The data set was collected by reading the weekly production articles in Automotive News, 

which report the following variables for all domestic assembly plants:  (1) the number of regular 

hours the plant works; (2) the number of scheduled overtime hours; (3) the number of shifts 

operating; and (4) the number of days per week the plant is closed for (a) union holidays, (b) 

inventory adjustments, (c) supply disruptions, and (d) model changeovers.  Observations on the 

line speed posted on each assembly line were collected from the Wards Automotive Yearbook.26 

Table 8 examines how often each margin of production (i.e. plant closures, changes in 

shift length, the number of shifts working and line speed) was manipulated during the two 

periods.  The frequency of margin use among all 103 assembly plants is summarized as a 

weighted average, based on each plant’s contribution to total production during the period 

examined.  Several comparisons between the periods are noteworthy.  First, plants shut down at 

roughly the same frequency in both periods.  The weeklong closures are of particular interest, as 

these include the inventory adjustments and model changeovers that directly relate to production 

decisions.  The frequency of weeklong shutdowns drops from 12.4% in the early period to 11.1% 

in the late period, though once holidays are excluded the size of the fall is enhanced somewhat.  

Second, the frequency of weeks in which at least four hours of overtime are scheduled has more 

than doubled between the periods, rising from 14.4% to 30.3%.  Finally, while changes in the 

line speed occur with roughly the same frequency in both periods, changes in the number of 

shifts occur in 0.6% of the weeks in the early sample, and occur in only 0.1% of the weeks in the 

late sample.  This implies that the average assembly plant either adds or pares a shift 3.75 times 

during the early period, but does so less than once (0.626 times) in the late period. 

Table 9 further isolates the plant shutdown margin in the early and in the late periods to 

distinguish occurrences that are production planning decisions from those that arise as a 

consequence of holidays, the end of the model year, and supply shocks.  It shows the percent of 

days closed by reason across all plants that were not mothballed, on extended closure, or 

permanently removed from service.  Thus it considers only temporary closures as opposed to exit 

and entry.  Inventory adjustments and model changeovers each close plants for a fewer number 

                                                                                                                                                                                           
25 Data for AMC car plants prior to 1983 were not available, and certain heavy-truck and specialty vehicle facilities 
were excluded, such as the AMC General military vehicle plant, and GMAD Truck & Coach in Pontiac, MI, which 
primarily produces buses. 
 
26 See Bresnahan and Ramey (1994) for more detail about how data is extracted from the weekly production articles. 
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of days in the late period than in the early period, though the decrease in inventory adjustments is 

very minor.  The number of holidays has increased, and the frequency of supply disruptions, 

such as union strikes, parts shortages and natural disasters, is relatively unchanged.   

The drop in the average downtime for model changeovers from 4.3 to 2.3 percent of days 

is particularly interesting, as this is the margin through which improvements in manufacturing 

technology would be visible.  There is indeed evidence that model changeover technology has 

advanced over time, as the industry introduced the weekend model changeover in the 1970s and 

the rolling model changeover in the 1990s.  However, the primary means of managing 

inventories in the automobile industry, the inventory adjustment, has not changed much despite 

the advances in information technology.   

The interpretation of these results comes with several caveats.  First, the distinction 

between inventory adjustments, model changeovers and holidays become blurred during the 

winter and summer quarters.  Extended Christmas holidays often mask inventory adjustments,27 

and model changeovers often take place during a summer vacation or are much longer than the 

technology necessitates during periods with low demand.28 

When the frequency of production margin use changes over time, the impact this has on 

output volatility depends on the nature of each margin.  For example, overtime hours boost 

weekly production by up to 25%, while adding a second shift doubles weekly production.  Table 

10 complements the frequency-of-use figures by measuring the importance of each production 

margin for the variance of output in the pre-1984 and post-1984 periods.  To do this analysis we 

construct an artificial output measure, holding each margin constant at some base level.  We 

determine the impact of a margin on the variance of output by calculating the difference in the 

variance of actual output and constructed output.  The numbers do not add to 100 because of 

nonlinearities and covariance terms.29  

Table 10 displays three noticeable changes over the two periods.  First, model 

changeovers contribute less to the variance of output during the second period.  Their impact on 

variance falls from 31.1% to 20.3%.  Second, the use of overtime hours contributes more than 

                                                           
27 The winter shutdown at the end of 1982 lasted until almost February 1983 in many plants! 
 
28 See Cooper and Haltiwanger’s (1993) study of machine replacement. 
 
29 See Bresnahan and Ramey (1994) for a more detailed explanation of the method. 
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twice as much to the variance in the second period as it did during the first period, climbing from 

a 5.8% contribution to a 13.7% contribution.  Third, changes to the number of shifts at individual 

plants contribute half as much during the second period as they do during the first period, falling 

in contribution from 24.3% to 12.4%. 

Thus, the two non-convex margins that lead to so much variance of output – model 

changeovers and shifts – are a less important component of the variance of output in the second 

period than in the first.  Furthermore, overtime hours, which are the classic convex margin of 

adjusting production, are more than twice as important during the second period than during the 

first. This increase in overtime hours is corroborated by BLS data on overtime use in the 

automobile industry as well, which show a significant increase in overtime used from the early 

period to the later period.   

VI. Relevance for the Aggregate Economy 

The analysis presented here indicates that the persistence of motor vehicle sales has 

declined significantly in the post-1984 period, and that this decline can explain observed changes 

in the relative volatilities of output and sales as well as the covariance of sales with inventory 

investment.  Naturally the question arises as to whether this phenomenon is unique to the 

automobile industry, or whether it also occurred in the other sectors of the economy that 

experienced declines in output volatility.   

At first glance it seems that changes to the autocorrelation of sales are unique to the 

automobile industry.  Blanchard and Simon (2001), Ahmed, Levin and Wilson (2002), and Stock 

and Watson (2002) are among those who have tested numerous macroeconomic variables, 

including sales, for structural breaks in their autoregressive parameters and have found none.  

The motor vehicle sales data used in this study offer two advantages over the sales data used in 

these other listed studies, however.  First, the frequency of observation is higher – monthly 

instead of quarterly; and second, motor vehicle sales are directly measured in physical units 

rather than as a chain-weighted index.   

These advantages are important to our results, and we believe that the literature’s failure 

to find significant changes in sales persistence may owe to data limitations.  Plant-level decisions 

typically occur at the weekly or monthly frequency, so the appropriate sales data would also be 
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high frequency.  Also, production volatility most likely depends on the properties of sales in 

physical units as opposed to the properties of their value.  These alternative measures of sales, it 

turns out, can have very different persistence properties.  The reason is that sales measured in 

chained-dollars reflect the real expenditures per unit along with its physical-unit quantities.  As 

shown below for automobiles, real average expenditures per car is a time-series with very high 

persistence, and this overwhelms any change in the dynamic properties of unit sales. 

Table 11 examines how these two data features (the frequency of observation and the unit 

of account) affect the tests for a change in persistence.  We estimate the model given in Equation 

2, which allows a change in 1984 in the first-order autocorrelation as well as in the conditional 

mean and variance, for light vehicle sales data constructed at different frequencies and with 

different units of account.  The first three rows replicate changes in the monthly physical unit 

sales process measured in Table 4 for cars, light trucks, and their aggregate.  In all three cases 

there is a significant change in persistence, and in two of three cases there is no significant 

change in the variance of the error term. 

Consider next the lower panel of Table 11, which inter-temporally aggregates the 

physical unit data from the upper panel to a quarterly frequency using averages.  In all cases the 

changes in the persistence parameter are much smaller in magnitude and are no longer 

significant.  The changes in the variance of the innovations, on the other hand, now become 

significant in each of these series.  Monthly data imply a change in the autocorrelation of sales 

and no change in the innovation variance, whereas the quarterly data imply just the opposite! 

The final row of Table 11 tests the final sales of domestic product of motor vehicles for 

changes in persistence and innovation variance.  This series is most similar to the types of 

variables others have used in more aggregated studies, and it is observed quarterly in units of 

chained 1996 dollars.30    The estimated decline in persistence is even smaller in this case than it 

was when measured with quarterly physical units in the preceding line, and the change is not 

significant.  The variance of the innovations, however, appears to have increased significantly in 

the second period.  Thus, this variable gives answers that are even farther from those obtained 

using our preferred data. 

                                                           
30 This variable includes exports.  As noted in an earlier section, though, including exports in sales does not change 
the estimates noticeably when physical unit data are used. 
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The chained-dollar data contains another element that may be masking the change in 

persistence: the behavior of average real expenditures for cars.  Chained-dollar sales consist of 

the number of physical units multiplied by chained dollar average expenditure per unit.  As the 

addendum at the bottom of Table 11 shows, average real expenditures per car show no break in 

persistence or variance.  Average real unit expenditures, however, have a high persistence (first-

order autocorrelation is 0.94), so their effect on chained dollar total expenditures likely hide any 

persistence changes in the unit data.31 

These exercises suggest that testing for change in sales persistence using standard chain-

weighted quarterly data is not revealing.  While general interest in the decline in macroeconomic 

volatility focuses on quarterly U.S. GDP growth, it is possible that the true source of this change 

is detectable only at higher frequencies and with less aggregation where unit-valued data are 

available and meaningful.  Thus, the correct data to use in order to verify that the results given 

here do or do not extend to other industries are high frequency physical unit data, which we 

intend to pursue as future research.   

At this point, we offer indirect evidence supportive of the relevance of our hypothesis for 

the economy overall.  Both the simulations and plant-level data show that when sales persistence 

declined in the automobile industry, firms were more likely to vary hours per worker (e.g. 

overtime hours) than the number of workers (e.g. the number of shifts).  Varying the hours per 

worker typically has a low adjustment cost but a high marginal cost, whereas varying the number 

of workers has a high adjustment cost but lower marginal cost.  Thus, firms will use hours per 

worker to respond to transitory shocks and will use employment to respond to more persistent 

shocks. 

To determine whether production decisions in the overall economy appear to have 

changed in the same way as in the automobile industry, we analyze the change in the variances 

of the intensive margin (hours per worker) and the extensive margin (number of workers) over 

the two periods.  The variables used are average weekly hours per worker and the number of 

employees in the nonfarm private sector (divided by the population aged 16 and over) at the 

                                                           
31 The case for using physical unit data rather than chained value data can also be made by analogy to studies of the 
labor market.  One always studies employment variables measured in physical units – either hours or number of 
workers.  The stylized facts about labor markets would probably change significantly if economists only studied the 
real value of total hours (i.e. the product of real wages and hours) because the high persistence of real wages would 
hide the time series properties of the hours variables. 
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monthly frequency.  The product of the two variables is total hours per capita worked in the 

nonfarm private sector.   We study the growth rates of the variables over the period for which all 

of the data are available, which is 1964 to the present. 

As Table 12 shows, the variance of total hours fell substantially from the pre-1984 period 

to the post-1984 period. Fluctuations in the average hours per employee accounted for 49 percent 

of the variance of total hours in the early period but 64 percent of the variance in the later period.  

Meanwhile, changes in employment became a smaller part of the overall variance in the second 

period.  The covariance also declined substantially.  

The aggregate labor data display patterns similar to those found in the automobile 

industry.  The use of margins of adjustment is entirely consistent with the theory that the sales 

shocks faced by individual firms in the early period had a higher persistence than those faced by 

firms in the later period. 

VII. Conclusions 

The overview of the automobile industry and analysis conducted using plant-level data 

has highlighted several interesting facts that should serve to increase our understanding of the 

decline in the variance of GDP.  The automobile industry experienced declines in production 

volatility around the same time as the rest of the economy.  The declines in the automobile 

industry were even more dramatic than the declines overall.  At least in the case of cars, the 

variance of production declined more than the variance of sales. 

We presented evidence that the change in production volatility may be linked to changes 

in the sales process.  We found that changes in the process driving sales appear to be an 

important part of the changes in the automobile industry.  In contrast to the 1970s and early 

1980s, a time when volatile and highly persistent movements in sales beset the automobile 

industry, the 1990s featured more transient shocks to sales.  We then showed how a change in 

the persistence of the sales shocks could lead to a proportionately larger decline in production 

volatility over sales volatility. 

Plant-level evidence indicates that firms have responded to these changes in the sales 

process by reducing their use of non-convex lumpy margins, such as shift changes, and have 
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begun to use the classic convex margin of overtime hours much more intensively.  It is likely that 

this induced switch is a prime cause of the sharp decline in production volatility. 

The brief investigation of the source of the change in the sales process suggests that 

monetary policy could be the key. This interpretation is consistent with Clarida Gali and Gertler 

(2000), Boivin and Giannoni (2003), and McCarthy and Zakrajšek (2003), all of who find 

changes in the estimated monetary policy function at the Federal Reserve to underlie declines in 

the persistence of demand shocks and reduced output volatility. 

Finally, an analysis of the data suggests that previous failures to find changes in the 

persistence of sales at the aggregate level may be due to temporal aggregation and other features 

of chain-weighted quantity indexes.  Evidence from the aggregate labor market suggests that 

firms have varied their labor input in a way that is consistent with sales shocks becoming more 

transitory.   
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Data Appendix 

Table 1:  All data are from the BEA’s NIPA accounts, downloaded November 2003.  The data 

are in chained 1996 dollars.  At the time of writing this paper, the revised accounts with chained 

2000 dollars were not available for the durable good and motor vehicle sub-components. 

Table 2: All data for car production, inventories and sales are from the BEA.  Non seasonally 

adjusted truck production is from Wards (extracted from the Federal Reserve’s US database).  

Non seasonally adjusted inventory stocks and dealer sales of trucks from 1967 to 1983 are from 

volumes of the Wards Automotive Yearbook.  The same data for 1984 to 2003 are from the 

MVMA (extracted from the Federal Reserve’s US database).  The truck production data are 

seasonally adjusted using FRB seasonal factors.  The truck sales data are seasonally adjusted 

using BEA seasonal factors.  Car and truck inventory investment series are seasonally adjusted 

by regressing them on current and one lag of the relevant production and sales seasonal factors 

since the government’s seasonal adjustment factors for inventories do not extend back very far. 

Table 3:  All series are from the BEA.   

Table 4: Division-level sales data are from Wards Communications.  We include dummy 

variables for each month in which sales are affected by a strike, as well as the month afterward.  

The set of dummy variables include the following months: 1967:9 – 1968:1, 1970:9 - 1971:1, 

1976:10 - 1976:12.  Although most strikes only affect one company, we included the full set of 

dummy variables for each company and division to capture spillover effects. 

Table 5: The real price of cars is the CPI for new cars divided by the overall CPI.  No truck CPI 

is available, so we use the CPI for new motor vehicles for both light trucks and motor vehicles 

overall.  Income is from the BEA and the Federal Funds rate is from the Federal Reserve Board 

of Governors. 

Tables 8–10: As discussed in the text, all data were collected by hand from articles in 

Automotive News.  

Table 11:  The additional chain-weighted data are from the BEA. 

Table 12:  Data from the BLS. 
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Table 1:  The Standard Deviat ion of  Output  Growth *  
( Q u a r t e r l y  da t a ,  a nn u a l i ze d  g ro w t h  ra t es )  

 
 

 
1967:1  -  1983:4  1984:1  -  2003:3  P e r c e n t  c ha ng e  

i n  vo la t i l i t y  

Chained $1996   

        GDP 4 . 5  2 . 1  -5 3  

        Durable Goods 1 6 .5  8 . 4  -4 9  

        Motor Vehicles 5 2 .2  2 0 .6  -6 0  

         GDP less Motor Vehicles 3 . 8  2 . 0  -4 8  

  * B a s e d  o n  q u a r t e r l y  N I P A  d a t a . 
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Table 2:  Decomposition of Motor Vehicle Output Volatility 

(Physical units, cars and trucks separately) 
 
 
A.  Cars 

 
Not  Seasona l ly  Adjusted  Seasona l ly  Adjusted   

1967:2-1983:12  1984:2-2003:12  1967:2-1983:12  1984:2-2003:12  

( )Var Y  6 . 31  2 . 93  3 . 69  0 . 90  

( )Var S  3 . 94  3 . 19  2 . 65  1 . 89  

( )Var I∆  2 . 75  3 . 33  1 . 29  1 . 24  

( , )Cov S I∆  -0 .02  -1 .16  -0 .09  -0 .58  

( )
( )

Var Y
Var S

 1 . 60  0 . 92  1 . 39  0 . 48  

 
 
 

B.  Trucks (includes heavy trucks) 

 
Not  Seasona l ly  Adjusted  Seasona l ly  Adjusted   

1967:2-1983:12  1984:2-2003:12  1967:2-1983:12  1984:2-2003:12  

( )Var Y  1 0 .45  3 . 13  9 . 45  1 . 20  

( )Var S  8 . 83  2 . 14  7 . 63  1 . 18  

( )Var I∆  2 . 78  3 . 08  1 . 76  1 . 02  

( , )Cov S I∆  -0 . 17  -0 . 71  0 . 30  -0 . 28  

( )
( )

Var Y
Var S

 1 . 18  1 . 47  1 . 24  1 . 02  

 
A l l  v a r i ab l e s  w e r e  n o r ma l i z e d  b y  th e  exp o n e n t i a l  o f  a  f i t t e d  l i n e a r  t r end  to  lo g  p ro d u c t i o n ,  e s t i ma t e d  
s e p a ra t e l y  o v e r  e a c h  p e r io d .  
 
S e e  d a t a  ap p en d i x  fo r  d a t a  so u rce s .   
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Table 3:   Est imates  of  Aggregate Automobile Sales Process  

 

Coef f ic ient s  (and s tandard  e r ro rs)  f rom the  regress ion:  

 

tttrendtDtSalestDtDttrendtSalesotSales εβββααα +⋅⋅+−⋅⋅+⋅+⋅+−⋅+= 2)1log(102)1log(1)log(  

where  ( )tDNt 3
2

,0~ βσε +  

and        
1:1984for   1
1:1984for   0

≥=
<=

tD
tD

t

t

 

 

Coeff ic ient  Cars  Light  Trucks Light  Vehicles  

α 0                ( c o ns ta n t )  0.983**  
( . 3 3 2 )  

0 .326**  
( . 1 4 8 )  

0 .772**  
( . 2 9 7 )  

β 0             (∆  c on s tan t )  
2.06**  

( . 7 3 7 )  
1 .35**  

( . 4 3 4 )  
1 .82**  

( . 7 0 3 )  

α 1                   (AR (1 ) )  0.851**  
( . 0 4 9 )  

0 .934**  
( . 0 3 0 )  

0 .886**  
( . 0 4 3 )  

β 1                (∆  AR (1 ) )   
- .315**  

( . 1 1 5 )  
- .241**  

( . 0 7 8 )  
- .267**  

( . 1 0 5 )  

α 2                   ( t r e nd )  - .0002  
( . 0 0 0 1 3 )  

0 .00017  
( . 0 0 0 1 6 )  

- .00005  
( . 0 0 0 1 1 )  

β 2                 (∆  t r end )  
- .0003  
( . 0 0 0 1 7 )  

0 .0011**  
( . 0 0 0 3 7 )  

0 .00053**  
( . 0 0 0 2 0 )  

σ 2      ( i nno v .  Va r ian ce )  0.0070**  
( . 0 0 1 1 6 )  

0 .0089**  
( . 0 0 1 2 )  

0 .0066**  
( . 0 0 1 1 )  

β 3    (%∆  innov. Variance) - .00046  
( . 0 0 1 6 )  

- .0040**  
( . 0 0 1 4 )  

- .0013  
( . 0 0 1 4 )  

Log l ikel ihood 477.2  486.7  507.7  

Standard errors were computed using Eicker-White methods. 

 ** denotes significant at the 5 % level. 

Sample is 1967:2 – 2003:12, N = 443 

Dt = 0 for t ≤ 1983:12  ;  Dt = 1 for t ≥ 1984:1 

 

 



 40

Table 4:   Est imates  of  Change in Persistence and Variance of  Divis ion- level  Automobile  
Sales  

 
1967:2 – 1983:12 vs. 1984:1 – 2003:12 

 

Company or Divis ion 
Change  in  

Persi s tence  
(β 1 )   

Change  in   
Variance  

(β 3 )   

     General  Motors  -0 .320 **  
( . 0 91 )  

0 . 003 8*  

 ( . 0 0 2 1 )  

          Buick  -0 .185 **  
( . 0 83 )  

0 . 008 1**  
( . 0 034 )  

          Cadi l lac  -0 .321 **  
( . 0 86 )  

0 . 005 6  
( . 0 042 )  

          Chevrole t  -0 .302 **  
( . 0 94 )  

0 . 000 5  
( . 0 028 )  

          Oldsmobi le  -0 .130 *  

( . 0 75 )  
0 . 013 **  
( . 0 04 )  

          Pont iac  -0 .234 **  
( . 0 80 )  

0 . 000 6  
( . 0 030 )  

   

     Ford Motor  Company  -0 .295 **  
( . 0 89 )  

0 . 001 8  
( . 0 024 )  

          Ford  Div i s ion  -0 .301 **  
( . 8 71 )  

0 . 000 9  
( . 0 022 )  

          L incoln  -0 .242 **  
( . 0 73 )  

-0 .029 **  
( . 0 11 )  

          Mercury  -0 .149 **  
( . 0 73 )  

0 . 004 6  
( . 0 034 )  

   

     Chrysler  -0 .028  
( . 0 71 )  

0 . 000 1  
( . 0 029 )  

          Chrysle r  Div i s ion  -0 .053  
( . 0 69 )  

-0 . 002 1  
(0 . 006 4 )  

          P lymouth +  -0 .121 *  

( . 0 73 )  
0 . 007 5**  
( . 0 034 )  

          Dodge  - . 0 38  
( . 0 73 )  

0 . 003 4  
( . 0 031 )  

 
* indicates significant at the 10% level, ** indicates significant at the 5% level . 
 
+Regressions for Plymouth were run through 1999:12 so that the end of the division wind-down did not affect the results. 
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Table 5:  Est imated Change in Persistence of  Sales:  Explanations 

Change  in  La te  Per iod  (1984 -  2003)  f rom Ear ly  Per iod (1967 -  1984)  

 
 
 Other variables 

included Vehicle  Category 

  Cars Light Trucks Light Vehicles 

Basel ine -- - .315**  
( . 1 1 5 )  

- .241**  
( . 0 7 8 )  

- .267**  
( . 1 0 5 )  

 Real price of motor 
vehicles 

-0.337** 
(.111) 

-0.273** 
(0.078) 

-0.284** 
(0.102) 

 
Income -0.288** 

(0.120) 
-0.237** 

(0.078) 
-0.246** 

(0.104) 

 
Federal funds rate -0.208 

(0.128) 
-0.191** 

(0.085) 
-0.167 
(0.116) 

 Prices, income, and 
federal funds rate 

-0.169 
(0.135) 

-0.204* 
(0.086) 

-0.132 
(0.118) 

 
426 observations.  The estimate reported is the difference in the AR(1) coefficient on sales between 1967:1 – 1983:12 and 1984:1 
– 2003:12. ** indicates significant at the 5% level, * indicates significant at the 10% level. 

All specifications allow for breaks in the constant term, trend term, and variance of the error term between 1983:12 and 1984:1.   
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Table 6:  Assembly Plant Simulat ion Results:  Average Standard Deviat ion of  Monthly 
Product ion and Sales  over 1000 Simulat ions 

 

Sales  Pa th  
S

S
µ
σ

 
S

Q

µ

σ
 

2

2
Q

S

σ

σ
 ,S Iρ ∆  

A v e .  
C h ang e  in  

2 2
Q Sσ σ  

A v e .  
C h ang e  in  

,S Iρ ∆  

ρ = .85 
27.0% 

( 2 6 . 5  ,  2 7 . 6 )  

40 .5% 
( 3 9 . 9  ,  4 1 . 2 )  

2 .39  
( 2 . 3 4  ,   2 . 4 3 )  

0 .34  
( . 3 3 4  ,  . 3 5 1 )  

- -  - -  

ρ = .55 
27.0% 

( 2 6 . 7  ,  2 7 . 3 )  

28 .0% 
( 2 7 . 6  ,  2 8 . 4 )  

1 .07  
( 1 . 0 5  ,  1 . 0 8 )  

-0 .15  
(-.158 , -.135) 

-1 .32  
(-1 .36  ,  -1 .28)  

-0 .49  
(-.503 ,  -.475) 

 

 
 
 
 
 

Table 7:  Assembly Plant Simulat ion Results:  Frequency of  Product ion Behavior with High 
and Low Persistence Sales  over 1000 Simulat ions 

 

Sales  Pa th  
R e gu l a r  

H o u r  
W e e k s  

In v en to ry  
A d ju s t me n t  

W e e k s  

O v e r t i me  
H o u rs  
W e e k s  

S h o r t  
W e e k s  

W e e k s  
w i t h  Sh i f t  
C h ang e s  

ρ = .85 7 5 .2 %  1 0 .5 %  1 4 .3 %  0 %  3 . 8%  

ρ = .55 6 9 .0 %  9 . 7%  2 1 .3 %  0 %  0 . 1%  
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Table 8:  Frequency of  Use of  Different  Margins at  Big Three Assembly Plants  

( P e r c e n t  o f  We e k s  Us ed )  

 
 1972 –  1983 1990 –  2001 

 
Weighted  

average  of  a l l  
p lant s  

Weighted  
average  of  a l l  

p lant s   
H o l i da y s  
e x c l ud e d  

Weighted  
average  of  a l l  

p lant s  

Weighted  
average  of  a l l  

p lant s  
H o l i da y s  
e x c l ud e d  

Shutdown of at least 1 day 2 4 .4  1 0 .9  2 3 .4  7 . 7  

Shutdown of 1 week 1 2 .4  9 . 2  1 1 .1  6 . 0  

4 or more overtime hours 1 4 .4  1 4 .4  3 0 .3  3 0 .3  

Change in the number of 
shifts 0 . 6  0 . 6  0 . 1  0 . 1  

Change in the line speed 0 . 9  0 . 9  1 . 0  1 . 0  

 
 

Table 9:  Percent of Days Closed by Reason at Big Three Assembly Plants 

 
Reasons for closure 1972 –  1983 1990 –  2001 

Inventory  ad jus tment  4 . 0  3 . 6  

Model  changeover  4 . 3  2 . 3  

Supply  d i s rup t ions  1 . 2  1 . 1  

Hol idays  5 . 5  7 . 4  

A l l  p e rc e n t a ges  a r e  c a l cu la t ed  u s in g  t he  sum o f  d a ys  du r in g  wh ic h  a  p l an t  ex i s t s  and  i s  no t  o n  
p e r ma n e n t  o r  e x t end e d  sh u td o wn  as  th e  de n o mi n a t o r .  

 
 

Table 10:   Importance of  Each Margin for the Weekly Variance of  Output  at  Big Three 
Assembly Plants  

(Pe rcent  impac t  of  marg in  use )  
 

Margin 1972 –  1983 1990 –  2001 

Inventory  ad jus tment  2 8 .7  3 1 .7  

Model  changeover  3 1 .1  2 0 .3  

Supply  d i s rup t ion  7 . 7  1 1 .7  

Over t ime hours  5 . 8  1 3 .7  

Sh i f t s  2 4 .3  1 2 .4  

L ine  speeds  1 1 .7  9 . 2  
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Table 11:  Effects  of  Using Different Types of  Data on Changes in Persistence and 
Condit ional  Variance Estimates of  Motor Vehicle  Sales  

 
Changes from 1967-1983 to  1984-2003 

 
 

Frequency Units  of  
measurement 

Aggregat ion 
level  

Change  in  AR(1)  
parameter  

Change  in  var iance  
of  innovat ions  

Monthly  Phys ica l  uni t s  Cars  - .315**  
( . 1 1 5 )  

- .00046  
( . 0 0 1 6 )  

Month ly  Phys ica l  uni t s  L ight  t rucks  - .241**  
( . 0 7 8 )  

- .0040**  
( . 0 0 1 4 )  

Month ly  Phys ica l  uni t s  Cars  & l ight  
t rucks  

- .267**  
( . 1 0 5 )  

- .0013  
( . 0 0 1 4 )  

     

Quar te r ly  Phys ica l  uni t s  Cars  -0 .128  
( . 1 5 5 )  

-0 .0074**  
( . 0 0 3 4 )  

Quar te r ly  Phys ica l  un i t s  L ight  t rucks  -0 .184*  
( . 1 0 9 )  

-0 .0097**  
( . 0 0 2 7 )  

Quar te r ly  Phys ica l  uni t s  Cars  & l ight  
t rucks  

-0 .125  
( . 1 3 8 )  

-0 .0075**  
( . 0 0 3 2 )  

Quar te r ly  Chained  da ta +  Al l  motor  
vehic les  

-0 .077  
( . 1 2 0 )  

-0 .0044**  
( . 0 0 2 2 )  

 
 
+The chained data were only available through the third quarter of 2003. 
 
Addendum: 
 
AR(1) results for average expenditures per car (deflated by BEA deflator): 
 
- No evidence of break in AR(1) parameter or variance of the innovation 
 
- Full sample AR(1) parameter is 0.935 with standard error of 0.026. 
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Table 12:  Aggregate Evidence on the Hours Margin Use 

Nonfarm private  sector  
 
 

 1964:1-1983:12  1984:1-2003:12  

 
Var iance  of  Tota l  hours  
 

4 8 .9  2 1 .9  

Pe rcent  accounted  fo r  by :    

 
         Employment  
 

3 0 .1  2 4 .2  

         Average  weekly  hours  4 8 .5  6 4 .4  

 
         2  ×  Covar iance  
 

2 1 .3  1 1 .0  

Data are from the BLS.  All variables are in growth rates.  Total hours and employment are in per 
capita terms. 
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Figure 1:  Nonfarm Inventory to Final  Sales  Ratio  

(Chained 1996 dol lars)
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U.S.  Monthly Car and Light-Truck Sales 
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Figure 2:  U.S.  Monthly Automobile Production and Sales  

(Physical Units) 
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Figure 3:  Inventory to  Sales  Ratio for U.S.  Domest ic  Cars and Light Trucks  

( In  Month’s  of  phys ica l  uni ts )  
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* Spectra are calculated with monthly physical unit sales figures in logs.  Light trucks are de-trended with linear time-trend. 
 
 
 

Figure 4:   Domest ic  Light  Vehicle  Monthly Sales  Spectra before and after 1984 *  
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Panel  A:  Weekly Production 1972 –  1983 
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Panel  B:  Weekly Production 1990 –  2001 
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Figure 5:   Weekly Production at  Ford St .  Louis  Assembly Plant:    
1972 –  1983 and 1990 – 2001 
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