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I. Introduction—

A companion study [Meese-Rogoff (1981)] compares the out-of-sample fit
of various structural and time series exchange rate models, and finds that
the random walk mode]g/ performs as well as any estimated model at one
to twelve month horizons for 1970's dollar/mark, dollar/pound, dollar/yen and
trade-weighted dollar exchange rates.gj The structural models perform
poorly ever though their forecasts are purged of all uncertainty concerning
the future paths of their explanatory variables by using actual realized
values.

The present study demonstrates that the dismal performance of the
structural models is not attributable to the sample distribution of the
coefficient estimates. We rule out that explanation by showing that the
models (with autoregressive error terms) perform poorly at one to twelve
month forecast horizons over a wide range of coefficient values. These
values are based on the theoretical and empirical lTiterature on money demand
and purchasing power parity. Since the coefficent-constrained models only
require estimation of the intercept terms, it is possible to look at longer
forecast horizons here than in our other study. There the relative
superiority of the random walk model 6ver the structural models diminishes as
the forecast horizon approaches twelve months. The present study explores
the possibility that the structural models may improve on the random walk
model forecasts at horizons of twelve to thirty-six months.

The main part of the paper is contained in section 3, which discusses
the coefficient-constrained experiments. In section 2, vector
autoregressions (VAR) are used to identify the factors that influence the
exchange rate over short versus long horizons. The results from the VAR

experiments also highlight the difficulties in finding legitimate instruments



with which to estimate the structural models, thus motivating the
constrained-coefficient approach of section 3. Section 4 asks which of the
common building blocks of the structural models is most likely to have
failed. It appears that the breakdown of empirical exchange rate equations
is the international counterpart of the breakdown of money demand

specifications.



2. Decomposing the Forecast Error Variance of the Exchange Rate at Long
and Short Horizons

Before proceeding to tests of the representative structural exchange
rate models, we first examine a vector autoregression consisting of the
exchange rate and the explanatory variables of these models: relative money

supplies, relative outputs,i/

relative short-terin and long-term interest
rates, and trade balances. The VAR is a tool for analyzing the relative
importance of the explanatory variables in exchange rate model forecasts at
both short and Tong horizons. As a by-product, the VAR also provides
information on whether the conventibna] exogeneity assumptions used in
estimation of the structural models are appropriate.

A convenient normalization for estimation of the VAR is one in which

the contemporaneous value of each variable is regressed against lagged values

of all the variables; e.g., the exchanye rate equation is given by

(1) sy = ayyse ) + Q45¢p * oo ipSeoy * ByXeoy + BigXea + oo BiXiy

YU

where s, 15 the (Togarithm of -the) exchange rate at time t and Xt-j

is a vector of lagged values of the other included variables (listed above).
Expressing the VAR system in the form of equation (1) facilitates estimation,
as ordinary least squares equation by equation is an efficient estimation
strategy. This normalization does not, however, preclude contemporaneous

interactions between the variables, as these effects are captured in the

covariance matrix of the disturbance terms Usge The uniform lag length



n across all (seven) equations is estimated using Parzen's (1975) lag length
selection criterion.E/
We estimate the VAR model for the dollar/mark, dollar/pound, and

dollar/yen exchange rates over the floating rate period; the data consist of
monthly observations for March 1973 through June 1981 (our seasonal adjustment
procedures are described in the data appendix). Once having obtained thé
coefficient estimates, the dynamic interactions among the variables are nost
easily studied with the use of the moving average (MA) representation, which
is derived by inverting the autoregressive (AR) representation to express each
of the endogenous variables in terms of the disturbances or innovations tthe

u., in (1) for example]. Studying the MA representation is complicated

it
by the fact that the disturbance terms in the MA (or AR) representation are in
general contemporaneously correlated; see Sims (1980) or Fischer (1981). So
in order to simulate a "typical" shock to a given variable it is necessary to
recognize that the expectation of other disturbances in the system,
conditional on the particular shock of interest, are usually nonzero.
Unfortunately, for two correlated disturbances z;(t) and zz(t), if the
E[zy(t)] zp(t) = 1] = a , @ an arbitrary constant, it is not in general

true that E[zz(t)lz](t) = «] = 1. Because of this fact, there is no

unique way to simulate "typical" shocks to these systewms of endogenous
variables when contemporaneous variqb]e interactions are present. {(In cther
words, when the covariance matrix of the disturbance terms is nondiagonal.)

In order to identify a typical shock to the VAR system with a particular
variable, we will follow the Sims' (1930) procedure of specifying a variable

ordering a priori. The variable ordering essentially specifies that the first

variable is predetermined with respect to all other variables, that the second



variable is predetermined with respect to all but the first, etc. The
identification of the VAR systems is pursued in greater detail in the
technical appendix.

The multi-horizon forecast error variance decompositions listed in
tables 1-3 are based on a variable ordering with the logarithm of U.S. to
foreign relative money supplies - first, followed by the logarithm of -
relative outputs y-§, the short-term interest differential
rg - ?s’ the long-term interest differential re - :L’ the
U.S. and foreign trade balances T8 and Tﬁ, and the Toyarithm of the
dol]ér price of foreign currency s. In tables 4-6 the variable ordering is
reversed. In the U.S.-German system, the Targest estimated contemporaneous
correlation is 44% between the short and long-term interest differential
equations. The other estimated contemporaneous correlations range frow 5 to
20%. These results suggest that the variable ordering is potentially
important in the U.S.-German VAR system. And indeed there are some
differences between the U.S.-German VAR systens, regular versus reverse
order, at both short and long forecast horizons. Hote that in the regular
(reverse) order system, exchange rate and long-teri interest rate innovations
account far 78.6% (93.7%) and 12.8% (4.9%) of the one-month-ahead forecast
error variance of the exchange rate, and 48.1% (60.1%) and 15.4% (10.5%) of
the 36-month-ahead forecast error variance of tlie exchange rate. However,
the significance of these differences cannot be ascertained from tables 1 and
4. We have not yet performed the requisite (expensive) stochastic
simulations to obtain estimates of the dispersion of these forecast error
variance deconpositions. Of course, the data necessdarily contain less

information about long-run variable interactions than short-run. Similar



observations apply to the U.S.-U.K. and U.S.-Japanese VAR systems.

A second important observation to be made from tables 1-6 is that no
variable appears to be exogenous to the VAR system. Abstracting from
coefficient uncertainty, an exogenous variable would manifest itself as
follows: at all horizons a variable's own innovations would account for all
of its forecast error variance, so there would be a one in the column
corresponding to a variable's own innovation and zeros elsewhere. (Block
exogeneity is the obvious nwultivariate generalization.)g/ In the
U.S.-German VAR the exchange rate, relative incomes, the long-term interest
differential, and the German and U.S. trade balances all appear to have large
exogenous components, since for both variable orderings and all horizons
(1-36 months) own innovations in these variables explain at least 48%, 55%,
50%, 59%, and 65% of their respective forecast error variances. For the
U.S.-U.K. VAR, own innovations in the exchange rate, the U.K. and U.S. trade
balances, and the long-term interest differential account for most of -he
forecast error variance of these variables. In the U.S.-Japanese systen, it
is the exchange rate, the Japanese and U.S. trade balances, and relative
incomes that have this property.

The Tast feature of tables 1-6 that we wish to emphasize concerns the
difference between those factdrs which appear to explain the forecast error
variance of the three bilateral exchange rates at snhort horizons (1-3 rionths)
as opposed to longer horizons (1-3 years). Based on the numbers reported in
these tables it is clear that own innovations in exchange rates explain a
large fraction of the exchange rate forecast error variance at one and three

month forecast horizons, while innovations in the other variables becoine



relatively more important at horizons of one and thre years. This result is

not atypical of VARs estimated on macro-econonic data; see Fischer (1981).
A1l of the features of tables 1-6 noted above suggest both (1) the

difficulty in specifying the nienu of variables to include in a structural

exchange rate equation, and (2) the problems associated with finding

* legitimate instruments with which to consistently estimate the parameters of

these mode’s. The latter difficulty has led to the constrained-coefficient

methodology of the next section.



3. Predicting and Explaining the Exchange Rate Out of Sample Using
Structural Models with Constrained Coefficients

Elsewhere [Meese-Rogoff (1981)] we employ rolling regressions to
construct out-of-sample forecasts of the exchange rate using three structural
models: a flexible-price monetary model (Frenkel-Bilson), a sticky=p~ice
monetary model (Dornbusch-Frankel), and a sticky-price asset model which
incorporates the trade balance (Hooper-Morton).Z/ The fact that these
structural models do not outperforn the random walk model at horizons of one
to twelve months cannot be attributed to the inherent unpredictability of the
explanatory variables; this uncertainty is purged from the forecasts by using
realized explanatory variable values. Still, there remains the possibility
that our small-sauple results can be attributed to poor parameter estimates
rather than specification error. This possibility is especially worrisome in
Tight of the estimated VAR models presented in the previous section. They
indicate that it is difficult to find legitimate exogenous variables in the
three structural exchange rate models. If this is the case, then consistent
coefficient estimation becomes problematic and requires a priori knowledge of
the serial correlation process of the error terms. These possible estimation
problems may explain why the instrumental variables techniques implemented in
our other study do not yield better results than ordinary least squares.

Here we explore a range of constrained-coefficient models and present
evidence that our other results concerning one to twelve month forecast
horizons cannot be explained by coefficient uncertainty. In additior, since
the coefficient-constrained models do not require a significant portion of
the limited floating-rate data set for estimation, we are able to look at

longer forecast horizons.



3a. The representative structural models

ATl three of the structural exchange rate models we consider are based
on a common money demand specification, thereby allowing us to impose
coefficient constraints on a consistent basis across models. The quasi-reduced
form specification of each of the models is subsumed in the general

specification below:

* *

* *
(2)  s=ag+apm-m +ay-y)+aglrg - r) + a (e - 5%

)
*

+ al;(T_B - .TE.) + u,

where (n® - ﬁe) is the expected long-tenm inflation differential, TB
and %E are the cumulated U.S. and foreign trade balances, u is a disturbance
term, and the other variables are as defined in section 2 above. In (2) we
have imposad the usual constraint that domestic and foreign variables affect
the exchange rate with coefficients of equal but opposite sign; this constraint
is relaxed in a limited number of experiments both here and in our earlier

study.§/

e choose not to specify an ad-hoc lagged adjustiment mechanisi
in (2), preferring to model the dynamics using an autoregressive error term as
described helow.

A1l three models hypothesize first-degree homogeneity of the exchanyge-
rate with respect to relative ioney supplies, or a; = 1. The Frenkel-Bilson,
or flexible-price monetary model, formed by differencing two identical inoney

demand specifications while imposing purchasing power parity (PPP), posits thne

additional coefficient restrictions ap < 0, az > 0, ay = ag = 0.
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The Dornbusch-Frankel, or sticky-price monetary model also
hypothesizes that the coefficient on relative incomes a, > 0, but in
contrast to the Frenkel-Bilson model hypothesizes that the coefficient on the
short-term interest differential ag < 0, and that the coefficient on tae
long-term expected inflation differential ag > 0. The derivation of tnese
coefficient restrictions is exposited in Frankel (1979). The principal
theoretical difference between the Frenkel-Bilson model and the
Dornbusch-Frankel model is that the latter allows for short-run deviations
from purchasing power parity due to sticky domestic prices. Prices adjust
only gradually, in response to both excess demand,.which depends on thz terins
of trade, and to secular inflation differentials [n® - 7€ in equation
(2)1. The long-run or flexible price exchange rate 3 is derived in the
same manner as s in the Frenkel-Bilson model except that it depends on
7€ - 1€ \hich is equal to the long-run short-term interest

differential.

(3)  S=-a+(m-m)-py-y) +ar(x -1

Usinyg money denand functions of the fora

(4a) wm-p=a - Arg + Py
* * * *
(40) m-p=a- Arg - Dy,

and a price adjustment equation of the form

* * e *e

(5) (= Plpyy = (P =)y = 0(s-p+p) + (x°- 78,
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Frankel demonstrates that augmented regressive expectations are

9/

rational :=

e - a(= . e _ *e
(6) Sie1 - S = 9(s s)y + (n7 - w7 ),
where s§+] is the exchange rate expected to prevail at time t+]
based on period t information. Substituting (3) into (6) for §, and also
imposing urcovered interest parity by substituting rg - Fs for

sg+1 - St, one arrives at the quasi-reduced form of the

Dornbusch-Frankel iiodel:

(1) seeat(m-m - By -3 =g (g - T G NS - 1)

So in the bornbusch-Frankel model asz, the coefficient on the short-term

interest differential rg - F., does not depend on the nominal

5>
interest rate semi-elasticity of the demand for real balances A. Rather it
depends on the negative of the inverse of 9, the coefficient on excess demand
in the price adjustment equation. The coefficient on the expected long-run
inflation differential, a,, is the sum of 1/6 and .

The Hooper-Horton trade-weighted dollar model imposes the sane
constraints as the Dornbusch-Frankel model, except that it allows
unanticipated shocks to the U.S. trade balance to affect the PPP or long-run
real level of the exchanye rate. In our bilaterdl version of their model,
incipient trend U.S. trade balance surpluses require an appreciation of the
lony-run real exchanye rate, while incipient trend foreign surpluses require

a depreciation. Thus, ag < 0. It should be noted that the random walk

model is also subsumed in the general specification (2). That model is given
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by aj = ap = a3 = a4 = ay = 0, and up = ut—] + €t where

e, is a white noise process.

3b. A description of the coefficient constraints

The least controversial constraint we impose is that a;, the
coefficient on the logarithm of relative money supplies, is unity. While we
shall not consider other values for a;, we do experiment with different
definitions of the money supply; the reserve adjusted base, M1-B, and Mz (in
conjunction with their respective foreign counterparts).ll/

Widespread agreement is lacking on the values of the other parameters.
For example, there are a range of theoretica] and empirical estimates of the
interest and income elasticities of money demand. The quantity theory puts
the income elasticity at one, and the interest elasticity at zero.
Alternatively, the Baumol (1952) - Tobin (1956) inventory theoretic approach,
in its simplest form, can be used to derive an income elasticity of .5 and an
interest elasticity of -.5. Taking into account integer constraints raises
the income elasticity towards one and the interest elasticity towards zero;
see Barro (1976). The Miller-Orr (1966) model of a firm's optimal
cash-management procedures yields an interest elasticity of -.33. Tne "ncome
elasticity suggested by that model ranges from .33 to .67, depending on
whether a rise in income brings a rise in the number of transactions or in
the average size of transactions. The whalen (1966) model of the
precautionary demand for money also suggests an interest elasticity of -.33.
In addition it yields an income elasticity which depends on how the size
versus frequency of transactions changes as income rises, ranging from .33 to
1. Finally, we consider empirical estimates of the demand for money, for

which Goldfeld's (1973) paper is a standard reference. He estimates the
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income elasticity of money demand to be .19 in the short run, and .68 in the
Tong run; his short-run and long-run interest elasticities are -.064 and
-.23. Since the present study takes the approach of modeling the serial
correlation properties of the error term rather than specifying an ad-hoc
lagged adjustment mechanism, it follows that the higher long-run elasticities
are nore relevant for our purposes.

We are now ready to specify a complete grid of constraints for the
Frenkel-Bilson model. The income elasticity constraints considered are .5,
.65, .75, .85, and 1. This grid excludes the lowest ranges of income
elasticities obtained in the theoretical models; we inplicitly assume that
income yrowth is accompanied by some yrowth in the size of fransactions. The
interest raté_égmifelasticity constra}nts include -3, -4.5, -6, -7.5, and
-10. The latter grid encompasses interest rate elasticity priors ranging
from somewhere between -.18 and -.21 to -.60 and -.70, depending on the
bilateral exchange rate. The semi-elasticity priors are obtained by dividing
the interest elasticity priors by the average prevailing level of short-term
interest rates during the sample.

The grids of constraints for the Dornbusch-Frankel and Hooper-Morton
models incorporate the same range of income elasticity and interest-rate
semi-elasticity constraints as the Frenkel-Bilson model grid. The two
sticky-price models also require the specification of a grid for 0, the speed
of adjustment parameter in the goods market. We choose a ranye of
constraints for 6 using the fact that it also represents the speed at which

deviations from the lony-run real exchange rate are dawped. The grid for 6
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is based on the assumption that between 33% and 100% of today's deviation
from PPP is expected to be eliminated one year hence, This range encompasses
Genberg's (i978) estimates as well as those of Frankel (1979), both of whicn
are based on data for Germany. Since in the Dornbusch-Frankel model the
coefficient on relative short-tem interest rates, aj, is equal to -1/0,

our grid of priors for a3 in that model includes -1, -2, and -3 . (The
values for o and therefore -1/6 are conceived on an annual basis, since the
short-term interest differentials and expected long-term inflation
differentials in the data set are annualized.) The coefficient on the
expected long-run inflation differential ay is equal to x + 1/6, where -A

is the interest semi-elasticity of money demand. The grid of constraints for
ag is 4,7, 9, 11, 13 , which includes the minimum and maximum possible
values of A + 1/0 given the individual grids of constraints for A and 1/6.
For consistency, we exclude from our overall grid for the Dornbusch-Frankel
model combinations of as and a3 such that ag - a3 is less than 3 or

greater than 10, the bounds on the grid for A.

The coefficients on the cumulative monthly trade balances (taken as
deviations from trend) in the Hooper-Morton model are based primarily on
Hooper and ilorton's work. Ve assume that a billion dollar U.S. trade
balance surplus above trend leQél leads, ceterus paribus, to an offsetting
.3 to .5 percent appreciation of the dollar; that is, ag is .003 or-.005.

The results reported below are robust to usinyg values of ag of .0l or .J2.
For simplicity, and in order to limit the size of the large grid of
coefficient constraints for the Hooper-Morton model, we assune that a foreiyn
trade balance surplus has an effect on the exchange rate of equal magnitude

but opposite siyn.
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“he final variable for which it is necessary to specify a yrid of
constraints is one which we loyically know nothing about-- the error temm

Ug. We assume that wuy follows a first order autoregressive process:

(8) Up = PUp te = et/“ - pl),

where e is wnite noise and L is the lay operator. The yrid for the
autoregressive parameter p is 0, .2, .43 .6, .8, and 1.0 , so both the no
serial correlation case and the first-difference case are covered.lg/
The decision to analyze only a first-order autoregressive process is wade in
part to limit the size of the parameter grids, but it is also in part
because of the results of our other study. There, optimal linear
combinations of structural models and very general autoregressive time series
models are analyzed. A wide variety of optimal lag length selection criteria
are used in developing the time series components of the furecasts; these
criteria generally select a lay lenyth of one for the univariate riodels.
Given the range of constraints we have selected, the grid for the
Frenkel-Bilson model contains 150 different combinations of parameters, the
grid for the Dornbusch-Frankel model has 330 elements, and the Hooper-tiorton

model yrid has 660 elements.~/

3c. Results

The grid of parameter values:developed above is now used to perform
two basic experiments, designed to compare the structural models to the
randon walk model at forecast horizons of one, three, six, twelve, eighteen,

twenty-four, thirty, and thiry-six months. The "ex-post" and "ex-ante"



-16-

forecasting experiments differ mainly in whether forecasts are generated
using realized values of the explanatory variables (ex-post), or using
predictions of the explanatory variables based on information available at
the time of the forecast (exfante).l&/ The other difference is that

ex-ante forecasting begins fh June 1975 while ex-post forecasting ccvers the
entire sample period. The ex-ante experiment requires enough observations
for first-round estimation of the VAR that generates predictions of the
explanatory variables. (Because fhe ex-ante experiment is .quite expensive to
conduct, it is performed only for the Dornbusch-Frankel model.) Otherwise,
the experiments_are conducted in identical fashion. Constant terms
corresponding to each constellation of parameter values are estimated using
rolling regressions. The autoregressive component of forecasts made at time
t are based on the peridd t error term..

The results of the ex-post forecastiny experiment are broadly
characterized in table 7, where the structural model "forecasts" are conpared
with the random_walkvmodel forecasts on the basis of RMSE and
MAE.l§/l§/ For each model and éichange rate, table 7 reports the
shortest forecast horizon, in months, at which 0.1%, 10%, 25% and 50% of each
model's parameter grid outpredicts the random walk riodel when realized values
of the explanatory variables are used. Table 7 demonstrates that the results
of Meese-Rogoff (1981) cannot be explained by parameter uncertainty. For the
entire parameter yrid and for all three exchange rates, the structural models
never improve at all, much less significantly, on the random walk model in

MAE or RMSE at forecast horizons less than twelve months. llowever, at
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horizons of twelve months or more--longer than we could examine in our study
based on estimated ccefficients--the RMSE and MAE of the models do sometimes
improve on the random walk model. This result is tempered by the fact that
the minimum RMSE or MAE coefficient configurations bounce around at different
forecasting horizons. Still the percentage of the parameter grids which
improve on the random walk model does increase with forecast horizon.

Overall these essentially in-sample results--in-sample, because not all
coefficient configurations improve on the random walk model--must be
interpreted with caution.

Table 8 presents best representative parameter values for each of the
models, toyether with their corresponding RMSE and MAE.lZ/ These two
statistics are also given for the random walk model. At 36 months, the best
representative coefficient values for the Dornbusch-Frankel and Hooper-Morton
models co about 50% better than the randorm walk model in RMSE and MAE; the
Frenkel-Bilson model only does about 30% better.

$ince the models do not forecast well at short horizons in the ex-post
experiment, it %s not surprising that fhe one nodel considered in the ex-ante
experiment does poorly at short horizons as well.l§/ Tables 9 and 10
present results for ex-ante forecasting experiment with the Dornbusch-Frankel
model. No parameterization of that model ever improves on the random walk
model in MAE for horizons under 12 months; the threshold horizon is even
longer when RMSE is the metric. Furthermore, for the dollar/pound and
dollar/ven exchange rates, over 90% of the parameter grids fail to beat the

random walk model in MAE or RMSE at any horizon. It is true, however, that

at 36 months the best representative Dornbusch-frankel model performs almost
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as well in the ex-ante experiment as the best representative
Dornbusch-Frankel model in the ex-post experiment; compare tables 8 and 10.
Again, we should emphasize that the evidence presented here on the possible
forecasting superiority of the structural nodels is essentially in-sample,
since not all confiygurations of the parameter constraints improve on the
random walk model.

Also reported in Table 10 are the forecasting properties of the
seven-variable VAR system of section 2. This model, estimated by rolling
regressions, is a true ex-ante forecaster. The VAR outforecasts the random
walk model at three-year horizons for the dollar/DM rate. It does worse at
one-year horizons for that exchange rate, though, and worse at all horizons
for the dollar/pound and dollar/yen exchange rates. It is possible that
these results can improved by imposing probabilistic priors on the VAR; see
Litterman (1979). (An identified structural model such as the
Dornbusch-Frankel model can be thought of as a VAR with a priori

restrictions.)
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4. The Poor Performances of the Structural Models: Possible Causes

The constrained-coefficient experiments of section 3 reinforce the
results of our earlier study. The selected structural models (with
autoregressive error terms) fail to forecast or even explain out of sample as
well as the random walk model at horizons of up to twelve months. The models
do sometimes produce better forecasts than the random walk model at longer
horizons, but in an unstable fashion. Aé noted in section 2, the limited
floating rate data set necessarily contains more information about short than
about laong forecast horizons.

In this section we try to trace the instability or misspecification of
these erpirical exchange rate equations to their building blocks, such as
uncovered interest paritylg/, the particular money demand specification,
the proxies for inflationary expectations, and the goods markets
specifications. These building blocks are not, of course, strictly
independent.

The assumption of uncovered interest périty has been strongly
challenged by recent work on exchanyge rate risk premia.gg/ However,
while some authors find evidence of risk premia, the weight of the evidence
is that the maynitudes involved are not laryge. Nevertheless, volatile
time-varying risk premia remaiﬁ a possible explanation of the results.

The goods market specifications of the three representative structural
models are relatively simple. The flexible-price Frenkel-Bilson monetary
model imposes purchasing power parity, even in the short run. The
sticky-price Dornbusch-Frankel monetary model allows for short-run deviations

from PPP. The Hooper-torton model is similar except that it attempts to
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incorporate movements in the 1ong?run PPP level of the exchange rate by
assuming that these movements take place in response to unanticipated trade
balance (current account) deficits or surpluses. While short-run PPP does
not provide an accurate characterization of the 1970'5,21/ there is no
strong evidence that the long-run PPP level of the exchange rate changed
significantly. The results in Meese and Rogoff (1982) suggest also that
although the deviations from PPP damp quite slowly, the rate at which they
damp is relatively stable.

The performance of the Dornbusch-Frankel and Hooper-Morton models are
potentially quite sensitive to the use of a variable other than the long-tern
interest differential as a proxy for the long-run expected inflation
- differential. Although we did not find a proxy which yielded better results
[see footnote (15)], this issue merits further attention.

However, the major problem with the structural models considered here
may be the instability of the underlying money demand specifications. The
recent breakdown of U.S. money demand relationships was first noted by
Goldfeld (1976) and is documented extensively by Simpson and Porter (1980).
Conventional empirical money demand specifications such as equations (4) of
section 3 have consistently underpredicted U.S. M1 velocity since mid-1974.
For this reason, the present study uses M1-B, for which the systematic bias
over the sample period is much smaller, and the new definition of M2, for
which the bias is negligible. But equations (4) still fail to predict these
agyregates or the reserve-adjusted base with any notable deyree of precision.

As reported above, our exchanyge rate experiment results are not sensitive to..

- -

which of these agyregates (togephér with their respective foreign L

counterparts) we employ.
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Whether or not money demand instability and/or misspecification is
responsible for the exchange rate results, it is certainly true that the
conventional money demand equation does not work well when expressed in terms
of U.S. minus foreign variables. That equation [(4(a) minus 4(pb)] fails Chow
(1960) tests for the stability of the intercept term at four different breaks
in the sample. It also fails Goldfeld-Quandt (1965) tests of homoscedastic
disturbance terms over the sawe sample breaks.gg/

To investigate the possibility that our results are generated solely
- by money demand instabi]ity iﬁ the U.S., we perforined ex-post forecasting
expériments using the Dornbusch-Frankel model on the pound/mark, pound/yen
and yen/mark cross exchange rates. For the case of the yen/mark rate, we
found coefficient values for which the model pulled even with the random walk
mode] as early as six months. But the subsequent improvement at longer
horizons never exceeded 30%. (The pound/mark and pound/yen cross-rate
results are no better than the results for the various dollar exchange
rates.)

In sum, money demand instability is an important potential explanation
of our results, but further work is needed to demonstrate that time-varying
risk premia, volatile lTony-run real exchange rates, or poor measurenent of

inflationary expectations are not the doininant problems.
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5. Conclusions

The unimpressive out-of-sample performance of the Frenkel-Bilson,
Dornbusch-Frankel and Hooper-Morton empirical exchange rate models cannot be
attfibuted to inconsistent or inefficient parameter estimates. These models
fail to yield any improvement over the random walk model in mean absclute or
root mean squared error one to twelve wonths out of sample for a broed range
of theoretically plaqsible coefficient values even when autoregressive error
terms are introduced. Thus it is unlikely that more efficient estimation
techniques, such as imposing all the cross-equation rational expectations
restrictions, will yield parameter estimates which do better.gé/ The
coefficient-constrained models do'prevail at longer horizons but in an
unstable fashion; the best coefficient values bounce around depending on the
forecast horizon.gﬂ/

Wnile the breakdown of empiriéal exchange rate models may be due to
volatile time-varying risk premia, volatile long-run real exchange rates, or
poor weasurement of inflationary expectations, the main problems appear to
lie in their money demand specifications. If this is the case, then the same
improvements which resuscitate domestic empirical woney demand eguations
should lead to great iwprovements in empirical exchange rate equations as

well.
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Footnotes

l-/The authors have benefited from the comments and suggestions of

Jeffrey Frankel, Robert Flood, Robert Hodrick, Peter Hooper, Peter Isard, and
Julio Rotemberg. We are indebted to Julie Withers and Tamara McKann for
excellent research assistance. This paper represents the views of the
authors and siould not be interpreted as reflecting the views of the Board of

Governors of the Federal Reserve Systein or other members of its staff.

g/The structural models are described here in sectfon 3 below. It

should be noted that all the models considered are derivatives of the
monetary or asset approach in that they specify real money demand at home and
abroad as a function of real incowe, short-term interest rates and possibly
wealth. The random walk iiodel predicts that today's exchange rate will

obtain at all future dates.

é~/In a study of the dollar/pound rate, Hacche and Townend (1981) use
different methods to arrive at a similar conclusion; that the models do a
very poor job of explaining the dollar/pound rate. The present study

examines the tihree bilateral dollar rates and also cross-rates.

&/The assuuption that U.S. and foreign variables enter exchange rate

equation systemns with equal but opposite signs is relaxed later in a limited

number of experiments on tne structural models. Economnizing on variables in

the otherwise highly parameterized VAR systews is quite important, so we only

estimate the VAR imodels with the relative variables.
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5/

~'Parzen's (1975) criterion selects an order £* which minimizes

V-]

-1 -
] J. -Vz),f,—],z, .ooL,

i~

CAT(z) = trace(¥
J

where N is the nuinber of variables in the VAR, T is sample size, L is the
maximal order considered, and Vj is an estimate (adjusted for deygrees of
freedom) of the covariance matrix of disturbances for the model with £ lays
of each variable. Asymptotically, the order selected is never less than the
true order, assuming the true order is finite.

§/In Meese-Rogoff (1981), the block exogeneity assumptions of the

Dornbusch-Frankel model are formally tested.

Z-/See Bilson (1978, 1979), Frenkel (1976), Dornbusch (1976b), Frankel

(1979, 1981), and Hooper and Morton (1982). The identification of particular
empirical models with authors who contributed significantly to tneir
development follows one conventional nomenclature. It is relevant to note,
however, that several of these saime authors have analyzed more than one of
the three models. For example, Frenkel (1981b) discusses a sticky-;rice
model, and emphasizes that the flexible-price model is a limiting
approximation which is applicable in a highly inflationary environment.
Dornbusch (1976a) examines a flexible-price monetary model with traded and
nontraded goods.

8/

— Haynes and Stone (15931) suggest .that a problemn with the
representative structural models we consider is the restriction of equal but
opposite coefficients on domestic and foreiyn variables. In Meese-Rogoff

(1981), relaxing this restriction by lettiny certain domestic and foreign
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variables--incomes, money supplies and cumulated trade balances--enter
equation (2) separately yielded no forecasting improvement. Here we tried
separatiny the incomes and trade balances, but again found no forecasting

improvement.

E/It is also straightforward to show that deviations from purchasing

power parity caused by monetary shocks are expected to damp at rate 6.

l—Q-/F\r‘ankelvuses both long-term interest differentials and past
inflation differentials as proxies for 7€ - ;e’ the flexible price or

long-run expected inflation differential.

l—I—-/For* the dollar/pound rate we use M3's,'since there is no data on hié
for the U.K. The results presented later in this section are based on M1
(M1-B) data. However, we obtain very siimilar results with the different

monetary aggregates.

lg-/For the Dornbusch-Frankel model, we also experiuented with a range
of constraints on p concentrated between .8 and 1. The lowest end of this

range produced the best results.

l-‘i/RecaH that the Dornbusch-Frankel and Hooper-Morton model grids
exclude combinations of dq and a incompatiblé with the range of
constraints specified for the interest rate semi-elasticity of real noney

deinand A.

lf‘--/In the absence of greater knowledge about tne true underlying
structure than is inherent in equation (2), it is not possible to take
advantage of any currelation between the error term and the explanatory

variables in generating the ex-post forecasts. Such correlation is likely,
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though, given the endogeneity of the explanatory variables indicated by the
VAR's in section 2. In fact, if the variance of the error term is larye and
its (unknown) covariance with the relevant linear combination of the
explanatory variables (the "fundaientals") negative, our ex-post forecaster
need not dominate optimal ex-ante forecasters. In this perverse case,
knowing that the realized fundamentals suygest a higner exchange rate means

that you should guess a lower exchanyge rate.

lé/The results for the Dornbusch-Frankel and Hooper-Morton models

reported in Tables 7-10 are obtained using long-term interest differentials
as a proxy for expected long-run inflation differentials. It is important to
recognize that these models are potentially quite sensitive to this variable.
However, usiny instead current-period inflation differentials, a moviny
averaye of past inflation differentials, or future inflation differentials,
yields yualitatively similar results in the ex-post forecasting experiaents
‘(Tables 7 and 8). Me did not try these other proxies in the expensive
ex-ante experiments (Tables 9 and 10).

lg/Let k=1, ..., 36 denote the forecast step, Nk the total number

of forecasts in the projection period for which the actual value A(t) is
known, F(t) denote the forecast value, and let forecasting beygin in period

(t+1). Define

N, -1

Hean absolute error = Kz | F(t + s + k) - A(t + s + k) | /H
$=0

-1 2, Y1/2
Root mean square error = % Z [F(t +s +k)-A(t+s+k)] /Nks
s=0
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Qur use of mean aQSolute error covers problems that might arise if, as
sugyyested by Westerfield (1977), exchange rate changes are drawn from a
stable Paretian distribution with infinite variance. The mean errors of the
models (not reported) are small relative to mean absolute errors in almost
all cases where p > .2, indicating that the structural models are not siinply

systematically over or underpredicting.

17/ The "best" representative set of pafameter constraints for each

model in Table 8 is chosen in an ad hoc fashion as the one which coumes in
first (also ahead of the random walk model) at the greatest number of
horizons. The maximui iwprovenents over the random walk model in MAE or RMSE
at 36 month horizons exhibited by these representative models are as larye as
those exhibited by any other parameter configyurations.

lﬁ/while only one model is considered in the ex-ante experiment, note

that all three models yield qualitatively equivalent results for the ex-post
experiiient. Also, since the Dornbusch-Frankel mode] predicts that the
exchange rate will reiurn in the lony run to its flexible-price or
Frenkel-Bilson model value, we should a priori expect the perforiiance of both

mwodels at lony forecast horizons to be quite similar.

lg/ln later versions of the Huoper—Morton model this assumption is

relaxed.

g-Q-/See for example Hansen and Hodrick (1980a,b), Cumby and Ubstfeld
(1981), Hakkio (1981), Tryon (1979), Bilson (1981), Meese and Singleton
(1980}, or Geweke and Feige (1979). Hansen and Hodrick study this issue in

tieir paper contained in this volune.



-28-

21/ {sard (1976), Genberg (1978), and Frenkel (1981a,b) provide

evidence on this point. In this context, it would be useful to remind the
reader that our identification of particular models with particular authors
oversimplifies the history, development, and application of these models.

[See footnote (7)].

gg/The breaks in the sample ét which these stability tests are

conducted are chosen arbitrarily and correspond to (1) June 1974 - the start

of the mature float, (2) November 1976 - the approximate sample midpoint, (3)
November 1978 - the dollar support program, and (4) October 1979 - the change
in Federal Reserve operating procedures. The tests were conducted using all

parameter configurations with the grids for (A, @) reported in section 3b.

23/5ee Driskell and Sheffrin (1981) or Glaessner (1982). These more
sophisticated statistical techiques may provide superior expectations

proxies, however.

gﬂ/lf the true structural model were known, and combined with an
accurate representation of the serial correlation process of the error term,

then such a model would produce minimum MSE forecasts at all horizons.
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Technical Appendix

In this appendix we describe the triangularization of the VAR system
used in section 2 to analyze the dynamic effects of an innovation to a
particular variable. First suppose the t-th observation of the VAR is

represented by

where [ Iy - A(L)J is a matrix polynomial in the lag operator L, Yt 1s
the N x 1 vector of variables in the system, E(up) = 0, and Var(ug) = v,
positive definite. Using the Cholesky factorization V = WW', where W is
lower triangular, we can transforu (A1) to the systenm

1

-1 - _
(A2) W [IN - A(L)JZt = i U = e,

where E(gt) =0 and VAR(ey) = Iy, the order N identity matrix. Since
N_] is also lower triangular, the system (A2) is recursive as described
in the text. The moving average representation of (A2) is

. _ =1,
(A3) Yy = LIN - A(L)) W e >

aind in this expression the contemporaneous value of the first component, of

€ enters all N equations, the contemporaneous value of the second component
of e enters the last N-1 equations, etc. Because the decomposition of V is
not unique, studying the effect of the uncorrelated innovations €y un g

will depend on the variable ordering unless V is diagonal, i.e. unless the
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system (2) has no contemnporaneous interactions among variables.

Expression (A3) is also used to construct the variance decompositions
of tables 1-6. Since all components of e, have unit variance, the variance
of Yit (the i-th element of the vector Xt) is tne sum of squares of
the elements in the i-th row of [Iy - A(L)]']H. "The percentage of the
forecast error variance of Yit explained by the j-th innovation €t
(the j-th element in the vector gt) is cdlculated as the ratio of the sum

of squares of the (i, j) element of [Iy- A(L)]-]w to the variance of

Yit*



Data Appendix

The data set consists of seasonally unadjusted ﬁonthly observations
over the period March 1973 to June 1981. All the raw data are seasonally
adjusted using dummy variables (the results reported in the text are

described in Meese-Rogoff (1981)).
insensitive to the use of more sophisticated seasonal adjustment procedures/\ :
In the U.K. data set, the spot and forward exchange rates, short-term
interest rate, and long-term bond rate are always drawn from the same date.
Because daily bond series are not readily available for Japan and Germany,
only the exchange and interest rates correspond in these data sets. All
other series are monthly data, and all data are taken from publicly
available sources.

The bilateral data sets draw exchange rate data from identical
sources, as follows:

One, Six, and Twelve-Month Forward'Exchange Rates

Data Source: Data Resources, Inc. data base.

Series: Oné, six, and twelve-month forward bid rates in U.S.

dollars per local currency unit.

Description: Daily data based on 10:00 a.m. opening Neﬁ York market

rates.
Three-Month Forward and Spot Exchange Rates
Data Source: Federal Reserve Board data base.
Series: Three-month forward and spot bid rates in U.S. dollars

per local currency unit.

Description: Daily data based on 12:00 noon New York market rates.
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Sources of the other data series are discussed below by country.
German
Bond Yields

Data Source: Deutsche Bundesbank, Statistical Supplement to the

Monthly Reports of the Deutsche Bundesbank, Series 2,

Securities Statistics, Table 7b.

Series: Yielhs in percent per annum on fully taxed outstanding
bonds of the Federal Republic of Germany.

Description: Monthly data. Data are calculated as averages of four
bank-week return dates including the end-of-month yield
of the preceding month.

Consumer Prices

Data Source: Deutsche Bundesbank, Monthly Report of the Deustche

Bundesbank, Table VIII-7.
Series: Total cost of living index for all households.
Description: Monthly index.
Industrial Production

Data Source: O0.E.C.D., Main Economic Indicators.

Series: Total industrial production.
Description: Monthly index.
' Interest Rates (Three-Month)

Data Source: Frankfurter Allegemeine Zeitung.

Series: "Geldmarkt Vierteljahresgeld" in percent per annum.
(3-month interbank rate).

Description: Daily data.
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Monetary Base (Reserve-Adjusted)

Data Source:

Series:

Description:

Money Supplies

Data Source:

Series:

Description:

Deutsche Bundesbank, Monthly Report of the Deutsche

Bundesbank, Table II-1 (components of the unadjusted

monetary base) and Table IV (average reserve ratio).
The unadjusted base is'.calculated in millions of DM as
total Bundesbank assets less the reserve adjustment
balancing asset, foreign aAh domestic public authority
deposits, SDR allocations, EMCF gold contributions,
liquidity paper liabilities, and "other'" liabilities.
The reserve adjustment is made by multiplying the
unadjusted base statistic by [.631 + 3.2/total average
reserve ratio] where .631 = the currency percentage

of the unadjusted base in the base period (January 1980)
and 3.2 = [1-.631] [the total average reserve ratio in
the base period].

Monthly data. Data for components of the unadjusted

base refer to the last baﬁking day of the month. .The

average reserve ratio is a monthly average statistic.

Deutsche Bundesbank, Monthly Report of the Deustche

Bundesbank, Table I-2.

Money stock M1 and money stock M2 in millions of DM.
Monthly data. Data refer to the last banking day of

the month.



Adjustment:

Trade Balance
Data Source:
Series:
Description:

Japan

Bond Yields

Data Source:

Series:

Description:

Consumer Prices
Data Source:
Series:

Description:

_,;';",
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A break in the series, caused by the introduction of
e 1 8 ££5 YORERNE A}

a new method of computation, occurs in December 15973.

The 1973 statistics are adjusted using the ratio of

the new to the old statistic for December 1973.

0.E.C.D., Main Economic Indicators.

Trade balance (f.o.b. - c.i.f.) in billions of DM.

Monthly data.

Data prior to 1981 are taken from Bank of Japan, Economic

Statistics Monthly, Table 71(2). 1981 data are taken

from Planning and Research Department, Tokyo Stock Exchange,

Monthly Statistics Report, Table 8-1.

Yields in percent per annum on listed government bonds
(Tokyo Stock Exchange).
Monthly data. Data refer to the last banking day of the

month.

Bank of Japan, Economic Statistics Monthly, Table 119(1).

General consumer price index for all Japan.

Monthly index.

Industrial Production

Data Source:
Series:

Description:

0.E.C.D., Main Economic Indicators.

Total industrial production.

Monthly index.
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Interest Rates (Three-Month)
Data Source: Federal Reserve Board data base.
Series: "Over two-month ends" bill discount rate (Tokyo Stock
Exchange) in percent per annum.
Description: Daily data based on Reuters quotes.
Money Supplies

Data Source: Bank of Japan, Economic Statistics Monthly, Table 4.

Series: M1l and M2+CD in 100 million yen.
Description: Monthly data. Data refer to the last banking day of the
month.
Trade Balance

Data Source: O.E.C.D., Main Economic Indicators.

Series: Trade Balance (f.o.b. - c.i.f.) in billions of yen.
Description: Monthly data.

United Kingdom

Bond Yields

Data Source: Financial Times

Series: "British funds, Undated, War loans 3%" in percent per
annum.
Description: Daily data.
Consumer Prices

Data Source: Department of Employment, Employment Gazette, Table 6.4.

Series: General index of retail prices, all items.

Description: Monthly index.
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Industrial Production

Data Source: O.E.C.D., Main Economic Indicators.

Series: Total industrial production.
Description: Monthly data.
Interest Rates (Three-Month)

Data Source: Financial Times.

Series: Three-month local authority deposits (London money
rates) in percent per annum.
Description: Daily data.
Monetary Base (Reserve-Adjusted) and Money Supplies

Tata Source: Bank of England, Quarterly Bulletin, Table 1 (monetary

base components) and Table II (money supplies).

Ceries: Money stock M1 and money stock sterling M3 in millions of
pounds. The reserve-adjusted monetary base is calculated
in millions of pounds as total currency in circulation
plus bankers' deposits.

Description: Monthly data. Data refer to the third Wednesday of the
month (second in December).

Trade Balance

Data Source: O.E.C.D., Main Economic Indicators.

Series: Trade balance (f.o.b. - c.i.f.) in millions of pounds.
Description: Monthly data.

United States

With the exception of the trade balance statistics, all data are taken
from the Federal Reserve Board data base. Many of these series are published

in the Federal Reserve Bulletin, and all are available to the public.




Bond Yields
Series:
Description:
Consumer Prices
Series:

Description:

—42-

Government bonds with at least 10 years to maturity.

Daily data.

Consumer Price Index.

Monthly index.

Industrial Production

Series:

Description:

Total industrial production.

Monthly index.

Interest Rates (Three-month)

Series:

Description:

Treasury bill rates.

Daily data.

Monetary Base (Reserve-Adjusted) and Money Supplies

Series:
Description:
Trade Balance
Data Through 1978:

Data Source:

Series:

Description:

Reserve-adjusted monetary base, M1-B, M2, and M3.

Weekly Wednesday data.

Department of Commerce, Highlights of U.S. Export and

Import Trade, Exports Table E-1; Imports Table I-1.

Domestic and foreign exports, excluding Department of
Defense shipments, in millions of $ on a F.A.S. value
basis; General imports in millions of $ on a Customs
Valuation basis changing to a F.A.S. basis in 1974.

Monthly data.
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Adjustment: 1973 statistics are adjusted to a F.A.S. value basis
using the 1974 average ratio of Customs Valuation to
F.A.S. value.
1979-19831 Data:

Data Source: Department of Commerce, Summary of U.S. Export and Import

Merchandise Trade, December 1980 (advance statistics

for Highlights of U.S. Export and Import Trade), Exports

Table 3; Imports Table 5.

Series: Total domestic exports, excluding Department of Defense
grant-aid, in millions of $ on a F.A.S. value basis;
General imports in millions of $ on a F.A.S. value basis.

Description: Monthly data.
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Table 1

Unconstrained U.S.-German VAR, March 1973-June 1981,
regular variable order

Proportions of forecast error variance k months
ahead attributable to each innovation—

Innovation in:
Forecast error * % " *

*
variance in k m-m y-y. ¥ -Tr

s Tg rL—rL TB TB s
m-m 1 .843 .005 .132 .004 .001 .04 .011
3 .629 .003 .259 .029 .019 .040  .020
12 .293 .007 .295 .100 .035 .249  .016
36 .252 .007 .268 122 .037 254 .061
*
y-y 1 .006 .942 .000 .035 .011 .205  .001
3 .006 .856 .002 .010 .008 .27 .001
12 .04 .646 .004 .223 .029 .)70  .014%
36 .015 .622 .004 .224 .031 .72 .032
*
r -r 1 .007 .024 .838 .073 .030 .207  .021
s S 3 .011 .017 641 .080 .097 J124 029
12 .008 .016 .491 .081 .091 .282  .030
36 .011 .017 .469 .088 .088 .276  .051
*
r T, 1 .024% .000 .161 .781 .002 .002  .030
3 .056 .054 .126 .683 .007 .028  .044
12 .152 .099 .101 .524 .036 .048 040
36 147 .096 .108 .510 .039 .052 048
TB 1 .080.  .111 .009 .005 .769 .001  .025
3 .078 144 .011 .005 .721 .014  .026
12 .068 .167 .010 .063 .617 .024  .050
36 .068 .163 .010 .071 .596 .028  .063
T8 1 .021 .034 .063 .008 .042  .332  .001
3 .024% .061 .047 .012 .036 .313  .006
12 .023 .101 .037 .061 .032 .576  .069
36 .028 .096 .040 .069 .030 .549  .086
s 1 .041 .011 .022 .128 .005 .006  .786
3 .077 .008 .022 .163 .032 .010  .687
12 .155 .03% .018 .125 .064 .050  .553
36 .155 .033 .030 .154 .058 .090  .481

E/Notes for Columns of the table correspond to innovations in a particular variable
tables 1-6: for the specified forecast horizon k = 1, 3, 12, and 36. The rows add
to one because the total forecast error variance attributable to each
variable on the left of the table is allocated across the seven innovations.
Abstracting from coefficient uncertainty, an exogenous variable would
manifest itself as follows: At all horizons a variable's own innovations
would account for all of its forecast error variance, so there would be
a one in the column corresponding to a variable's own innovation and
zeros elsewhere.
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Table 2

Unconstrained U.S.-Japan VAR, March 1973-June 1981,
regular variable order

Proportions of forecast error variance k months
ahead attributable to each innovation

Innovation in:

Forecast error % * % * *
variance in k m=-m y=-y rs-rs rL—rL TB TB s

*
m-m 1 .943 .003 .001 .002 .012 .024 .014
3 .866 .045 .004 .010 .024 .021 .029
12 .551 .298 .021 .009 .045 .039 .038
36 424 .319 .070 .013 .048 .045 .080

*
y-y 1 .044 .929 .009 .001 .009 .000 .008
3 .038 .915 .009 .008 .005 .020 .004
12 111 .637 .086 .019 .042 .090 .014
36 .120 .531 111 .019 .048 .072 .099

*
r,Tg 1 142 .076 .770 .006 .002 .001 .003
3 .183 .092 .581 .022 .030 .058 .034
12 .110 .058 .284 .058 .069 .348 .073
36 .115 .054 .238 .076 .120 .320 .076

*
r -r, 1 .128 .014 .294 .520 .000 .003 .041
3 .252 .039 .207 .342 .024 .022 .113
12 .219 .046 .108 .184 .079 .092 172
36 .224 .071 .104 .172 .186 .085 .157
TB 1 .011 .016 .032 .000 .904 .005 .031
3 .010 .022 .059 .011 .858 .008 .031
12 .011 .032 .078 .017 .726 .097 .040
36 .012 .036 .079 .024 .671 .111 .068

g

Tg 1 .011 .036 .031 .064 .030 .823 .005
3 .010 .045 .023 .095 .040 .780 .007
12 .015 .051 .035 .105 .103 .626 .066
36 .019 .041 .039 .093 .130 .523 .154
s 1 .011 .007 .007 .020 .071 .055 .828
3 .016 004 .004 .014 .139 .080 .741
12 .016 .004 .003 .057 .285 127 .507
36 .026 .006 .003 .060 .313 .138 455
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Table 3

Unconstrained U.S.-U.K. VAR, March 1973-June 1981,
regular variable order

Proportions of forecast error variance k months
ahead attributable to each innovation

Innovation in:

K * * * * B 17'3:
m-m y-y rs—rs rL—rL T T
1 .911 .023 .059 .001 .006 .001
3 .789 .041 .142 .004 .004 .019
12 .398 .058 .292 .052 .004 .140
36 .270 .032 .200 .076 .028 .148
1 .009 .820 .039 .012 .026 .027
3 .034 .600 .029 .087 .059 .073
12 .058 .431 .019 .138 .066 .183
36 .058 .407 .021 .145 .068 .177
1 .047 .018 .880 .034 .001 .019
3 .034 .012 .830 .031 .001 .089
12 .136 .018 641 .050 .000 .144
36 .159 .017 .600 .060 .002 .139
1 .027 .007 .209 .725 .003 .018
3 .026 .032 .190 .637 .005 .066
12 .018 .091 .149 .528 .025 .050
36 .022 .086 .160 .496 .036 .051
1 .013 .041 .113 .016 .755 .018
3 .014 .050 .126 .069 .634 .057
12 .018 .052 .117 .078 .511 .082
36 .036 047 .105 .074 .420 .115
1 .028 .069 .052 .002 .008 .830
3 .054 .106 .049 .038 .034 .710
12 .118 .128 .044 .068 .030 .596
36 .119 .116 .052 .079 .033 .555
1 .000 .021 .014 .026 .007 .005
3 .001 .018 .008 .038 .008 .035
12 .012 .006 .002 .088 .048 .168

36 .066 .007 .058 .099 .059 .150

.000
.001
.057
.245

.066
.123
.104
.124

.000
.003
.009
.024

.011
.043
.138
.148

.044
.049
.143
.203

.010
.008
.015
.045

.926
.891
.675
.560
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Table 4

Unconstrained U.S.-German VAR, March 1973-June 1981,
reverse variable order

Proportions of forecast error variance k .months
ahead attributable to each innovation

Innovation in:

Forecast error * * % * *
variance in k m-m y-y r T T 7T TB TB
*
m-m 1 .703 .017 111 .047 .042 .017  .062
: 3 .522 .011 .138 .191 .025 .058  .054
12 .281 .024 .081 .298 .020 .264  .032
36 .243 .022 .067 .287 .026 .264  .089
*

y-y 1 .011 .868 .007 .018 .068 .020  .009
3 .009 .779 .0l4 .068 .057 .059  .013
12 .014 .580 .049 .048 .075 .094  .096
36 .015 .558 .050 .146 .076 .095  .059
r -f 1 .011 .016 .522 .350 .013 .085  .002
s 8 3 .008 .013 .343 .333 .083 .115  .004
12 .014 .018 .232 .279 .085 .353  .019
36 .015 .018 .222 .272 .084 343 .047
r - 1 .000 .000 .002 .963 .008  .002  .024
L L 3 .013 .068 .013 .848 .014 .017  .026
12 .080 .145 .014 .663 .048 .023  .027
36 .081 .140 .015 647 .051 .028  .038
TB 1 .011 .036 .000 .006 .918 .005  .023
3 .014 .053 .008 .006 .873 .022  .023
12 .017 .070 .024 .032 .757 .032  .068
36 .018 .069 .025. .036 .733 .036  .083
T8 1 .001 .014 .001 .019 .028 .932  .004
3 .003 .025 .009 .016 .023 .906  .017
12 .003 .050 .034 .023 .024 .750  .117
36 .008 .047 .035 .028 .024 .721  .137
s 1 .001 .005 .001 .049 .004 .003  .937
3 .013 .007 .001 .068 045 .007  .859
12 .056 .013 .001 .060 .024 .054  .690
36 .073 .013 .002 .105 .116 .091  .601
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Table 5

Unconstrained U.S.-Japan VAR, March 1973-June 1981
reverse variable order

Proportions of forecast error variance k months
ahead attributable to each innovation

Forecast error * * Innovaiioq in: % *
variance in k .m-m y=-y r,r T Ty TB TB s

*
m-m 1 .749 .106 .028 .060 .013 .036 .010
3 .686 .178 .020 .039 .034 .024 .019
12. .394 .396 .023 .045 .064 .049 .024
36 271 .469 .045 .066 .051 .051 .045

.
y-y 1 .000 .898 .058 .002 .015 .019 .009
3 .003 .857 .050 .016 .014 .044 .015
12 .014 .693 .073 .088 .016 .092 .022
36 .014 .658 .068 .090 .028 .071 .071

. .
r.-T_ 1 011 .001 .505 417 .016 .049 .001
s 3 .056 .001 .503 274 .022 124 .020
12 .046 .017 .308 134 .052 .320 124
36 .052 .020 .273 117 .107 .302 .130
*

rL—rL 1 .009 .003 .000 .826 .012 122 .026
3 134 .002 .017 .599 .026 .118 .109
12 .151 .029 .032 .304 .133 .105 .246
36 .193 .068 .035 .283 .148 .097 .226
TB 1 .006 .016 .005 .007 .842 .009 .115
3 .006 .017 .041 .006 .800 .010 .119
12 .009 .017 .072 .010 .672 114 .105
36 .010 .029 .075 .012 .622 131 .120
B 1 .012 .008 .000 .001 .033  .928 .018
3 .008 .013 .008 .003 .046 . 906 .016
12 .017 .035 .058 .006 .119 739 .026
36 .019 .038 .053 .012 .131 . 601 .146
s 1 .001 .000 .002 .020 .000 .001 .976
3 .004 .000 .004 .014 .024 .012 .942
12 .009 .001 .024 .017 .137 .042 .739
36 .016 .002 .027 .016 .175 .088 .676
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Table 6

Unconstrained U.S.-U.K. VAR, March 1973-June 1981,
reverse variable order

Proportions of forecast error variance k .months
ahead attributable to each innovation

Innovation in:

Forecast error * * * x x
variance in k m-m y-y L r rL TB TB s
*
m-m 1 .749 .106 .028 .060 .013 .036  .010
3 .686 .178 ,020 .039 .034 .024  .019
12 .394 .396 .023 .049 .064 .049  .024
36 271 470 .045 .066 .051 .051  .045
*
y-y 1 .000 .898 .058 .002 .015 .019  .009
: 3 .003 .857 .050 .016 .014 .044  .015
12 .014 693 .073 .088 .016 .092  .022
36 .014 .658 .068 .090 .028 .071  .072
%*
r -t 1 .011 .001 .505 417 .016 .049 .00l
3 .056 .001 .503 274 .022 .024  .020
12 .046 .017 .308 .134 .052 .320  .124
36 .052 .020 .273 117 .107 .302 .130
. 1 .009 .003 .000 .826 012 .122  .026
L L 3 .134 .002 .017 .594 .026 .118  .109
12 .151 .029 .032 .304 .133 .105  .246
36 .143 .068 .035 .283 .148 .097  .226
TB 1 .006 .016 .005 .007 .842 .009  .115
3 .006 .017 .041 .006 .800 .010  .119
12 .009 .014 .072 .010 .672 .114  .105
36 .010 .029 .075 .012 .622 .131 .120
TH 1 .012 .008 .000 .001 033 .928 .018
3 .008 .013 .008 .003 .046 .906  .016
12 .017 .035 .058 .006 .119 .739  .026
36 .019 .038 .053 .012 .131 .601  .146
s 1 .001 .000 .002 .020 .000 .001  .976
3 .004 .001 .004 .014 .024 .012  .942
12 .009 .001 .024 .017 .137 .072  .739
36 .016 .002 .027 .016 .175 .088  .676
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Table 7

Shortest forecast horizon (in months) for which at least x% of each

model's parameter grid improves on the random walk model in MAE/RMSE

when realized values of the explanatory variables are used.

Model

Frenkel-Bilson

(Grid size = 150)

Dornbusch-Frankel model

(Grid size = 330)

Hooper-Morton model

(Grid size = 660)

MAE is mean absolute error, RMSE is root mean square error.
a description of the parameter grids.
second row, first column (30).

10% of the monetary model parameter grid can improve on the random walk m

Exchange rate:
Metric:

Threshold
0-1%
107
25%

50%

107%
25%

50%

MAE for the $/DM rate is 30 months out.

$ /DM
MAE  RMSE
24 30
30 30
30 30
36 36
12 18
18 18
30 30
12 18
18 18
30 30

To read table 7:

18

18

.24

30

18

24

30

18

24

30

$/E

MAE RMSE

Months ahead

24

24

30

36

18
24

36

18
24

36

$/Yen
MAE RMSE
12 12
18 18
24 24
36 30
12 12
12 12
12 12
24 18
12 12
12 12
12 18
24 18

The text contains

Consider the entry in the
The earliest forecast horizon at which at least

odel in



when realized values of the explanatory variables are used,

Model

(with best
parameter
configurati

Random Walk
model

(az, a3’ p)

Frenkel-Bil

(a2, a3, a4

Dornbusch-F
model

(az, a3, a,

Hooper-Mort
model

=51~

Table 8

Comparing the random walk model and the structural models

(with their best representative parameter configurations)

Horizon

ons)

12
36

son 1

12
36

s P)

rankel

12
36

> 3g» c)

on
1
3
12
36

("05’ —l) 7,

$/DM
MAE " RMSE
2.4 3.2
4.8 6.2
9.4 10.9
18.1 21.0
(.5, 4.5, .4)
9.1  11.4
11.5 14.2
12.2 15.2
12.6 17.0
(-.85, -1, 6,
5.5 6.9
8.1 2.7
8.8 10.8
8.2 10.5
.005, 0)
8.3 10.4
8.8 11.0
9.2 11.6
9.3 11.6

MAE

e

o O s
v o uno

RMSE

11.
25.

.8)

11.
16.
18.

10.
10.
12.
10.

10.
10.
12.
12.

~ o=,

o= =T

.4) (-.5, -1, 4, 0)

O wwuno

.005, 0)

wn O o

$/Yen
MAE

oy
v o sN
SO

(-.5, 4.5,

-
[es RN RE N IR o
NS NN, |

13.
23.

W~

11.
13.
14.

wmwouv s

RMSE

(_-5; _1, 9, .8)

[o-BENERENERS
0O &~ &

(-1’ -l’ 9,

O 0 © &
W oW
e

MAE (mean absolute error) and RMSE (root mean squared error) are approximately

in percentage terms, since '"forecasts" are for the logarithm of the exchange

rate.

Forecasts are compared over the period March 1973-June 1981.

O 0O

N = OO
NN WO

.003, 8)



-52-

Table 9

Shortest forecast horizon (in months) for which at least x% of the

Dornbusch-Frankel model's parameter grid improves on the random walk model

in MAE/RMSE when predicted values of the explanatory variables are used.-i

$/DM $/t $/Yen
MAE RMSE MAE RMSE MAE RMSE
Threshold Months ahead
0-1% 12 24 30 36 12 18
Dornbusch-Frankel
model 10% - 12 24 - - - -
(Grid size = 330) 25% 36 36 - - - -

50% - - - - - -

E-/The description of table 9 is essentially the same as given for Tzble 8.
However, in contrast to the experiment of Table 8, in which realized values
of the explanatory variables are used to generate‘forecasts of the exchange
rate, table 9 is based on an experiment in which the explanatory variables

are forecast with a VAR.
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Table 10
Comparing the random walk model, a VAR model estimated by rolling

regressions, and the best representative Dornbusch-Frankel model when

predicted values of the explanatory variables are used.

Model
$/DM S/E $/Yen
Horizon MAE RMSE MAE RMSE MAE RMSE
Random Walk
model 1 2.2 3.0 2.0 2.6 2.3 3.2
3 4.0 5.2 4.1 5.2 4.7 6.2
12 10.1 11.7 10.1 11.5 13.2 16.1
36 24.2 26.2 18.8 21.2 24.8 28.1
(az, azs 2, p) (-5, -1, 4, 1.0) (-.5, =1, 4, 0) (~5., -3, 11, .8)
Dornbusch-Frankel 1 2.4 3.2 14.0 17.3 2.9 4.2
model 3 4.6 5.7 14.7 18.0 6.6 8.6
(with best 12 7.3 10.9 17.5 20.1 12.4 16.0
parameter con- 36 12.4 19.1 9.0 10.8 17.0 18.7
figuration,;
Unconstrained
VAR model 1 5.2 6.3 5.4 6.3 4.9 6.4
3 7.9 9.5 8.0 9.6 7.4 9.5
12 11.1 13.2 17.3 19.3 15.9 19.6
36 16.9 18.5 39.5 44.8 37.5 40.6

MAE (mean absolute error) and RMSE (root mean squared error) are approximately in
percentage terms, since forecasts are for the logarithm of the exchange rate.

Forecasts are compared over the period Junme 1975-June 1981.





