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ABSTRACT

Virtually all previous narrow money demand studies for the United
Kingdom have used seasonally adjusted data for money, prices, and ex-
penditure. This paper develops a constant, data-coherent M; demand
equation for the United Kingdom with seasonally unadjusted data. For
that model, we address issues of cointegration, error correction, general-
to-specific modeling, dynamic specification, model evaluation and testing,
parameter constancy, and exogeneity. We also establish theoretical and
empirical relationships between seasonally adjusted and unadjusted data,
and so between models using those data. Finally, we derive and implement
encompassing tests for comparing models using adjusted data with models
using unadjusted data. Unlike the “standard” encompassing framework

y

variance dominance is not always a necessary condition for encompassing.

KKey words and phrases: cointegration, conditional models, dynamic
specification, encompassing, error correction models, exogeneity, general-
to-specific modeling, model evaluation, money demand, parameter con-
stancy, sequential reduction, testing, United Kingdom.



Cointegration, Seasonality, Encompassing,
and the Demand for Money in the United Kingdom

Neil R. Ericsson, David F. Hendry, and Hong-Anh Tran!

1 Introduction

Wallis (1974) and Sims (1974) examine the effects of seasonal adjustment when es-
timating econometric relationships. Wallis considers the implications of estimation
with seascnally adjusted data when the underlying economic relation involves the
unadjusted data. Sims investigates the converse situation, in which the relation is
in terms of the non-seasonal components of the economic variables, but the econo-
metrician uses the unadjusted seasonal data. In each case, the empirical model is
mis-specified and coefficient estimates generally are inconsistent.

Using two recently developed concepts, cointegration and encompassing, this pa-
per sheds new light on the use of adjusted and unadjusted data in econometric mod-
eling.? First, under mild assumptions about the seasonal adjustment procedure, the
adjusted and unadjusted series of a given variable are cointegrated, with cointegrating
vector (+1 : —1). Second, the cointegrating vector for a set of variables is invariant
to the choice of adjusted or unadjusted data. Even so, conducting inference may
be problematic with adjusted data. In particular, dynamic adjustments and exo-
geneity status are usually altered. Third, parameter-encompassing statistics can be

1Forthcoming in Nonstationary Time Series Analyses and Cointegration, C. Hargreaves (ed.),
Oxford, Oxford University Press. The first two authors are respectively a staff economist in the
Division of International Finance, Federal Reserve Board, Washington, D.C., U.S.A., and a Professor
of Economics at Nuffield College, Oxford, England. The third author was a research assistant in
the Division of International Finance when this research was undertaken. The views expressed in
this paper are solely the responsibility of the authors and should not be interpreted as reflecting
those of the Board of Governors of the Federal Reserve System or other members of its staff. We
gratefully acknowledge helpful discussions with and comments from Eric Bartelsman, Joe Beaulieu,
Julia Campos, Mike Clements, John Coleman, Dave DeJong, Rob Engle, Jon Faust, Clive Granger,
Bill Helkie, Dale Henderson, Sgren Johansen, Eric Leeper, Jaime Marquez, Yash Mehra, Grayham
Mizon, John Muellbauer, Denise Osborn, Jean-Francois Richard, Ken Wallis, and David Wilcox.
This research was supported in part by grants B00220012 and R000233447 from the U.K. Economic
and Social Research Council. All numerical results were obtained using PcGive Version 7.00 and
PcFiml Version 7.00 402; cf. Doornik and Hendry (1992, 1993).

2A recent burgeoning literature discusses integration and cointegration at seasonal frequencies;
cf. Dickey, Hasza, and Fuller (1984), Hylleberg, Engle, Granger, and Yoo (1990), Bell and Wilcox
(1990), Ghysels, Lee, and Noh (1991), Hylleberg, Jorgensen, and Sgrensen (1991), Lee (1992), and
Beaulieu and Miron (1993) inter alia. Osborn (1988, 1991), Birchenhall, Bladen-Hovell, Chui, Os-
born, and Smrith (1989), and Franses and Kloek (1991) consider seasonally varying slope coefficients
for cointegrated processes. Qur paper focuses on cointegration at the zero frequency only, both for
seasonally unadjusted data and for seasonally adjusted data.



constructed to compare a model using unadjusted data with one using adjusted data.
These statistics aim to test empirically the dissimilar premises of Sims and Wallis.
Contrasting with the classical encompassing framework, variance dominance is not
always a necessary condition for parameter encompassing.

Section 2 constructs an analogue model of seasonal adjustment and obtains the
cointegration results for the adjusted and unadjusted series. Section 3 modifies an
existing parameter-encompassing statistic to compare “adjusted” with “unadjusted”
models. Sections 4 and 5 illustrate the cointegration propositions and the encom-
passing test via a substantive empirical study of narrow money demand in the United
Kingdom. Section 4 reports Johansen’s system-based cointegration tests and esti-
mates for adjusted and unadjusted series, variable by variable, and for sets of vari-
ables, whether adjusted or unadjusted. The theoretical and empirical results match
closely. Section 5 develops a conditional money demand model with the unadjusted
data, summarizes Hendry and Ericsson’s (1991b) model with adjusted data, and ap-
plies the encompassing test of Section 3 to these two models. Surprisingly, the model
with adjusted data does not encompass the model with unadjusted data, even though
the former has a long and favorable track-record. Section 6 concludes. Appendix A
documents data sources, Appendix B describes a sequential reduction for obtaining
the conditional model of money demand using the unadjusted data, and Appendix
C compares the results of cointegration analysis for several variants on the money
demand system.

2 Relationships Between Seasonally Adjusted and
Unadjusted Data

This section establishes several theoretical results on the cointegration relation-
ships between adjusted and unadjusted data, where seasonal adjustment is approx-
imated by a certain two-sided linear filter. As a preliminary, Section 2.1 discusses
linear filters, defines an analogue model of X-11 seasonal adjustment, establishes a
notation for cointegration, and defines mean equality between series. Sectior. 2.2
considers conditions under which the original and filtered series are cointegrated and
under which their mean difference is zero, and relates these conditions to the proper-
ties of seasonal adjustment filters, based on the analogue model. Section 2.3 extends
the analysis to vector processes and matrix filters, specializing these for seasonal ad-
Justment filters. If the unadjusted series are cointegrated, the adjusted series are
also cointegrated, and with the same cointegrating vector(s) as for the unadjusted se-
ries. Section 2.4 comments on the approximations made in using the analogue model
of seasonal adjustment. For comparison with these analytical results, Section 4 pro-
vides empirical evidence on the relationships between actual adjusted and unadjusted
data. Below, the abbreviation NSA means “not seasonally adjusted”, and SA means
“seasonally adjusted” or “seasonal adjustment”, depending upon the context.



2.1 Preliminaries

After briefly reviewing some properties of linear filters, this subsection formulates
a linear analogue model of the X-11 SA procedure and derives implications of that
analogue model for the NSA and SA data.

Linear filters. Consider a single variable z, and denote the filtered and unfiltered
series of that variable as {z/} and {z:} respectively, where ¢ is the time subscript.
Throughout, z; and z/ have the following relationship:

7] = f(L)z (1)
where f(L) is a finite-order, two-sided linear filter in the lag operator L:

with half-length n and fixed, finite weights {f;}. Some f; could be zero, so f(L) could
be a one-sided filter in practice. Only finite-order filters are considered. Generaliza-
tion to ar infinite-order filter is feasible, but is of limited interest in the context of
actual SA procedures.
When examining the properties of f(L) in the context of SA filters, it will prove
useful to re-express f(L) as:
L) = f)+ LA
= f)+1)A+ f=(L)A?, (3)

where A is the difference operator 1 — L; and f*(L) and f**(L) are themselves finite-
order, fixed-weight, two-sided linear filters with polynomial coefficients denoted {f*}
and {f7*}. Here and below, superscript asterisks * and ** denote polynomials obtained
as in (3). While (3) finishes with a polynomial in A2, the recursion can be repeated to
any order. The sum of coefficients in each successive lag polynomial can be obtained
recursively, noting that:

oy - _9f(L)
f (]‘) - BL “Lzla
ey = 0 (L)
= 250 ()
etc. Consequently, the sums f*(1) and f**(1) are =% __¢- f; and — e fr

An analogue model of seasonal adjustment. In the analogue model of SA, z{ and
z; correspond to SA and NSA series respectively. As the analogue SA filter, f(L)
satisfies three assumptions:

1. the weights {f;} sum to unity,
2. f(L) is symmetric in L, and

3. f(L) eliminates deterministic seasonals.



While this analogue model only approximates the highly complex X-11 SA proced-re,-
the approximation appears a good one for linear properties; cf. Nerlove (1964), Wallis
(1974, 1983), Cleveland and Tiao (1976), and Bell (1992). See Wallis (1974, 1978)
and Sims (1974) on the possible econometric consequences of using SA (or N5A)
data. See Lovell (1963), Grether and Nerlove (1970), Granger (1978), Kenny and
Durbin (1982), Wallis (1982, 1983), Burridge and Wallis (1984), Hylleberg (1936),
and Maravall and Pierce (1987) on properties of existing and more “optimal” SA
procedures.

The nature of the three assumptions for the analogue model is now discussed.
ASSUMPTION 1. The sum f(1) is unity.
Under Assumption 1, the first equality in (3) is:

L) = 1+ f(L)A. (5)

By restricting the sum of coefficients in the scalar polynomial f(L) to uﬁity, Assump-
tion 1 ensures that z/ and z, are in the same units. Assumption 1 is with loss of
generality by excluding unit roots in f(L) = 0, but otherwise represents a normaliz-
ation of f(L). The normalized polynomial is sufficiently general for current purposes
since the focus is on seasonal adjustment. Further, if f(1) were zero rather than
unity, z/ would be a finite-weight, finite-order distributed lag of Az,, and so wculd
be integrated of an order different from that of z,. The restriction f(1) = 0 thus
affects long-run properties of the data whereas seasonal adjustment is meant to leave
those properties intact, so f(1) # 0 is a relatively innocuous assumption.

ASSUMPTION 2. The polynomial f(L) is symmetric in the lag operator.
Assumption 2 means that f(L) = f(L!) or, equivalently, f; = f_;, i = 1,... , M.
From (3) and (4), Assumption 2 implies f*(1) = 0, and so f(L) can be written as:

f(L) = f(1) + f=(L)A%. (6)

That f*(1) is zero can be seen by solving for the coefficients {fr} in terms of the
{/f:}. In general, the polynomial f*(L) is:

FL o= 3 g

i=—n

n

= > L7+ Yo S Lt (7)
1=1

1=1
From (3), the coefficients {f*} are:
Yofoj for —n<i<0

7=l

- > f for 0<:<n.

j=it1




Uncer symmetry, f; = f_; (0 <i <n),s0 f=, = —fr, (0<i< n). Substituting
(8) into (7), f*(1) is zero. Symmetry is sufficient for f*(1) = 0, but is not necessary.
For example, a unit root in f*(L) ensures f*(1) = 0, but does not imply symmetry.
Extensions of this result appear in Osborn (1993) and Wallis (1993).

ASSUMPTION 3. The polynomial f(L) has a factor v(L), where
s—1
v(l) = s> L7,
1=0

and s is the periodicity of seasonality.

Assumption 3 ensures that the SA filter eliminates any fixed seasonal pattern.
Other assumptions about f(L) will achieve the same result, but Assumption 3 is
one of the simplest and most intuitive: v(L) averages the data over the seasonal
interval. Even so, Assumption 3 is not innocuous. An SA filter with a factor of v(L)
will eliminate seasonal unit roots in z; if they are present. If they are not present,
application of the SA filter will be similar to over-differencing; see also Maravall
(1993).

A fixed seasonal pattern can be represented by s(L)Sy,, where s(L)is an (s—1)th-
order polynomial and S, is a mean-adjusted dummy for the ith season. Hence f (L)
should annihilate s(L)S;;:

F(L)s(L)S1, = 0. (9)

Under Assumption 3, f(L) = f°(L)v(L), where f°(L) is a fixed-weight, finite-order

polynomial; and the superscript © indicates that v(L) has been factored from the
polyaomial. Because S;; is mean-adjusted, it follows that:

f(L)s(L)S1e = fo(L)o(L)s(L)Sy,

= fo(L)s(L)[v(L)Sy]

= 0 (10)

Thus, Assumption 3 ensures that f(L) annihilates the seasonal dummies.
To summarize, under Assumptions 1-3, f(L) may be written as:
(L) = 14 f(L)a?
(L)) (11)

In discussing filtered series satisfying Assumptions 1-3, ] will be referred to as zy
(“a” for analogue or adjusted), the weights {f:} as {a;}, and so the filter f(I) as the
analogue SA filter a(L).

Cointegration. Cointegration is discussed at length elsewhere; cf. Engle and
Granger (1987), Hendry (1986), Johansen (1988, 1991), Johansen and Juselius (1990),
Phillips (1991), Ericsson (1992a), and Banerjee, Dolado, Galbraith, and Hendry
(1993). Here, the interest is in cointegration of the pair of integrated series (z] : 2.
If 2, 15 I(d) and 2] — a; is (at most) I(k) for integers d and k such that d > k > 0, then
z{ and 2, cointegrate from I(d) to I(k) with unit coefficients, denoted CI1(d, k). In
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the context of SA, filters for which z{ and z; are CI1(d,0) are of particular inferest,
yet the order of integration d may be unknown in practice.

Mean equality. Even for a filter ensuring CI1(d,0), the expectation of z/ — z,
need not be zero. (Throughout, this expectation is assumed to exist.) Yet, it may
be desirable to have an SA procedure such that the adjusted and unadjusted series
are equal “on average”. When the SA procedure does so, the series satisfy “mean
equality”. Because integrated processes need not have finite means and because fixed
seasonal patterns are non-ergodic, mean equality is defined as E(ZS[:E{ —z4|/8) =
E(v(L)[z{ — z]) = 0, where the summation is over the seasonal interval, the expec-
tation £(+) is over possible realizations, and z{ and z; are CI1(d,0).

Implications for the SA filter a(L) follow directly. Let A, [= (1 — L*)] ke the
annual change operator, and note that Av(L) = s™'A,. Since z¢ = a(L)z; and
a(L) =1+ a**(L)A? from (11), then:

E(X les—adls) = €(u(L)a" (L)A%)
= E(a*(L)A%(L)zy)
E(a=(L)AAszy) /s . (12)

Thus, mean equality requires a lag polynomial a**(L) for which a**(L)AA,z, is zero
on average. Suitable conditions are discussed in the next subsection.

2.2 Relationships Between Series

This subsection considers the relationships between z! and z; under Assumptions
1-3 about the polynomial f(L), applying those assumptions only as necessary.

The following result establishes the relationship between unit cointegration and
the properties of the linear filter f(L). Without loss of generality, suppose:

f(L) = f(1) + h(L)AT, (13)
where h(L) is a finite-order, fixed-weight linear filter; h(1) is finite; and q is positive.
Under Assumption 1, z{ and z; are CI1(d,0) if and only if a g exists such that ¢ > d.
From (1),

:zcjf —-z¢ = [14+h(L)A%Y2y — z,
h(L)A%; , (14)

which is I(0) if and only if ¢ > d. For autoregressive processes of z; as in (19) below,
mean equality requires an extra order of differencing to ensure that EM(L)A%,] is
not a function of (e.g., for d = 1) the variable’s average growth rate.

Under Assumption 1 alone, z{ and z, are CIl(d,d—1) from (5). Thus, ifd = L, the
filtered and raw data are cointegrated in the usual sense. If the filter is symmetric as
well (Assumption 2), ¢ = 2 by construction from (6). Hence, for d = 1, { and z, will
also be mean equal. As a corollary, z; and the series from the analogue SA process z?
are Cl1(d,d —2), and are CI1(d,d — 1) with mean equality (provided the expectation



exists). From the general properties of cointegrated series, Granger causality must
run in at least one direction between z/ and z,.

2.3 Implications for Sets of Series

For a given type of data (filtered or unfiltered), several series may themselves
be cointegrated. This subsection shows that such cointegration implies that the cor-
responding series of the “other” type are cointegrated with the same cointegrating
vector(s).

Consider p variables and denote the filtered and unfiltered series of the jth variable
as :z‘ft and z;; respectively (j = 1,...,p). The associated p x 1 vectors of data are
denoted 2! and z,, with their context below clarifying that they are vectors (rather
than scalars as in Sections 2.1 and 2.2). The vectors z/ and z; have the relationship:

el = F(L)a,, (15)

where

F(L) = Y. FL
e n—1

= FO)+A Y FrL

i=—n

= F(1)+ FL)A, (16)

and the F; are p X p matrices. For the time, assume F(L) is the diagonal matrix
of scalar polynomials, diag[fi(L)... f,(L)], where f;(L) is the filter generating x{t
from z;; (7 = 1,...,p). That is, each filtered series is a weighted moving average
of the corresponding unweighted series, and that unweighted series alone. Filters for
different series need not be the same. Under Assumption 1, F(1) =1,

Cointegration within z,. If, under Assumption 1, B is a cointegrating vector for the
integrated vector process z;, then 3 is also a cointegrating vector for 2. The converse
also applies. Intuitively, seasonal adjustment should affect only the dynamics of a
process, and not its long-run properties. A general proof for equivalent cointegrating
vectors follows directly from the definition of F(L) under Assumption 1. The special
case where z; can be represented as a finite-order Gaussian vector autoregression
(VAR) illustrates this invariance to data type.

A Proof. Under Assumption 1, premultiplying (15) by g2’ yields:

Bzl = fz,+ BF(L)Az, . (17)

If z,is I(1), B'z; and Az, are both I(0) in (17), and so 'z must be [(0). That is,
B is a cointegrating vector for z]. More generally, if z, is CI(d, k) with cointegrating
vector A3, zf is CI(d,d — 1) with cointegrating vector 3, and f'z; and #'z differ by a
termr that is I(d—1). For z; and z] interchanged, the proof is immediate. A corollary

also follows directly: if z; has r cointegrating vectors, then so does z{, and vice versa.



Under Assumptions 1-3, equation (17) becomes:
Bz = Bz, + BA™(L)A%z, , (18)

in an obvious notation. The disequilibrium measures #’z¢ and #'z, differ by the term
p'A**(L)A%z,, which is two orders of integration less than the order of integration of
zy. If z¢ is I(1), then f'z? and f'z, satisfy mean equality. Figure 8 in Section 4.3
below shows how close the empirically estimated §'z? and B'z; can be.

Importantly, the cointegration results both for pairs of series and for sets of series
require assumptions about the seasonal filter only. No assumption is made about
the actual seasonality (or lack thereof) in the data, other than implicitly (and rather
weakly) through the assumed order of integration of the data.

If Assumption 1 is not satisfied, the cointegrating vector(s) for z; and those for
2/ need not be the same. Thus, unless implemented carefully, multiple-series SA
procedures run the risk of affecting long-run as well as short-run relationships between
the series; cf. Bartelsman and Cleveland (1993).

VARs. In the cointegration literature, Johansen (1988) and Johansen and Juselins
(1990) have stimulated interest in finite-order Gaussian VARs. If z; follows such a
process, then inference in a VAR for the SA data z¢ generally is affected, even though
B and the number of cointegrating vectors r are invariant to the transformation from
r: to 7. Also, as discussed in Hendry and Mizon (1978) and Davidson, Hendry,
Srba, and Yeo (1978), series may be filtered, but not relationships. In practice, the
relationship for the SA data is obtained by filtering each NSA series individually
(potentially using different filters) and then combining the filtered (SA) data. Thus,
the remainder of this subsection derives the VAR for z¢ from a VAR for z; by us-
ing the relationship between the NSA and SA data in (15) and discusses emp:rical
implications for analyzing z¢ rather than ;.

Suppose z; has the representation:

‘
Ty = ,u—f-met_i-f-(I)St-I-st et~ IN(0,9Q), (19)
i=1

where 1 is a p X 1 vector of constants, {r;} are p x p matrices of autoregressive coeffi-
cients, £ is the maximal lag length, S; is a vector of seasonal dummies (S1t...Ss), @
is the corresponding matrix of coefficients, and ¢, is a mean zero Gaussian innovation
with covariance matrix (). By adding and subtracting various lags of z;, (19) mey be
rewritten as:

-1
Az = p+meia+ ) Tidz;+ 85 +e, (20)
=1
where the {T';} and 7 are:
I = —(7r,-+1+--~+7r3) i=1,...,f——1, (21)



¢
T = (Z 7r1-) —1,. (22)
i=1
For convenience below, (20) can be rewritten as a polynomial in Ax,:
F(L)Al't = U + TLy_q1 + (DSt + €ty (23)

where T'(L) = I, — 421 T LE. Also, for simplicity and ease of exposition, assume that
z; is I(1).

The matrix = contains the “impact” coefficients of the lagged level z;_;. Defining
r as rank(m), 7 can be expressed as the outer product of two (full column rank) p x r
ma‘rices a and f3:

T = af, (24)

for 0 < r < p. The matrix 3’ is the set of cointegrating vectors, o is the matrix of
“weighting elements”, and r is the number of cointegrating vectors. If » = 0, then
7 = 0, in which case Az, is solely a function of its lags, i, S, and &;, and there is no
cointegration. If r > 0, the representation in (24) is unique only up to nonsingular
r X r linear transformations, since af’ = (aQ)(Q~'8) = atpt’ (say) for a nonsingular
r X r matrix ). It is assumed that there are sufficient a priori restrictions on a and
f to identify them uniquely.

To derive the VAR for z¢, two operations are useful: pre-multiplication of (23) by
F(L) and substitution of z; by 2+ (z,— ). In combination with Assumptions 1 and
3, these operations obtain the VAR for zy. From the first operation, (23) becomes:

F(L)I(L)Az, = F(L)p+ F(L)rz,_q + F(L)®S, + F(L)e, . (25)
The terms in (25) are transformed as follows. Applying the second operation, the
left-hand side of (25) is:
F(L)I(L)Az, = F(L)I(L)Az¢ + F(L)T(L)A(z; — 22) . (26)
Using Assumption 1, F(L)u = p. Applying the second operation and using Assump-
tion 1, the second term on the right-hand side of (25) is:
F(Lyrz,n = F(L)ra_ | + F(L)w(z,_q — z¢ )
= mz{_ + F*(L)rAzi 4+ F(L)n (2, — 22,) . (27)
Under Assumption 3, the seasonal dummies vanish in (25):
F(L)q)St = FO(L)'U(L)(DSt
= Fo(L)®v(L)S;
=0, (28)

in an obvious notation. Thus, by substitution and re-arrangement of terms, (25) may
be rewritten as:

G(L)Az} = p+rwai |+, (29)



where:

G(L) = F(L)I'(L) — F*(L)xL, (30)

ne = —F(L)r(L)(z: — z7) + F(L)ey (31)

and 7 (L) is defined as I, — 3°¢_, m;L* (equivalently, 7(L) = T(L)A — nL).

While (29) is formally similar to (23), several important differences exist. First,
(23) is a conditional model, whereas (29) generally is not: G(L) is in general a
two-sided polynomial. Second, no seasonal dummies appear in (29) because F(L)
annihilates them. Third, ¢, in (23) is an innovation whereas 7; in (29) is not. This
can be problematic when conducting inference on (29); cf. Ghysels and Perron (1993)
for the univariate case. Fourth, as noted by Wallis (1974, p. 21), use of SA data may
induce residual autocorrelation at seasonal lags: note the presence of the seasonal
factor z; — z¢ in the error ;.

From (17), the number of cointegrating vectors r and the cointegrating vectors
B are invariant to the type of data (NSA or SA). From (23) and (29), the irapact
matrix 7 also appears invariant in a conditional VAR, but it is not. In (29), rz¢_,
is aff'z_y; B'zi_y is 1(0); and in general §'z¢_, is correlated with n,. Consequently,
the weighting matrix « is not invariant in conditional VAR models, so neither is the
product a3". Thus, whether or not a set of variables is weakly exogenous may depend
upon which type of data is used. Additionally, because G(L) is in general a two-sided
non-diagonal polynomial matrix, the conditional representation of (29) confounds
dynamics from future Az® with #'z¢_,, and dynamics in 5, with lagged dynamics
in Az?. Both affect @, and so weak exogeneity for 8. Even with the invariance of
cointegration itself, the empirical power of cointegration tests on SA and on NSA
data may differ, as illustrated in Lee and Siklos (1991, 1993).

2.4 Comments

Wallis (1974) finds that the linear filter (2) approximates the actual X-11 pro-
cedure well. However, as Wallis (1974, p. 20) notes, the linear filter ignores several
features of X-11: graduation of extreme values, constraints on calendar-year totals,
corrections at the ends of series, and multiplicative models of SA. For integrated data,
the first three of the ignored features affect only the short-run dynamics for a wide
class of x; processes, so the results above should still hold. However, see Granger
and Hallman (1991) and Ermini and Granger (1993) on nonlinear transformaticns of
integrated processes, as arise in multiplicative models.

3 Encompassing Tests in Theory

Consider two empirical models, one developed on NSA data and the other on SA
data. The following description of parameter encompassing suggests how to compare
and evaluate these two models. Suppose one model (Model 1) has an estimate 8 for its

10



parameter 6, and the other model (Model 2) implies that that parameter should be 8.
Then test the closeness of § to 4, accounting for the uncertainty from estimation. If §
is “statistically close” to 8, Model 2 parameter-encompasses Model 1. That is, Model
2 explains why Model 1 obtains the estimate that it does. See Mizon and Richard
(1986) and Hendry and Richard (1989) for extensive discussions of encompassing.
Numerous forms of encompassing have been proposed, including those of: the
error variance [Cox (1961, 1962), Mizon and Richard (1986)], parameters [Hendry
(1¢83), Mizon and Richard (1986)], the reduced form [Ericsson (1983), Hendry and
Mizon (1993)], exogeneity [Hendry (1988)], and forecasts [Chong and Hendry (1986),
Ericsson (1992b)]. However, none of these tests are directly applicable because the
dependent variables of the SA and NSA models are inherently different. This section
modifies the parameter-encompassing test to address this problem, using the relation
between the adjusted and unadjusted data from the SA filter. Because of a funda-
mental asymmetry in the two models, this section first considers whecher or not the

SA model encompasses the NSA model (Section 3.1), and then the converse (Section
3.2).

3.1 Does an SA Model Encompass an NSA Model?

For ease of exposition, this section switches to and modifies a notation common
to she literature on encompassing and non-nested hypothesis tests, even while this

new notation does conflict with that in Section 2. Denote the conditional (regression)
models on the SA and NSA data as:

Mgy : Yy, = :E?’ﬂ—f-um Uot ~ IN(O’US) (32)

MNSA Y = Z;’Y + Uyt Uyt ~ ]N(Ovalz) ’ (33)

where y? and y; are the SA and NSA observations on the dependent variable at time
t, 27 and z; are vectors of SA and NSA regressors for the models Mss and Myga,
and (3 and + are the corresponding coefficients. The error ug; (uyz) is assumed to be
independently and normally distributed with mean zero and variance od (o?) under
the hypothesis that Mss (Mnsa) is correctly specified. Independence and normality
are chosen for expositional simplicity. The regressors in Myg4 are z; rather than x,
so as to allow for different dynamic structures in the two models. Even so, ¢ and z;
may well derive from the same set of basic variables.

[n the standard framework, the F-statistic for the significance of z; in Mg4 would
be used to test whether or not Mgy parameter-encompasses Mys4. Under the hy-
pothesis Mgy, this F-statistic is distributed as an F-ratio asymptotically, and possibly
in finite samples as well. However, the dependent variables in (32) and (33) differ, so
some modification of the statistic is necessary. One possibility is to use the regression:

yr = zf'B+ zic+ (ye — yi)do + eor (34)
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with regression error e, and test for the significance of z; and the seasonal factor
(y: — ). Under the hypothesis Msy, ¢ = 0 and dy = 0, and both z, and (ye —y¢) are
valid conditioning variables.> As usual, variance dominance (62 < 0?) is a necessary
condition for encompassing. Under Mys4, 3 =10, c=~, and dy = —1 although, as
implied by Section 3.2 below, the precise power of the test may be difficult to derive.

The encompassing test proposed in (34) is easy to calculate. Several variants
of the test are possible, depending upon which variables are added to (32): z and
(y: —y?) [as proposed), z; only, z; and (y; — y¢), and z,.* While only the first implies a
nesting model for Mss and Mysy, the others may prove useful as general diagrostic
procedures.

3.2 Does an NSA Model Encompass an SA Model?

In light of (34), the obvious procedure for testing whether or not Mpnsa encom-
passes Msy is to estimate the regression:

yr = 2y + b+ (g — yf)ds + exr (35)

with regression error ej;, and test for the significance of zy and (y, — y?), i.e., test
b =0 and d; = 0. Unfortunately, this procedure is invalid: in general, z7 and (y; —y?)
are not valid conditioning variables under Mys4 because they include future values
of y and z. The problem is most obvious when z% contains the SA lagged dependent
variable y¢ ;. From the two-sided nature of the SA filter, y¢_, includes y;, y:41. and
so on. Under Mygs4, these are not valid “explanatory” variables.

An encompassing test is feasible, but it requires analysis of y;, z;, and z; jointly;
and it is inherently more difficult to calculate. The procedure is as follows, where z, =
z; (assumed purely for ease of exposition). Suppose y; and z are both modeled, as
in a VAR or in a conditional/marginal factorization. From that model, the moments
of (y: : z})’ can be calculated. The matrix SA filter F(L) transforms (y; : 2])’ to
(yf : 2); and conditioning y? on z¢ generates the regression coefficient on 2 in
terms of the moments of (y¢ : 2#')'. Thus, from the model for (y¢ : 2})', an implied
coefficient from regressing y® on z? can be calculated via F(L). The encompassing
statistic compares that implied coefficient with the estimated coefficient.’

3Lovell (1963, p. 995) discusses the desirability of an SA procedure being orthogonal, i.e., where
Yoy — y)yd = 0. Even so, some SA procedures are not orthogonal, in which case the resulting
SA data contain a seasonal component. Unless seasonal adjustment is orthogonal, (y; — y#) and the
dependent variable in (34) will be correlated.

*Other possible inclusions are: (z; — zf) and (y; —yf'); (20— 2f); (2¢—2¢) and (y, —y?); (2 - 28);
zt, (7 —2), and (y; —y?); and z, and (2t —zf). These emphasize the seasonal discrepancies between
the adjusted and unadjusted data. The first two are equivalent to two of the main variants.

%In light of Campos, Ericsson, and Hendry (1990), this procedure parallels what would be required
to test whether or not Hendry and Ericsson’s (1991a) U.K. money demand equation on annual data
parameter-encompasses Friedman and Schwartz’s (1982) money demand equation on phase-avsrage
data. The empirical lack of parameter encompassing in the reverse direction follows directly from
those equations’ standard errors, where variance dominance is necessary for parameter encompassing.
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This procedure has several difficulties. First, analysis of y; conditional on z,
may have been chosen precisely because modeling (y; : z;)’ is more difficult. E.g.,
in Sections 4-5, a congruent, constant-parameter, parsimonious, economically inter-
pretatle, conditional money demand model was (relatively) easy to obtain. Finding
an economically and statistically acceptable model of interest rates, inflation, and
total final expenditure is much more difficult. Second, the mapping by F(L) only
approximates X-11. Third, the actual numerical calculations are substantial, and
nontrivial to program. Thus, Section 5 does not calculate this statistic, but reports
statistics from regressions like (35), recognizing that those regressions may include
invalid conditioning variables.

Equations (34) and (35) are algebraically identical, with d; = 1 + do, v = ¢, and
b= f3, as follows from adding (y,—y¢) to both sides of (34). That is, the coefficients on
y: and y; sum to unity. A parallel structure appears in Ericsson’s (1992b) modification
to Chong and Hendry’s (1986) forecast-encompassing test statistic. The validity of
(34) [or (35)] as a maintained hypothesis depends upon the null hypothesis, whether
(32) o1 (33). Specifically, the validity of conditioning on the “additional” variables in
(34) [or (35)] is at issue.

Surprisingly, variance dominance is not a necessary condition for Mygs4 to encom-
pass Ms4. Under Mysa, the model Mgy (possibly) conditions inappropriately on z¢,
giving Ms4 an “artificially low” error variance. Parallel situations arise in comparing
least squares and instrumental variables error variances in a simultaneous equations
framework, and in testing conditional versus expectational models; cf. Hendry (1988)
Favero and Hendry (1992) on the latter. Also, M4 may have a smaller error variance
than Mys4 even if conditioning is not an issue: by averaging the dependent variable,
the SA filter may reduce the dependent variable’s variability.

4 Empirical Results on Cointegration

This section analyzes U.K. data on money demand with the system-based cointe-
gration procedures in Johansen (1988) and Johansen and Juselius (1990). Section 4.1
examines cointegration between the adjusted and unadjusted series, variable by vari-
able. Sections 4.2 and 4.3 analyze the unadjusted data and adjusted data as separate
sets. The remainder of this introduction summarizes the economic theory of money
demand and describes the data. The notation is one common to the money demand
literature, albeit conflicting occasionally with the notation above.

The standard theory of money demand posits:

ml—p = 6 y+8R, (36)

As an alternative encompassing approach, foreshadowed by Wallis (1974), premultiply both sides
of (33) by f, (L) to obtain the same dependent variable as in (32). Then apply standard encompassing
tests. Tis approach is complicated by the induced two-sided moving averages of the error and z,
in the modified (33).
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where M? is nominal money demanded, P is the price level, Y is a scale variable (“in-
come”), R is a vector of interest rates, and variables in lower case are in logarithms.
Equation (36) assumes log-linearity in money, prices, and incomes and linearity in
interest rates, a common functional form. The income elasticity &g is one half :n Bau-
mol’s (1952) and Tobin’s (1956) transactions demand theory and unity in Friedman’s
(1956) quantity theory. The elements in ¢ are semi-elasticities for interest rates, and
a given element is negative (positive) if the associated asset is excluded from (in-
cluded in) the selected monetary aggregate. See Laidler (1985) and Goldfeld and
Sichel (1990) for general discussions of money demand, Goodhart (1984, 1989) on
U.K. financial institutions, and Miller and Orr (1966), Milbourne (1983), and Smith
(1986) for additional developments on the theory of money demand.

In the empirical analysis below, M, Y, and P are nominal M, real total final
expenditure (TFE) at 1985 prices, and the TFE deflator. There are two interest
rates, the three-month local authority interest rate (/3) and the AJ; retai sight-
deposit interest rate (Rr). The first is the dominant short-term interest rate in the
secondary market and measures the return on (some) assets outside M;. The second
is the interest rate on checkable interest-bearing accounts at commercial banks and is
a return on an asset within M;. Three derived variables are of interest: the inflation
rate (Ap), the learning-adjusted retail sight-deposit interest rate (Rra; see Baba,
Hendry, and Starr (1992), Hendry and Ericsson (1991b), and Appendix A for details),
and the net interest rate or opportunity cost (defined as R3 — Rra and denoted R*).
Money and expenditure are in £ millions, the deflator is unity for 1985, and interest
rates are in fractions. The data are quarterly, 1963(1)-1989(2). Allowing for lags
and transformations, estimation is over 1964(3)-1989(2), which is 100 observations
(T = 100). For details on the data, see Appendix A.

Data description begins with six pairs of graphs, where the first of each pair
(e.g., Figure la) plots the NSA and SA series for a given variable and the second
(e.g., Figure 1b) plots the difference between them, denoted the seasonal component.
Figures 1-6 show m, p, m — p, y, y + p (nominal TFE), and m — p — y (inverse
velocity) over 1963(1)-1989(2). Visually, all NSA and SA series appear I(1) at least;
the augmented Dickey-Fuller (1979, 1981) [ADF] test statistics in Table 1 support
this.® For m and p in particular, system analysis in Johansen (1992¢) suggests that
they are I(2), but the evidence is not conclusive. The hypothesis of a unit root in Am
(and in Ap) can not be rejected with the ADF statistic at standard significance levels,
but the estimated root for Am is only +0.31 (+0.87 for Ap). Thus, agnosticism on
the order of integration for m and p seems appropriate, so Appendix C considers the

SHere and below, a maximum of five lags is chosen, thereby allowing for possible stochastic
seasonality in the quarterly data while not being too profligate in parameters. For instance, the
fifth-order VAR for System I below entails 29 coefficients in each of five equations estimated on 100
observations.
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Table 1.
Augmented Dickey-Fuller Test Statistics

Variable Type of data
NSA SA

m 157 (-0.02)  -1.37  (-0.02)
p 248 (-0.02)  -2.16 (-0.01)
m—p 081 (-0.01)  -0.23  (-0.00)
y 180 (-0.10)  -1.61  (-0.08)
m-—p-—y -0.17 (-0.00) +0.26  (+0.00)
Am -3.37 (-0.69) -3.44  (-0.63)
Ap 206 (-0.13)  -2.00 (-0.13)
A(m — p) 284 (-042)  -2.84 (-0.38)
Ay 470 (-1.30)  -4.86 (-1.13)
A(m—p—y) -3.11  (-0.69) -3.39  (-0.66)
AZm 577 (-2.84)  -6.63  (-2.90)
AZp 493 (-1.61)  -4.90 (-1.59)
R3 345 (-0.22)

Rra ~1.38 (~0.03)

R 2.07 (~0.08)

AR3 519 (-1.15)

ARra -5.50 (-0.68)

AR* -5.04 (-1.08)

Notes: Each pair of entries includes the fourth-order ADF
statistic with a constant term and trend and (in parentheses)
the estimated coefficient associated with that ADF statistic.
The ADF regressions for NSA data (except those for R3,
Rra, and R*) also include seasonal dummies. The sample is
1964(3)-1989(2) [T = 100], except for A2m, A2p, A2m?, and
A?p?, which use 1964(4)-1989(2) [T = 99]. The 90%, 95%,
and 99% critical values for T = 100 from MacKinnon (1991,
Table 1) are —3.15, -3.45, and —4.05 respectively.
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implications that m and p being I(2) or I(1) has for this analysis.”

All six NSA series display strong seasonality, as evidenced by the seasonal com-
ponents (of the form z — z*). In Figure 1b, m — m*® is often 1-3% in absolute value,
compared to an average quarterly growth rate for m of about 3%. The seasonal com-
ponent for prices (Figure 2b) is nearly an order of magnitude smaller, often 0.2-0.6%,
contrasting with an average growth rate for p of about 3% per quarter. Thus, the
seasonal component for real money (Figure 3b) is virtually identical to that for nom-
inal money, noting that (m — p) — (m® — p*) = (m —m®) — (p — p*). The seasonality
in real and nominal TFE (Figures 4b and 5b) is the most regular of those observed,
with a strong cyclical pattern superimposed on the seasonality. Real TFE also has
the largest seasonal component of the series examined: often 2-3%, compared to an
average growth rate of under 1% per quarter.

The two dominant seasonal components are from nominal money and real income,
and are of the same magnitude but contrast in pattern. The seasonality of inverse
velocity (Figure 6b) is essentially the difference of those two components. Seasonal
patterns in the levels of m—p, y, y +p, and m—p—y are clearly detectable in Figures
3a, 4a, 5a, and 6a. Seasonal patterns for m and p are not apparent in Figures 1a and
2a because the range of the data is so great.

Figure 7 graphs the local-authority interest rate R3, the learning-adjusted M,
retail sight-deposit interest rate (or “own rate”) Rra, and the annual inflation rate
A4p. The two oil price increases are evident, and inflation declines to single-digit levels
in the 198(s. Substantial differences between A4p and R3 persist over long episodes.
Thus, inflation may play a role in the money demand function as the return on an
illiquid, non-financial asset. The interest rate offered on M, (Rra) was introduced in
1984(3) and parallels R3 with a relatively constant spread. Importantly for money
demand, the opportunity cost (R3 — Rra) declines from (often) double-digit figures
in the 197Cs and early 1980s to only a couple percent in the late 1980s.

4.1 Evidence on Pairs of Series

Table 2 presents Johansen’s maximum likelihood cointegration test statistics, es-
timated cointegrating vectors (4’), and estimated weighting coefficients (c) for x and
z®, where = is any of m, p, y, m — p, y + p, or m — p — y. In each case, a fifth-order
bivariate VAR is estimated for z and z® with unconstrained seasonal dummies and
a constant. The first four statistics in Table 2 are the maximal eigenvalue and trace
eigenvalue statistics (Anqz and Ayqce) and those statistics adjusted for degrees of free-
dom lost in estimation (Af,,, and A?.,..), with all four statistics being based on the
largest eigenvalue.® Those statistics test the hypothesis that z and z* are not cointe-

"The order of integratedness need not even be an inherent property of a time series. E.g., a
series’s order of integration could differ for different time periods.

8The hypothesis that there is at most one cointegrating vector (i.e., at least one zero eigenvalue)
was not rejected for any of the series except m, and then only marginally so.
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Table 2.

Cointegration Analysis for Pairs of NSA and SA Series

Var: able Statistic First row of:
/\mﬂ-’f /\?nax /\tT‘lC‘? A;flru,ce X2(1) ﬁ/ o
Full sample: 1964(3)-1989(2)
m 13.0 11.7 172 154 0.01 (1-0.9998) (+1.20 +1.66)
P 40.3 36.3 408 36.8 0.09 (1 -1.0000) ( -3.40 -0.68)
Y 19.7 177 20.0 18.0 0.63 (1-0.9994) ( -4.11 -2.07)
m-—p 180 16.2 19.2 172 0.35 (1-0.9974) (41.57 +2.18)
y+p 247 223 248 223 006  (1-1.0000) (-1.09 +1.31)
m—-p—y 169 152 186 168 0.01  (1-1.0000) (+2.22 +2.77)
Short sample: 1964(3)-1982(4)
m 207 17.9 229 198 219  (1-0.9985) (+2.34 +3.44)
m-—p 176 152 208 18.0 0.58 (1 -0.9957) (+1.03 +2.23)
m—-p—y 162 14.0 172 149 0.02 (1 -0.9997) (+1.30 +2.58)
Critical values
90% 12.1 121 133 13.3 2.71
95% 141 141 154 154 3.84
99% 18.6 18.6 20.0 200 6.63
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grated against the alternative that there is at least one cointegrating vector. Critical
values for the cointegration statistics are from Osterwald-Lenum (1992, Table 1). The
fifth statistic in the table, denoted x?(1), tests the hypothesis ' = (1 : —1) and is
asymptotically distributed as x?(1) under that null hypothesis. For variables involv-
ing m and m?, the statistics are also calculated over a “short sample”, noting that
the properties of the seasonal factor m — m® change after 1982; see Figure 1b.

Beginning with nominal money, the “max” and “trace” statistics reject at the
90% level; and the estimated cointegrating vector for (m : m?) is (1 : --0.9998),
which is statistically and numerically insignificantly different from (1 : —1). That is,
m — m? appears [(0). Similar, even stronger evidence for cointegration appears for
the other five variables and for nominal money over the short sample. In no case is
the hypothesis ' = (1 : —1) rejected.

For nominal money, the estimated weighting coefficients are +1.20 and +1.66,
which are the coefficients on (approximately) (m — m?),_; in the equations for Am;
and Am{ respectively. Weighting coefficients in the other bivariate VARs are similar
or larger in magnitude and of either sign. These coefficients for the bivariate VARs
are numerically much larger than in typical empirical analyses of sets of variables; see
Sections 4.2 and 4.3.

4.2 System Cointegration Analysis of the Unadjusted Data

This subsection tests for cointegration among the unadjusted series (m, p, y, R3,
Rra). For both the NSA data set and the SA data set, inference could be affected
by whether K3 and Rra enter separately or only via the opportunity cost R*, and by
whether m and p are I(1) or I(2). To assess the sensitivity of the cointegration tests
to these factors, Appendix C examines four systems with the following variables:

System I. m, p, vy, R3, Rra;

System II. m, p, y, R*;
System III. m — p, Ap, y, R3, Rra; and
System IV. m — p, Ap, y, R*.

The cointegrating vector and the weighting coeflicients are little affected by the choice
of system, so this subsection focuses on System IV. The system is a fifth-order vec-
tor autoregression with a constant term and seasonal dummies, but no trend. The
estimation period is 1964(3)-1989(2).

Table 3 summarizes the cointegration results. It lists the eigenvalues related to
7 from largest to smallest, the max and trace statistics, the standardized estimated
a and ', and statistics for testing restrictions on « and . The cointegration tests
strongly reject the null of no cointegration (r = 0), but not the null of at most one
cointegrating vector (r < 1), so there appears to be a single cointegrating vector for
(m—p,Ap,y, B*)". The estimated cointegrating vector implies a long-run solution of:

m—p = 099 — 6.46Ap — 6.76R" , (37)
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Table 3.
A Cointegration Analysis of NSA Data: {m — p, Ap, y, R*}

Eigenvalues 0.345 0.121  0.049 0.015
Hypotheses r=0 r<1 r<2 r<3
Amaz 42 4 12.9 5.0 1.5
AL o 33.9 10.3 4.0 1.2
95% critical value  27.1 21.0 14.1 3.8
Atrace 61.7 19.3 6.5 1.5
Al 49.4 15.5 5.2 1.2

trace

95% critical value 47.2 29.7 15.4 3.8

Standardized eigenvectors /3’

Variable m-—p Ap Yy R
1 6.46  -0.99 6.76
-0.05 1 -0.04 -0.46
-0.89 16.33 1 -4.95

-1.53 -4.82 -0.18 1

Standardized adjustment coefficients o

m—p -0.18  -0.08 -0.00 0.00
Ap 003 -0.09 -0.00 -0.00
] -0.00 034 -0.01 -0.00
R* 0.03 0.17 0.00 -0.01

Test statistics for restrictions on 3’

Variable m—p Ap Yy R* Joint
X*() — — 0.0 —
p-value [0.917]

Test statistics for zero restrictions on «
Variable m-—p Ap y R* Joint
xX2(¥) 28.6 5.0 0.0 1.3 5.6
p-value [0.000] [0.025] [0.928] [0.260] [0.130]
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with income, inflation, and interest rate elasticities in line with theory. A unit long-
run homogeneity restriction on income can not be rejected.

The weighting coefficient on the cointegrating vector is —0.18 in the equetion for
money and is virtually zero in each of the other equations. While the coefficient
in the inflation equation appears to be statistically significantly different from zero,
the coefficients in the income, inflation, and the net interest rate equations jointly
appear to be zero.” Those zeros are necessary for inflation, income, and the interest
rate to be weakly exogenous for the parameters in the money equation; cf. Johansen
(1992a). Section 5.1 assumes weak exogeneity and develops a model conditional on
those variables.

4.3 System Cointegration Analysis of the Adjusted Data

Ericsson, Campos, and Tran (1990) test for cointegration in the SA data using
Johansen’s procedure. Table 4 replicates and adds to their System IV results, in
which m? — p*, Ap?, and y” replace m — p, Ap, and y, and where a constant term
(but no seasonal dummy) is included in the VAR. The eigenvalues, test statistics, and
the estimated cointegrating vector in Table 4 are strikingly similar to those in Table
3, as implied by the theoretical analysis in Section 2.° Surprisingly, the estimated
weighting matrices in Tables 3 and 4 are nearly identical. In general, they need not
be, although they would be if, for all the SA filters, fo [in (2)] were approximately
unity and the other f;’s were relatively small. Weights in the SA filters might have
those values even for very seasonal data (such as m or y) if the seasonal component
were well approximated by seasonal dummies and the SA filter included adjustment
by dummies.

Figure 8 plots the estimated disequilibria 8z, and B'z?, where 8§ is nunerically
different for z; and z¢. The choice of NSA or SA data matters little for the properties
of the estimated disequilibrium. Shocks to the system and subsequent adjustment
toward equilibrium are evident for higher inflation and interest rates (in 1973 and
1980), lower inflation and interest rates (in 1977 and 1982), and a lower opportu-

nity cost (in 1985). Further, the disequilibria were substantial, sometimes exceeding
+40%.

5 Single-equation Analysis

This section obtains a single-equation conditional model for money demand on
NSA data (Section 5.1), summarizes Hendry and Ericsson’s (1991b, equation (6))

9The “joint” test of zero restrictions on a does not include the zero restriction on « for the
equation determining money. That latter restriction is resoundingly rejected, so money can not be
assumed weakly exogenous in an equation determining inflation, income, or the interest rate.

1%Hendry and Mizon (1993) analyze this SA data over a sample for which Rra is zero. They
obtain a cointegrating vector for money demand that is virtually identical to the one for System IV.
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Table 4.
A Cointegration Analysis of SA Data: {m® — p?®, Ap®, y*, R*}

Eigenvalues 0.386 0.128  0.050  0.009
Hypotheses r=0 r<l r<2 r<3
Amax 48.8 13.7 5.1 0.9
A2 39.0 11.0 4.1 0.8

maxr

95% critical value 27.1 21.0 14.1 3.8

Atrace 63.6  19.8 6.1 0.9
xe 549 159 49 08

95% critical value 47.2 29.7 15.4 3.8

Standardized eigenvectors 3’

Variable m® —p*  Ap® y* Fin
1 722 -1.08 7.16
-0.08 1 -0.04 -0.79
-1.26 16.03 1 -7.00

1.33 6.58 -0.12 1

Standardized adjustment coefficients «

me — p* -0.18 -0.03 0.00 -0.00
Ap® 0.02 -0.05 -0.00 0.00
ye -0.00 023 -0.01 -0.00
I’ 0.03 0.14 0.00 0.01

Test statistics for restrictions on 3’

Variable m* —p*  Ap° y° R Joint
X*() — — 0.8 - —
p-value [0.380]

Test statistics for zero restrictions on «
Variable me —p*  Ap® y° R Joint
xX*() 34.6 3.4 0.0 2.3 4.5
p-value [0.000] [0.065] [0.996] [0.133] [0.215]
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model on the SA data (Section 5.2), and tests each against the other with the encom-
passing tests designed in Section 3 above (Section 5.3).

5.1 Single-equation Analysis of the Unadjusted Data

As noted above, income, prices, and interest rates appear weakly exogenous, so
single-equation modeling starts with an unrestricted autoregressive distributed lag
(ADL) model for money. A parsimonious, economically interpretable, data-zoherent
simplification of that model is obtained via sequential reduction.

To match £ = 5 in the VAR, the unrestricted single-equation model is a fifth-order
ADL of m, conditional on p, y, R3, and Rra.!'! Table 5 lists coefficient estimates and
their estimated standard errors (in parentheses). The long-run, static, non-stochastic
solution to the model in Table 5 is:

m; = 0.98 D + 1.05 Yt — 6.4 R3t + 7.0 RT'Clt
(0:09) (0.33)  (1.6) (0.9)
— 04 — 0125, + 0.10 Sy + 0.15 S, (38)
(3.8)  (0.08) (0.08) (0.08)

where S is a seasonal dummy for the ith quarter, and estimated standard errors
are in parentheses. Equation (38) corresponds to (36). The estimates in (38) closely
match the system estimates of the first cointegrating vector when Ap = 0.

Table 5 (and also the regressions (39) and (41) below) includes diagnostic statis-
tics for testing against various alternative hypotheses: residual autocorrelation (dw
and AR), skewness and excess kurtosis (Normality), autoregressive conditional het-
eroscedasticity (ARCH), RESET (RESET), heteroscedasticity (Hetero), and het-
eroscedasticity quadratic in the regressors (alternatively, mis-specification of func-
tional form) (Form)."> The null distribution is designated by x2(-) or F(-,-), where
the degrees of freedom fill the parentheses. For AR and ARC H, the first degree of
freedom is the maximal lag. No statistic in Table 5 is significant at its 95% critical
value.

The model in Table 5 has an equivalent error correction representation, wtich may

be simplified to (39) below. Details of the simplification process appear in Appendix
B. ’

1This specification is the least restrictive of the conditional ADLs associated with the four systems
in that it does not impose restrictions on the long-run coefficients for prices and interest ratzs. Those
restrictions are imposed early on in the sequential reduction; and their imposition from tte start of
the sequential reduction does not affect the final outcome.

12For references on the test statistics, see Durbin and Watson (1950, 1951), Box and Pier:e (1970),
Godfrey (1978), and Harvey (1981, p. 173); Jarque and Bera (1980); Engle (1982); Ramsey (1969);
and White (1980, p. 825) and Nicholls and Pagan (1983) (the latter two on both Hetero and Form).



Table 5.
A General Autoregressive Distributed Lag for Nominal Money,
Conditional on Prices, Incomes, and Interest Rates (NSA Data)

“Variable lag ¢ (or summation over lags)
3 0 1 2 3 4 5 S o
My -1 0.588 0.127  -0.193 0367 -0.042 -0.152

(-) (0.126) (0.142) (0.132) (0.130) (0.114) (0.043)

D 0430  0.024 -0.213 -0.031 -0.342  0.282  0.149
(0.258)  (0.404) (0.380) (0.348) (0.341) (0.214) (0.039)

Jioi 0.022 0219 0044 -0.372 0107  0.138  0.159
(0.108)  (0.117) (0.116) (0.116) (0.123) (0.116) (0.057)

R3,;  -0433 -0.259 -0.342  0.081  0.187 -0.209 0.974
(0.137)  (0.204) (0.208) (0.204) (0.201) (0.150) (0.211)

Rra,.; 0223 -0.024 2250 -2.249 0491  0.370  1.060
(0.515)  (0.995) (1.111) (1.143) (1.089) (0.621) (0.327)

constant ~0.055

(0.565)
Sit -0.018 0.016 0.023
(0.011) (0.011) (0.010)
T =100 [1964(3) — 1989(2)] R? = 0.9998 & = 1.403%
dw = 2.09 AR : F(4,63) = 1.37 Normality : x*(2) = 2.48

ARCH : F(4,59) = 0.87 Hetero: F(61,5) = 0.12 RESET : F(1,66) = 1.70
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—

A(m—p) = - [8:?3][133(7” = p)e-1/3] — [(1):(1);][(Apt + Api-4)/2]

+ 0.16 A%y, o — 1189 [(R; + Rr_, + R;_;)/3]

[0.05] (0.080]
— 0174 (m —p—y)i
[0.011]
+ 0.038 — 0.012 5;; + 0.010 S3; + 0.018 Sg (39)
[0.006] [0.005] [0.005] [0.008]
T = 100 [1964(3) — 1989(2)] R?=0.84 & = 1.348%
AR : F(4,87) = 1.07 dw =195 ARCH : F(4,83) = 0.44

Normality : x%(2) = 4.08 RESET : F(1,90) = 1.64
Hetero : F(13,77) = 1.12 Form : F(38,52) = 0.62 .

Jack-knife, heteroscedasticity-consistent, estimated standard errors appear in square
brackets under coeflicient estimates; see White (1980), Nicholls and Pagan (1983),
and MacKinnon and White (1985).

The first three terms on the right-hand side of (39) capture the effects of the lagged
dependent variable, inflation, and income growth. Noting the near (negative) unit co-
efficient on (Apy + Ap;—4)/2. (39) can be transformed to have nominal money growth
Amy as the dependent variable and +0.5A4Ap; on the right-hand side. That is, infla-
tion per se has no immediate effect on nominal money demand; only its acceleration
does. In the long run, both inflation and its acceleration affect money demand via the
error correction. From the interest rate and error correction coefficients, the long-run
solution of (39) is virtually (38), with unit income and price elasticities imposed as
part of the sequential reduction.

Statistically, (39) appears satisfactory. None of the diagnostic tests reject, and
the F-statistic for testing (39) against Table 5 is F(24,67) = 0.70 [83%], where the
tail probability is in square brackets.

Constanc is an additional, crucial statistical property, particularly in the context
of money demand equations; see Judd and Scadding (1982) and Goldfeld and Sichel
(1990). Recursive least squares and the associated sequences of test statistics provide
incisive tools for investigating constancy; cf. Brown, Durbin, and Evans (1975) and
Dufour (1982). Graphs efficiently summarize the large volume of output. Figure 9a
records the one-step residuals and the corresponding calculated equation standard
errors for (39), i.e., {y; — Bz} and {0.0 + 26} in a common notation. The ejuation
standard error & varies little. Figure 9b plots the “break-point” Chow (1960) statistics
for the sequence {1969(3)-1989(2), 1969(4)-1989(2), 1970(1)-1989(2), ..., 1989(1)-
1989(2), 1989(2)}, none of which are significant at even the 5% level. Figures 9c-9k
show the numerical values of all the recursively estimated coefficients and -lus-or-
minus twice their recursively estimated standard errors, denoted 3, and B+ itese(ﬁt)

respectively in the graphs. Coefficients on economic variables vary only slightly rela-
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tive to their ez ante standard errors, and all those variables except A%y,;_, are highly
significant by 1980. The quarterly dummies are statistically constant, but appear to
drift numerically. Even with the full sample, their coefficients are only marginally
significant. Figure 9¢ plots the actual and fitted values for A(m — p); and shows how
well (39) explains the data.

Hendry and Ericsson (1991b) document large changes in the data properties. To-
gether with the constancy of (39), those changes imply the super exogeneity of expen-
diture, prices, and interest rates for the parameters in (39); cf. Engle, Hendry, and
Richard (1983), Hendry (1988), and Engle and Hendry (1993). To summarize, (39) is
a constant, economically interpretable, data-coherent model of NSA money cemand
in the United Kingdom.

5.2 Single-equation Analysis of the Adjusted Data

The SA data have been thoroughly studied in a sequence of papers, starting
with Hacche (1974), Coghlan (1978) and Hendry (1979). The latter develops a con-
stant, parsimonious error correction model over 1964(1)-1977(4). Subsequent models
by Trundle (1982), Hendry (1985), Davidson (1987), Cuthbertson (1988), dendry
(1988), Ericsson, Campos, and Tran (1990), Hall, Henry, and Wilcox (1990), Hendry
and Ericsson (1991b), and Hendry and Mizon (1993) are similar in form and numer-
ical parameter values, with the main differences arising from using different sample
periods, and data series with different base years.

From a fifth-order ADL on the current SA data set, Ericsson, Campos, and Tran
(1990) obtain the following long-run, static, non-stochastic solution:

my = 096 pf + 117y — 6.7 R3; + 7.0 Rra; — 1.7 (40)
(0.08) (0.30) (1.5) (0.8) (3.4)

T =100 [1964(3) — 1989(2)].
These estimates closely match those in (38) on NSA data, and the system estimates

of the first cointegrating vector on both SA and NSA data.

Hendry and Ericsson (1991b, equation (6)) obtain the following error correction
model (ECM).

—

A(me —pr)y = — 0.69 Apf — 017 A(m® —p* —y*);-; — 0.630 R
[0.14] [0.06] [0.053]
— 0.093 (m®* —p* — y*);1 + 0.023 (41)
[0.008] [0.004]
T =100 [1964(3) — 1989(2)] R2 =0.76 & = 1.313%
AR : F(4,91) = 1.94 dw =218 ARCH : F(4,87) = 0.74
Normality : x?(2) = 1.53 RESET : F(1,94) = 0.08
Hetero: F(8,86) = 1.36 Form : F(14,80) = 1.05 .
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Ericsson, Campos, and Tran (1990) find that (41) is a valid sequential reduction from
the ADL, with an F-statistic of F(25,70) = 0.97 [51%). From the coefficients on
the interest rate and the error correction term, the long-run solution of (41) is little
changed from (40). Extensive evaluation by Ericsson, Campos, and Tran (1990) and
Hendry and Ericsson (1991b) shows that (41) is a constant, data-coherent, conditional
model with sensible economic properties. Prices, expenditure, and interest rates
appear super exogenous.

5.3 Encompassing Tests in Practice

From the studies to date, (41) appears a well-specified model of SA money de-
mand. However, the encompassing tests from Section 3 will show that (41) does not
encompass the NSA model (39). Other than mixing data sets, no obvious respecifica-
tion of (41) results in an improved model of the SA data. Because of computational
and modeling issues, the formally correct encompassing test in the reverse direction
is not performed. However, evidence from the “invalid” encompassing test suggests
that the NSA model does encompass the SA model.

To test whether or not the SA model encompasses the NSA model, A(m — p), —
A(m® — p*); and the regressors from the NSA model are added to the SA model, and
the significance of the added variables is tested. The resulting estimated equation is
the following, which implements (34).

A(me —po), = — 051 Apt — 0.09 A(m® — p* —y%),_y — 0.241 R:

[0.20] [0.07] [0.164]

— 0.048 (m® — p* —y*),_y + 0.026
[0.116] [0.007]

— 0.29 [A(m —p); — A(m® — p*)i] — 0.53 [As(m — p)i_1/3]
(0.19] [0.16]

- 0.39 [(Apt + Apt_4)/2] + 0.09 A2yt__2
[0.18] (0.05]

— 070 [(RB; + Ri_y + B ,)/3] — 0.088 (m —p—y)is
[0.23] [0.116]

+ 0.008 S3; + 0.012 .55 + 0.015 S5, (42)
[0.008] [0.005] [0.007]

T =100 [1964(3) — 1989(2)] R*=10.81 & =1.225%

The F'-statistic for the significance of the additional regressors is (9, 86) = 2.57 [1.1%).
If the seasonal component A(m — p); — A(m® — p®), is not included, the F-statistic
is still large: F'(8,87) = 2.50 [1.7%)].

As discussed in Section 3, reversing the roles of SA and NSA data is not valid
because it generally entails invalid conditioning for the NSA model. Even so, the
results from reversal may be of interest, to the extent that future values play a
small role in the added regressors. Adding A(m — p), — A(m* — p*); and the SA
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regressors in (41) to the NSA model (39) obtains (42), except that A(m — p); is
the dependent variable and so the coefficient on A(m — p); — A(m® — p?); is +0.71
(implied by Section 3.2). The F-statistic for the additional regressors is F(5,36) =
4.83 [0.06%]. However, rejection appears entirely explained by the presence of the
seasonal component A(m — p); — A(m?* — p*);. If that seasonal component is not
included in the regression, the F'-statistic is F'(4,87) = 1.54 [19.9%).

In summary, the SA model does not encompass the NSA model, whereas the NSA
model appears to encompass the SA model. The NSA model appears well specified
otherwise and is sensible economically, so it represents the currently best available
empirical model for U.K. narrow money demand. While the long-run solutions for the
SA and NSA models are virtually identical empirically (as implied by the theoretical
analysis), estimated short-run dynamics do differ. For instance, inflation and tke net
interest rate enter the SA model current-dated only, whereas they appear as time
averages in the NSA model. Development of the NSA model also shows how new
tests and new data play a central role in a progressive research program, whereby
existing models are supplanted by new models that encompass the existing models
and offer some “value added”.

6 Concluding Remarks

Seasonality and seasonal adjustment procedures have stimulated a wealth of theo-
retical and empirical studies. With tools from the cointegration literature, this paper
derives central relationships between pairs of SA and NSA data, and between sets of
SA and NSA data. The encompassing framework provides a basis for comparing mod-
els developed on SA data with those developed on NSA data. This paper extencs the
analysis of Wallis and Sims to cointegrated series and develops methods for evaluating
NSA and SA models directly against each other. Contrasting with results from Sims
and Wallis in a stationary framework, there are invariants to seasonal adjustment of
cointegrated data: the number of cointegrating vectors and the cointegrating vectors
themselves. That said, inference may well be affected by the choice of data type.

A substantive model development of NSA narrow money demand in the United
Kingdom illustrates the analytical results. Hendry and Ericsson’s (1991b) SA riodel
of narrow money demand appeared well-specified on existing tests, but was found
deficient in the presence of the new NSA model. This result demonstrates the value
of the new tests and of the NSA data. It also highlights the importance of statistical
agencies providing NSA data even if they already provide SA data, since the latter
need not be the appropriate data for empirical economic modeling.
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Appendix A. The Data

Table Al.
Data Definitions and Sources
Variable Definition Source
GDP Gross domestic product (expenditure-based) at market DJAF (NSA)
prices [£ million, current prices] DJBB (SA)
GDP85 Gross domestic product (expenditure-based) at market DJCX (NSA)
prices [£ million, 1985 prices] DJDI (SA)
IMP Imports of goods and services at market prices DJAG (NSA)
[£ million, current prices] DJBC (SA)
IM P85 Imports of goods and services at market prices DJCY (NSA)
[£ million, 1985 prices] DJDJ (SA)
M Monetary aggregate M;: notes and coin in circulation AGAF (NSA)
with the public plus UK private sector sterling sight bank  AGBA (SA)
deposits, both non-interest-bearing and interest-bearing
(financial year constrained when seasonally adjusted)
[£ million, current prices]
P Implicit deflator for total final expenditure —
[= (GDP + IMP)/(GD P85+ IMP85)] [1985 = 1.00]
R3 Interest rate on deposits with local authorities, for a AJOI
minimum of three months and thereafter at seven days’
notice (quarterly average of the rate on the last Friday of
each month) [fraction]
R Learning-adjusted net interest rate (= R3 — Rra) —
[fraction)]
Rr Interest rate on (M) sterling retail sight deposits at banks Hendry and
[fraction) Ericsson
(1991b)
Rra Learning-adjusted interest rate on retail sight deposits at ~ —
banks (= w;-Rr;) [fraction]
Wy Weighting function representing agents’ learning about Hendry and
interest-bearing retail sight deposits Ericsson
[= (1 +explro — k1(t =t + 1))~ for t > to, zero otherwise; (1991b)
to = 1984(3), ko = 5.0, and &, = 1.2]
Y Total final expenditure at market prices —

(= GDP85+ IMP85) [£ million, 1985 prices]

Sources. The data sources are: Bank of England Quarterly Bulletin, various
issues (BEQB); Economic Trends Annual Supplement, 1990 Edition, No. 15 (ETAS)
Financial Statistics, various issues (FS); and Monthly Digest of Statistics, various
issues (MDS). The first is a publication of the Bank of England, London; the other
three are published by the Central Statistical Office (CSO), Her Majesty’s Stationary
Office. London. The four-character sequence is the CSO databank series number.
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GDP, GDP85, IMP, and IM P85 are from ETAS (Table 3), with minor changes
for data revisions from MDS (Table 1.2). M is the M; series in FS (January 1989,
Supplementary Table $32, Columns 6 [NSA] and 7 [SA]) and BEQB (November 1989,
Table 11.1, Columns 4 [NSA] and 14 [SA]). R3 is from various issues of the FEQB
(e.g., May 1989, Table 9.2) and FS (e.g., February 1990, Table 13.14). Rr is zero
prior to 1984(3), and as listed in Hendry and Ericsson (1991b, Table A.2) thereafter.
We are grateful to Stephen Hall at the Bank of England for providing Rr.

All data are quarterly and span 1963(1)-1989(2), unless otherwise noted.

Adjustments. Topping and Bishop (1989) document numerous breaks in the series
for M,. We account for the four primary breaks in M, proportionately rescaling data
before the break to match the post-break value of M; for the quarter in whica the
break occurred. Adjusting the data for these breaks is critical, statistically as well
as economically. The breaks range from —1.5% to +6.3%, but & is only 1.3% in (39)
and (41). See also Healey, Mann, Clews, and Hoggarth (1990).

Topping and Bishop’s breaks are for NSA data, and are reported in Table A2
below. We use the same breaks for SA data, as suggested by Topping and B:shop
(1989, p. 11).

Table A2.
The Four Primary Breaks in M;

Date Break M, Explanation
£x10% per cent after break

1971(4) +403  +3.8% 11088 (NSA) A break occurs “... due to the incor-
+3.9% 10765 (SA) poration of new information collected
from the London clearing banks ... on
the sector split of current and deposit
accounts ...”. (p. 25)

1975(2) +618  +4.1% 15791  (NSA) “New, more comprehensive, statistical
+4.0% 15929 (SA) returns introduced in May 1975 fur-
ther reduced the estimation necessary
to calculate M; ...”. (p. 26)

1976(1) -266 -1.5% 17421 (NSA) “This is due to the incorporatio of
-1.5% 17588 (SA) data on public corporations’ holdings
of notes and coin ...”, i.e., which are

not included in M;. (pp. 26-27)

1981(4) +2081 +6.1% 35956  (NSA) “.. the ‘monetary sector’ was in-
+6.3% 35257 (SA) troduced in place of the ‘banking
sector’; amongst others, this brought
the [Trustee Savings Banks] into the
monetary sector.” (pp. 12, 28)

Source for quotes and breaks: Topping and Bishop (1989); see their Table 2(a) for breaks.
Units: £ million, unless otherwise noted.
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Appendix B. Sequential Reduction Analysis

This appendix describes a sequential reduction from the general ADL model in
Table 5 to the parsimonious ECM in (39). Many other “routes” for the reduction are
possible. However, the values of the F-statistics for this sequence are small, implying
that the F-statistics for other routes are unlikely to be statistically significant.

First, the model in Table 5 is rewritten as an equivalent ECM representation. Two
types of transformations are used. Levels and lagged levels are written as differences
and a current or lagged level; and levels on two variables are written as a differential
between the two variables and the level of one of the variables. See Ericsson, Campos,
and Tran (1990) for a motivation and further discussion. The specific transformations
are:

L. nominal money m and prices p are transformed to real money m — p and prices;
2. the interest rates B3 and Rra are transformed to the spread R* and Rra;

3. each of the variables m — P, P, ¥, and Rra is transformed to a single log-level
(or level) and a set of current and lagged differences, with the log-levels m — p,
p, and y at the first lag and the level Rra current; and

4. the variables (m — p);_; and y;_, are transformed to (m — p — y);_; and Yi_1,
* where (m —p—y)_q is the potential error correction term.
The resulting coefficient estimates and estimated standard errors appear in Table B1,
and provide the starting point for the sequential reduction.

To aid in the sequential reduction of the model in Table B1, we list several vari-
ables in Table B1 with highly statistically significant coefficients and which are eco-
nomically reasonable to retain, as well as several variables whose coefficients appear
nurerically and statistically insignificant. The following are highly significant. The
error correction term (m — p — y);_; enters with a coefficient of —0.152, close to the
first term in the o matrix for the system analysis (Table 3). The current net interest
rate R} and the current inflation rate Ap, each enter with large negative coefficients,
interpretable as reflecting costs to holding money when other assets (or goods) yield
a return. The first and third lags of the dependent variable A(m —p), are statistically
sigrificant.

The following do not appear either numerically or statistically significant:

.. the variables p;_; and y,_;;

1. the variable Rra;; and

iii. all current and lagged values of ARra.
Four additional reductions are considered:

iv. the coeflicients on R}, R;_;, and R}_, are equal, and those on R;_,, R ,, and
R} are zero;

v. the coefficients on A(m — p),;_;, A(m — P)i-2, and A(m — p),_s3 are equal, and
that on A(m — p);_4 is zero;
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Table B1.
The Unrestricted Error Correction Model for NSA Data

Variable lag 2
0 1 2 3 4 5
A(m = p)i—; -1 -0.260 -0.133 -0.325 0.042
(—) (0.111) (0.119) (0.113) (0.114)
Ap_; -0.570 0.045 -0.041 -0.265 -0.240
(0.258) (0.273) (0.272) (0.247) (0.247)
Ay, 0.022 0.083 0.126  -0.246 -0.138
(0.108) (0.137) (0.125) (0.131) (0.116)
R;_, -0.432 -0.259 -0.342 0.082 0.187 -0.209
(0.137)  (0.204) (0.208) (0.204) (0.201) (0.150)
ARra,_; -0.297  -0.580 1.328 -0.840 -0.161
(0.485) (0.619) (0.642) (0.642) (0.617)
(m—p—y) -0.152
(0.043)
Pt—i -0.003
(0.014)
Yi—i ' 0.007
(0.049)
Rra,_; 0.088
(0.276)
constant -0.055
(0.565)
Si -0.018 0.016 0.023

(0.011)  (0.011) (0.010)

T =100 [1964(3) — 1989(2)] R*=10.87 & = 1.403%

Note: All residual-based statistics are identical to those in Table 5.
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vi. the coefficients on Ay, Ay;_;, and Ay,_4 are zero, and those on Ay;_, and

Ay;_3 are equal and opposite; and

vil. the coefficients on Ap; and Ap;_4 have equal coefficients, and those on Api_q,
Ap;_2, and Ap,_s are zero.

Eight models arise from treating these seven restrictions sequentially:

Model 1.
Model 2.

Model 3.

Model 4.

Model 5.

Model 6.

Model 7.

Model 8.

The unrestricted ECM in Table B1 (equivalently, in Table 5)

Model 1, excluding p;_; and y;—; (long-run unit homogeneity of prices
and income imposed);

1

Model 2, excluding Rra, (long-run restriction of “opposite sign, equal
magnitude” coefficients on R3 and Rra imposed);

Model 3, excluding current and lagged values of ARra (short-run re-
striction of “opposite sign, equal magnitude” coefficients on R3 and
Rra imposed);

Model 4, excluding R;_,, R;_,, R;_5, R;_,, and R!_ [once Ry, R; .,
and R;_, are transformed to Y2, R;_,/3, R;_,, and R;_,);

Model 5, excluding A(m — p)i—z, A(m — p);_s, and A(m — p)i_y
[once A(m — p)i—1, A(m — p)i—s, and A(m — p);—3 are transformed to
Az(m = p)i-1/3, A(m — p)i—s, and A(m — p),_s);

Model 6, excluding Ay;, Ay,_, Ay;_3, and Ay,_4 [once Ay;_, and
Ay;_3 are transformed to A2y,_, and Ay,;_3); and

Model 7, excluding Ap,_;, Ap;_,, Ap;_3, and Ap,_4 [once Ap; and
Ap;_4 are transformed to (Ap; + Api—4)/2 and Ap;_4].

Table B2 reports ¢ and the Schwarz criterion (SC) for each model, the F-statistics
for the reductions between all model pairs, and the associated tail probability val-

ues. Throughout the reduction sequence, & remains relatively constant, the Schwarz
criterion is always declining, and no reductions are statistically significant at the 5%
level, whether considered individually or as sub-sequences. The complete reduction

appears valid, with F'(24,67) = 0.70 [0.83].
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Table B2.
F- and Related Statistics for the Sequential Reduction
from the Fifth-order ADL Model in Table 5 (NSA Data)

Null Hypothesis Maintained Hypothesis (Model Number)
Model & o SC 1 2 3 4 ) 6 7
1 33 1.403% -7.41 -

L -
2 31 1.383% -17.50 0.02
[0.98]
L (i) (2,67)
3 30 1.378% -7.54 0.15 0.43
[0.93] [0.51]
L (i) (367)  (1,69)
4 25 1.392% -7.69 0.85 1.16 1.31
056 [0.34] [0.27]
L (@) (867 (669) (5.10)
) 20 1.388% -17.86 0.86 1.04 1.12 0.90
059]  [0.42] [0.36] [0.49]
I ) (13,67) (11,69) (10,70) (5,75)
6 17 1.382% -7.97 0.84 0.99 1.04 0.85 0.77
0.64] [0.48] [0.43] [0.56] [0.51]
L (vi) (16,67) (14,69) (13,70) (8,75) (3,80)
7 13 1.360% -8.14 0.73 0.84 0.87 0.67 0.51 0.31
0.78] [0.65] [0.61] [0.78] [0.83] [0.87]
L (vid) (20,67) (18,69) (17,70) (12,75) (7,80) (4,83)
8 9 1.348% -8.29 0.70 0.79 0.81 0.64 0.53 0.44 0.59

0.83)  [0.73] [0.70] [0.84] [0.88] [0.89] [0.67]
(24,67) (22,69) (21,70) (16,75) (11,80) (8,83) (4,87)

Notes: The first four columns report the model number (with reduction), and for that model: the
number of unrestricted parameters k, the estimated equation standard error o, and the Schwarz
criterion SC, defined as In(RSSr/T) + k- (InT)/T. The text of Appendix B defines the models.
The three entries within a given block of numbers are: the F-statistic for testing the null kypothesis
(indicated by the model number to the left of the entry) against the maintained hypothesis (indicated
by the model number above the entry), the tail probability associated with that value of the F-
statistic (in square brackets), and the degrees of freedom for the F-statistic (in parenthesss).

40



Appendix C. Cointegration Analysis of the Four Systems

This appendix compares the results of cointegration analyses for four systems with
the NSA data and four parallel systems with the SA data. The cointegrating vector
and weighting coefficients are little affected by the choice of system or type of data.

C.1 System Cointegration Analysis of the Unadjusted Data

This subsection tests for cointegration among the unadjusted series (m, p, y, R3,
Rra). For both the NSA data set and the SA data set, inference could be affected
by whether R3 and Rra enter separately or only via the opportunity cost R*, and by
whether m and p are I(1) or I(2). If m and p are 1(2), they may cointegrate with a
cointegrating vector (+1 : —1) to form an I(1) variable m —p. If they do, cointegration
analysis could proceed with the I(1) variables m — p and Ap rather than the 1(2)
variables m and p; see Johansen (1992c). Both statistically and computationally,
analysis of I(2) variables is more cumbersome than that of I(1) variables, so valid
transformation of the data to I(1) space is appealing.

To assess the sensitivity of the cointegration tests to these factors, four systems
are examined:

System 1. m, p, y, R3, Rra;

System II. m, p, y, R*;
System III. m — p, Ap, y, R3, Rra; and
System IV. m — p, Ap, y, R*.

The systems are fifth-order (¢ = 5) vector autoregressions of the corresponding vari-
ables: a constant term and seasonal dummies are included in all cases (but no trend)
and the estimation period is 1964(3)-1989(2). Tables C1-C4 present the results.!3

Tables C1-C4 list the eigenvalues related to # from largest to smallest, the max
and trace statistics (Amsr and Aggee), and those statistics adjusted for degrees of
freedom lost in estimation (A2, and A2 ). The max and trace statistics are defined
in Jonansen (1988) and Johansen and Juselius (1990), and critical values are taken
from Osterwald-Lenum (1992, Table 1). For a system having p eigenvalues total
(p = for models I and III, p = 4 for models II and IV), the hypothesis being tested
is that there are at least g zero eigenvalues (unit roots) in the system, where g = p—r
and r is the number of nonzero eigenvalues (equally, the rank of 7). If we reject that
there are at least g unit roots, then we infer that there are at least p — g+l (=r+1)
cointegrating vectors. Thus, it is convenient to pose the null hypotheses in terms of
the n'umber of nonzero eigenvalues r (as in the tables) rather than in terms of g.

9

From the rejections obtained on all systems, there is at least one cointegrating
vector. In System I, there may be a second, although the critical values used may
not be appropriate if m and p are 1(2); see Johansen (1992b, 1992c).

13For this dataset, these results appear robust to the maximal lag length of the VAR.
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Table C1.
A Cointegration Analysis of NSA Data: {m, p, y, R3, Rra}

Eigenvalues 0.379  0.239 0.160 0.093  0.005
Hypotheses r=0 r<1 r<2 r<3 r<H4
Amaz 47.7 27.4 17.4 9.8 0.5
Al 35.7 20.5 13.0 7.4 0.4

maxr

95% critical value  33.5 27.1 21.0 14.1 3.8

Atrace 102.7 55.0 277 10.3 0.5
A} 77.0 41.3 20.8 7.7 04

irace

95% critical value  68.5 47.2 29.7 15.4 3.8

Standardized eigenvectors [’

Variable m P Y R3 Rra
1 -1.09  -0.43 6.41 -8.12

-1.71 1 2.03 4.55  12.78

-0.08 -0.08 1 -1.15 -1.23

032 -0.21 -0.26 1 -2.17

202 162 176  0.39 1

Standardized adjustment coeflicients «

m 0.4  0.02  0.09 002 0.0
p 0.05 0.0l 005 001 -0.00
y 0.02 -0.02 0.06 -0.11  0.00
R3 0.04 -0.03  0.06 -0.00 -0.00
Rra 000 -0.01 0.0l 002 - 0.00

Test statistics for restrictions on /'’

Variable m P Y R3 Rra Jcint

xX*(+) — 1.2 4.3 0.9 — 4.7

p-value [0.268] [0.037] [0.338] [0.197]
Test statisuvics for zero restrictions on «

Variable m P Y R3 Rra Joint

xX2(°) 14.2 9.0 0.4 2.0 0.4 12.0

p-value [0.000] [0.003] [0.542] [0.160] [0.519] [0.018]
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Table C2.

A Cointegration Analysis of NSA Data: {m, p, v, R*}

Eigenvalues 0.355 0.171  0.102  0.002
Hypotheses r=0 r<1 r<2 r<3
Amaz 43.8 18.8 10.8 0.2
Al 35.0 15.0 8.6 0.2

max

95% critical value 27.1 21.0 14.1 3.8

Atrace

Aa

trace

73.6 29.8 11.0 0.2
58.9 23.8 8.8 0.2

95% critical value 47.2 29.7 154 3.8

Variable

R*

Variable
x3(+)

p-value

Variable
xX*()

p-value

Standardized eigenvectors 3’
m P y R
1 -1.16 -0.45 7.99
-3.19 1 2233 -71.31
-0.58 0.31 1 -2.86
-3.37 2.71 2.94 1

Standardized adjustment coefficients o
-0.10 0.01 -0.00 0.00
0.04 0.00 0.00 -0.00
0.01 -0.00 0.06 0.00
0.02 -0.00 0.03 -0.00

Test statistics for restrictions on §’

m P y Vi
— 3.2 2.9 —
[0.075] [0.087]

Test statistics for zero restrictions on «
m p Y R
12.3 9.6 0.1 0.7

[0.000] [0.002] [0.765] [0.393]

Joint
3.2
[0.204]

Joint
98
[0.020]
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Table C3.

A Cointegration Analysis of NSA Data: {m — p, Ap, y, R3, Rra}

Eigenvalues
Hypotheses

/\maa:

/\a

max

95% critical value

/\trace
a
/\trace

95% critical value

Variable m—p Ap Yy R3
1 5.03 -0.64 5.14
-0.21 1 -0.53 2.48
0.87 -12.81 1 4.03
0.16 -3.00 -0.19 1
0.36 2.22 -0.02  -0.19
Standardized adjustment coefficients «
m—p -0.22 -0.02 0.00 0.00
Ap 0.04 -0.00 0.01 0.02
Y 0.02 -0.09 -0.02 0.04
R3 0.07 -0.09 -0.00 -0.02
Rra 0.01 -0.02 0.00 -0.01
Test statistics for restrictions on 3’
Variable m—p Ap y R3
() — — 3.6 3.8
p-value [0.059] [0.051]
Test statistics for zero restrictions on «
Variable m-—p Ap Yy R3
xX2(°) 26.1 7.4 0.3 4.7
p-value [0.000] [0.006] [0.591] [0.030]

0.384
r=20

48.4
36.3
33.5

89.0
66.8
68.5

0.197  0.107
r<l r<2

21.9 11.4
16.4 8.5
27.1 21.0
40.6 18.7
30.5 14.0
47.2 29.7

0.050
r<3

5.1
3.9
14.1

7.3
3.5
15.4

Standardized eigenvectors 3’

0.022
r<4

2.2
1.6
3.8

2.2
1.6
3.8

Rra
-7.61
3.17
-8.81
-0.65

-0.01
0.01
0.01
0.01

-0.01

Rra Joint
------- 3.9
[0.145]

Rra Joint
1.6 10.4
[0.203] [0.034]
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Table C4.
A Cointegration Analysis of NSA Data: {m — p, Ap, y, R*}

Eigenvalues 0.345 0.121  0.049 0.015
Hypotheses r=0 r<1 r<2 r<3
Amax 424 12.9 5.0 1.5
A2 33.9 10.3 4.0 1.2

maxr

95% critical value 27.1 21.0 14.1 3.8

Atrace 61.7 19.3 6.5 1.5
Ag 49.4 15.5 5.2 1.2

trace

95% critical value  47.2 29.7 15.4 3.8

Standardized eigenvectors 3’
Variable m-—p Ap Y R
1 6.46 -0.99 6.76
-0.05 1 -0.04 -0.46
-0.89  16.33 1 -4.95
-1.53 -4.82 -0.18 1

Standardized adjustment coefficients o

m-—p -0.18  -0.08 -0.00 0.00
Ap 003 -0.09 -0.00 -0.00
Y -0.00 034 -0.01 -0.00
R 0.03 0.17 0.00 -0.01

Test statistics for restrictions on g’

Variable m—p Ap Yy R Joint
() = w0 - -
p-value (0.917]

Test statistics for zero restrictions on «

Variable m—p Ap Yy R* Joint
xX2(Y) 28.6 5.0 0.0 1.3 5.6
p-value [0.000] [0.025] [0.928] [0.260] [0.130]
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Tables C1-C4 also list the standardized estimated eigenvectors (3’) and w=ighting
matrices () for the four systems, where a and # include vectors correspording to
(postulated) zero as well as nonzero eigenvalues. Coefficients of the (first) cointe-
grating vector are similar across systems, noting the different treatments of prices
and interest rates. A unit long-run homogeneity restriction on prices appears satis-
fied when tested (Systems I and II), as does the restriction of “opposite sign, equal
magnitude” on the interest rate coefficients (Systems I and III). A unit long-run
homogeneity restriction on income appears less clear-cut in System I, although the
test would not be interpretable as a homogeneity restriction if that system had two
cointegrating vectors. In all systems, the joint test of unit long-run price and income
homogeneities and/or the interest rate restriction (as appropriate) is always satisfied.

The weighting coefficients for the first cointegrating vector are similar across sys-
tems, being approximately —0.15 in the equation for money and virtually zero in
the other equations.!* Those zeros are necessary for prices, incomes, and interest
rates to be weakly exogenous for the parameters in the money equation; cf. Johansen
(1992a, 1992c). However, statistically, the test of those zero restrictions is rejected
for Systems I-I1I, primarily due to a statistically significant (but numerically small)
coefficient for the price equation. This slight lack of weak exogeneity does not appear
to affect inferences in single-equation modeling (Section 5.1). Note that the “joint”
tests of zero restrictions on « do not include the zero restriction on the equation
determining money. That latter restriction is resoundingly rejected for all systems,
so money (whether real or nominal) can not be assumed weakly exogenous in an
equation determining prices, inflation, income, or either interest rate.

C.2 System Cointegration Analysis of the Adjusted Data

Tables C5-C8 reproduce and add to Ericsson, Campos, and Tran’s (1990) SA
results, which are for Systems I-IV with (m?, p®, y°) replacing (m, p, y) and where a
constant term (but no seasonal dummy) is included in the VARs. Thus, Tables C5-
(8 (SA data) parallel Tables C1-C4 (NSA data). The eigenvalues and test statistics
in Tables C5-C8 are strikingly similar to those in Tables C1-C4, as implied by the
theoretical analysis in Section 2. Likewise, the estimated cointegrating vectors in
Table C5-C8 are close to those in Table C1-C4. Surprisingly, the estimated weighting
matrices in Tables C1-C4 and C5-C8 are nearly identical. In general, they need not
be, although they would be if, for all the SA filters, f; [in (2)] were approximately
unity and the other f;’s were relatively small.

Figures C1-C4 plot for the four systems the estimated disequilibria #'z; and B'ze,
where /3 is numerically different for z; and z2. The choice of system and of data type
matter little for the properties of the estimated disequilibrium.

"Entries have been rounded relative to PcFiml’s output, with the sign of the estimate retained
even if the rounded value is zero.

46



Table C5.

A Cointegration Analysis of SA Data: {m?, p*, y*, R3, Rra}

Eigenvalues
Hypotheses

/\maz

/\a

maxr

0.406 0.246 0.166 0.097  0.005
r=0 r<1 r<2 r<3 r<4

52.1 28.3 18.2 10.2 0.5
39.1 21.2 13.6 1.7 0.4

95% critical value  33.5 27.1 21.0 14.1 3.8

Atrace

Aa

trace

109.3 57.2 28.9 10.7 0.5
81.9 42.9 21.7 8.0 0.4

95% critical value  68.5 47.2 29.7 15.4 3.8

Variable

pa
ya
R3
Rra

Variable
X2(-)

p-value

Variable
()
p-value

Standardized eigenvectors '

m° p* y° R3 Rra
1 -1.00  -0.77 5.80  -7.77
-1.81 1 1.08 1131 15.50
-0.08 -0.12 1 003 -1.26
033 -0.21 -0.30 1 -2.18

-0.68 0.59 045 -0.41 1

Standardized adjustment coefficients «
-0.19 0.00 0.07 0.02 0.00
0.04 0.00 0.08 0.00 -0.00
0.01 -0.01 0.02 -0.10 0.00
0.06 —0.02 0.04 -0.01 -0.01
0.01 -0.01 0.01 0.02 0.00

Test statistics for restrictions on /3’
m p® y°® R3 Rra
— 0.0 1.0 1.6 —
[0.984] [0.317] [0.200]

a

Test statistics for zero restrictions on «
m p* y® R3 Rra
23.7 5.4 0.2 4.1 1.5

a

0.000] [0.021] [0.686] [0.044] [0.213]

Joint
2.4
[0.487]

Joint
8.0
[0.091]
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Table C6.
A Cointegration Analysis of SA Data: {m?, p*, y°, R*}

Eigenvalues 0375 0.166 0.115 0.002
Hypotheses r=0 r<1 r<2 r<3
Amaz 47.0 18.2 12.2 0.2
e 37.6 14.5 9.8 0.1

max

95% critical value  27.1 21.0 14.1 3.8

Atrace 77.6 30.5 12.4 0.2
Al 62.0 24.4 9.9 0.1

trace

95% critical value  47.2 29.7 15.4 3.8

Standardized eigenvectors /3’

Variable me p* y® R
1 -1.04 -0.95 7.46
1.21 1 -9.80 -8.11
-0.61 0.35 1 -3.06

1.17  -1.05 -0.70 1

Standardized adjustment coefficients o

m® -0.15 -0.01 -0.01 -0.00

p° 0.03 -0.01 0.01 0.00

y° 0.01 0.00 0.05 -0.00

R 0.03 0.00 0.03 0.00

Test statistics for restrictions on 3’
Variable me p* y® R* Joint
x3(+) — 0.3 0.0 — 1.0
p-value [0.610] [0.855] [0.597]
Test statistics for zero restrictions on o

Variable me p* y° R~ Joint
x2(¥) 24.8 4.2 0.1 1.9 4.8
p-value [0.000] [0.040] [0.737] [0.169] [0.184]
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Table C7.
A Cointegration Analysis of SA Data: {m® — p*, Ap®, y*, R3, Rra}

Eigenvalues 0.417 0.226 0.112  0.050 0.022
Hypotheses r=20 r<l r<2 r<3 r<4
Amaz 53.9 25.6 11.8 5.1 2.3
A oz 40.4 19.2 8.9 3.9 1.7
95% critical value  33.5 27.1 21.0 14.1 3.8
Atrace 98.8 44.8 19.2 7.4 2.3
AL ce 74.1 33.6 14.4 5.5 1.7
95% critical value  68.5 47.2 29.7 15.4 3.8

Standardized eigenvectors '

Variable me — p® Ap® y® R3 Rra
1 5.67 -0.77 5.82 -7.72
-0.26 1 -0.47 1.98 3.40
1.19 -12.87 1 6.24 -11.76
0.19 -1.85 -0.16 1 -0.65
1.53 13.11 -0.04 -0.23 1

Standardized adjustment coefficients o

me — p° -0.22 0.00 0.00 -0.01 -0.00

Ap® 0.04 -0.02 0.01 0.03 0.00

y° 0.00 -0.07 -0.02 0.04 -0.00

R3 0.07 -0.11 -0.00 -0.03 0.00

Rra 0.01 -0.02 0.00 -0.01 -0.00

Test statistics for restrictions on 4’
Variable mo — p° Ap® y°® R3 Rra Joint
X3() — — 1.4 2.1 — 2.3
p-value [0.239] [0.148] [0.317)
Test statistics for zero restrictions on o

Variable m® — p° Ap® y° R3 Rra Joint
X2() 28.3 5.8 0.0 4.9 1.7 7.9
p-value [0.000]  [0.016] [0.890] [0.027] [0.189]  [0.095]
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Table C8.

A Cointegration Analysis of SA Data: {m®* — p®, Ap®, y*, R*}

Eigenvalues
Hypotheses

)‘mar

AU.

maxr

0.386 0.128  0.050  0.009
r=20 r<l1 r<2 r<3

48.8 13.7 5.1 0.9
39.0 11.0 4.1 0.8

95% critical value 27.1 21.0 14.1 3.8

/\trace

Aa

trace

68.6 19.8 6.1 0.9
54.9 15.9 4.9 0.8

95% critical value 47.2 29.7 15.4 3.8

Variable

me — pa
Ap®

ya

R*

Variable
x2()
p-value

Variable
X3 ()

p-value

Standardized eigenvectors '

me — pa Apa ya R*

1 722 -1.08 7.16
-0.08 1 -0.04 -0.79
-1.26 16.03 1 -7.00

1.33 6.58  —0.12 1

Standardized adjustment coefficients o
-0.18  -0.03 0.00 -0.00
0.02 -0.05 -0.00 0.00
-0.00 023 -0.01 -0.00
0.03 0.14 0.00 0.01

Test statistics for restrictions on /3’
m® —p*  Ap* y° R Joint
— — 0.8 — —
[0.380]

Test statistics for zero restrictions on «
m® —p*  Ap® y° R Joint
34.6 3.4 0.0 2.3 4.5
[0.000] [0.065] [0.996] [0.133] [0.215]
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