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Abstract

We study the impact that algorithmic trading, computers directly interfacing at high frequency with

trading platforms, has had on price discovery and volatility in the foreign exchange market. Our dataset

represents a majority of global interdealer trading in three major currency pairs in 2006 and 2007. Im-

portantly, it contains precise observations of the size and the direction of the computer-generated and

human-generated trades each minute. The empirical analysis provides several important insights. First,

we �nd evidence that algorithmic trades tend to be correlated, suggesting that the algorithmic strategies

used in the market are not as diverse as those used by non-algorithmic traders. Second, we �nd that,

despite the apparent correlation of algorithmic trades, there is no evident causal relationship between

algorithmic trading and increased exchange rate volatility. If anything, the presence of more algorithmic

trading is associated with lower volatility. Third, we show that even though some algorithmic traders

appear to restrict their activity in the minute following macroeconomic data releases, algorithmic traders

increase their provision of liquidity over the hour following each release. Fourth, we �nd that non-

algorithmic order �ow accounts for a larger share of the variance in exchange rate returns than does

algorithmic order �ow. Fifth, we �nd evidence that supports the recent literature that proposes to depart

from the prevalent assumption that liquidity providers in limit order books are passive.

JEL Classi�cation: F3, G12, G14, G15.

Keywords: Algorithmic trading; Volatility; Liquidity provision; Private information.

�Chaboud, Hjalmarsson, and Vega are with the Division of International Finance, Federal Reserve Board, Mail Stop 20,
Washington, DC 20551, USA. Chiquoine is with the Investment Fund for Foundations, 97 Mount Auburn Street, Cam-
bridge MA 02138, USA. Please address comments to the authors via e-mail at alain.p.chaboud@frb.gov, bchiquoine@ti¤.org,
erik.hjalmarsson@frb.gov and clara.vega@frb.gov. We are grateful to Terrence Hendershott and Albert Menkveld for their valu-
able insights, to EBS/ICAP for providing the data, and to Nicholas Klagge and James S. Hebden for their excellent research
assistance. We also bene�ted from the comments of Gordon Bodnar, Charles Jones, Luis Marques, Dag�nn Rime, Alec Schmidt,
John Schoen, Noah Sto¤man, and of participants in the Spring 2009 Market Microstructure NBER conference, San Francisco
AEA 2009 meetings, the SAIS International Economics Seminar, the SITE 2009 conference at Stanford, and the Barcelona EEA
2009 meetings. The views in this paper are solely the responsibility of the authors and should not be interpreted as re�ecting
the views of the Board of Governors of the Federal Reserve System or of any other person associated with the Federal Reserve
System.



1 Introduction

The use of algorithmic trading, where computer algorithms directly manage the trading process at high

frequency, has become common in major �nancial markets in recent years, beginning in the U.S. equity

market more than 15 years ago. There has been widespread interest in understanding the potential impact

of algorithmic trading on market dynamics, as some analysts have highlighted the potential for improved

liquidity and more e¢ cient price discovery while others have expressed concern that it may be a source of

increased volatility and reduced liquidity, particularly in times of market stress. A number of articles and

opinion pieces on the topic have recently appeared in the press, with most decrying practices used by some

algorithmic traders in the equity market, and there have been calls for regulatory agencies in the United States

and Europe to begin investigations.1 Despite this interest, there has been very little formal empirical research

on algorithmic trading, primarily because of a lack of data where algorithmic trades are clearly identi�ed.

A notable exception is a recent paper by Hendershott, Jones, and Menkveld (2007), who get around the

data constraint by using the �ow of electronic messages on the NYSE as a proxy for algorithmic trading.

They conclude that algorithmic trading on the NYSE, contrary to the pessimists� concerns, likely causes

an improvement in market liquidity.2 In the foreign exchange market, there has been no formal empirical

research on the subject. The adoption of algorithmic trading in the foreign exchange market is a far more

recent phenomenon than in the equity market, as the two major interdealer electronic trading platforms

only began to allow algorithmic trades a few years ago. Growth in algorithmic trading has been very rapid,

however, and a majority of foreign exchange transactions in the interdealer market currently involve at least

one algorithmic counterparty.

In algorithmic trading (AT), computers directly interface with trading platforms, placing orders without

immediate human intervention. The computers observe market data and possibly other information at very

high frequency, and, based on a built-in algorithm, send back trading instructions, often within milliseconds.

A variety of algorithms are used: for example, some look for arbitrage opportunities, including small dis-

crepancies in the exchange rates between three currencies; some seek optimal execution of large orders at

the minimum cost; and some seek to implement longer-term trading strategies in search of pro�ts. Among

the most recent developments in algorithmic trading, some algorithms now automatically read and interpret

economic data releases, generating trading orders before economists have begun to read the �rst line.
1See, for instance, �Rewarding Bad Actors,�by Paul Krugman, New York Times, August 3, 2009, �High-Frequency Trading

Grows, Shrouded in Secrecy,� Time, August 5, 2009, and �Don�t Set Speed Limits on Trading,� by Arthur Levitt Jr., Wall
Street Journal, August 18, 2009.

2We also note a paper by Hasbrouck (1996) on program trading, where he analyzes 3 months of data where program trades
can be separately identi�ed from other trades. He concludes that both types of orders have an approximately equivalent impact
on prices. Algorithmic trading is not exactly equivalent to program trading, though it is a close cousin. In principle, a program
trade could be generated by a trader�s computer and then the trade conducted manually by a human trader. Our de�nition of
AT refers to the direct interaction of a trader�s computer with an electronic trading platform, that is the automated placement
of a trade order on the platform.
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The extreme speed of execution that AT allows and the potential that algorithmic trades may be highly

correlated, perhaps as many institutions use similar algorithms, have been cited as reasons for concerns that

AT may generate large price swings and market instability. On the other hand, the fact that some algorithms

aim for optimal execution at a minimal price impact may be expected to lower volatility. In this paper, we

investigate whether algorithmic (�computer�) trades and non-algorithmic (�human�) trades have di¤erent

e¤ects on the foreign exchange market. We �rst ask whether the presence of computer trades causes higher or

lower volatility and whether computers increase or reduce liquidity during periods of market stress. We then

study the relative importance of human and computer trades in the process of price discovery and re-visit

the assumption that liquidity providers are �uninformed.�

We formally investigate these issues using a novel dataset consisting of two years (2006 and 2007) of

minute-by-minute trading data from EBS in three currency pairs: the euro-dollar, dollar-yen, and euro-yen.

The data represent the vast majority of global spot interdealer transactions in these exchange rates. An

important feature of the data is that the volume and direction of human and computer trades each minute

are explicitly identi�ed, allowing us to measure their respective impacts.

We �rst show some evidence that computer trades are more highly correlated with each other than human

trades, suggesting that the strategies used by computers are not as diverse as those used by humans. But

the high correlation of computer trades does not necessarily translate into higher volatility. In fact, we �nd

next that there is no evident causal relationship between AT and increased market volatility. If anything,

the presence of more algorithmic trading appears to lead to lower market volatility, although the economic

magnitude of the e¤ect is small. In order to account for the potential endogeneity of algorithmic trading with

regards to volatility, we instrument for the actual level of algorithmic trading with the installed capacity for

algorithmic trading in the EBS system at a given time.

Next, we study the relative provision of market liquidity by computers and humans at the times of the

most in�uential U.S. macroeconomic data release, the nonfarm payroll report. We �nd that, as a share of

total market-making activity, computers tend to pull back slightly at the precise time of the release but then

increase their presence in the following hour. This result suggests that computers do provide liquidity during

periods of market stress.

Finally, we estimate return-order �ow dynamics using a structural VAR framework in the tradition of

Hasbrouck (1991a). The VAR estimation provides two important insights. First, we �nd that human order

�ow accounts for much of the long-run variance in exchange rate returns in the euro-dollar and dollar-yen

exchange rate markets, i.e., humans appear to be the �informed�traders in these markets. In contrast, in the

euro-yen exchange rate market, computers and humans appear to be equally �informed.�In this cross-rate,

we believe that computers have a clear advantage over humans in detecting and reacting more quickly to
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triangular arbitrage opportunities, where the euro-yen price is brie�y out of line with prices in the euro-dollar

and dollar-yen markets. Second, we �nd that, on average, computers or humans that trade on a price posted

by a computer do not impact prices quite as much as they do when they trade on a price posted by a human.

One possible interpretation of this result is that computers tend to place limit orders more strategically

than humans do. This empirical evidence supports the literature that proposes to depart from the prevalent

assumption that liquidity providers in limit order books are passive.3

The paper proceeds as follows. In Section 2 we introduce the EBS exchange rate data, describing the

evolution over time of algorithmic trading and the pattern of interaction between human and algorithmic

traders. In Section 3 we study the correlation of algorithmic trades. In Section 4 we analyze the relationship

between algorithmic trading and exchange rate volatility. In Section 5 we discuss the provision of liquidity

by computers and humans at the time of a major data release. In Section 6 we report the results of the

high-frequency VAR analysis. We conclude in Section 7. Some robustness results are presented in the

Appendix.

2 Data description

Today, two electronic platforms process the vast majority of global interdealer spot trading in the major

currency pairs, one o¤ered by Reuters, and one o¤ered by EBS.4 These platforms, which are both electronic

limit order books, have become essential utilities for the foreign exchange market. Importantly, trading in

each major currency pair has over time become very highly concentrated on only one of the two systems. Of

the most traded currency pairs, the top two, euro-dollar and dollar-yen, trade primarily on EBS, while the

third, sterling-dollar, trades primarily on Reuters. As a result, the reference price at any moment for, say,

spot euro-dollar, is the current price on the EBS system, and all dealers across the globe base their customer

and derivative quotes on that price. EBS controls the network and each of the terminals on which the trading

is conducted. Traders can enter trading instructions manually, using an EBS keyboard, or, upon approval by

EBS, via a computer directly interfacing with the system. The type of trader (human or computer) behind

each trading instruction is recorded by EBS, allowing for our study.5

We have access to AT data from EBS from 2003 through 2007. We focus on the sample from 2006 and

2007, because, as we will show, algorithmic trades were a very small portion of total trades in the earlier years.

3For example, Chakravarty and Holden (1995), Kumar and Seppi (1994), Kaniel and Liu (2006), and Goettler, Parlour and
Rajan (2007) allow informed investors to use both limit and market orders. Bloom�eld, O�Hara and Saar (2005) argue that
informed traders are natural liquidity providers, and Angel (1994) and Harris (1998) show that informed investors can optimally
use limit orders when private information is su¢ ciently persistent.

4EBS has been part of the ICAP group since 2006.
5EBS uses the name �automated interface� (AI) to describe trading activity directly generated by a computer, activity we

call AT.
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In addition to the full 2006-2007 sample, we also consider a sub-sample covering the months of September,

October, and November of 2007, when algorithmic trading played an even more important role than earlier

in the sample.6 We study the three most-traded currency pairs on the EBS system: euro-dollar, dollar-yen,

and euro-yen.

The quote data, at the one-second frequency, consist of the highest bid quote and the lowest ask quote on

the EBS system in these currency pairs, from which we construct one-second mid-quote series and compute

one-minute exchange rate returns; all the quotes are executable and therefore represent the true price at

that moment. The transactions data are at the one-minute frequency and provide detailed information on

the volume and direction of trades that can be attributed to computers and humans in each currency pair.

Speci�cally, the transactions volume data are broken down into categories specifying the �maker�and �taker�

of the trades (i.e., human or computer), and the direction of the trades (i.e., buy or sell the base currency),

for a total of eight di¤erent combinations. That is, the �rst transaction category may specify, say, the minute-

by-minute volume of trade that results from a human taker buying the base currency by �hitting�a quote

posted by a human maker. We would record this activity as the human-human buy volume, with the aggressor

(taker) of the trade buying the base currency. The human-human sell volume is de�ned analogously, as are

the other six buy and sell volumes that arise from the remaining combinations of computers and humans

acting as makers and takers.

From these eight types of buy and sell volumes, we can construct, for each minute, trading volume and

order �ow measures for each of the four possible pairs of human and computer makers and takers: human-

maker/human-taker (HH), computer-maker/human-taker (CH), human-maker/computer-taker (HC), and

computer-maker/computer-taker (CC).7 That is, the sum of the buy and sell volumes for each pair gives

the volume of trade attributable to that particular combination of maker and taker (which we symbolize as,

V ol(HH) or V ol(HC), for example). The di¤erence between the buy and sell volume for each pair gives

us the order �ow attributable to that maker-taker combination (which we symbolize simply as HH or HC,

for example). The sum of the four volumes, V ol(HH + CH + HC + CC), gives the total volume of trade

in the market. The sum of the four order �ows, HH + CH + HC + CC, gives the total (market-wide)

order �ow.8 Throughout the paper, we will use the expression �order �ow�to refer both to the market-wide

order �ow and to the order �ows from other possible decompositions, with the distinction clearly indicated.

Importantly, the data allow us to consider order �ow broken down by the type of trader who initiated the

6We do not use December 2007 in the sub-sample to avoid the in�uence of year-end e¤ects.
7The naming convention for �maker�and �taker� re�ects the fact that the �maker�posts quotes before the �taker� chooses

to trade at that price. Posting quotes is, of course, the traditional role of the market-�maker.�
8There is a very high correlation in this market between trading volume per unit of time and the number of transactions

per unit of time, and the ratio between the two does not vary much over our sample. Order �ow measures based on amounts
transacted and those based on number of trades are therefore very similar.
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trade, human-taker order �ow (HH + CH) and computer-taker order �ow (HC + CC).

The main goal of this paper is to analyze the e¤ect algorithmic trading has on price discovery and

volatility in the foreign exchange market. In our exchange rate data as in other �nancial data, the net of

signed trades from the point of view of the takers (the market-wide order �ow) is highly positively correlated

with exchange rate returns, so that the takers are considered to be more �informed�than the makers. Thus,

in our analysis of the relative e¤ects of human and computer trades in the market, we consider prominently

the order �ow decomposition into human-taker order �ow and computer-taker order �ow. However, we also

consider two other decompositions in our work. We consider the most disaggregated decomposition of order

�ow (HH;CH;HC;CC), as this decomposition allows us to study whether the liquidity suppliers, who are

traditionally assumed to be �uninformed�, are posting quotes strategically. This situation is more likely to

arise in our data, which comes from a pure limit order book market, than in data from a hybrid market

like the NYSE, because, as Parlour and Seppi (2008) point out, the distinction between liquidity supply

and liquidity demand in limit order books is blurry.9 We also decompose the data by maker type (human

or computer) in order to study whether computers or humans are providing liquidity during the release of

public information, which are periods of high exchange rate volatility and, often, market stress.

In our analysis, we exclude data collected from Friday 17:00 through Sunday 17:00 New York time from

our sample, as activity on the system during these �non-standard� hours is minimal and not encouraged

by the foreign exchange community. We also drop certain holidays and days of unusually light volume:

December 24-December 26, December 31-January 2, Good Friday, Easter Monday, Memorial Day, Labor

Day, Thanksgiving and the following day, and July 4 (or, if this is on a weekend, the day on which the U.S.

Independence Day holiday is observed).

We show summary statistics for the one-minute returns and order �ow data in Table 1. This table contains

a number of noteworthy features. First, order �ow, whether in total, broken down by human and computer

takers, or broken down into the 4 possible pairs of makers and takers, is serially positively correlated, which

is consistent with some informed trading models. For example, Easley and O�Hara (1987) model a situation

where sequences of large purchases (sales) arise when insiders with positive (negative) signals are present in

the market. He and Wang (1995) also show that insiders with good (bad) news tend to buy (sell) repeatedly

until their private information is revealed in the prices. The positive serial correlation in order �ow is also

consistent with strategic order splitting, i.e. a trader willing to buy for informational or non-informational

reasons and splitting his order to reduce market impact. Second, the standard deviations of the various order

�ows di¤er by exchange rates, by type of taker and across maker/taker pairs. These di¤erences will be

9Parlour and Seppi (2008) note that in a limit order book investors with active trading motives, some of which are �informed�
traders, may choose to post limit orders that are more aggresive than those a disinterested liquidity provider would use but less
aggresive than market orders.
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important in the interpretation of the upcoming VAR analysis and variance decompositions.

We show in Figure 1, from 2003 through 2007 for our three major currency pairs, the fraction of trading

volume where at least one of the two counterparties was an algorithmic trader, i.e. V ol(CH +HC +CC) as

a fraction of total volume.10 From its beginning in 2003, the fraction of trading volume involving AT grew by

the end of 2007 to near 60% for euro-dollar, and dollar-yen trading, and to about 80% for euro-yen. Figure 2

shows, for our three currency pairs, the evolution over time of the four di¤erent possible types of trades (i.e.

V ol(HH), V ol(CH), V ol(HC), and V ol(CC); as fractions of the total volume). By the end of 2007, in the

euro-dollar and dollar-yen markets, human to human trades, in black, accounted for slightly less than half

of the volume, and computer to computer trades, in green, for about ten to �fteen percent. In euro-dollar

and dollar-yen, we note that V ol(HC) and V ol(CH) are about equal to each other, i.e. computers �take�

prices posted by humans, in red, about as often as humans take prices posted by market-making computers,

in blue. The story is di¤erent for the cross-rate, the euro-yen currency pair. By the end of 2007, there

were more computer to computer trades than human to human trades. But the most common type of trade

was computers trading on prices posted by humans. We believe this re�ects computers taking advantage

of short-lived triangular arbitrage opportunities, where prices set in the euro-dollar and dollar-yen markets

are very brie�y out of line with the euro-yen cross rate. In interpreting our results later in the paper, we

will keep in mind that trading volume is largest in the euro-dollar and dollar-yen markets, and that price

discovery happens mostly in those markets, not in the cross-rate. Our conclusions based on the euro-dollar

and dollar-yen markets will then be more easily generalized than those based on the euro-yen market. Table

2 tabulates the averages of the volume fractions shown in Figures 1 and 2, both for the full 2006-2007 sample

and the shorter three-month sub-sample.

3 How Correlated Are Algorithmic Trades and Strategies?

We �rst investigate the proposition that computers tend to have trading strategies that are more correlated

than those of humans. Since the outset of the �nancial turmoil in the summer of 2007, articles in the �nancial

press have suggested that AT programs tend to be similarly designed, leading them to take the same side of

the market in times of high volatility and potentially exaggerating market movements.11

One such instance may have happened on August 16, 2007, a day of very high volatility in the dollar-yen

market. On that day, the Japanese yen appreciated sharply against the U.S. dollar around 6:00 a.m. and 12:00

p.m. (NY time), as shown in Figure 3. The �gure also shows, for each 30-minute interval in the day, computer-

taker order �ow (HC +CC) in the top panel and human-taker order �ow (HH + CH) in the lower panel.

10The data in Figures 1 and 2 are 50-day moving averages of daily values, highlighting the broad trends over time.
11See, for instance, �Algorithmic Trades Produce Snowball E¤ects on Volatility,�Financial Times, December 5, 2008.
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The two sharp exchange rate movements mentioned happened when computers, as a group, aggressively

sold dollars and bought yen. We note that computers, during these episodes, mainly traded with humans,

not with other computers. Human order �ow at those times was, in contrast, quite small, even though the

overall trading volume initiated by humans (not shown) was well above that initiated by computers (human

takers were therefore selling and buying dollars in almost equal amounts). The �taking� orders generated

by computers during those time intervals were far more correlated than the taking orders generated by

humans. After 12:00 p.m., human traders, as a whole, then began to buy dollars fairly aggressively, and the

appreciation of the yen against the dollar was partially reversed. This is only a single example, of course,

but it leads us to ask how correlated computer trades and strategies have tended to be overall.

We do not know precisely the exact mix of the various strategies used by algorithmic traders on EBS.

Traders keep the information about their own strategies con�dential, including, to some extent, from EBS,

and EBS also keeps what they know con�dential.12 However, one can get a general sense of the market

and of the strategies in conversations with market participants. About half of the algorithmic trading

volume on EBS is believed to come from what is often known as the �professional trading community,�

which primarily refers to hedge funds and commodity trading advisors (CTAs). These participants, until

very recently, could not trade manually on EBS, so all their trades were algorithmic. Some hedge funds

and CTAs seek to exploit short-lived arbitrage opportunities, including triangular arbitrage, often accessing

several trading platforms. Others implement lower-frequency strategies, often grouped under the statistical

arbitrage appellation, including carry trades, momentum trades, and strategies spanning several asset classes.

Only a very small fraction of the trading volume in our sample period is believed to have been generated

by algorithms designed to quickly react to data releases. The other half (approximately) of the algorithmic

trading volume comes from foreign exchange dealing banks, the only participants allowed on the EBS system

until 2003. Some of the banks�algorithmic trading is clearly related to activity on their own customer-to-

dealer platforms, to automate hedging activity, and to minimizing the impact of the execution of large orders.

But a sizable fraction is believed to be proprietary trading implemented algorithmically, likely using a mix

of strategies similar to those employed by hedge funds and CTAs. Overall, market participants generally

believe that the mix of algorithmic strategies used in the foreign exchange market di¤ers from that seen in

the equity market, where optimal execution algorithms are thought to be relatively more prevalent.

The August 16, 2007 episode shown above was widely viewed as the result of a sudden unwinding of the

yen-carry trade, with hedge funds and proprietary trading desks at banks rushing to close risky positions

and buying yen to pay back low-interest loans. The evidence in this case raises the possibility that many

12EBS requires that new algorithmic traders on its system �rst test their algorithms in simulated conditions. EBS then rou-
tinely monitors the trading practices of its customers. A high number of excessively short-lived quotes (�ashing) is discouraged,
as is a very low ratio of trades to quotes.
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algorithmic traders were using fairly similar carry trade and momentum strategies at the time, leading to

the high correlation of algorithmic orders and to sharp exchange rate movements. Of course, this is only

one episode in our two-year sample. Furthermore, episodes of very sharp appreciation of the yen due to the

rapid unwinding of yen carry trades have occurred on several occasions since the late 1990s, some obviously

before algorithmic trading was allowed in the market. The sharp move of the yen in October 1998, including

a 1-day appreciation of the yen against the dollar of about 7 percent, is the best-known example of such an

episode. Next, we investigate whether there is evidence that, over the entire sample, the strategies used by

algorithmic traders have tended to be more correlated than those used by human traders.

If computers and humans are indi¤erent between taking or making liquidity at a given point in time,

then we should observe that computers and humans trade with each other in proportion to their relative

presence in the market. If, on the other hand, computers tend to have more homogeneous trading strategies,

we should observe computers trading less among themselves and more with humans. At the extreme, if all

computers used the very same algorithms and had the exact same speed of execution, we would observe no

trading volume among computers. Therefore, the fraction of trades conducted between computers contains

information on how correlated their strategies are.13

To investigate the proposition that computers tend to have trading strategies that are more correlated

than those of humans we pursue the following approach. We �rst consider a simple benchmark model that

assumes random and independent matching of traders. This model allows us to determine the theoret-

ical probabilities of the four possible trades: Human-maker/human-taker, computer-maker/human-taker,

human-maker/computer-taker and computer-maker/computer-taker. We then make inferences regarding the

diversity of computer trading strategies based on how the trading pairs we observe compare to those the

benchmark model predicts.

In the benchmark model there are Hm potential human-makers (the number of humans that are standing

ready to provide liquidity), Ht potential human-takers, Cm potential computer-makers, and Ct potential

computer-takers. For a given period of time, the probability of a computer providing liquidity to a trader

is equal to Prob(computer � make) = Cm
Cm+Hm

, which we label for simplicity as �m, and the probability

of a computer taking liquidity from the market is Prob(computer � take) = Ct
Ct+Ht

= �t. The remaining

makers and takers are humans, in proportions (1 � �m) and (1 � �t), respectively. Assuming that these

events are independent, the probabilities of the four possible trades, human-maker/human-taker, computer-

13Sto¤man (2007) uses a similar method to estimate how correlated individual investor strategies are compared to institutional
investor strategies.
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maker/human-taker, human-maker/computer-taker and computer-maker/computer taker, are:

Prob(HH) = (1� �m)(1� �t)

Prob(HC) = (1� �m)�t

Prob(CH) = �m(1� �t)

Prob(CC) = �m�t:

These probabilities yield the following identity,

Prob(HH)� Prob(CC) � Prob(HC)� Prob(CH);

which can be re-written as,
Prob(HH)

Prob(CH)
� Prob(HC)

Prob(CC)
:

We label the �rst ratio, RH � Prob(HH)
Prob(CH) , the �human-taker�ratio and the second ratio, RC �

Prob(HC)
Prob(CC) ,

the �computer-taker�ratio. In a world with more human traders (both makers and takers) than computer

traders, each of these ratios will be greater than one, because Prob(HH) > Prob(CH) and Prob(HC) >

Prob(CC) i.e., computers take liquidity more from humans than from other computers, and humans take

liquidity more from humans than from computers. However, under the baseline assumptions of our random-

matching model, the identity shown above states that the ratio of ratios, R � RC
RH , will be equal to one.

In other words, humans will take liquidity from other humans in a similar proportion that computers take

liquidity from humans.

Turning to the data, under the assumption that potential human-takers are randomly matched with

potential human-makers, i.e., that the probability of a human-maker/human-taker trade is equal to the one

predicted by our model, Prob(HH) = Hm�Ht

(Hm+Cm)�(Ht+Ct)
, we can now derive implications from observations of

R, our ratio of ratios. In particular, �nding R > 1 must imply that algorithmic strategies are more correlated

than what our random matching model implies. In other words, for R > 1 we must observe that either

computers trade with each other less than expected (Prob(CC) < Cm�Ct
(Hm+Cm)�(Ht+Ct)

) or that computers trade

with humans more than expected (either Prob(CH) > Cm�Ht

(Hm+Cm)�(Ht+Ct)
or Prob(HC) > Hm�Ct

(Hm+Cm)�(Ht+Ct)
).

Our dataset allows us to estimate an ex-post proxy for R. Namely, for each trading day we estimatedRH = V ol(HH)
V ol(CH) and

dRC = V ol(HC)
V ol(CC) , where V ol (HH) is the daily trading volume between human makers

and human takers, and so forth. In Table 3 we show the mean of the daily ratio of ratios, bR =
dRCdRH ; for

each currency pair for the full sample and the three-month sub-sample. In contrast to the above theoretical
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prediction that R � RC
RH = 1, we �nd that for all currency pairs bR is statistically greater than one. This

result is very robust: in euro-dollar, all daily observations of bR are above one, and only a very small fraction
of the daily observations are below one for the other currency pairs. The results thus show that computers

do not trade with each other as much as random matching would predict. We take this as evidence that

algorithmic strategies are likely less diverse than the trading strategies used by human traders.

This �nding, combined with the observed growth in algorithmic trading over time, may raise some concerns

about the impact of AT on volatility in the foreign exchange market. As mentioned previously, some analysts

have pointed to the possible danger of having many algorithmic traders take the same side of the market at

the same moment. However, it is not a foregone conclusion that a high correlation of algorithmic strategies

should necessarily lead to higher volatility or large swings in exchange rates. Both the high correlation

of trading strategies and the widespread use of de-stabilizing strategies may need to be present to cause

higher volatility. For instance, if many algorithmic traders use similar triangular arbitrage strategies, the

high correlation of those strategies should have little impact on volatility, and may even lower volatility as

it improves the e¢ ciency of the price discovery process. Strategies designed to minimize the price impact of

trades should also, a priori, not be expected to increase volatility. In contrast, if the high correlation re�ects

a large number of algorithmic traders using the same carry trade or momentum strategies, as in the August

2007 example shown at the beginning of this section, then there may be some reasons for concern. However,

as noted earlier, episodes of sharp movements in exchange rates similar to that example have occurred in

the past on several occasions, including well before the introduction of algorithmic trading in the foreign

exchange market, suggesting that such episodes are a result of the dramatic unwinding of certain trading

strategies, regardless of whether these strategies are implemented through algorithmic trading or not. In

the next section, we explicitly investigate the relationship between the presence of algorithmic trading and

market volatility.

4 The impact of algorithmic trading on volatility

In this section, we study whether the presence of algorithmic trading is associated with disruptive market

behavior in the form of increased volatility. In particular, taking into account the potential endogeneity of

algorithmic trading activity, we test for a causal relationship between the fraction of daily algorithmic trading

relative to the overall daily volume, and daily realized volatility.
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4.1 A �rst look

We �rst take an informal look at the data. Figure 4 shows monthly observations of annualized realized

volatility (based on 1-minute returns) and of the fraction of algorithmic trading (the fraction of total trading

volume involving at least one computer trader) for each of our currency pairs. As discussed earlier, there is a

clear upward trend in the fraction of AT in the three currency pairs over 2006 and 2007. Realized volatility

in euro-dollar, dollar-yen, and euro-yen declines slightly until mid-2007, and then rises in the second half of

2007, particularly sharply in the yen exchange rates, as the �nancial crisis begins.

In Figure 5, we study whether days with high market volatility are also days with a higher-than-usual

fraction of algorithmic trading, and vice-versa. Using daily observations, we �rst sort the data into increasing

deciles of realized volatility (the decile means are shown as bars in the graphs on the left).14 We then calculate

the mean fraction of AT for the days in each of these deciles (shown as lines in the same graphs). To account

for the sharp upward trend in algorithmic participation over our sample, the daily fraction of algorithmic

trading is normalized: we divide it by a 20-day moving average centered on the chosen observation (a moving

average from day t � 10 through day t + 10, excluding day t). Next, we repeat the exercise, now sorting

the daily data into increasing deciles of the normalized fraction of AT (the decile means are shown as bars

in the graphs on the right) and calculating mean realized volatility for the days in each of these deciles

(shown as lines in the same graphs). The results in Figure 5 (both the graphs on the left and the graphs on

the right) show little or no relationship between the level of realized volatility on a particular day and the

normalized fraction of AT on that same day. The highest decile in the euro-dollar currency pair may be the

only possible exception, with a slight uptick evident in both volatility and AT activity. Finally, we note that,

in untabulated results, for each of the three currency pairs, not one of the top 10 days in realized volatility

is associated with a top ten day in the share of (normalized) AT.

The simple analysis in Figure 5 does not point to any substantial systematic link between AT activity

and volatility. However, this analysis ignores the possible, and likely, endogeneity of algorithmic activity with

regards to volatility, and therefore does not address the question of whether there is a causal relationship

between algorithmic trading and volatility. In the remainder of this section, we attempt to answer this

question through an instrumental variable analysis.

4.2 Identi�cation

The main challenge in identifying a causal relationship between algorithmic trading and volatility is the

potential endogeneity of algorithmic trading. That is, although one may conjecture that algorithmic trading

14With 498 daily observations, the �rst 9 deciles each include 50 observations, and the highest decile contains 48 observations.
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impacts volatility, it is also plausible that algorithmic trading activity may be a function of the level of

volatility. For instance, highly volatile markets may present comparative advantages to automated trading

algorithms relative to human traders, which might increase the fraction of algorithmic trading during volatile

periods. In contrast, however, one could also argue that a high level of volatility might reduce the infor-

mativeness of historical price patterns on which some trading algorithms are likely to base their decisions,

and thus reduce the e¤ectiveness of the algorithms and lead them to trade less. Thus, one can not easily

determine in what direction the bias will go in an OLS regression of volatility on the fraction of algorithmic

trading. To deal with the endogeneity issue, we adopt an instrumental variable (IV) approach as outlined

below.

We are interested in estimating the following regression equation,

RVit = �i + �iATit + 

0
i� it +

22X
k=1

�iRVit�k + �it; (1)

where i = 1; 2; 3 represents currency pairs and t = 1; :::; T , represents time. RVit is (log) realized daily

volatility, ATit is the fraction of algorithmic trading at time t in currency pair i, � it is either a time trend or

a set of time dummies that control for secular trends in the data, and �it is an error term that is assumed

to be uncorrelated with RVit�k, k � 1, but not necessarily with ATit. The large number of lags of volatility,

which covers the business days of the past month, is included to control for the strong serial correlation in

volatility (e.g. Andersen, Bollerslev, Diebold, and Labys, 2003 and Bollerslev and Wright, 2000). The exact

de�nitions of RVit, ATit, and � it are given below.

The main focus of interest is the parameter �i, which measures the impact of algorithmic trading on

volatility in currency pair i. However, since ATit and �it may be correlated, due to the potential endogeneity

discussed above, the OLS estimator of �i may be biased. In order to obtain an unbiased estimate, we

will therefore consider an instrumental variable approach. Formally, we need to �nd a variable, or set of

variables, zit, that is uncorrelated with �it (validity of the instrument) and correlated with ATit (relevance

of the instrument).

The instrument we propose to use is the fraction of trading �oors equipped to trade algorithmically on

EBS relative to the total number of trading �oors linked to the EBS system.15 That is, in order to place

algorithmic trades on EBS, a special user interface is required, and the total number of trading �oors with

such user interfaces thus provides a measure of the overall algorithmic trading �capacity� in the market.

The ratio of these algorithmic trading �oors to the total number of trading �oors provides a measure of the

15More precisely, we actually observe a time series of the number of EBS �deal codes� of each type over our sample period.
Generally speaking, EBS assigns a deal code to each trading �oor equipped with at least one of its terminals, and records
whether they are equipped to trade algorithmically or not. These data are con�dential.
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potential fraction of algorithmic trading. Since setting up an algorithmic trading operation likely takes several

months, the number of trading �oors of each type is clearly exogenous with regards to daily market volatility;

the fraction of AT trading �oors is therefore a valid instrument. In addition, it is positively correlated with

the fraction of algorithmic trading, and it provides a relevant instrument as seen from the tests for weak

instruments discussed below.

Under the breakdown provided by EBS, there are three types of trading �oors linked to the EBS system:

purely algorithmic trading �oors, purely manual trading �oors, and dual trading �oors, those equipped to

handle both manual and algorithmic trades. We consider two natural instrumental variables: the fraction of

pure AT trading �oors over the total number of trading �oors (including pure AT, manual, and dual ones),

and the fraction of the sum of pure AT and dual trading �oors over the total number. Since it is not obvious

which variable is the better instrument, we use both simultaneously.16

The data on AT trading �oors are provided on a monthly basis, whereas the data on realized volatility and

algorithmic trading are sampled on a daily frequency. We therefore transform the trading �oor data to daily

data by repeating the monthly value each day of the month. Although this leads to a dataset of two years

of daily data, the number of daily observations (498) overstates the e¤ective number of observations, since

the coe¢ cient on AT participation will be identi�ed from monthly variations in the instrumental variables.

Transforming the instruments to a daily frequency is, however, more e¢ cient than transforming all data to

a monthly frequency, since the daily data help to identify the monthly shifts.

The instrumental variable regressions are estimated using Limited Information Maximum Likelihood

(LIML), and we test for weak instruments by comparing the �rst stage F�statistic for the excluded instru-

ments to the critical values of Stock and Yogo�s (2005) test of weak instruments. We use LIML rather than

two-stage least squares since Stock and Yogo (2005) show that the former is much less sensitive to weak

instruments than the latter (see also Stock et al., 2002).

4.3 Variable de�nitions

4.3.1 Realized Volatility

Volatility is measured as the daily realized volatility obtained from one minute returns; that is, the volatility

measure is equal to the square root of the daily sum of squared one minute log-price changes. The use of

realized volatility, based on high-frequency intra-daily returns, as an estimate of ex-post volatility is now

well established and generally considered the most precise and robust way of measuring volatility. Although

16Regressions not reported here show that using the fraction of pure AT trading �oors as a single instrument gives qualitatively
similar results to those presented below based on both instruments. Using the fraction of the sum of both pure and dual AT
trading �oors as a single instrument also leads to the same qualititative conclusion, but with more signs of weak instruments.
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many older studies relied on �ve minute returns in order to avoid contamination by market microstructure

noise (e.g. Andersen et al., 2001), recent work shows that sampling at the one-minute frequency, or even

higher frequencies, does not lead to biases in liquid markets (see, for instance, the results for liquid stocks

in Bandi and Russel, 2006, and the study by Chaboud et al., 2007, who explicitly examine EBS data on the

euro-dollar exchange rate during 2005 and �nds that sampling frequencies upwards of once every 20 seconds

does not lead to noticeable biases). Here, we restrict ourselves to using minute-by-minute data.17 Following

the common conventions in the literature on volatility modelling (e.g. Andersen, Bollerslev, Diebold, and

Labys, 2003), the realized volatility is log-transformed to obtain a more well behaved time-series.

4.3.2 Algorithmic trading

We consider two measures of the fraction of algorithmic trading, ATit, in a given currency pair: the computer-

participation fraction and the computer-taker fraction. The �rst is simply the percent of the overall trading

volume that includes an algorithmic trader as either a maker or a taker (V ol(CH + HC + CC)); that is,

the percent of trading volume where a computer is involved in at least one side of the trade. In addition,

we also consider an alternative measure de�ned as the fraction of overall trading volume that is due to a

computer-taker (V ol(HC + CC)).

4.3.3 Time controls

As seen in Figure 4, there is a clear secular trend in the computer-participation fraction,18 which is not present

in realized volatility. Euro-dollar, dollar-yen, and euro-yen volatility is trending down at the beginning of the

period and starts to trend up in the summer of 2007. In order to control for the trend in algorithmic trading

in the regression, we include either a �linear quarterly�time trend or a full set of year-quarter dummies, one

for each year-quarter pair in the data (8 dummies). That is, the linear quarterly time trend stays constant

within each quarter and increases by the same amount each quarter, whereas the year-quarter dummies allows

for a more �exible trend speci�cation that can shift in arbitrary fashion from year-quarter to year-quarter.

Both secular trend speci�cations are thus �xed within each quarter. This restriction is imposed in order to

preserve the identi�cation coming from the monthly instrumental variables. Using monthly, or �ner, time

dummies would eliminate the variation in the instrument and render the model unidenti�ed. Although it is

theoretically possible to include a monthly time trend, this would lead to very weak identi�cation empirically.

17Using realized volatility based on �ve-minute returns leads to results that are very similar to those reported below for the
one-minute returns, and the qualitative conclusions are identical.
18The same is true for the computer-taker fraction, not shown in the �gure.
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4.4 Empirical results

The regression results are presented in Table 4. We present OLS and LIML-IV results, with either the

quarterly trend or the year-quarter dummies included. We show in Panels A and B the results for the

computer-participation volume, and in Panels C and D the results for computer-taker volume. We report

results for the sample starting in January 2006 and ending in December 2007. In order to save space, we

only show the estimates of the coe¢ cients in front of the fraction of algorithmic trading volume variables.

The OLS results, which are likely to be biased due to the aforementioned endogeneity issues, show a fairly

clear pattern of a positive correlation between volatility and AT participation, with several positive and

statistically signi�cant coe¢ cients. The R2s are fairly large, re�ecting the strong serial correlation in realized

volatility, which is picked up by the lagged regressors. There are also no systematic di¤erences between the

quarterly trend and quarterly dummies speci�cations.

Turning to the more interesting IV results, which control for the endogeneity bias, the coe¢ cient estimates

change fairly dramatically. All point estimates are now negative and some of them are statistically signi�cant.

Thus, if there is a causal relationship between the fraction of algorithmic trading and the level of volatility, all

evidence suggests that it is negative, such that increased AT participation lowers the volatility in the market.

The stark di¤erence between the IV and OLS results shows the importance of controlling for endogeneity

when estimating the causal e¤ect of AT on volatility; the opposite conclusion would have been reached if

one ignored the endogeneity issue. The evidence of a statistically signi�cant relationship is fairly weak,

however, with most coe¢ cients statistically indistinguishable from zero. The more restrictive quarterly trend

speci�cation suggests a signi�cant relationship for the euro-dollar and dollar-yen, but this no longer holds if

one allows for year-quarter dummies.

To the extent that the estimated coe¢ cients are statistically signi�cant, it is important to discuss the

economic magnitude of the estimated relationship between AT and volatility. The regression is run with log

volatility rather than actual volatility, which makes it a little less straightforward to interpret the size of the

coe¢ cients. However, some back-of-the-envelope calculations can provide a rough idea. Suppose that the

coe¢ cient on computer participation is about �0:01, which is in line with the coe¢ cient estimates for the

euro-dollar. The average monthly shift in computer participation in the euro-dollar is about 1.5 percentage

points and the average log-volatility in the euro-dollar is about 3:76 (with returns calculated in basis points),

which implies an annualized volatility of about 6:82 percent. Increasing the computer participation fraction

by 1.5 percentage points decreases log-volatility by 0:015 and results in an annualized volatility of about 6:72.

Thus, a typical change in computer participation might change volatility by about a tenth of a percentage

point in annualized terms, a small e¤ect.
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The �rst stage F�statistics for the excluded instruments in the IV regressions are also reported in Panels

B and D. Stock and Yogo (2005) show that this F�statistic can be used to test for weak instruments.

Rejection of the null of weak instruments indicates that standard inference on the IV-estimated coe¢ cients

can be performed, whereas a failure to reject indicates possible size distortions in the tests of the LIML

coe¢ cients. The critical values of Stock and Yogo (2005) are designed such that they indicate a maximal

actual size for a nominal sized �ve percent test on the coe¢ cient. Thus, in the case considered here with two

excluded instruments and one endogenous regressor, a value greater than 8:68 for this F�statistic indicates

that the maximal size of a nominal 5 percent test will be no greater than 10 percent, which might be deemed

acceptable; a value greater than 5:33 for the F�statistic indicates a maximal size of 15 percent for a nominal

5 percent test. In general, the larger the F�statistic, the stronger the instruments. As is evident from the

table, there are no signs of weak instruments in the speci�cation with a quarterly trend. There are, however,

signs of weak instruments in the case with year-quarter dummies, for the euro-yen. This is not too surprising

given that the instruments only change on a monthly frequency, and the year-quarter dummies therefore put

a great deal of strain on the identi�cation mechanism. Importantly, though, the results for the two major

currency pairs are robust to any weak-instrument problems and the reported coe¢ cients and standard errors

are unbiased.

To sum up, the evidence of any causal e¤ect of algorithmic trading on volatility is not strong, but what

evidence there is points fairly consistently towards a negative relationship. There is thus no systematic

statistical evidence to back the often-voiced opinion that AT leads to increased levels of market volatility. If

anything, the contrary appears to be true.

5 Who provides liquidity during the release of public announce-

ments?

In the previous section we discuss one of the major concerns regarding algorithmic trading, namely, whether

AT causes exchange rate volatility. We now examine another major concern, whether AT improves or

reduces liquidity during stress periods, when it is arguably needed the most. To answer this question, we

cannot simply regress computer-maker volume, a proxy for liquidity provided by computers, on exchange

rate volatility, a proxy for stress periods, because, as we discussed in the previous section, algorithmic

volume and volatility are endogenous variables. In contrast to the previous section we do not estimate an IV

regression, as there are no obvious instruments for volatility.19 Instead, we follow the event study literature

19One could consider macroeconomic news announcements as potential instruments for volatility. However, macroeconomic
news announcements are exogeneous variables that cause both foreign exchange rate volatility and liquidity changes. Since we
cannot assume that the e¤ect macroeconomic news announcements have on liquidity is only due to the e¤ect macroeconomic
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and compare the liquidity provision by humans and computers during U.S. nonfarm payroll announcements,

a period of exogenously heightened volatility, to the liquidity provision by both types of agents during non-

announcement days. This comparison will help us determine who provides relatively more liquidity during

stress periods. We note that, when we consider liquidity provision by humans and computers following other

important macroeconomic news announcements, the results are qualitatively similar. However, we focus in

this section on the nonfarm payroll announcement only, as it routinely generates the highest volatility of all

US macroeconomic announcements.20

We consider two liquidity provision estimates: a one-minute estimate and a one-hour estimate. The one-

minute estimate is calculated using volume observations from 8:30 a.m. to 8.31 a.m. ET (when U.S. nonfarm

payroll is released), while the one-hour estimate is calculated using observations from 8:25 am to 9:24 am

ET. We de�ne the one-minute (one-hour) liquidity provision by humans, LH, as the sum of human-maker

volume, V ol(HH+HC), divided by total volume during that period, and the one-minute (one-hour) liquidity

provision by computers, LC, as the sum of computer-maker volume, V ol(CC+CH), divided by total volume

during that period. Similar to the liquidity provision measures, we de�ne the one-minute volatility as the

squared 1-minute return from 8:30 a.m. to 8.31 a.m. ET and the one-hour volatility as the sum of squared

1-minute returns from 8:25 am to 9:24 am ET.

To compare liquidity provision by humans and computers during announcement times to liquidity provi-

sion during (more tranquil) non-announcement times, we could estimate the average liquidity provision during

announcement times and compare it to the average liquidity provision during non-announcement times, with

both means taken over the entire sample period. However, as we discussed previously, exchange rate trading

volumes and the shares of liquidity provision by humans and computers exhibit clear trends over our sample,

making the comparison of the two di¤erent means problematic. Alternatively, and this is the methodology

we follow, on each announcement day we estimate the ratio of liquidity provision on that day relative to the

liquidity provision on days surrounding the announcement. This amounts to using a non-parametric approach

to detrend the data. The time series of these ratios will be stationary, and we can then test the hypothe-

sis that the ratio is greater than one. Speci�cally, we divide the one-minute (one-hour) liquidity provision

by humans, LHa, and computers, LCa, estimated on announcement day t by the one-minute (one-hour)

liquidity provision by humans, LHn, and computers, LCn, respectively, estimated during the surrounding

non-announcement day period, de�ned as 10 business days before and after a nonfarm payroll release date

t. The liquidity provision measures on the non-announcement days are calculated in the same manner as

on the announcement days, using data only for the periods 8:30 a.m. to 8.31 a.m. ET or 8:25 am to 9:24

news announcements have on volatility, the exclusion restriction required by IV estimation is violated.
20Andersen and Bollerslev (1998), among others, refer to the nonfarm payroll report as the �king�of announcements, because

of the signi�cant sensitivity of most asset markets to its release.
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am ET, for the one-minute and one-hour measures, respectively.21 We follow the same procedure with our

one-minute and one-hour volatility estimates.

Consistent with previous studies, we show in Table 5 Panel A that the one-hour volatility on nonfarm

payroll announcement days is 3 to 6 times larger than during non-announcement days. The one-minute

volatility is 15 to 30 times larger during announcement days compared to non-announcement days. As

expected, given the fact that we focus on a U.S. data release, the volatility increase is smaller in the cross-

rate, the euro-yen exchange rate, than in the euro-dollar and yen-dollar exchange rates. Focusing on the

statistically signi�cant estimates, we show in Table 5 Panel B that, as a share of total volume, human-

maker volume tends to increase during the minute of the announcement (the one-minute ratio LHa

LHn
is greater

than one), while computer-maker volume tends to decrease (the one-minute ratio LCa
LCn

is less than one).

Interestingly, this pattern is reversed when we focus on the one-hour volume estimates for the euro-dollar

and euro-yen exchange rate markets. In relative terms, computers do not increase their provision of liquidity

as much as humans do during the minute following the announcement. However, computers increase their

provision of liquidity relatively more than humans do over the entire hour following the announcement, a

period when market volatility remains quite elevated.

We note that, over our sample period, the U.S. nonfarm payroll data releases were clearly the most

anticipated and most in�uential U.S. macroeconomic data releases. They often generated a large initial

sharp movement in exchange rates, followed by an extended period of volatility. The behavior of computer

traders observed in the �rst minute could re�ect the fact that many algorithms are not designed to react

to the sharp, almost discrete, moves in exchange rates that often come at the precise moment of the data

release. Some algorithmic traders may then prefer to pull back from the market a few seconds before 8:30

a.m. ET on days of nonfarm payroll announcements, resuming trading once the risk of a sharp initial price

movement has passed. But the data show that algorithmic traders, as a whole, do not shrink back from

providing liquidity during the extended period of volatility that follows the data releases.

6 Price Discovery

In the previous three sections, we analyze questions that are primarily motivated by practical concerns

regarding algorithmic trading, such as whether computer traders induce volatility or reduce liquidity. In this

section we turn to questions that are driven more by the market microstructure literature, but that also lead

21For simplicity, we label the 10 business days before and after the nonfarm payroll announcement as non-announcement days.
However, during this 20-day period there are both days with no macroeconomic news and days with news. For instance, every
Thursday, including the day before the monthly nonfarm payroll number is released, initial jobless claims are released. Thus,
our estimation will likely be biased towards not �nding statistically di¤erent behavior across the two periods. As we show in
Table 5, volatility is, on average, much lower during this 20-day period than on nonfarm payroll days, and therefore the period
still serves as a good benchmark.
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to interesting practical insights regarding the e¤ects and nature of algorithmic trading. In particular, we

study price discovery within a vector autoregressive framework, which enables us to evaluate to what extent

humans or computers represent the �informed�traders in the market. Our �ndings reveal several interesting

features regarding the impact of algorithmic trades and the order placement behavior of computer traders.

6.1 Who are the �informed�traders, humans or computers?

We �rst investigate whether human or computer trades have a more �permanent�impact on prices. To this

end, we estimate return-order �ow dynamics in a structural vector autoregressive (VAR) framework in the

tradition of Hasbrouck (1991a), where returns are contemporaneously a¤ected by order �ow, but order �ow

is not contemporaneously a¤ected by returns. Similar to Hasbrouck�s (1996) decomposition of program and

nonprogram order �ow, we decompose order �ow into two components: human-taker
�
OF (ht) = HH + CH

�
and computer-taker

�
OF (ct) = HC + CC

�
, and thus we estimate for each currency i one return equation

and two order �ow equations. In light of Evans and Lyons (2008) �ndings, we estimate the structural VAR

with U.S. macroeconomic news surprises as exogenous variables that a¤ect both returns and order �ow.

Speci�cally, we estimate the following system of equations for each currency i,
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Here rit is the 1-minute exchange rate return for currency i at time t; OFhtit is the currency i human-taker order

�ow at time t; OF ctit is the currency i computer-taker order �ow at time t; and Skt is the macroeconomic news

announcement surprise for announcement k at time t de�ned as the di¤erence between the announcement

realization and its corresponding market expectation. We use Bloomberg�s real-time data on the expectations

and realizations of K = 28 U.S. macroeconomic fundamentals to calculate Skt. The 28 announcements we

consider are similar to those in Andersen et al. (2003, 2007) and Pasquariello and Vega (2007).22 Since units

of measurement vary across macroeconomic variables, we standardize the resulting surprises by dividing each

22Our list of U.S. macroeconomic news announcements is the same as the list of announcements in Andersen et al. (2007) and
Pasquariello and Vega (2007) with the addition of three announcements: unemployment rate, core PPI and core CPI. Andersen
et al. (2007) and Pasquariello and Vega (2007) use International Money Market Services (MMS) data on the expectations of
U.S. macroeconomic fundamentals. In contrast, we use Bloomberg data because the MMS data are no longer available after
2003. Bloomberg provides survey data similar to those MMS previously provided.
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of them by their sample standard deviation. Economic theory suggests that we should also include foreign

macroeconomic news announcements in equation (2). However, previous studies �nd that exchange rates do

not respond much to non-U.S. macroeconomic announcements, even at high frequencies (e.g. Andersen et

al., 2003), so we expect the omitted variable bias in our speci�cation to be small.

The underlying economic model is based on continuous time, and we thus estimate the VAR using the

highest sample frequency available to us, minute-by-minute data. The estimation period is restricted to the

2006�2007 sample, and the total number of observations for each currency pair is 717; 120 in the full sample

and 89; 280 in the three-month sub-sample (September, October and November of 2007). In both samples,

20 lags are included in the estimated VARs, i.e. J = 20.

Our speci�cation in equation (2) does not allow human-taker order �ow to contemporaneously a¤ect

computer-taker order �ow or vice-versa. The advantage of this approach is that we can estimate the impulse

response functions without giving more importance to a particular type of order �ow, i.e., we do not need to

assume a particular ordering of the human-taker and computer-taker order �ow in the VAR. The disadvantage

is that the human-taker and computer-taker order �ow shocks may not be orthogonal. However, in our

estimation this does not appear to be a problem, as our residuals are found to be approximately orthogonal

(the correlation between the human-taker and computer-taker equation residuals are -0.001, -0.1 and -0.1 for

the euro-dollar, yen-dollar, and euro-yen exchange rates respectively). As a robustness check, we also estimate

the VAR with two di¤erent orderings. We �rst assume human-taker order �ow a¤ects computer-taker order

�ow contemporaneously, and then assume the opposite ordering. This latter approach allows us to compute

upper and lower bound impulse responses. These results are presented in the Appendix, and show that the

results presented here are not sensitive to alternative identi�cation schemes in the VAR.

Before considering the impulse response functions and the variance decompositions, we brie�y summarize

the main lessons from the estimated coe¢ cients in the VAR. Focusing on the return equation, we �nd that

minute-by-minute returns tend to be negatively serially correlated, with the coe¢ cient on the �rst own lag

varying between �0:08 and �0:15; there is thus some evidence of mean reversion in the exchange rates at

these high frequencies, which is a well-know empirical �nding. Both order �ows are signi�cant predictors of

returns. The price impact of the lagged order �ows range from around 4 to 18 basis points per billion units

of order �ow (denominated in the base currency), as compared to a range of approximately 28 � 100 basis

points in the contemporaneous order �ow. As theory would predict, we �nd that U.S. macroeconomic news

announcements a¤ect less the euro-yen exchange rate (i.e., the R2 of regressing the euro-yen exchange rate on

macroeconomic news surprises and restricting the sample to announcement-only observations is 23%) than

the euro-dollar and dollar-yen exchange rates (i.e., the R2s of an announcement-only sample are 60% and

59%, respectively). However, U.S. macroeconomic news announcements still have an e¤ect on the cross-rate
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to the extent that the U.S. economy is more or less correlated with the Japanese or the Euro-area economy.

Focusing on the order-�ow equations, we �nd that the �rst own lag in both order �ow equations is

always highly signi�cant, and typically around 0:1 for all currency pairs. There is thus a sizeable �rst-order

autocorrelation in the human-taker and computer-taker order �ows. The coe¢ cients on the �rst order cross-

lags in the order �ow regressions are most often substantially smaller than the coe¢ cient on the own lag and

vary in signs. Lagged returns have a small but positive impact on order �ow, suggestive of a form of trend

chasing by both computers and humans in their order placement.

We note that despite the strongly signi�cant estimates that are recorded in the VAR estimations, the

amount of variation in the order �ow and return variables that is captured by their lagged values is very

limited. The R2 for the estimated equations with only lagged variables are typically around three to ten

percent for the order �ow equations, and between one and three percent for the return equations. This can

be compared to an R2 of 20 to 30 percent when one includes contemporaneous order �ow.

6.2 Impulse Response Function and Variance Decomposition Results

As originally suggested by Hasbrouck (1991b), we use the impulse response functions to assess the price

impact of various order �ow types, and the variance decompositions to measure the relative importance of

the variables driving foreign exchange returns. In Table 6 Panel A, we show the results from the impulse

response analysis based on the estimation of equation (2), using the full sample for 2006-2007 and the three-

month sub-sample, when the size of the shock is the same across the di¤erent types of order �ow: a one billion

base currency shock to order �ow. We also show the results when the size of the shock varies according to

the average size shock: a one standard deviation base currency shock to order �ow (Table 6 Panel B).

We show both the short-run (instantaneous) impulse responses, the long-run cumulative responses, and the

di¤erence between the two responses. The long-run statistics are calculated after 30-minutes, at which point

the cumulative impulse responses have converged and can thus be interpreted as the long-run total impact

of the shock. All the responses are measured in basis points. The standard errors reported in the tables are

calculated by bootstrapping, using 200 repetitions.

Starting with a hypothetical shock of one billion base currency order �ow, the results in Table 6 Panel

A, show that the immediate response of prices to human-taker order �ow is often larger than the immediate

response to computer-taker order �ow. This may partially be attributed to the fact that some of the algorith-

mic trading is used for the optimal execution of large orders at a minimum cost. Algorithmic trades appear

to be successful in that endeavor, with computers likely breaking up the larger orders and timing the smaller

trades to minimize the impact on prices. We emphasize, though, that the di¤erences in price impact, which
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range from 1 to 8 basis points, are not very large in economic terms. Furthermore, we �nd that the result can

be reversed in the long-run and in the three-month sub-sample. For example, the euro-dollar human-taker

price impact is larger than the computer-taker price impact in the short-run, but the opposite is true in the

long-run and in the three-month sub-sample.

In contrast to these results, the response to a hypothetical one standard deviation shock to the di¤erent

order �ows (Table 6 Panel B) consistently shows that in the euro-dollar and dollar-yen markets, humans

have a bigger impact on prices than computers and the di¤erences are relatively large. For example, a one

standard deviation shock to human-taker order �ow in the yen-dollar exchange rate market has an average

long-run e¤ect of 0.9 basis points compared to an average e¤ect of 0.3 basis points for computer-taker order

�ow. Interestingly, the di¤erence in price impact in the cross-rate, the euro-yen exchange rate, is very

small. In this market, computers have a clear advantage over humans in detecting and reacting more quickly

to triangular arbitrage opportunities so that a large proportion of algorithmic trading contributes to more

e¢ cient price discovery. It is then not so surprising that in this market computers and humans, on average,

appear to be equally �informed.�

In Table 7 we report the fraction of the total (long-run) variance in returns that can be attributed to

innovations in human-taker order �ow and computer-taker order �ow.23 Following Hasbrouck (1991b), we

interpret this variance decomposition as a summary measure of the informativeness of trades, and thus, in the

current context, a comparison of the relative informativeness of the di¤erent types of order �ow. Consistent

with the results from the impulse response functions based on a one standard deviation shock to order �ow, we

�nd that in the euro-dollar and dollar-yen exchange rate markets human-taker order �ow explains much more

of the total variance in returns than computer-taker order �ow. Speci�cally, human-taker order �ow explains

about 30 percent of the total variance in returns compared to only 4 percent explained by computer-taker

order �ow.

The fact that human-taker order �ow explains a bigger portion of total variance in returns is not surprising

because human-taker volume is about 75 percent of total volume in these two markets in the full sample period

and about 65 percent of total volume in the three-month sub-sample (see Table 2). Moreover large buy (sell)

orders tend to be human-taker orders, i.e. we show in Table 1 that the standard deviation of human-taker

order �ow is twice as big as that of the computer-taker order �ow. But, do computers tend to contribute

�disproportionately�little to the long-run variance in returns relative to their trading volume? To answer this

question we do a back-of-the-envelope calculation. We compute the relative share of the explained variance

that is due to computer-taker order �ow as the percent of total variation in returns explained by computer-

23The variance decompositions are virtually identical in the short- and long-run and thus we only show the long-run decom-
position results.
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taker order �ow divided by the percent of total variation in returns explained jointly by both human-taker

and computer-taker order �ow. For example, this relative share is 14% = 100 � 4:74
34 (Table 7) in the euro-

dollar market. We can then compare this relative share to the fraction of overall trading volume that is due

to computer-taker volume, which we show in Table 2. In the full 2006-2007 sample for the euro-dollar and

the dollar-yen currency pairs, the fraction of volume due to computer-takers is about twice as large as the

fraction of the explained long-run variance that is due to computer-taker order �ow. In the euro-yen, the

fractions are approximately equal. These results are fairly similar in the three-month sub-sample, although

the fraction of explained variance has increased somewhat compared to the volume fraction. Thus, in the

two major currency pairs, there is evidence that computer-taker order �ow contributes relatively less to the

variation in returns than one would infer from just looking at the proportion of computer-taker volume.

6.3 Are liquidity providers �uninformed�?

We now turn to examine whether liquidity providers post quotes strategically. To this end we augment

equation (2) and decompose order �ow into four components. Speci�cally, we estimate the following system

of equations for each currency i;
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where rit is the 1-minute exchange rate return for currency i at time t; L = 4, OF (1)it = OFHHit is the

currency i human-maker/human-taker order �ow at time t; OF (2)it = OFCHit is the currency i computer-

maker/human-taker order �ow at time t; OF (3)it = OFHCit is the currency i human-maker/computer-taker

order �ow at time t; OF (4)it = OFCCit is the currency i computer-maker/computer-taker order �ow at time t;

Skt is the macroeconomic news announcement surprise for announcement k at time t.24

In addition to identifying whether traders, on average, have a more permanent impact on prices when

trading with humans than with computers, this speci�cation also allows us to observe the e¤ect order �ow

has on prices when, for instance, no party has a speed advantage, i.e. both parties are humans or both parties

are computers, and when either the maker has a speed advantage, CH, or the taker has a speed advantage,

HC. This distinction may be particularly useful when analyzing the cross-rate, where computers likely have

24 In the Appendix, we analyze the robustness of this structural VAR by also estimating impulse responses and variance
decompositions from all possible triangular identi�cation schemes, only imposing that returns are ordered last in the VAR.
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a clear advantage over humans in detecting short-lived triangular arbitrage opportunities.

Starting with a hypothetical shock of one billion base currency order �ow, the results in Table 8 Panel A

show that there is no clear pattern in which order �ow impacts prices the most. However, the dynamics of the

VAR system help reveal an interesting �nding: There is a consistent and often large short-run over-reaction

to CC and CH shocks. That is, as seen in Table 8, the short run response to a CC or CH order �ow shock

is always larger than the long-run response, and sometimes substantially so. The euro-dollar in the sample

covering September, October, and November of 2007 provides an extreme case where the initial reaction to

a one billion dollar CC shock is a 22 basis point move, but the long-run cumulative reaction is just 6 basis

points. Interestingly, the opposite pattern is true for the HH order �ow shocks, where there is always an

initial under -reaction in returns. To the extent that an over-reaction of prices to order �ow is suggestive of

the presence of liquidity traders, these impulse response patterns suggest that computers provide liquidity

when the probability of trading with an informed trader is low.25

The response to a hypothetical one standard deviation shock to the di¤erent order �ows consistently

shows that HH order �ow has a bigger impact on prices than CC order �ow (Table 8 Panel B) and that

the di¤erences are large. In particular, a one standard deviation shock to HH order �ow has an average

long-run e¤ect of 0.6 basis points across currencies compared to a one standard deviation shock to CC order

�ow, which has an average e¤ect of 0.1 basis points. Interestingly, we observe that when humans trade with

other humans they in�uence prices more than when they trade with computers (the impact of HH on prices

is bigger than the impact of CH on prices), and when computers trade with other computers they in�uence

prices less than when they trade with humans (the impact of CC on prices is smaller than the impact of HC

on prices). Our interpretation is that computers provide liquidity more strategically than humans, so that the

counterparty cannot a¤ect prices as much. This interpretation is consistent with the over-reaction of prices

to CC and CH order �ow described above: Computers appear to provide liquidity when adverse selection

costs are low. This �nding relates to the literature that proposes to depart from the prevalent assumption

that liquidity providers in limit order books are passive.26

We also �nd that the price response to order �ow varies across currencies as these markets di¤er along

several dimensions. Trading volume is largest in the euro-dollar and dollar-yen markets, compared to the

euro-yen market, and price discovery clearly happens mostly in the two largest markets. In the cross-rate

25Dynamic learning models with informed and uninformed investors predict that prices will temporarily over-react to unin-
formed order �ow and under-react to informed order �ow (e.g., Albuquerque and Miao, 2008). We note that the over- and
under-reaction of prices to a particular type of order �ow is di¤erent from the over- and under-reaction of prices to public news,
which are both considered a sign of market ine¢ ciency. Order �ow types are not public knowledge, so that agents cannot trade
on this information.
26For example, Chakravarty and Holden (1995), Kumar and Seppi (1994), Kaniel and Liu (2006), and Goettler, Parlour and

Rajan (2007) allow informed investors to use both limit and market orders. Bloom�eld, O�Hara and Saar (2005) argue that
informed traders are natural liquidity providers and Angel (1994) and Harris (1998) show that informed investors can optimally
use limit orders when private information is su¢ ciently persistent.
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market, the euro-yen, computers have a speed advantage over humans in pro�ting from triangular arbitrage

opportunities, where prices set in the euro-dollar and dollar-yen markets are very brie�y out of line with the

euro-yen rate. Consistent with this speed advantage we observe that human-maker/computer-taker order

�ow has a larger price impact in the cross-rate market than in the other two markets.

In addition to the impulse response functions, we also report the long-run forecast variance decomposition

of returns in Table 9 for both the full sample and the three-month sub-sample. Consistent with the impulse

response functions to a one standard deviation shock to order �ow, the HH order �ow makes up the dominant

part of the variance share in the euro-dollar and dollar-yen exchange rate markets. In the last three months

of the sample, this share has generally decreased. The share of variance in returns that can be attributed

to the CC order �ow is surprisingly small, especially in the latter sub-sample, given that this category of

trades represents a sizeable fraction of overall volume of trade during the last months of 2007, as seen in

Table 2. The mixed order �ow (CH and HC order �ow) typically contributes with about the same share to

the explained variance in the euro-dollar and dollar-yen exchange rate markets. In contrast, in the euro-yen

exchange rate market HC order �ow makes up the dominant part of the variance share, which is consistent

with our discussion of computers taking advantage of triangular arbitrage opportunities in this market.

Overall, about 15 to 35 percent of the total variation in returns can be attributed to shocks to the four

order �ows. However, in most currency pairs, very little of this ultimate long-run price discovery that occurs

via order �ow does so via the CC order �ow. Similar to Table 7, we also report in Table 9 the fraction of

the explained share of the return variance that can be attributed to the di¤erent order �ow combinations.

Comparing these to the fraction of overall volume that is due to these combinations of computers and humans,

reported in Table 2, gives an idea of whether the di¤erent order �ow combinations contribute proportionately

to the variance in returns. It is clear that CC order �ow tends to contribute disproportionately little to the

long-run variance of returns, and that HH order �ow often contributes disproportionately much.

7 Conclusion

Using highly-detailed high-frequency trading data for three major exchange rates over 2006 and 2007, we

analyze the impact of the growth of algorithmic trading on the spot interdealer foreign exchange market. We

focus on the following questions: (i) Are the algorithms underlying the computer-generated trades similar

enough to result in highly correlated strategies, which some fear may cause disruptive market behavior?

(ii) Does algorithmic trading increase volatility in the market, perhaps as a result of the previous concern?

(iii) Do algorithmic traders improve or reduce market liquidity at times of market stress? (iv) Are human

or computer traders the more �informed� traders in the market, i.e. who has the most impact on price
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discovery? (v) Is there evidence in this market that the liquidity providers (the �makers�) and not just the

liquidity �takers�, are informed, and do computer makers post orders more strategically than human makers?

The �rst three questions directly address concerns that have been raised recently in the �nancial press,

especially in conjunction with the current crisis, while the last two questions relate more to the empirical

market microstructure literature on price discovery and order placement. Together, the analysis of these

questions brings new and interesting results to the table, both from a practical and academic perspective, in

an area where almost no formal research has been available.

Our empirical results provide evidence that algorithmic trades are more correlated than non-algorithmic

trades, suggesting that the trading strategies used by the computer traders are less diverse than those

of their human counterparts. Although this may cause some concerns regarding the disruptive potential of

computer-generated trades, we do not �nd evidence of a positive causal relationship between the proportion of

algorithmic trading in the market and the level of volatility; if anything, the evidence points towards a negative

relationship, suggesting that the presence of algorithmic trading reduces volatility. As for the provision of

market liquidity, we �nd evidence that, compared to non-algorithmic traders, algorithmic traders reduce their

share of liquidity provision in the minute following major data announcements, when the probability of a

price jump is very high. However, they increase their share of liquidity provision to the market over the entire

hour following these announcements, which is almost always a period of elevated volatility. This empirical

evidence thus suggests that computers do provide liquidity during periods of market stress.

To address the last two questions (price discovery and order placement), we use a high-frequency VAR

framework in the tradition of Hasbrouck (1991a). We �nd that non-algorithmic trades account for a sub-

stantially larger share of the price movements in the euro-dollar and yen-dollar exchange rate markets than

would be expected given the sizable fraction of algorithmic trades. Non-algorithmic traders are the �in-

formed�traders in these two markets, driving price discovery. In the cross-rate, the euro-yen exchange rate

market, we �nd that computers and humans are equally �informed,� likely because of the large proportion

of algorithmic trades dedicated to search for triangular arbitrage opportunities. Finally, we �nd that, on

average, computer takers or human takers that trade on prices posted by computers do not impact prices

as much as they do when they trade on prices posted by humans. One interpretation of this result is that

computers place limit orders more strategically than humans do. This �nding dovetails with the literature

on limit order books that relaxes the common modeling assumption that liquidity providers are passive.

Overall, this study therefore provides essentially no evidence to bolster the widespread concerns about

the e¤ect of algorithmic trading on the functioning of �nancial markets. The lesson we take from our analysis

of algorithmic trading in the interdealer foreign exchange market is that it is more how algorithmic trading

is used and what it is predominantly designed to achieve that determines its impact on the market, and not
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primarily whether or not the order �ow reaching the market is generated at high frequency by computers.

In the global interdealer foreign exchange market, the rapid growth of algorithmic trading has not come at

the cost of lower market quality, at least not in the data we have seen so far. Given the constant search

for execution speed in �nancial markets and the increasing availability of algorithmic trading technology, it

is likely that, absent regulatory intervention, the share of algorithmic trading across most �nancial markets

will continue to grow. Our study o¤ers hope that the growing presence of algorithmic trading will not have

a negative impact on global �nancial markets.

Appendix: Robustness check of the VAR results

The impulse responses and variance decompositions in the above VAR analyses are derived under the as-

sumption that there are no contemporaneous interactions between the di¤erent order �ow components. This

identifying assumption is appealing because it treats the order �ow components symmetrically and ensures

that the results are not driven by the ordering of the order �ows in the VAR. On the other hand, it cannot

be ruled out that one order �ow component a¤ects another one contemporaneously within the one-minute

timespan over which each observation is sampled. If this is the case, the VAR speci�cation that we use above

would be too restrictive and the resulting impulse responses and variance decompositions would likely be

biased. As discussed above, given the fairly low correlation that we observe in the VAR residuals for the

di¤erent order �ow equations, this does not appear to be a major concern, but since these correlations are

not identical to zero it is still possible that other identi�cation schemes would lead to di¤erent conclusions.

In this section we therefore perform a comprehensive robustness check of the VAR results by calculating

upper and lower bounds on the impulse responses and variance decompositions. In particular, we consider

all possible orderings of the order �ows in the VARs, while imposing a triangular structure. That is, we still

assume that returns are ordered last in the VAR and are thus a¤ected contemporaneously by all order �ow

components, but we then consider all possible orderings for the di¤erent order �ows. In the case where we

split order �ow into human and computer order �ow, this results in just two di¤erent speci�cations� one

where computer order �ow a¤ects human order �ow contemporaneously but contemporaneous human order

�ow has no impact on computer order �ow, and the opposite speci�cation where human order �ow a¤ects

computer order �ow contemporaneously. In the case with four di¤erent order �ows, there are 24 di¤erent

orderings, when one allows for all possible triangular identi�cation schemes, only imposing that returns are

ordered last. From each of these speci�cations, we calculate impulse responses and variance decompositions.

The minimum and maximum of these over all speci�cations are reported in Tables A1 and A2 for the two

order �ow case and in Tables A3 and A4 in the four order �ow case.
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Starting with the simpler case with order �ow split up into human or computer order �ow, Tables A1

and A2 con�rm our conjecture that the low correlation in the VAR residuals render the VAR speci�cation

very robust to the ordering of the order �ows. The min-max intervals shown in the two tables are generally

very tight and all of our earlier qualitative conclusions that we draw from our preferred structural VAR

speci�cation holds also under these alternative orderings.

Turning to the VAR analysis with four separate order �ow, the number of possible orderings increases

dramatically to 24. This large number of possible speci�cations inevitably results in wider min-max intervals,

even though the correlations in the VAR residuals are generally small. In order to usefully interpret these

results, we check whether our main qualitative conclusions from our preferred structural speci�cation analyzed

above also holds up, in a min-max sense, under all possible orderings. Our �rst main result in the above

analysis was that there is an initial over-reaction to CC and CH shocks and an initial under-reaction to HH

shocks. As seen in Table A3, these �ndings are mostly supported by the min-max results as well. The only

exceptions recorded are for the euro-yen cross rate, where the under-reaction to CC and CH shocks is also

much weaker in the original results in Table 8. It is also evident from Table A3, Panel B, that the min-max

results support the �nding that a one standard deviation shock to HH has a substantially bigger impact on

returns than a CC shock. In addition, Table A3, Panel B, also shows that the impact of the HH shock tends

to be larger than the CH impact, and the CC impact tends to be smaller than the HC impact. Finally,

the results in Table A3 also mostly support the �nding that the reactions to HC order �ow are greater in

the euro-yen cross currency than in the two main currency pairs, although some overlap is seen for the one

standard deviation shock in Panel B.

Table A4 shows the corresponding min-max results for the variance decomposition. Again, our main

conclusions are mostly supported in a min-max sense. HH makes up the largest share of the explained

variance in the two main currency pairs in the full sample, although in the three-month sub-sample there

is some overlap between the min-max intervals for the HH order �ow and the HC order �ow. CC always

contributes a very small share of the explained variance and HC always contributes a fairly substantial share

in the cross currency.

In summary, these robustness checks show that our main VAR used for examining price discovery (equation

(2)), using human and computer order �ows, is not particularly sensitive to the exact identi�cation scheme

that is used. The results presented in Tables 6 and 7 thus appear to be robust to alternative orderings in the

VAR. Our second VAR speci�cation (equation (3)), which we use to analyze strategic liquidity provision, is

a little more sensitive to the exact identi�cation scheme used, but the min-max results are still overall very

supportive of our main conclusions.
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Table A1: Min-max impulse responses from the VAR speci�cation with human-taker and computer-taker
order �ow. The table shows the minimum and maximum triangular impulse responses for returns as a result
of shocks to the human-taker order �ow (HH + CH) or computer-taker (CC + HC) order �ow, denoted
H-taker and C-taker in the table headings, respectively. In Panel A we show the return response, in basis
points, to a one-billion base-currency shock to one of the order �ows. In Panel B we show the return response,
in basis points, to a one standard deviation shock to one of the order �ows. We show the results for the
full 2006-2007 sample and for the three-month sub-sample, which only uses data from September, October,
and November of 2007. For each currency pair we show the short-run (immediate) response of returns; the
corresponding cumulative long-run response of returns, calculated as the cumulative impact of the shock after
30 minutes; and the di¤erence between the cumulative long-run response in returns minus the immediate
response of returns, i.e., we provide the extent of over-reaction or under-reaction to an order �ow shock. There
are a total of 717; 120 minute-by-minute observations in the full two-year sample and 89; 280 observations in
the three-month sub-sample.

Full 2006-2007 sample 3-month sub-sample
H-taker C-taker H-taker C-taker

Panel A: One billion base-currency shock
USD/EUR

Short run [28:05; 28:06] [26:84; 26:94] [23:11; 23:20] [24:89; 25:22]

Long run [27:85; 27:87] [32:26; 32:35] [24:06; 24:16] [31:04; 31:38]

Di¤erence [�0:20;�0:20] [5:42; 5:42] [0:94; 0:96] [6:14; 6:16]

JPY/USD
Short run [44:96; 46:76] [28:92; 39:81] [44:99; 48:02] [33:45; 44:88]

Long run [45:50; 47:50] [33:21; 44:27] [46:80; 49:54] [28:83; 40:63]

Di¤erence [0:54; 0:74] [4:29; 4:46] [1:52; 1:81] [�4:62;�4:25]
JPY/EUR

Short run [90:18; 99:32] [90:50; 102:71] [109:04; 124:02] [101:74; 115:52]

Long run [98:30; 108:07] [96:57; 109:85] [116:54; 132:53] [108:54; 123:26]

Di¤erence [8:12; 8:75] [6:07; 7:14] [7:50; 8:51] [6:79; 7:74]

Panel B: One standard deviation shock
USD/EUR

Short run [0:6613; 0:6616] [0:2630; 0:2639] [0:6023; 0:6045] [0:3139; 0:3180]

Long run [0:6566; 0:6570] [0:3161; 0:3170] [0:6269; 0:6296] [0:3914; 0:3957]

Di¤erence [�0:0047;�0:0046] [0:0531; 0:0531] [0:0246; 0:0251] [0:0775; 0:0777]

JPY/USD
Short run [0:8370; 0:8660] [0:2375; 0:3251] [0:9594; 1:0158] [0:3798; 0:5056]

Long run [0:8470; 0:8796] [0:2727; 0:3616] [0:9980; 1:0480] [0:3274; 0:4577]

Di¤erence [0:0100; 0:0137] [0:0352; 0:0364] [0:0322; 0:0386] [�0:0524;�0:0479]
JPY/EUR

Short run [0:5060; 0:5541] [0:4318; 0:4874] [0:6671; 0:7532] [0:6725; 0:7581]

Long run [0:5515; 0:6030] [0:4608; 0:5213] [0:7130; 0:8049] [0:7174; 0:8089]

Di¤erence [0:0455; 0:0488] [0:0289; 0:0339] [0:0459; 0:0517] [0:0449; 0:0508]
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Table A2: Min-max variance decompositions from the VAR speci�cation with human-taker and computer-
taker order �ow. The table shows the minimum and maximum triangular long-run variance decomposition
of returns, expressed in percent and calculated at the 30 minute horizon. That is, the table shows the
proportion of the long-run variation in returns that can be attributed to shocks to the human-taker order
�ow (HH + CH) and the computer-taker (CC +HC) order �ow, denoted H-taker and C-taker in the table
headings, respectively. For each currency pair we show the actual variance decomposition, and the proportion
of the explained variance in returns that can be attributed to each order �ow type. That is, we re-scale the
variance decompositions so that they add up to 100 percent. We show results for the full 2006-2007 sample
and for the three-month sub-sample, which only uses data from September, October, and November of
2007. There are a total of 717; 120 minute-by-minute observations in the full two-year sample and 89; 280
observations in the three-month sub-sample.

Full 2006-2007 sample 3-month sub-sample
H-taker C-taker H-taker C-taker

USD/EUR
Variance decomposition [29:25; 29:28] [4:71; 4:74] [25:78; 25:96] [7:08; 7:26]

Proportion of explained share [86:04; 86:14] [13:86; 13:96] [78:02; 78:58] [21:42; 21:98]

JPY/USD
Variance decomposition [27:71; 29:67] [2:31; 4:28] [26:03; 29:19] [4:21; 7:37]

Proportion of explained share [86:63; 92:77] [7:23; 13:37] [77:94; 87:40] [12:60; 22:06]

JPY/EUR
Variance decomposition [10:15; 12:16] [7:37; 9:39] [9:94; 12:67] [10:15; 12:88]

Proportion of explained share [51:93; 62:27] [37:73; 48:07] [43:55; 55:53] [44:47; 56:45]
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Table 1: Summary statistics for the one-minute return and order �ow data. The mean and standard deviation,
as well as the �rst-order autocorrelation, �, are shown for each variable and currency pair. The returns are
expressed in basis points and the order �ows in millions of the base currency. The summary statistics are given
for both the full 2006-2007 sample, as well as for the three-month sub-sample, which only uses observations
from September, October, and November of 2007. The �rst two rows for each currency show the summary
statistics for returns and the total market-wide order �ow. The following two rows give the results for the
order �ows broken down into human-takers and computer-takers and the last four rows show the results for
the order �ow decomposed into each maker-taker pair. There are a total of 717; 120 observations in the full
two-year sample and 89; 280 observations in the three-month sub sample. We show the statistical signi�cance
of the �rst order autocorrelation. The ���, ��, and � represent signi�cance at the 1, 5, and 10 percent level,
respectively.

Full 2006-2007 Sample 3-month sub sample
Variable Mean Std. dev. � Mean Std. dev. �

USD/EUR
Returns 0:0030 1:2398 �0:005��� 0:0080 1:2057 0:007��

Total order �ow (HH + CH +HC + CC) 0:0315 25:9455 0:150��� �0:0937 29:7065 0:174���

H-taker (HH + CH) 0:0413 23:977 0:155��� �0:0796 26:8096 0:189���

C-taker (HC + CC) �0:0099 9:9363 0:127��� �0:0140 12:8900 0:115���

H-maker/H-taker (HH) 0:1425 19:9614 0:177��� 0:0327 21:9211 0:209���

C-maker/H-taker (CH) �0:1012 8:8970 0:166��� �0:1123 10:7649 0:215���

H-maker/C-taker (HC) 0:0123 8:9232 0:152��� 0:0483 11:5856 0:150���

C-maker/C-taker (CC) �0:0222 2:7939 0:053��� �0:0623 3:9477 0:072���

JPY/USD
Returns �0:0007 1:6038 �0:010��� �0:0045 1:9110 0:007��

Total order �ow (HH + CH +HC + CC) 0:1061 20:0980 0:189��� �0:3439 23:6359 0:211���

H-taker (HH + CH) 0:0853 19:1127 0:190��� �0:2088 22:0344 0:204���

C-taker (HC + CC) 0:0209 8:3941 0:170��� �0:1351 11:5877 0:158���

H-maker/H-taker (HH) 0:1037 15:9972 0:209��� �0:1203 17:4612 0:226���

C-maker/H-taker (CH) �0:0184 6:9030 0:172��� �0:0885 9:1773 0:162���

H-maker/C-taker (HC) 0:0198 7:5686 0:198��� �0:0901 10:1673 0:191���

C-maker/C-taker (CC) 0:0011 2:4556 0:032��� �0:045 3:8751 0:026���

JPY/EUR
Returns 0:0024 1:5976 �0:053��� 0:0036 2:1398 �0:017���
Total order �ow (HH + CH +HC + CC) �0:0648 7:0941 0:152��� �0:1574 8:5978 0:147���

H-taker (HH + CH) �0:0497 5:7006 0:150��� �0:1216 6:2074 0:125���

C-taker (HC + CC) �0:0151 4:8409 0:146��� �0:0358 6:7000 0:131���

H-maker/H-taker (HH) �0:0172 4:4203 0:159��� �0:0600 4:3106 0:157���

C-maker/H-taker (CH) �0:0325 2:8912 0:129��� �0:0616 3:7197 0:092���

H-maker/C-taker (HC) �0:0095 4:5331 0:173��� �0:0264 6:0968 0:161���

C-maker/C-taker (CC) �0:0056 1:5558 0:023��� �0:0095 2:5621 �0:001
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Table 2: Summary statistics for the fractions of trade volume attributable to di¤erent trader combinations.
The table shows the fraction of the total volume of trade that is attributable to di¤erent combinations of
makers and takers. Results for the full 2006-2007 sample as well as for the three-month sub-sample, which
only uses data from September, October, and November of 2007, are shown. We show the average of the
daily fractions, calculated by summing up across all minutes within a day, and the standard deviations of
those daily fractions. For each currency, the �rst row shows the fraction of the total volume of trade where
a computer was involved on at least one side of the trade (i.e. as a maker or a taker). The second row shows
the fraction of the total volume where a human acted as a taker, the third row shows the fraction of the total
volume where a computer acted as a taker, and the following four rows shows the fractions broken down by
each maker-taker pair.

Full 2006-2007 Sample 3-month sub sample
Variable Mean Std. dev. Mean Std. dev.

USD/EUR
C-participation (V ol (CH +HC + CC)) 0:4163 0:1135 0:5386 0:0355

H-taker (V ol (CH +HH)) 0:7810 0:0791 0:6864 0:0331

C-taker (V ol (HC + CC)) 0:2190 0:0791 0:3136 0:0331

H-maker/H-taker (V ol (HH)) 0:5837 0:1135 0:4614 0:0355

C-maker/H-taker (V ol (CH)) 0:1973 0:0398 0:2251 0:0144

H-maker/C-taker (V ol (HC)) 0:1710 0:0514 0:2304 0:0205

C-maker/C-taker (V ol (CC)) 0:0480 0:0290 0:0831 0:0150

JPY/USD
C-participation (V ol (CH +HC + CC)) 0:4242 0:1065 0:5652 0:0364

H-taker (V ol (CH +HH)) 0:7585 0:0805 0:6461 0:0311

C-taker (V ol (HC + CC)) 0:2415 0:0805 0:3539 0:0311

H-maker/H-taker (V ol (HH)) 0:5758 0:1065 0:4348 0:0364

C-maker/H-taker (V ol (CH)) 0:1827 0:0304 0:2114 0:0126

H-maker/C-taker (V ol (HC)) 0:1860 0:0498 0:2486 0:0154

C-maker/C-taker (V ol (CC)) 0:0555 0:0321 0:1052 0:0193

JPY/EUR
C-involved (V ol (CH +HC + CC)) 0:6186 0:1154 0:7907 0:0410

H-taker (V ol (CH +HH)) 0:5557 0:1018 0:4037 0:0467

C-taker (V ol (HC + CC)) 0:4443 0:1018 0:5963 0:0467

H-maker/H-taker (V ol (HH)) 0:3814 0:1154 0:2093 0:0410

C-maker/H-taker (V ol (CH)) 0:1743 0:0360 0:1944 0:0164

H-maker/C-taker (V ol (HC)) 0:3337 0:0473 0:3734 0:0193

C-maker/C-taker (V ol (CC)) 0:1106 0:0673 0:2229 0:0464
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Table 3: Estimates of the ratio R = RC=RH. The table reports the mean estimates of the ratio R = RC=RH,
where RC = V ol(HC)=V ol(CC) and RH = V ol(HH)=V ol(CH). V ol(HH) is the daily trading volume
between human-makers and human-takers, V ol(HC) is the daily trading volume between human-makers and
computer-takers, V ol(CH) is the daily trading volume between computer-makers and human-takers, and
V ol(CC) is the daily trading volume between computer-makers and computer-takers. We report the mean
of the daily ratio R and the standard errors are shown in parantheses below the estimate. We also show the
number of days that had a ratio that was less than one. We report the results for the full 2006-2007 sample
and the three-month sub-sample, which only uses data from September, October, and November of 2007.
The ���, ��, and � represent a statistically signi�cant deviation from one at the 1, 5, and 10 percent level,
respectively.

Full 2006-2007 sample 3-month sub sample
USD/EUR

Mean of daily R = RC/RH 1:4463��� 1:3721���

Standard Error (0:0063) (0:0099)

No. of days with R < 1 0 0

No. of obs 498 62

JPY/USD
Mean of daily R = RC/RH 1:2619��� 1:1719���

Standard Error (0:0074) (0:0142)

No. of days with R < 1 15 4

No. of obs 498 62

JPY/EUR
Mean of daily R = RC/RH 1:6886��� 1:6242���

Standard Error (0:0154) (0:0250)

No. of days with R < 1 4 0

No. of obs 498 62
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Table 4: Regressions of realized volatility on the fraction of algorithmic trading. The table shows the results
from estimating the relationship between daily realized volatility and the fraction of algorithmic trading,
using daily data from 2006 and 2007. Robust standard errors are given in parentheses below the coe¢ cient
estimates. The left hand side of the table shows the results with a quarterly time trend included in the
regressions and the right hand side of the table shows the results with year-quarter time dummies (i.e., eight
time dummies, one for each quarter in the two years of data) included in the regressions. Panels A and
B show the results when the fraction of algorithmic trading is measured as the fraction of the total trade
volume that has a computer involved on at least one side of the trade (i.e. as a maker or a taker). Panels C
and D show the results when only the fraction of volume with computer taking is used. In addition to the
fraction of algorithmic trading and the control(s) for secular trends, 22 lags of volatility are also included
in every speci�cation. In all cases, only the coe¢ cient on the fraction of algorithmic trading is displayed.
Panels A and C show the results from a standard OLS estimation, along with the R2. Panels B and D show
the results from the IV speci�cation estimated with Limited Information Maximum Likelihood (LIML). In
Panels B and D, the Stock and Yogo (2005) F�test of weak instruments are also shown. The critical values
for Stock and Yogo�s (2005) F-test are designed such that they indicate a maximal actual size for a nominal
sized �ve percent test on the coe¢ cient in the LIML estimation. Thus, in order for the actual size of the
LIML test to be no greater than 10% (15%), the F-statistic should exceed 8:68 (5:33). There are a total of
498 daily observations in the data. The ���, ��, and � represent signi�cance at the 1, 5, and 10 percent level,
respectively.

With quarterly time trend With year-quarter time dummies
USD/EUR JPY/USD JPY/EUR USD/EUR JPY/USD JPY/EUR
Panel A. Fraction of volume with any computer participation, OLS estimation

Coe¤. on AT 0:0029 0:0018 0:0034��� 0:0078��� �0:0030 0:0065���

(0:0024) (0:0021) (0:0012) (0:0027) (0:0024) (0:0016)

R2 (%) 53:44% 61:13% 71:90% 56:73% 62:57% 73:33%

Panel B. Fraction of volume with any computer participation, IV estimation
Coe¤. on AT �0:0121� �0:0186�� �0:0022 �0:0078 �0:0101 �0:0128

(0:0062) (0:0089) (0:0039) (0:0061) (0:0069) (0:0175)

F-Stat 29:58 19:46 32:18 38:17 20:89 2:25

Panel C. Fraction of volume with computer-taking, OLS estimation
Coe¤. on AT 0:0037 �0:0027 0:0015 0:0094�� �0:0034 0:0032��

(0:0036) (0:0024) (0:0012) (0:0038) (0:0027) (0:0016)

R2 (%) 53:39% 61:17% 71:56% 56:43% 62:55% 72:66%

Panel D. Fraction of volume with computer-taking, IV estimation
Coe¤. on AT �0:0160�� �0:0215�� �0:0007 �0:0072 �0:0122 �0:0182

(0:0080) (0:0109) (0:0028) (0:0070) (0:0082) (0:0291)

F-Stat 39:99 17:63 64:81 55:45 21:20 1:04
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Table 5: We report the mean ratio of the exchange rate volatility (Panel A) and liquidity provision by
humans and by computers (Panel B) estimated during announcement days relative to that estimated during
non-announcement days. The one-hour measure is estimated using observations from 8:25 am to 9:24 am ET
and the one-minute measure is estimated using 8:30 am to 8:31 am ET observations. Announcement days are
de�ned as nonfarm payroll announcement days and non-announcement days are de�ned as 10 business days
before and after the nonfarm payroll announcement. In each panel, we report the chi-squared and p-value
of the Wald test that the ratio is equal to 1. In Panel C we report the chi-squared and p-value of the Wald
test that the liquidity provision of humans during announcement days relative to non-announcement days
is similar to the liquidity provision of computers. The statistics are estimated using data in the full sample
from 2006 to 2007 and there are 23 observations (April 6, 2007 nonfarm payroll announcement is missing
because it falls on Good Friday, when trading in the foreign exchange market is limited). Human liquidity
provision, LH, is de�ned as the sum of human-maker/human-taker volume plus human-maker/human-taker
volume divided by total volume. Computer liquidity provision, LC, is de�ned as the sum of computer-
maker/computer-taker volume plus computer-maker/human-taker volume divided by total volume. The ���,
��, and � represent signi�cance at the 1, 5, and 10 percent level, respectively.

USD/EUR JPY/USD JPY/EUR
Hour Minute Hour Minute Hour Minute

Panel A: Volatility
�a
�n

6:236��� 21:704��� 5:595��� 24:812��� 3:697��� 14:403��

�2 (H0 : �a = �n) 69:86 18:76 33:34 15:45 19:37 5:96

p-value 0:0000 0:0003 0:0000 0:0008 0:0002 0:0235

Panel B: Liquidity Provision
Liquidity provision by humans, LHa

LHn
0:964��� 1:062��� 1:023 1:183��� 0:888��� 0:980

Liquidity provision by computers, LCa
LCn

1:132��� 0:871��� 0:974 0:652��� 1:227��� 1:151

�2 (H0 : LHa = LHnorLCa = LCn) 16:56 9:04 2:71 31:91 25:19 0:5

p-value 0:0005 0:0067 0:1143 0 0:0001 0:487

Panel C: Comparison of Liquidity Provision between Humans and Computers
LHa
LHn

� LCa
LCn

�0:168��� 0:191�� 0:049 0:532��� �0:339��� �0:171
�2
�
H0 :

LHa
LHn

= LCa
LCn

�
19:24 5:91 1:50 36:07 25:21 0:66

p-value 0:0003 0:0241 0:2339 0:0000 0:0001 0:4245
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Table 6: Impulse responses from the VAR speci�cation with human-taker and computer-taker order �ow.
The table shows the impulse responses for returns as a result of shocks to the human-taker order �ow
(HH + CH) or computer-taker (CC +HC) order �ow, denoted H-taker and C-taker in the table headings,
respectively. The results are based on estimation of equation (2), using minute-by-minute data. In Panel A
we show the return response, in basis points, to a one-billion base-currency shock to one of the order �ows.
In Panel B we show the return response, in basis points, to a one standard deviation shock to one of the order
�ows. We show the results for the full 2006-2007 sample and for the three-month sub-sample, which only
uses data from September, October, and November of 2007. For each currency pair we show the short-run
(immediate) response of returns; the corresponding cumulative long-run response of returns, calculated as
the cumulative impact of the shock after 30 minutes; and the di¤erence between the cumulative long-run
response in returns minus the immediate response of returns, i.e., we provide the extent of over-reaction or
under-reaction to an order �ow shock. There are a total of 717; 120 minute-by-minute observations in the
full two-year sample and 89; 280 observations in the three-month sub-sample. We show in parenthesis the
standard errors of the di¤erence between the short-run and long-run response. These standard errors are
calculated by bootstrapping, using 200 repetitions.

Full 2006-2007 sample 3-month sub-sample
H-taker C-taker H-taker C-taker
Panel A: One billion base-currency shock

USD/EUR
Short run 28:06 26:94 23:20 25:22

Long run 27:87 32:35 24:16 31:38

Di¤erence �0:20 5:42 0:96 6:16

(0:29) (0:67) (0:72) (1:36)

JPY/USD
Short run 46:77 39:81 48:02 44:89

Long run 47:50 44:27 49:54 40:63

Di¤erence 0:74 4:46 1:52 �4:26
(0:48) (1:08) (1:36) (2:35)

JPY/EUR
Short run 99:32 102:71 124:02 115:52

Long run 108:07 109:85 132:53 123:26

Di¤erence 8:75 7:14 8:51 7:74

(1:50) (1:67) (4:79) (4:76)

Panel B: One standard deviation shock
USD/EUR

Short run 0:6617 0:2639 0:6045 0:3181

Long run 0:6570 0:3170 0:6296 0:3957

Di¤erence �0:0046 0:0531 0:0251 0:0777

(0:0068) (0:0065) (0:0189) (0:0172)

JPY/USD
Short run 0:8706 0:3269 1:0241 0:5098

Long run 0:8843 0:3635 1:0565 0:4614

Di¤erence 0:0137 0:0366 0:0324 �0:0483
(0:0090) (0:0089) (0:0289) (0:0267)

JPY/EUR
Short run 0:5572 0:4901 0:7587 0:7636

Long run 0:6063 0:5242 0:8108 0:8148

Di¤erence 0:0491 0:0341 0:0520 0:0512

(0:0085) (0:0080) (0:0294) (0:0314)
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Table 7: Variance decompositions from the VAR speci�cation with human-taker and computer-taker order
�ow. The table provides the long-run variance decomposition of returns, expressed in percent and calculated
at the 30 minute horizon, based on estimation of equation (2), using minute-by-minute data. That is, the
table shows the proportion of the long-run variation in returns that can be attributed to shocks to the human-
taker order �ow (HH + CH) and the computer-taker (CC +HC) order �ow, denoted H-taker and C-taker
in the table headings, respectively. For each currency pair we show the actual variance decomposition, and
the proportion of the explained variance in returns that can be attributed to each order �ow type. That
is, we re-scale the variance decompositions so that they add up to 100 percent. We show results for the
full 2006-2007 sample and for the three-month sub-sample, which only uses data from September, October,
and November of 2007. There are a total of 717; 120 minute-by-minute observations in the full two-year
sample and 89; 280 observations in the three-month sub-sample. We show in parenthesis the standard errors
calculated by bootstrapping, using 200 repetitions.

Full 2006-2007 sample 3-month sub-sample
H-taker C-taker H-taker C-taker

USD/EUR
Variance decomposition 29:27 4:74 25:92 7:25

(0:95) (0:19) (0:79) (0:42)

Proportion of explained share 86:06 13:94 78:14 21:86

(2:79) (0:56) (2:38) (1:27)

JPY/USD
Variance decomposition 29:31 4:22 28:59 7:22

(0:35) (0:11) (0:50) (0:33)

Proportion of explained share 87:41 12:59 79:84 20:16

(1:04) (0:33) (1:40) (0:92)

JPY/EUR
Variance decomposition 12:03 9:28 12:47 12:67

(0:21) (0:20) (0:38) (0:38)

Proportion of explained share 56:45 43:55 49:60 50:40

(0:99) (0:94) (1:51) (1:51)
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Table 8: Impulse responses from the VAR speci�cation with all four human/computer-maker/taker or-
der �ow combinations. The table shows the impulse responses for returns as a result of shocks to
the human-maker/human-taker order �ow (HH), computer-maker/human-taker order �ow (CH), human-
maker/computer-taker order �ow (HC), or computer-maker/computer-taker order �ow (CC), denoted in
obvious notation in the table headings. The results are based on estimation of equation (3), using minute-by-
minute data. In Panel A we show the return response, in basis points, to a one-billion base-currency shock to
one of the order �ows. In Panel B we show the return response, in basis points, to a one standard deviation
shock to one of the order �ows. We report the results for the full 2006-2007 sample and for the three-month
sub-sample, which only uses data from September, October, and November of 2007. For each currency pair
we show the short-run (immediate) response of returns; the corresponding cumulative long-run response of
returns, calculated as the cumulative impact of the shock after 30 minutes; and the di¤erence between the
cumulative long-run response in returns minus the immediate response of returns, i.e., we provide the extent
of over-reaction or under-reaction to an order �ow shock. There are a total of 717; 120 minute-by-minute
observations in the full two-year sample and 89; 280 observations in the three-month sub-sample. We show
in parenthesis the standard errors of the di¤erence between the short-run and the long-run response. These
standard errors are calculated by bootstrapping, using 200 repetitions.

Full 2006-2007 sample 3-month sub-sample
H-maker/ C-maker/ H-maker/ C-maker/ H-maker/ C-maker/ H-maker/ C-maker/
H-taker H-taker C-taker C-taker H-taker H-taker C-taker C-taker

Panel A: One billion base-currency shock
USD/EUR

Short run 27:64 29:66 26:57 32:19 20:58 30:94 28:94 21:74

Long run 30:13 20:47 29:89 24:92 24:18 23:35 34:64 5:94

Di¤erence 2:49 �9:19 3:32 �7:26 3:60 �7:59 5:70 �15:80
(0:35) (0:88) (0:83) (2:42) (0:97) (2:03) (1:79) (4:64)

JPY/USD
Short run 43:48 58:94 40:34 61:57 41:96 64:63 46:08 67:65

Long run 47:01 49:53 42:61 54:37 46:83 57:24 40:33 51:81

Di¤erence 3:53 �9:41 2:27 �7:20 4:87 �7:39 �5:75 �15:85
(0:59) (1:57) (1:30) (3:38) (1:62) (3:43) (2:89) (7:39)

JPY/EUR
Short run 102:61 92:16 100:91 102:04 139:33 103:92 114:01 94:47

Long run 116:12 91:24 107:18 93:41 159:46 96:85 118:47 95:20

Di¤erence 13:51 �0:92 6:27 �8:63 20:13 �7:07 4:46 0:74

(1:98) (3:18) (1:94) (4:98) (7:25) (9:35) (5:78) (10:70)

Panel B: One standard deviation shock
USD/EUR

Short run 0:5389 0:2575 0:2318 0:0893 0:4342 0:3211 0:3228 0:0845

Long run 0:5875 0:1777 0:2608 0:0692 0:5101 0:2424 0:3864 0:0231

Di¤erence 0:0486 �0:0798 0:0290 �0:0202 0:0760 �0:0788 0:0636 �0:0614
(0:0069) (0:0076) (0:0072) (0:0067) (0:0203) (0:0211) (0:0200) (0:0180)

JPY/USD
Short run 0:6721 0:3968 0:2962 0:1506 0:7019 0:5801 0:4544 0:2607

Long run 0:7267 0:3334 0:3129 0:1330 0:7834 0:5137 0:3976 0:1997

Di¤erence 0:0546 �0:0634 0:0167 �0:0176 0:0815 �0:0663 �0:0567 �0:0611
(0:0091) (0:0106) (0:0096) (0:0083) (0:0274) (0:0307) (0:0284) (0:0284)

JPY/EUR
Short run 0:4440 0:2629 0:4481 0:1583 0:5859 0:3829 0:6809 0:2409

Long run 0:5024 0:2603 0:4760 0:1449 0:6706 0:3568 0:7076 0:2428

Di¤erence 0:0584 �0:0026 0:0279 �0:0134 0:0847 �0:0260 0:0266 0:0019

(0:0086) (0:0091) (0:0086) (0:0077) (0:0306) (0:0344) (0:0345) (0:0273)
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Table 9: Variance decompositions from the VAR speci�cation with all four human/computer-maker/taker
order �ow combinations. The table provides the long-run variance decomposition of returns, expressed
in percent and calculated at the 30 minute horizon, based on estimation of equation (3), using minute-
by-minute data. That is, the table shows the proportion of the long-run variation in returns that can be
attributed to shocks to the human-maker/human-taker order �ow (HH), computer-maker/human-taker order
�ow (CH), human-maker/computer-taker order �ow (HC), and computer-maker/computer-taker order �ow
(CC), denoted in obvious notation in the table headings. We show the actual variance decomposition, and
the proportions of the explained variance in returns that can be attributed to each order �ow type. That is,
we re-scale the variance decompositions so that they add up to 100 percent. We present results for the full
2006-2007 sample and for the three-month sub-sample, which only uses data from September, October, and
November of 2007. There are a total of 717; 120 minute-by-minute observations in the full two-year sample
and 89; 280 observations in the three-month sub-sample. We show in parenthesis the standard errors, which
are calculated by bootstrapping, using 200 repetitions.

Full 2006-2007 sample 3-month sub-sample
H-maker/ C-maker/ H-maker/ C-maker/ H-maker/ C-maker/ H-maker/ C-maker/
H-taker H-taker C-taker C-taker H-taker H-taker C-taker C-taker

USD/EUR
Variance decomp. 20:71 4:73 3:89 0:58 14:19 7:68 7:86 0:59

(0:89) (0:24) (0:21) (0:04) (0:75) (0:48) (0:43) (0:09)

Proportion 69:24 15:81 13:01 1:94 46:80 25:33 25:92 1:95

(2:98) (0:80) (0:70) (0:13) (2:47) (1:58) (1:42) (0:30)

JPY/USD
Variance decomp. 18:62 6:48 3:70 0:93 14:47 9:78 6:12 2:00

(0:33) (0:15) (0:11) (0:04) (0:46) (0:41) (0:31) (0:13)

Proportion 62:63 21:80 12:45 3:13 44:70 30:21 18:91 6:18

(1:11) (0:50) (0:37) (0:13) (1:42) (1:27) (0:96) (0:40)

JPY/EUR
Variance decomp. 7:84 2:74 7:94 0:99 7:72 3:32 10:47 1:30

(0:16) (0:12) (0:19) (0:06) (0:29) (0:20) (0:42) (0:11)

Proportion 40:18 14:04 40:70 5:07 33:84 14:56 45:90 5:70

(0:82) (0:61) (0:97) (0:31) (1:27) (0:88) (1:84) (0:48)
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Figure 1: 50-day moving averages of participation rates of algorithmic traders 
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Figure 2: 50-day moving averages of participation rates broken down into four 
maker-taker pairs 
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Figure 3: Dollar-Yen Market on August 16, 2007 
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Figure 4: Volatility and Algorithmic Market Participation 

*Daily realized volatility is based on 1-minute returns. We show monthly observations 
**Share of algorithmic trading is at a monthly frequency 
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Figure 5: Deciles of Realized Volatility and AT Participation 
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