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1. Introduction.

One of the key assumptions of the standard linear instrumental variables (IV) model
is that the instruments and endogenous variables are correlated. This is the identi-
fication assumption, on which the conventional asymptotic theory for the IV model
depends. Indeed even if the correlation between the instruments and the endogenous
variables is nonzero, but slight, then the conventional Gaussian asymptotic theory can
nevertheless provide a very poor approximation to the actual sampling distribution of
estimators and test statistics (see, for example, Bound, Jaeger and Baker (1995)). A
large literature has considered the exact sampling distribution of the two stage least
squares (TSLS) and limited information maximum likelihood (LIML) estimators in
models with nonstochastic instruments and Gaussian innovations. These exact dis-
tributions are far from the limits obtained from conventional asymptotic theory when
the instruments are weak. TSLS is severely biased in the direction of the probability
limit of OLS and the associated t-statistic is highly nonnormal and can even be bi-
modal. Recently, alternative asymptotic nestings have been proposed, which provide
much better approximations to the actual sampling distribution of estimators and
test statistics in the IV model. Bekker (1994) models the number of instruments as
being an increasing function of the sample size. Staiger and Stock (1997) model the
correlation between the instruments and endogenous variables as being local to zero.

The generalized method of moments (GMM) model (Hansen (1982)) nests the



linear IV model as a special case. It is not surprising that analogous issues arise in
this model. Many researchers have found that, in a wide variety of contexts, the con-
ventional Gaussian asymptotic theory provides a poor approximation to the sampling
distribution of GMM estimators and test statistics. There are many possible reasons
why this could happen, but they include identification problems. The identification
condition in the GMM model requires the moment condition to have a unique zero
at the true parameter value and to have a full rank gradient and is crucial, just as it
is in the linear IV special case.

Fortunately, approaches to inference are available that are robust to failure or
near-failure of the identification condition. These robust approaches to inference do
not permit precise inference on a structural coefficient that is not well identified - that
is of course impossible. Robust approaches to inference consist of hypothesis tests
and confidence sets that correctly reflect the lack of identification. If the instruments
are completely irrelevant then a robust confidence set should contain the whole pa-
rameter space (or at least any point in it with probability equal to the coverage of
the confidence set). In the context of the linear IV model with fixed instruments and
Gaussian errors, Anderson and Rubin (1949) proposed an exact test of the hypothesis
that the entire vector of structural coefficients takes on a specified value. An exact
confidence set for the entire vector of structural coefficients can be computed as the

set of hypothesized coefficient vectors for which this test does not reject. This confi-



dence set has coverage close to the nominal level with stochastic instruments and/or
nonnormal errors, even if the instruments are weak (Staiger and Stock (1997)). It is
thus a robust confidence set. Stock and Wright (2000) construct a nonlinear analog
of the Anderson-Rubin confidence set applicable in a general GMM model with pos-
sible identification difficulties. Other robust confidence sets were proposed by Wang
and Zivot (1998), Kleibergen (2001, 2002) and Moreira (2002), and are discussed by
Stock, Yogo and Wright (2002).

All of these robust confidence sets that control coverage whether the model is
identified or not are formed by inverting the acceptance region of a test statistic.
None of them give us point estimates - consistent point estimation is impossible
without identification. There is a strong case to be made for saying that researchers
should always report only robust confidence sets. However, practitioners are fond of
reporting point estimates and associated standard errors. Part of this attachment
may be force of habit and part of it may be that there is real value in a point
estimate. In addition, robust confidence sets do not generally give us confidence
sets for individual elements of the whole parameter vector, other than conservative
confidence sets obtained by projection methods. Point estimates and conventional
standard errors of course yield confidence intervals for individual elements of the
parameter vector. For these reasons, it seems important to provide a diagnostic

so as to indicate whether there is an identification problem or not. If the diagnostic



indicates identification difficulties, the researcher should be warned to use only robust
confidence sets. Otherwise, the researcher may rely on conventional point estimates
and confidence sets.

In the linear IV model, the first-stage F-test involves running a regression of
the endogenous variables on the instruments and testing the null hypothesis of the
joint insignificance of the slope coefficients. The null hypothesis is one of a lack of
identification. Although an important and useful diagnostic, a significant first-stage
F-statistic by no means implies that issues of weak instruments can be ignored (see, for
example, Hall, Rudebusch and Wilcox (1996), Staiger and Stock (1997) and Stock and
Yogo (2001)). A computationally intensive and asymptotically conservative analog
of this test for the GMM model was developed by Wright (2002): this is the only
extant test for identification or lack of identification in the nonlinear-in-parameters
context that I am aware of.

The first-stage F-test tests the hypothesis that the model is not identified.
Recently, Hahn and Hausman (2002) proposed a test of the hypothesis that the linear
IV model is identified. In the case of a single right hand side endogenous variable,
the idea is to compare the forward and reverse TSLS regressions. I am not aware of
any existing test of the hypothesis that the model is identified that is applicable in
the nonlinear-in-parameters context.

In this paper, I propose a new test of the hypothesis that the model s identified,



applicable in the general GMM model provided that the model has more moment
conditions than parameters. The idea is to compare the volume of a Wald confidence
set (not robust to identification difficulties) with the volume of a robust S-set. Under
the null that the model is identified, this ratio is O,(1). Under the alternative, the
robust confidence set has infinite relative volume.

I argue that for a test of either the null of identification or of a lack of identifica-
tion to be useful, it must indicate a lack of identification not only when the model is
completely unidentified but also when the identification is so weak that conventional
Gaussian asymptotics works very poorly. Comparing the first-stage F-statistic with
X3 /k critical values, where k denotes the number of instruments, does not satisfy this
requirement. In the context of the linear IV model, Stock and Yogo (2001), using
the weak instrument asymptotics of Staiger and Stock (1997), show how to solve for
the critical value of a first-stage F-statistic that ensures that the weak instrument
asymptotic coverage of the TSLS Wald confidence set is no smaller than some bound,
or that the asymptotic bias of TSLS is no greater than some bound. These critical
values are much higher than the y2/k critical values with which the first-stage F-
statistic is usually compared. Although the test of a null of identification in GMM
that I propose in this paper does not have any weak identification asymptotic motiva-
tion along the lines provided by Stock and Yogo in the linear IV model, the proposed

test focuses directly on the comparison of robust and non-robust confidence sets and



rejects the null of proper identification whenever robust and non-robust confidence
sets are very different. As such, it might be hoped that the proposed test will indi-
cate circumstances in which identification is so weak that conventional asymptotics
are seriously misleading and that a strategy of using the robust confidence set when
the proposed test rejects, but using the regular Wald confidence set otherwise will
control coverage quite well (while also indicating circumstances in which a researcher
may safely use point estimates and conventional standard errors). This will of course
be demonstrated in the Monte-Carlo simulations below.

The plan for the remainder of this paper is as follows. The GMM model is intro-
duced in section 2. Section 3 describes the proposed test and derives its asymptotic
distribution. Section 4 contains a Monte-Carlo simulation evaluating the properties of

the proposed test. Section 5 contains two empirical applications. Section 6 concludes.

2. The GMM Model.

The GMM model specifies that {Y;}L | is an observed time series and 6 is an nx1

parameter vector with a true value 6, in the interior of a compact space ©, such that
E(¢(Yz,60)) =0
where ¢(.,.) is a k-dimensional function, £ > n. The GMM estimator of 0 is

f = argming S(6)



where

5(0) = ¢*(0) Wre™(0),
¢*(0) = [T7V*8L 6(Y;,0)] and Wy is a symmetric positive definite kxk weighting
matrix which converges almost surely to a symmetric nonstochastic O(1) positive

definite matrix W. Here are the standard assumptions for the GMM model:

Assumption Al: ¢*(0) is twice continuously differentiable, for all 6 in ©.

Assumption A2: TS ¢(V;,0) —as E(¢(Y,6)) and TS #2000 . p[aeCLo)],
uniformly in 6.

Assumption A3: T1/25T  ¢(Y;,00) —a N(0, A), where A is 27-times the zero-frequency
spectral density matrix of ¢(Y;, 6y).

Assumption A4: The kxn matrix B = E [W] has rank n.

Assumption A5: E(¢(Y;,0)) has a unique zero at 6 = 6.

Assumption A6: Vi (0) is an estimator of 27-times the zero-frequency spectral density

matrix of ¢(Y;, 0) that is consistent, uniformly in 6.

Assumptions A2 and A3 are high level convergence assumptions. Assumption A4
is the local identification assumption. Assumption A5 is the global identification

assumption (Hsiao (1983)). Under these assumptions, § —, 6 and

VT (0 —0) —4 N(0,(BWB)~"'B'WAW B(B'WB)™1)



The asymptotically efficient estimator is obtained by choosing a weighting matrix such
that W = A™!; the variance of this asymptotic distribution is then (B’A"'B)"1.
One possible choice of the weighting matrix is the identity matrix. This yields

the objective function
Sos(0) = [T725L,6(Y, 0))' [T/, 6(Y;, 0)]

Denote the resulting estimator by Oos = arg ming Spg(#). This estimator is not
asymptotically efficient. A feasible asymptotically efficient estimator can be obtained

by setting the weighting matrix equal to Vi (6ps) !, yielding the objective function
Srs(0) = TS0, 0) Vi (Bos) TS, 6(Y:, 0).

Denote the resulting estimator, called the two-step estimator, by Org = arg ming Sys(0).
Another feasible asymptotically efficient estimator can be obtained by setting the

weighting matrix equal to Vr(6), yielding the objective function
Scu(0) = [T7/25L,6(Y:, 0)]' Ve (0) [T /251, (Y2, 0)).

Denote the resulting estimator, called the continuous-updating estimator, by éCU =
arg ming Scy(#). This estimator was proposed by Hansen, Heaton and Yaron (1996).

If k = n, the two-step and continuous-updating estimators are numerically equivalent.



2.1 Problems with Standard Gaussian Asymptotics for GMM.

The above asymptotic theory often works poorly in practice. Often, in empirically
relevant sample sizes, @TS and éCU are biased and have sampling distributions far
from those predicted by this asymptotic theory, and the associated t- and F-statistics
have erratic rejection rates. These problems, documented in numerous Monte-Carlo
studies, could arise because T~Y2%1_ ¢(V;, 0,) fails to converge to normality, or con-
verges only very slowly. Alternatively, it could be that E(¢(Y3,0)) is zero, or close to
zero, even for 6 # 0y - in violation of assumptions A4 and A5.

The focus of this paper is on problems with the asymptotic theory underlying
GMM which arise from this latter source: an identification problem. Stock and
Wright (2000) proposed an alternative asymptotic nesting in which E(¢(Y;,6)) =
O(T~'/?), uniformly in §. They derive an alternative asymptotic theory which nests
the completely unidentified model (E(¢(Y:, 6)) = 0, uniformly in 6) as a special case.
This alternative asymptotic theory works much better than the conventional Gaussian
asymptotic theory in providing an approximation to the finite sample distributions
of GMM estimators and test statistics when identification is weak. In the linear IV

model, it reduces to the nesting proposed by Staiger and Stock (1997).

2.2 S-sets.
The weak identification problem in GMM may be effectively circumvented by the use

of S-sets, as proposed in Stock and Wright (2000). The approach dispenses with point



estimation and instead forms a confidence set for § directly from an objective function,
using a nonlinear analog of the Anderson-Rubin confidence set. If assumption A3
holds, and if V(0g) —, A, then the continuous-updating objective function evaluated
at the true parameter vector, Soy(6), converges to a x* distribution on k degrees of
freedom. No identification assumption (assumption A4 or A5) is required for this to
hold. The confidence set for § is formed as the inverse of the acceptance region of
this test, i.e. the confidence set of coverage 1-a is Sj(a) = {6 : Scu(0) < Fy2(k,a)}
where F,2(a,b) is the 100b percentile of a x? distribution on a degrees of freedom.
In a completely unidentified model (E(¢(Y;,0)) = 0, uniformly in #) or a locally
asymptotically underidentified model (E(¢(Y;,0)) = O(T~%/2), uniformly in 6), such
a confidence set will have infinite expected volume. But this is the correct statement
of our uncertainty about 6 in the presence of weak identification. More formally,
under these circumstances, any confidence set that is valid (i.e. controls coverage)

must have infinite expected volume (Dufour (1997)).

2.3 The Homoskedastic Linear IV Model

The linear IV model with iid errors specifies that

y=XG+u

X=/I1+w

where y and X are Tx1 and T'xn matrices of endogenous variables, Z is a T'xk matrix

10



of instruments (k > n), and v and v are conformable matrices of errors such that
w; = (ug,v;)" has variance-covariance matrix 2 (the ¢ subscript on any matrix denotes
the tth observation for that variable). The first of these equations is the structural
equation of interest, and the researcher wants to do inference on the coefficient vector
B. Without loss of generality, there are no included exogenous variables in this
equation. If they were present, they would just be projected out. Because u; and v,
are correlated, OLS is biased.

This model is a special case of the general GMM model with ¢(Y;,0) = (y; —
X,8)Z, 0 = Band V(0) = TS, 2,2, T'SL (y,— X, 8)%. Since B = E[220u0)] —
E[Z:X,] = E[Z,Z,]11, the local identification condition reduces to requiring that the
matrix II has rank n. If this condition is satisfied, assumption A5 is satisfied too.

The TSLS estimator is
Brops = (X' Z(Z'2) 2 X))\ X' Z(Z' Z) 2"y

which is the two-step GMM estimator. The continuous-updating GMM estimator

reduces to LIML. The S-set reduces to

XP3) Py (y—Xp
18 =St < Pelk.o)}

where P, = Z(Z'Z) 'Z'. This is the Anderson-Rubin confidence set (Anderson and
Rubin (1949)). If n = 1 (a single right hand side endogenous variable), the confidence
set can be written as

11



(B (X'P,x — 520 xrxy g2 4 o By py X384+ {y Py — 22y < 0}

This is a quadratic inequality the solution to which is a confidence set for 3 that
must be an interval, the whole real line, the complement of an interval or an empty
confidence set. The Anderson-Rubin confidence set is robust to weak instruments.
Staiger and Stock (1997) show that it controls coverage in their weak instrument
asymptotics. The test is indeed an exact test, if the instruments are fixed and errors
are Gaussian (after replacing x? critical values with F' critical values).

The first-stage F-test tests the hypothesis that II = 0. A rejection of this
hypothesis by no means implies that there are no identification difficulties. The
identification may not be strong enough for conventional asymptotic theory to work
well, as discussed in the introduction. There is an additional issue if n > 1. The
identification condition requires Il to have rank n, which is a stronger requirement
than II # 0 if n > 1. The case in which II has nonzero rank, smaller than n, can
be called partial identification and also leads to failure of conventional asymptotic
theory, as discussed by Choi and Phillips (1992). Cragg and Donald (1993) extend
the first-stage F-test to test the hypothesis that II has a specified rank smaller than
n. It is a convenient feature of testing the null hypothesis of identification, as I do
in this paper, that the test is consistent against the alternative that II has any rank

smaller than n (or that B has any rank smaller than n, in the general GMM case).

12



2.4 Identification Problems in Other Cases.
The linear IV model with iid errors is only one special case of the general GMM model.
The GMM model can accommodate heteroskedastic and /or dependent errors. Indeed,
any maximum likelihood estimator is a special case of GMM in which the moment
condition is the score function.

A leading application of the GMM model is the consumption capital asset pric-
ing model (CAPM) of Lucas (1978). With constant relative risk aversion (CRRA)

preferences, the consumption CAPM Euler equation implies the GMM moment con-

dition E(Z; ® [6 Ryt (552

&+)7 —1]) = 0 where Cy; and R;y; denote consumption and

a vector of gross asset returns, respectively, ¢ is the discount factor, v is the coeffi-
cient of relative risk aversion and Z; is any variable in the information set at time
t. This can be interpreted as a nonlinear-in-parameters instrumental variables model
with Z; as the instrument vector. However, consumption growth and asset returns
are notoriously hard to predict - meanwhile the identification assumptions (A4 and
A5) require nonlinear functions of these to be forecastable. Weak identification is
thus a prime issue in this context (see Stock and Wright (2000), Wright (2002) and
Stock, Wright and Yogo (2002)). The first-stage F-statistic does not apply in the
nonlinear-in-parameters GMM model.

Identification in GMM essentially requires that the objective function be locally

quadratic (assumption A4) and that it does not have multiple local minima which

13



give the same value of the population objective function (assumption A5). These
conditions apply even where there are no instrumental variables. For example, a logit
or probit model in which most of the dependent variables are zeros (or in which most
of the dependent variables are one) will have a likelihood that is flat around the true
parameter value, causing an identification problem. Likewise, the pseudo-Gaussian
likelihood function for a ratio of two parameters will be flat if the denominator is
close to zero. Pagan and Robertson (1998) argue that weak identification problems
can arise in the structural VAR literature.

This motivates the construction of a test of the identification conditions in the

general GMM model (assumptions A4 and A5).

3. The Proposed Test.

As discussed above, identification is a key requirement for conventional asymptotic
theory. I am however only aware of one extant test for the null hypothesis that
the model is identified. That is the test proposed by Hahn and Hausman (2002)
that compares forward and reverse TSLS estimators. It applies only in the linear IV
model.

This paper proposes a new test of the null that the model is identified, which
applies in the general GMM context so long as k£ > n. Define V; and V5 as the volume
of the robust S-set and of the usual two-step Wald confidence set for 6, i.e.

14



Vi = V(0 : Scu(6) < Fa(k, o))

Vo =V(0:T(0rs —0)B A ' B(fy5 —0) < Fya(n,a))

where V(0 : .) denotes the volume of 6 satisfying the specified condition. Define
V3 as the volume of points that are both in the robust S-set and in the usual Wald

confidence set, i.e.
Vs =V{0:Scu(8) < Fp(k,a); T(0ps — 0)B' A B(Ars — 0) < F\a(n, o)}

Let Ly = V3 /V3, denoting the relative volume of the two confidence sets. The relative
volume may be zero or infinite. Let L, = 1(V; > 0)V5/V; +1 — 1(V; > 0), denoting
the fraction of the S-set that is also included in the Wald set (if V; = 0, Ly is defined
to be 1). The tests proposed in this paper use L; and Ly. Throughout the paper, I
use the Wald confidence sets associated with the two-step estimator, but exactly the
same asymptotic distribution theory would apply to Wald confidence sets associated
with the continuous-updating estimator!.

The numerical computation of these test statistics simplifies in the linear IV

model with n = 1. In this case, there exists a closed form expression for the robust

IThere are two reasons for focussing on the two-step estimator. Firstly, practitioners using
a non-robust estimator use the two-step estimator (TSLS) far more frequently than they use the
continuous-updating estimator (LIML). Secondly, the continuous-updating estimator is not robust to
lack of identification, but still works somewhat better than the two-step estimator when identification
is weak. Accordingly, it might be expected (and it turns out in simulations to be true) that a test
for a lack of identification that compares the S-set with the two-step Wald confidence set is more
powerful in the sense that it has a higher rejection rate than the test that compares the S-set with
the continuous-updating Wald confidence set when identification is weak.

15



S-set, which is the solution to the quadratic equation, equation (1). If the confidence
set is an interval, its volume (V) is the width of this interval. If the confidence set
is empty, its volume is zero. If the confidence set is the whole real line or is the
complement of an interval, its volume is infinite. The volume of the Wald confidence
set (V2) is just 24/ 5% where 52 = T1(Y — Xfrgps) (Y — Xfrgrs). The test
statistic L; is just the ratio of these two volumes. The test statistic L, can be
approximated by taking a fine grid of points in the robust S-set, and evaluating what
fraction of these are also in the Wald confidence set. If the robust S-set is unbounded,
set Lo = 0. If it is empty, set Ly = 1.

The limiting distributions of L; and L, under the null of identification (as-
sumptions A4 and A5) are provided in Theorem 1, the proof of which is given in the
appendix. It involves consideration of the behavior of the two-step and continuous-
updating GMM objective functions in a 7~'/?-neighborhood of the true parameter

value.

Theorem 1: Under assumptions A1-A6, if k£ > n,

2F 2 (n,0)/ 2/ 2

Ly —=q V(b: (¢4 Gb)' (¢ + Gb) < Fro(k, ) ey )

Ly —a I'V(b: (b+ (G'G) GGG+ (G'C)'C'd) < Foa(n, a);
(¢ + Gb)' (¢ + Gb) < Fra(k,a))/V(b: (¢ + Gb) (¢ + Gb) < Fye(k,a)) +1 - I
where ¢ is a N(0, I},) kx1 vector, G = A~Y/2B, I'(.) denotes Euler’s gamma function

16



and I* = 1[inf,(¢ + Gb)' (¢ + Gb) < Fy2(k,a)].

Under the alternative hypothesis of a lack of identification (violation of assumptions
A4 and A5), the test statistic L; diverges to infinity, while Ly converges to zero. The
tests are one-tailed tests which reject for large values of L; and for small values of
Ly. The test has power against the alternative that the model is locally unidentified
and against the alternative that it is locally but not globally identified?, unlike any
extant test I am aware of®.

The numerical computation of the null asymptotic distribution of the test sta-
tistics simplifies in the case n = 1. After a little algebra, the null limiting distribution

of L; reduces to

- (GO _ 4+ Folk,a)1[ S — ¢'¢ + Fpo(k, ) > 0]
VEe(a)

which can easily be simulated, given a consistent estimate of G. For a given ¢, b : (¢p+

—G'¢x\[(G'9)*—G'G(¢ 9= F, 2 (k)
G'G :

Gb)' (¢ + Gb) < Fy2(k,«) is just given by the interval

Setting up a grid across this interval, it can be calculated what fraction of these bs

2A variant on the test that would be more powerful in detecting global but not local failure of
identification would involve replacing the robust S-set by the convex hull of the robust S-set. This
would make no difference to the statement of Theorem 1 (because the robust S-set is convex with
probability one asymptotically under the null of identification).

31t would actually be possible to do two-tailed tests as well. If the robust S-set is empty, or exces-
sively small in volume (relative to the Wald confidence set), this indicates a specification problem.
A two-tailed test would be a joint test of identification and specification that would have power in
both directions. Many important papers including Bound, Jaeger and Baker (1995) have been con-
cerned simultaneously about identification and specification. But in this paper I focus exclusively
on testing for identification difficulties, and so adopt a one-tailed test.

17



also satisfy the condition (b+ (G'G)™'G'¢)G'G(b+ (G'G)™'G'¢) < Fy2(n, ). The
asymptotic distribution of Ly can be simulated by taking random draws of ¢ and
calculating this fraction for each ¢*. These would both be degenerate distributions,
equal to 1, if n = k = 1. Indeed the distributions of L; and L, are always degenerate
if n = k. But the statement of Theorem 1 ruled out this case. If £ = n, the robust
S-set is asymptotically equivalent to the Wald confidence set’. This is not so in
the case £ > n, where the robust S-set wastes power relative to the Wald set, if
the model really is identified. Alternative confidence sets have been proposed that
are robust to weak identification. Some of these have the additional feature that
they are asymptotically equivalent to the Wald confidence set if the model really
is identified and & > n (Kleibergen (2001) in the linear IV model and Kleibergen
(2002) in the general GMM context). A test for a null of identification could be
conducted by comparing the volume of a Wald and a robust confidence set in cases
where these two are first-order asymptotically equivalent. This would however be
harder as the test would be based on the second-order asymptotic difference between

the two confidence sets. The fact that the robust S-set wastes power if k > n greatly

4For any ¢ such that (G'¢)?—G'G(¢'¢— Fy2(k,a)) < 0, the set of b satisfying (¢+Gb)'(¢+Gb) <
F,2(k,«a) is empty, and this fraction is set to 1.

5In the case k = n (and in this case alone), the sets b : (¢ + Gb)'(¢ + Gb) < F,2(k,a) and
b: (b+ (G'G)'G'P)G'G(b+ (G'G)"'G'¢) < Fy2(n,a) are both the same as the set b: (G~ +
b)G'G(G7 ¢+ b) < Fy2(n,«) which in turn has the same volume (but a different location) as the
set b: U'G'Gb < F\2(n, a).

18



simplifies the derivation of an expression for the relative volume of the robust and
non-robust confidence sets.

For general n, the set b : (¢+Gb)'(¢p+Gb) < F\2(k, «) is convex. For any ¢ such
that (¢ — G(G'G)'G'¢) (¢ — G(G'G)*G'¢p) < F\2(k,«), this set is empty and so has
zero volume. Otherwise, the volume of this set for a given ¢ can be calculated by (i)
solving for bY and b%, the maximum and minimum of the ith element of b satisfying
the equation® (¢ + Gb)'(¢ + Gb) < Fy2(k,«), (ii) taking a uniform grid of values of
b such that the ith element is between b and bF and (iii) computing the volume
as the fraction of points in the grid that satisfy the equation (¢ + Gb)'(¢ + Gb) <
F2(k,a) multiplied by I, (bY — bF). For a given ¢, the fraction of bs such that
(¢4 Gb)' (¢ +Gb) < F,2(k, ) that also satisfy the condition b+ (G'G)™'G'¢)'G'G(b+
(G'G)™'G'¢) < Fy2(n,a) can be calculated from this grid as well. The asymptotic
distributions of L; and Ly can thus be simulated by taking random draws of ¢ and
conducting these calculations for each ¢.

The proposed test works for any coverage rate of the Wald and S-sets, o. For
all numerical work in this paper, I set a = 0.95.

The proposed test is similar in spirit to a Hausman specification test. Any test

that compares two estimators one of which is consistent under the null and alternative

Concretely, in the case n = 2, b¥ and b¥ may be computed as the solutions to the quadratic
equation [(G1G2)? — G1G1G,G2)7? + [2¢'G1G,G2 — 2G1G1¢/ Ga]E + (¢'G1)? + GG 1F2 (k, o) —
G1G1¢'¢ = 0 where G is partitioned as [G] Gy).
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hypotheses and the other of which is consistent under the null hypothesis alone is
a Hausman specification test (Hausman (1978)). Consistent estimation is however
impossible in a model that is not identified”. The test that I am proposing instead
compares the volume of two confidence sets, which are of the same order under the

null, but not under the alternative.

4. Monte-Carlo Results.

4.1 The Linear 1V Model with a Single Included Endogenous Regressor.
In my first set of Monte-Carlo results, I focus on the linear IV model with n = 1. The
experimental design follows Hahn and Hausman (2002). I normalize 5 to zero. The

instruments are k independent standard normal random variables. The errors w; are

1
Gaussian with (2 = - the parameter p governs the endogeneity of x;. I set

p 1
I = (¢,...¢). The population R? in the first-stage regression is R]% = k¢?/(ko* +1),

S0 ¢ = \/ R? J(k(1— }N%rj;)) I use the following parameter combinations:
7=100, 250, 1000
p=-0.9, -0.5, 0.5, 0.9

k=5, 10, 30

"This does not necessarily prevent one from constructing a test based on the difference between
two estimators neither of which is consistent under the underidentified alternative. The test of Hahn
and Hausman (2002) is such a test. A test based on the difference between the continuous-updating
and two-step GMM estimators would be too.
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Results are reported for Rfc:O, 0.01, 0.1, 0.3 and 0.5 in Tables 1-5, respectively. In
each experiment, I do 1,000 replications. I calculate (i) the coverage of the usual
Wald confidence interval (which is 1 minus the size of the TSLS t-test testing the
hypothesis that 5 = 0), (ii) the coverage of the Anderson-Rubin confidence set, (iii)
the rejection rate of the proposed tests Liand Lo, (iv) the coverage of the confidence
set that is the Anderson-Rubin confidence set if L; rejects and the Wald otherwise,
(v) the coverage of the confidence set that is the Anderson-Rubin confidence set if Ly
rejects and the Wald otherwise, (vi) the acceptance rate of the first-stage F-test, (vii)
the coverage of the confidence set that is the Wald confidence set if the first-stage
F-test rejects and the Anderson-Rubin otherwise, (viii) the acceptance rate of the test
comparing the first-stage F-test with the weak identification asymptotic critical values
of Stock and Yogo (2001)® and (ix) the coverage of the confidence set that is the Wald
confidence set if the first-stage F-test rejects using these latter critical values and the
Anderson-Rubin otherwise. All confidence intervals have 95% nominal coverage and
all tests have 5% nominal size. I report the acceptance rate for the first-stage F-test
but the rejection rate for my proposed test. This gives some comparability, since the
first-stage F-test tests a null hypothesis of underidentification while the proposed test

tests a null hypothesis of identification. However, these tests are conceptually quite

8Specifically these are the critical values to ensure that the effective size of a TSLS Wald test is
no greater than 25% under the weak identification asymptotics of Staiger and Stock (1997).
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distinct.

The model is formally identified in all the experiments except those for which
R]% = 0. But we would want the tests L; and Ly to reject if the identification is so
weak that the TSLS t-statistic exhibits severe size distortions. The potential practical
usefulness of the proposed test is as a pretest as in (iv) and (v). The hope, to be
evaluated in these experiments, is that the effective coverage of the confidence set
that is robust if the test rejects and non-robust otherwise will generally be reasonably
close to the nominal level. The researcher is however better off with this strategy
than simply using the robust confidence set always in the sense that the researcher
will sometimes be allowed to use point estimates and standard errors, which may be
preferable for reasons discussed in the introduction.

The effective coverage rate of the Wald confidence interval can be far below the
nominal level when p > 0, as is well known. In extreme cases, its simulated effective
coverage is under 1 percent. The Anderson-Rubin confidence set effectively circum-
vents this problem. The proposed tests have low rejection rates when conventional
asymptotic theory works well, but high rejection rates when it works poorly.

The rejection rate of the proposed tests is consistently above 90% in the case
R]% = 0.01. The test of Hahn and Hausman (2002) has rejection rates of around
10% in many of these simulations (their Table 3). While it is true that the model

is formally identified with R]% = 0.01, the model cannot be said to be well identified
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with such a low theoretical first-stage R-squared in a sample size of 1,000 or less.
Since I am thinking of the test as testing for the adequacy of conventional asymptotic
theory, I believe that it is a useful feature of the proposed test that it rejects in such
cases.

The coverage rates of the confidence sets that condition on the results of the
pretest proposed in this paper are never below 72% (for L;) and never below 76%
(for L) and are typically higher than this. The coverage rate of the confidence set
that conditions on the result of the first-stage F-test can be as low as 16%. It seems
intuitive that the test proposed in this paper works relatively well as a pretest because
it is based on the direct comparison of robust and non-robust confidence sets and only
allows the researcher to use the non-robust approach when this gives results that are
close to the robust approach.

The coverage rates of the confidence set that conditions on the comparison of the
first-stage F-statistic with the critical values of Stock and Yogo (2001) is never below
79%°. There are however several cases in which the test of a null of identification
rejects about 60% of the time (allowing the researcher to use conventional point

estimates and standard errors), while the test that compares the first-stage F-statistic

9This is not surprising, since these critical values are designed to ensure that the effective coverage
of the TSLS Wald confidence set is bounded below by 75% under weak instrument asymptotics. Stock
and Yogo provide critical values for different maximal biases or size distortions. I picked the critical
values that bound the effective size at 25% because the effective coverage rates of the confidence
set for 3 obtained with them are comparable with the effective coverage rates of the confidence sets
that condition on the results of the test for identification proposed in this paper.
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with the critical values of Stock and Yogo does not reject the null of underidentification
in any simulations.
Of course, the researcher who never wants effective coverage to be appreciably

different from the nominal level should just always use the robust confidence sets.

4.2 The Consumption CAPM with CRRA Preferences.

An important feature of the proposed test is that it is applicable in all GMM models,
not just in the linear IV model, unlike the first-stage F-test or the test of a null of
identification proposed by Hahn and Hausman (2002). My second set of Monte-Carlo
results evaluate the proposed test in the context of the consumption CAPM Euler
equation with CRRA preferences.

To simulate data from the consumption CAPM, I follow the approach of Tauchen
and Hussey (1991) (also used in Tauchen (1986), Kocherlakota (1990), Hansen, Heaton
and Yaron (1996) and Stock and Wright (2000)). This involves fitting a 16-state
Markov chain to consumption and stock-market dividend growth (the state variables)

calibrated so as to approximate the first-order VAR:

log(z75) o log (=) Uet
= u
log(574) log(5E) Uat

where D; is the stock-market dividend at date t and (e, ug)’ is iid normal with mean
zero and variance A. I use the same values of p, ® and A as Kocherlakota (1990), who
chose these by fitting a bivariate VAR(1) to historical US annual real dividend growth
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and real consumption growth data!’. I set the discount factor, &, to 0.97 and the
coefficient of relative risk aversion, v, to 1.3. Taking random draws of consumption
growth and dividend growth from this Markov chain, numerical quadrature is then
used to calculate the prices of a stock and a riskfree asset in each period implied
by the consumption CAPM with intertemporally separable CRRA preferences. In
this way, time series of consumption growth, stock returns and bond returns may
be simulated!!. I then consider GMM estimation of the parameters § and -, using
both stock and bond returns as the elements of R;.i, using as instruments either
instrument set A: a constant, one lag of stock and bond returns and one lag of
consumption growth or instrument set B: a constant and one lag of consumption
growth'?. These instrument sets were used by Hansen, Heaton and Yaron (1996). I
use sample sizes of 100 (mirroring the available sample sizes for U.S. annual data)
and 250 and 1,000 (to see the effects of hypothetical larger sample sizes).

For these simulations, I report the coverage rate of a Wald confidence set and
an S-set for @ = (6,7)" in Table 6. I also report the rejection rate of the proposed

tests Ly and L. Lastly, I report the coverage rate of the confidence set for 6 that

0.021 ~0.161  0.017 0.0012  0.00177
10 — — —
These are = ( 0.004 > e = ( 0414 0117 ) and A = ( 0.00177 0.014 )

T am grateful to George Tauchen for his Gauss code for implementing this.

12Tn GMM estimation of the consumption CAPM, I set V() = T71SL (Y7, 0)p(Yz, 0) in this
paper (heteroskedasticity-robust).
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is the S-set!® if L; or L,y rejects and the Wald set otherwise. In a sample size of
100, the effective coverage rates of the Wald confidence set are far below the nominal
level for both instrument sets (about 40%), mirroring the inadequacy of conventional
asymptotic approximations in this case, as documented by Hansen, Heaton and Yaron
(1996). The effective coverage rate rises with the sample size. The proposed tests
have rejection rates over 90% in the sample size of 100, but have lower rejection rates
in the larger sample sizes. The rejection rate for Ly can fall to under 10% in the
sample size of 1000 when the conventional asymptotic approximation is not too bad.
The confidence set that is the S-set if L; or Ly rejects and the Wald set otherwise

yields coverage of above 80% in all cases.

5. Empirical Applications.

5.1 Financial Intermediation and Growth using Legal Origin Dummies as Instruments.
One of the applications of instrumental variables methods that has received con-
siderable attention recently has been the regression of growth rates on measures of

financial development. There is a clear problem of endogeneity in this regression.

I3Numerical computation of the S-set involves evaluating the continuous updating objective func-
tion at each point in a grid. The bounds of the grid do not affect the coverage of the S-set provided
that the true parameter value is within these bounds. Provided that the S-set includes the entire
Wald set, setting bounds that are too small can only lower the rejection rate (and thus the power)
of the proposed tests Ly and Ly. In numerical evaluation of S-sets, I take the wider of two possible
sets of bounds: (i) a bound for § between -0.5 and 1.5 and ~y between -5 and 50, and (ii) the two-step
estimate +/- 30 standard errors.
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Recognizing this, authors such as Levine, Loayza and Beck (2000) have used legal
origin dummies as instruments. The legal system in each country can usually be un-
ambiguously traced to one of four origins: English Common Law, French Napoleonic
Law, German law, or Scandanavian law. It is hoped that the legal origin dummies
are correlated with financial development, but do not affect growth rates other than
through financial development.

Following Levine, Loayza and Beck (2000), I ran a cross-country regression of
real GDP per capita growth rates over the years 1960-1995 on an index of financial
development and on three other sets of control variables, treating financial devel-
opment as endogenous and the controls as included exogenous variables. Financial
development was measured by the log of the total value of credits issued by financial
intermediaries to the private sector, divided by GDP (the measure of financial in-
termediation preferred by Levine, Loayza and Beck). Following Levine, Loayza and
Beck, the three sets of control variables are (i) the simple conditioning information
set: schooling and 1960 real GDP per capita, in logs, (ii) the policy conditioning
information set: the simple information set plus the government share in GDP, the
trade share in GDP, inflation and the black market premium, and (iii) the full in-
formation set: the policy information set plus indicators of revolutions, coups and

ethnic fractionalization. I used TSLS, with English, French and German legal ori-
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gin dummies as instruments'*. The first-stage F-statistic for this regression is 5.63
with the simple conditioning information set, 5.43 with the policy conditioning in-
formation set and 5.80 with the full conditioning information set. Meanwhile, the
1% critical value in the test that compares this to a x2/k distribution is 3.78, so this
test clearly rejects in all three cases. The values of the test statistics L; and Ly and
the 5% critical values are reported in Table 7. For all three sets of controls and for
both test statistics, the null of identification is rejected. I conclude that even if these
instruments are uncorrelated with the error term in the structural equation, their
correlation with the endogenous regressor is not high enough to allow a researcher to
conduct inference in the conventional way. For the simple conditioning information
set, the regular Wald confidence set for the effect of financial innovation on growth is
2.34+1.20. The Anderson-Rubin confidence set for this parameter goes from 0.51 to
5.77, which, though quite different, is still an interval containing only strictly positive

values. Results with the other sets of controls are similar.

5.2 The Consumption CAPM with CRRA Preferences.
In this application, I use US annual data from Campbell and Shiller (1987), updated
to cover the years 1889-1999. The data consist of stock returns, bond returns and

consumption growth, all in real terms, as described by Campbell and Shiller. I

14T am grateful to Ross Levine for providing me with these data. A more detailed description of
the data can be found in Levine, Loayza and Beck.
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then consider GMM estimation of the parameters 6 and v, using both stock and
bond returns as the elements of Ry, using instrument sets A and B (as defined the
Monte-Carlo simulation above). The values of the test statistics L; and Lo and the
5% critical values are reported in Table 8. For both instrument sets and for both
test statistics, the null of identification is rejected. The two-step estimator indicates
precisely identified parameters with small risk aversion but the robust S-sets are large
and indicate high risk aversion, a pattern that was found by Stock and Wright (2000)
with an earlier dataset. Indeed, with either set of instruments, the robust S-set and
Wald set are completely disjoint and so the test statistic Ly = 0. This means that
the two-step point estimate is not even included in the robust S-set, which inverts

the acceptance region of the continuous-updating objective function.

6. Conclusion.

In this paper, I have proposed a test of the null hypothesis of identification, that allows
for the detection of a local or global underidentification, and of underidentification in
some or all directions. It applies in any GMM model with more moment conditions
than parameters. The test is conceptually simple, working by comparing the volume
of confidence sets that are robust to underidentification with the volume of the non-
robust Wald confidence set. When the test rejects, inference should be conducted
only by methods that are robust to underidentification.
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Appendix: Proof of Theorem 1.

Let b = T'2(0 — 6,) where 6, denotes the true parameter value. The continuous-

updating GMM objective function can be written as

Scv(0) = [T7V2SL 1 6(Y,, 0))'Vir(0) M [T-V/2S1 (Y, 0)] =
(T8 (Yy, 00)+T 8L LOLEN 1y ()T 28T Vs, 0p)+T 5T 200

where 6" is on the line segment between 6 and y. So

Scu(0) = [Vr(0)~V*T=128L ¢(Vy, 60) +

Vi (0) V2T IS ) [V (0) V2T V2ET (Y, 60) +

VT(Q)_I/QT_IErir:l—dd)(?g’e*)b]
which converges to (¢ + Gb)' (¢ + Gb). But Vi = T-Y2V (b : Scy (0 + T7%) <
Fa(k,a)) , s0 TYV2Vy —4 V(b: (¢ + Gb)' (¢ + Gb) < Fy2(k,)). From the first order

condition for the two-step estimator,

(12T, POV (Bos) (TS 6(Y, )] = 0
(1125 BORSV (Bog) [T~/ (Y, 00)+ T SE LEATV2(D15—09)] = 0

where 0" is on the line segment between 6 and 6y. So

TYV2(0ps — 6y) =

~ ! N ~ - ! ~
—[1is] 0 Irs) v (fog) T TR ULty 200L00s) () 66) I TV2ET (Y, 0)]
which converges to —(G'G)"'G'¢. So

T(Ors —0)B'AB(0rs — 0) = [b— TY2(015 — 00)'G'G[b — T2(01 — 0,)]
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which converges to [0+ (G'G)'G'¢)]G'G[b + (G'G)"*G'¢] and so
TV2V, oy V(b: (b+ (G'G) \G'¢)GCb+ (G'G) 'G'¢) < Fa(n,a)) = V(b:
VG'Gb < Fy2(n,a))

with the last equality because setting (G'G)™'G’'¢ to an n-vector of zeros shifts the
location of the set b: (b+ (G'G)'G'¢)G'G(b + (G'G)*G'¢) < Fy2(n, ) but leaves

its volume unchanged. In turn,

el 1 I .57 1 QFX2(”70‘)"/27T"/2
V(b:VG'Gb< Fye(n,a)) = mV(b (b < Fe(n, o)) = GG D)

2F o (n,a)™/2m/?
— 1 X
d \G'GI72 n|G'G[I/2T (n)2)

using the equation for the volume of a hypersphere. So T/2V,

and

2F 2 (n,c)™/27m/2

Ly —a V(b: (¢ +Gb) (¢ + Gb) < Fea(k, o)) {~iSammrrs)

Also,

TY2V; =4 V(b: (b+ (G'G)"'G'¢)G'G(b + (G'G)LG'¢) < Fyo(n, a);

(¢ + Gb) (¢ + Gb) < Fy2(k, )
and 1(V4 > 0) —4 1[infy(¢ + Gb)' (¢ + Gb) < Fy2(k, )] = I* so that

Ly g I'V(b: (b+ (G'G)LG'¢)G'G(b + (G'G)"1G'd) < Fpa(n, a);

(6 + Gb)(6 + Gb) < Fra(k,a))/V(b: (¢ + Gb)(¢+ Gb) < Fa(k,a)) + 1 — I*

as required. |
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Table 1: Monte-Carlo Results: Linear IV Model R?c =0

Coverage Reject Rate  Accept Rate Pretest Coverage
T P k. Wald AR I, Lo R 2 Ly Ly Fi F

100 -0.9 5 100.0 94.6 99.7 99.8 939 100.0 949 948 985 94.6
100 -0.9 10 100.0 96.5 99.9 99.9 945 100.0 96.6 96.6 98.6 96.5
100 -0.9 30 100.0 98.3 100.0 100.0 90.7 100.0 98.3 98.3 999 98.3
100  -0.5 5 100.0 94.6 99.9 999 94.1 100.0 946 946 951 94.6
100 -0.5 10 100.0 96.5 100.0 100.0 93.2 100.0 96.5 96.5 974 96.5
100  -0.5 30 100.0 98.3 100.0 100.0 91.3 100.0 98.3 98.3 985 98.3
100 05 5 81L.7 94.6 100.0 100.0 94.6 100.0 94.6 946 923 94.6
100 0.5 10 58.7 96.5 99.9 100.0 93.9 100.0 96.4 96.5 92.8 96.5
100 0.5 30 13.8 983 100.0 100.0 90.6 100.0 98.3 98.3 894 98.3
100 09 5 113 946 99.7 99.8 939 1000 94.6 946 91.8 94.6
100 09 10 0.8 96.5 100.0 100.0 93.0 100.0 96.5 96.5 924 96.5
100 09 30 0.0 98.3 100.0 100.0 91.4 100.0 98.3 98.3 91.0 98.3
250 -09 5 100.0 955 99.7 998 954 1000 958 95.7 975 95.5
250 -09 10 100.0 958 999 999 958 1000 959 959 974 958
250 -09 30 100.0 96.2 100.0 100.0 94.8 100.0 96.2 96.2 984 96.2
250 -0.5 5 100.0 955 998 999 943 1000 956 95.6 96.3 95.5
250 -0.5 10 100.0 958 998 998 949 1000 959 959 96.3 958
250 -0.5 30 100.0 96.2 100.0 100.0 93.7 1000 96.2 96.2 97.0 96.2
250 05 5 810 955 996 997 93.8 1000 954 954 93.3 95.5
250 05 10 574 958 99.6 998 948 100.0 957 95.8 922 95.8
250 0.5 30 127  96.2 999 999 929 1000 96.2 96.2 90.2 96.2
250 09 5 121 955 99.7 998 948 1000 955 955 929 95.5
250 09 10 14 95.8 99.8 99.8 939 100.0 95.8 958 922 95.8
250 09 30 0.0 96.2 100.0 100.0 93.9 100.0 96.2 96.2 92.6 96.2
1000 -0.9 5 100.0 94.8 99.9 99.9 94.8 100.0 949 949 979 94.8
1000 -0.9 10 100.0 94.3 99.4 994 944 100.0 949 949 972 94.3
1000 -0.9 30 100.0 959 99.9 999 947 100.0 96.0 96.0 979 95.9
1000 -0.5 5 100.0 94.8 99.8 99.8 95.6 100.0 94.8 948 95.7 94.8
1000 -0.5 10 100.0 94.3 99.4 99.4 947 100.0 94.6 946 954 94.3
1000 -0.5 30 100.0 959 99.8 99.9 93.8 100.0 96.0 96.0 96.5 95.9
1000 0.5 5 799 94.8 100.0 100.0 96.0 100.0 94.8 948 934 948
1000 0.5 10 584 943 99.5 99.5 93.7 100.0 943 943 909 94.3
1000 0.5 30 16.6 959 99.9 99.8 93.8 100.0 959 959 90.6 95.9
1000 09 5 103 94.8 100.0 100.0 95.3 100.0 94.8 948 93.1 94.8
1000 09 10 1.7 94.3 994 99.6 93.9 100.0 943 943 918 94.3
1000 0.9 30 0.0 95.9 99.7 99.7 94.0 100.0 959 959 926 95.9

Notes: The coverage columns give the coverage rates of Wald and AR confidence sets. The reject rate
columns give the rejection rates of the proposed tests. The accept rate columns give the rejections rates of
the tests based on comparing the first-stage F-statistic with X% /k critical values and the critical values of
Stock and Yogo (2001), designed to ensure that the TSLS Wald test size is no larger than 25%. For these
columns, I report an acceptance rate, rather than a rejection rate because the null hypothesis is that the
model is not identified, whereas for my test the null hypothesis is that the model is identified. The last
four columns report the effective coverage rate of the confidence set that is the Wald or AR confidence set
depending on the results of each identification/underidentification test.



Table 2: Monte-Carlo Results: Linear IV Model R?c =0.01

Coverage Reject Rate  Accept Rate Pretest Coverage

T P k. Wald AR I, Lo R 2 Ly Ly Fi F

100 -0.9 5 100.0 946 99.7 99.8 939 100.0 949 94.8 985 94.6
100  -0.9 10 100.0 96.5 99.9 99.9 945 100.0 96.6 96.6 98.6 96.5
100  -0.9 30 100.0 98.3 100.0 100.0 90.7 100.0 98.3 98.3 99.9 98.3
100 -0.5 5 100.0 946 99.9 99.9 94.1 100.0 94.6 94.6 95.1 94.6
100  -0.5 10 100.0 96.5 100.0 100.0 93.2 100.0 96.5 96.5 97.4 96.5
100  -0.5 30 100.0 98.3 100.0 100.0 91.3 100.0 98.3 98.3 98.5 98.3
100 05 5 81.7 946 100.0 100.0 94.6 100.0 94.6 94.6 92.3 94.6
100 0.5 10 587 96.5 999 100.0 93.9 100.0 96.4 96.5 92.8 96.5
100 0.5 30 13.8 983 100.0 100.0 90.6 100.0 98.3 98.3 89.4 98.3
100 09 5 11.3 946 99.7 99.8 939 100.0 94.6 94.6 91.8 94.6
100 09 10 0.8 96.5 100.0 100.0 93.0 100.0 96.5 96.5 924 96.5
100 09 30 0.0 98.3 100.0 100.0 91.4 100.0 983 983 91.0 98.3
250 -09 5 100.0 95.5 99.7 99.8 954 100.0 958 95.7 97.5 955
250  -0.9 10 100.0 95.8 99.9 999 958 100.0 959 959 974 95.8
250 -0.9 30 100.0 96.2 100.0 100.0 94.8 100.0 96.2 96.2 98.4 96.2
250  -0.5 5 100.0 95.5 99.8 999 943 100.0 956 956 96.3 95.5
250 -0.5 10 100.0 95.8 99.8 99.8 949 100.0 959 959 96.3 95.8
250 -0.5 30 100.0 96.2 100.0 100.0 93.7 100.0 96.2 96.2 97.0 96.2
250 0.5 5 810 955 99.6 99.7 93.8 100.0 954 954 933 955
250 0.5 10 574 958 99.6 99.8 94.8 100.0 95.7 958 92.2 95.8
250 0.5 30 127 96.2 999 999 929 100.0 96.2 96.2 90.2 96.2
250 0.9 5 121 955 99.7 998 94.8 100.0 955 955 92.9 955
250 09 10 14 95.8 99.8 99.8 939 100.0 958 958 922 958
250 0.9 30 0.0 96.2 100.0 100.0 93.9 100.0 96.2 96.2 92.6 96.2
1000 -0.9 5 100.0 948 99.9 99.9 948 100.0 949 949 979 948
1000 -0.9 10 100.0 94.3 994 99.4 944 100.0 94.9 949 972 943
1000 -0.9 30 100.0 959 99.9 99.9 947 100.0 96.0 96.0 97.9 95.9
1000 -0.5 5 100.0 948 99.8 99.8 95.6 100.0 94.8 94.8 95.7 948
1000 -0.5 10 100.0 94.3 994 99.4 94.7 100.0 94.6 94.6 954 94.3
1000 -0.5 30 100.0 959 99.8 99.9 93.8 100.0 96.0 96.0 96.5 95.9
1000 0.5 5 799 948 100.0 100.0 96.0 100.0 94.8 94.8 93.4 948
1000 0.5 10 584 943 99.5 99.5 93.7 100.0 94.3 94.3 90.9 94.3
1000 0.5 30 16.6 959 99.9 99.8 93.8 100.0 95.9 959 90.6 95.9
1000 09 5 103 948 100.0 100.0 95.3 100.0 94.8 94.8 93.1 948
1000 09 10 1.7 94.3 99.4 99.6 939 100.0 943 943 91.8 94.3
1000 0.9 30 0.0 95.9 99.7 997 94.0 100.0 959 959 926 959

See notes to Table 1.



Table 3: Monte-Carlo Results: Linear IV Model R% =0.1

Coverage Reject Rate  Accept Rate Pretest Coverage

T P k. Wald AR I, Lo R 2 Ly Ly Fi F

100  -09 5 100.0 946 99.0 994 884 100.0 955 952 98.1 94.6
100 -0.9 10 100.0 96.5 99.5 99.5 90.3 100.0 97.0 97.0 98.8 96.5
100 -0.9 30 100.0 98.3 100.0 100.0 89.0 100.0 98.3 98.3 99.8 98.3
100 -0.5 5 100.0 946 99.6 99.7 90.4 100.0 94.8 94.8 95.8 94.6
100  -0.5 10 100.0 96.5 99.8 99.9 90.2 100.0 96.7 96.6 97.7 96.5
100  -0.5 30 100.0 98.3 100.0 100.0 89.1 100.0 98.3 98.3 98.5 98.3
100 05 5 824 946 99.7 99.8 89.8 100.0 94.7 94.7 91.1 94.6
100 05 10 599 965 99.8 99.8 90.7 100.0 96.5 96.5 91.3 96.5
100 0.5 30 15.7 983 100.0 100.0 89.4 100.0 98.3 98.3 88.8 98.3
100 09 5 21.0 946 99.2 994 889 100.0 945 94.6 86.7 94.6
100 09 10 2.2 96.5 99.6 99.7 90.6 100.0 96.5 96.5 89.3 96.5
100 09 30 0.0 98.3 100.0 100.0 89.4 100.0 983 98.3 89.1 98.3
250 -09 5 100.0 95.5 974 98.0 82.0 100.0 97.7 975 99.3 955
250 -0.9 10 100.0 95.8 98.5 98.8 8.5 100.0 97.1 97.0 98.0 95.8
250 -0.9 30 100.0 96.2 99.1 99.3 90.0 100.0 97.1 96.9 99.3 96.2
250 -0.5 5 100.0 95.5 98.5 98.7 82.2 100.0 964 96.2 974 95.5
250 -0.5 10 100.0 95.8 99.3 99.3 8.4 100.0 959 959 96.7 95.8
250 -0.5 30 100.0 96.2 100.0 100.0 90.5 100.0 96.2 96.2 97.0 96.2
250 0.5 5 820 955 985 98.7 80.4 100.0 955 955 90.0 95.5
250 0.5 10 63.3 95.8 99.5 99.6 8.0 100.0 95.8 958 88.2 95.8
250 0.5 30 163 96.2 99.8 99.8 87.2 100.0 96.1 96.1 852 96.2
250 0.9 5 332 955 976 979 80.5 100.0 954 955 79.3 955
250 09 10 6.1 95.8 98.9 99.2 854 100.0 958 958 84.2 958
250 0.9 30 0.0 96.2 98.8 99.1 884 100.0 96.2 96.2 87.1 96.2
1000 -0.9 5 100.0 948 933 97.1 324 99.8 98.9 97.7 99.4 95.0
1000 -0.9 10 100.0 94.3 944 96.9 46.8 100.0 98.7 97.4 99.2 94.3
1000 -0.9 30 100.0 959 96.7 97.3 685 100.0 98.9 98.6 99.6 95.9
1000 -0.5 5 100.0 948 922 941 31.0 99.9 97.7 97.7 99.0 94.8
1000 -0.5 10 100.0 94.3 955 96.7 46.3 100.0 96.4 96.0 98.3 94.3
1000 -0.5 30 100.0 959 98.0 98.7 66.9 100.0 96.8 96.8 984 95.9
1000 0.5 5 86.8 948 931 942 314 999 94.7 94.6 87.1 94.8
1000 0.5 10 732 943 956 96.5 45.1 100.0 93.5 93.7 78.0 94.3
1000 0.5 30 26.5 959 97.7 984 65.2 100.0 94.9 955 69.3 95.9
1000 09 5 65.0 948 942 97.1 319 999 92.9 94.8 66.6 94.8
1000 09 10 26.8 943 950 96.8 444 100.0 93.2 94.3 47.1 943
1000 0.9 30 0.0 95.9 96.2 973 66.0 100.0 954 959 655 959

See notes to Table 1.



Table 4: Monte-Carlo Results:

Linear IV Model R% =0.3

Coverage Reject Rate  Accept Rate Pretest Coverage

T p k' Wald AR Ly Lo Il Py Ly Ly Fy Py

100 -09 5 1000 946 942 979 271 99.1 98.2 96.7 99.1 94.9
100 -0.9 10 100.0 96.5 959 98.2 40.5 100.0 99.0 983 99.6 96.5
100  -0.9 30 100.0 98.3 98.8 99.2 59.6 100.0 994  99.1 100.0 98.3
100 -0.5 5 1000 946 942 951 278 995 96.5 96.4 979 94.7
100  -0.5 10 100.0 96.5 96.3 96.8 40.2 100.0 979 979 987 96.5
100  -0.5 30 100.0 98.3 99.8 99.8 61.6 100.0 98.4 984 99.1 98.3
100 05 5 8.5 946 933 94.7 278 99.7 942 942 877 94.6
100 05 10 774 965 969 97.6 384 100.0 95.8 959 824 96.5
100 05 30 27.7 983 99.8 99.8 622 100.0 98.2 982 682 98.3
100 09 5 680 946 95.0 98.0 275 994 92,5 946 69.0 945
100 09 10 31.1 965 964 98.1 39.0 100.0 955 96.5 487 96.5
100 09 30 0.0 98.3 99.1 99.2 61.2 100.0 983 98.3 61.0 98.3
250 -09 5 100.0 955 86.2 95.8 0.6 829 99.3 99.0 100.0 98.1
250 -0.9 10 100.0 95.8 89.4 97.7 25 100.0 99.3 98.1 99.9 95.8
250 -0.9 30 100.0 96.2 95.3 97.6 13.6 100.0 99.5 98.6 99.9 96.2
250 -05 5 999 955 771 81.7 1.0 831 99.5  99.2 998 97.3
250  -0.5 10 999 958 84.3 87.8 28 100.0 99.0 984 99.7 95.8
250 -0.5 30 100.0 96.2 94.4 959 14.2 100.0 985 98.3 99.8  96.2
250 05 5 916 955 77.7 81.0 1.0 813 95.7 95.1 915 926
250 0.5 10 84.6 958 83.6 86.9 3.8 100.0 92.7 925 84.6 95.8
250 0.5 30 425 96.2 94.7 959 142 100.0 93.4 945 46.5 96.2
250 0.9 5 823 955 8.9 964 0.8 83.0 91.0 95.6 82.0 86.2
250 0.9 10 594 958 89.7 97.7 3.0 100.0 89.1 958 59.5 95.8
250 0.9 30 0.8 96.2 95.5 97.6 15.8 100.0 94.6 96.2 159 96.2
1000 -0.9 5 999 948 39.1 40.3 0.0 0.0 99.9 999 999 99.9
1000 -0.9 10 99.8 943 46.2 549 0.0 41.7 999 993 998 979
1000 -0.9 30 100.0 959 729 96.2 0.0 100.0 100.0 99.6 100.0 95.9
1000 -0.5 5 99.7 948 30.0 30.0 0.0 0.0 99.9 999 99.7 99.7
1000 -0.5 10 99.5 943 33.1 324 0.0 427 99.7 99.7 995 97.6
1000 -0.5 30 100.0 959 56.8 60.0 0.0 100.0 100.0 99.5 100.0 95.9
1000 0.5 5 949 948 30.6 304 0.0 0.0 95.6 95.6 949 949
1000 0.5 10 90.2 943 321 324 0.0 409 92.2 922 90.2 89.0
1000 0.5 30 73.0 959 56.1 59.2 0.0 100.0 82.8 82.6 73.0 95.9
1000 09 5 915 948 394 409 0.0 0.0 93.0 927 915 915
1000 0.9 10 80.8 943 46.4 54.0 0.0 40.8 84.9 84.2 80.8 79.2
1000 09 30 294 959 735 96.3 0.0 100.0 741 959 294 959

See notes to Table 1.



Table 5: Monte-Carlo Results: Linear IV Model R% =05

Coverage Reject Rate Accept Rate Pretest Coverage

T P k. Wald AR L1 Lo P R Ly Lo F B

100  -09 5 100.0 946 779 923 0.1 428 99.0 98.6  100.0 98.0
100  -0.9 10 100.0 96.5 85.0 96.5 0.5 99.8 99.8 99.1 100.0 96.5
100  -0.9 30 100.0 98.3 96.2 98.8 3.8 100.0 99.9 99.5 100.0 98.3
100 -05 5 992 946 688 71.5 0.0 403 99.1 985 99.2 97.3
100  -0.5 10 100.0 96.5 774 814 0.7 99.6 99.7  99.3 100.0 96.6
100  -0.5 30 100.0 98.3 96.5 97.3 3.6 100.0 99.3 99.3 100.0 98.3
100 05 5 923 946 69.5 724 0.1 41.0 94.7 939 923 91.3
100 0.5 10 89.6 96.5 77.3 80.7 0.5 99.6 944 941 896 96.5
100 0.5 30 526 983 957 96.9 4.2 100.0 95.7 96.4 534 98.3
100 09 5 8.8 946 79.0 922 0.1 414 92.3 93.7 86.7 854
100 09 10 69.0 96.5 851 97.0 0.1 99.6 88.6 96.3 69.0 96.3
100 09 30 4.0 98.3 97.4 988 4.2 100.0 97.1 983 7.0 98.3
250 -09 5 999 955 455 486 0.0 0.1 99.9 99.7 999 99.8
250 -09 10 999 95.8 55.6 639 0.0 46.2 99.9 99.1 999 98.2
250 -0.9 30 100.0 96.2 79.6 973 0.0 100.0 99.9 98.8 100.0 96.2
250  -0.5 5 99.0 955 352 350 0.0 0.0 99.4 994  99.0 99.0
250 -0.5 10 994 95.8 42.6 428 0.0 488 99.9 99.7 994  98.0
250 -0.5 30 100.0 96.2 65.1 685 0.0 100.0 100.0 99.6  100.0 96.2
250 0.5 5 943 955 351 349 0.0 0.0 95.3 953 943 943
250 0.5 10 92.2 958 424 423 0.0 50.2 94.1 941 922 914
250 0.5 30 741 96.2 65.3 68.7 0.0 100.0 86.0 854 741 96.2
250 0.9 5 915 955 452 470 0.0 0.0 93.3 93.0 915 915
250 0.9 10 845 95.8 56.8 68.1 0.0 50.1 88.5 87.8 845 83.8
250 0.9 30 281 96.2 79.3 972 0.0 100.0 79.7 96.1 28.1 96.2
1000 -0.9 5 996 948 156 151 0.0 0.0 99.6 99.6 99.6 99.6
1000 -0.9 10 99.1 943 164 158 0.0 0.0 99.6 99.6 99.1  99.1
1000 -0.9 30 100.0 959 28.0 27.7 0.0 100.0 100.0 100.0 100.0 95.9
1000 -0.5 5 993 948 122 11.8 0.0 0.0 99.3 993 993 99.3
1000 -0.5 10 98.7 943 128 122 0.0 0.0 99.2 99.2 98.7 98.7
1000 -0.5 30 99.7 959 183 179 0.0 100.0 99.8  99.8 99.7 959
1000 05 5 96.1 948 121 11.8 0.0 0.0 96.3 96.3 96.1 96.1
1000 0.5 10 93.6 943 126 13.0 0.0 0.0 944 945 936 93.6
1000 0.5 30 88.6 959 183 17.8 0.0 100.0 89.3 89.3 88.6 959
1000 09 5 952 948 153 153 0.0 0.0 95.4 954 952  95.2
1000 0.9 10 90.6 943 16.5 155 0.0 0.0 92.1 92.0 90.6 90.6
1000 09 30 732 959 278 27.5 0.0 100.0 76.3 76.2 732 959

See notes to Table 1.



Table 6: Monte-Carlo Results: Consumption CAPM

Coverage Rejection Rate Pretest Coverage

Inst. Set T Wald S L4 Lo 14 Lo

A 100 381 914 934 94.3 89.7 90.3
A 250  50.7 926 85.9 86.3 85.1 89.5
A 1000 749 93.8 60.4 14.0 85.2  80.3
B 100 424 942 96.0 97.6 91.6 93.0
B 250 554  95.0 85.6 81.2 87.2 90.6
B 1000 75.8 94.2 572 8.8 86.0 80.4

Notes: The coverage columns give the coverage rates of Wald and S sets. The rejection rate columns give
the rejection rates of the proposed tests. The pretest coverage columns report the effective coverage rate
of the confidence set that is the Wald or S set depending on the result of the proposed identification test.

Table 7: Growth Regression
Test Statistic 5 % Critical Values
Controls L; Lo 14 Lo

Simple 220 0.45 142 0.71
Policy 229 0.44 1.42 0.71
Full 212 047 142 0.71

Notes: This table reports the identification test statistics and associated critical values in three specifications
of the cross-country growth regression using legal origin dummies as instruments, as discussed in the text.

Table 8: Consumption CAPM with Annual US Data

Test Statistic 5 % Critical Values
Inst. Set L1 L2 L1 L2

A 465 0 232 0.25
B 64.15 0 1.57 0.32

Notes: This table reports the identification test statistics and associated critical values in nonlinear GMM
Euler equation estimation of the consumption CAPM for stock returns and bond returns with annual US
data, using two alternative sets of instruments, as discussed in the text.





