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Abstract

In this paper, we study interest rate feedback rules whereby the nominal interest rate is set as an

increasing function of the in
ation rate and characterize conditions under which such rules generate

multiple equilibria. We show that these conditions depend not only on the monetary-�scal regime (as

emphasized in the �scal theory of the price level) but also on the way in which money is assumed to

enter preferences and technology. We analyze this issue in 
exible and sticky price environments. We

provide a number of examples in which, contrary to what is commonly believed, active monetary policy

in combination with a �scal policy that preserves government solvency gives rise to multiple equilibria

and passive monetary policy renders the equilibrium unique.
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1 Introduction

Recent developments in monetary economics have emphasized the link between the degree to which monetary

and �scal policy respond to endogenous variables such as the in
ation rate or the stock of public debt and

macroeconomic stability.1 Perhaps the best-known result in this literature is that if �scal solvency is preserved

under all circumstances, then an active monetary policy, that is, a policy that aggressively �ghts in
ation

by raising the nominal interest rate by more than the increase in in
ation, stabilizes the real side of the

economy by ensuring the uniqueness of equilibrium, whereas a passive monetary policy, that is, a policy that

underreacts to in
ation by raising the nominal interest rate by less than the observed increase in in
ation,

destabilizes it by giving rise to expectations-driven 
uctuations. In this paper, we show that whether a

particular monetary{�scal regime generates multiple equilibria depends crucially on the way in which money

is assumed to enter preferences and technology. In particular, the paper highlights the fact that regardless

of the stance of �scal policy, an active monetary policy does not necessarily bring about the determinacy of

equilibrium.

In the context of a 
exible-price, money-in-the-utility-function model, we show that the standard result

holds in an endowment economy in which consumption and real balances are Edgeworth-complements in

preferences in the sense that the marginal utility of consumption is increasing in real balances. However,

the opposite result|i.e., uniqueness of the equilibrium occurs under passive monetary policy and multiple

equilibria occur under active monetary policy|obtains if consumption and real balances are Edgeworth-

substitutes. More importantly, the opposite result also obtains in an economy in which money enters in the

production function, even if real balances and consumption are Edgeworth-complements in preferences.

We also analyze economies with nominal rigidities. Speci�cally, we study two alternative models of price

stickiness: the Rotemberg (1982) model with convex cost of price adjustment and the Calvo (1983) model

of staggered price setting. We show that when money enters in the production function, active monetary

policy may render the equilibrium indeterminate regardless of the stance of �scal policy. The �nding that the

equilibrium may be indeterminate under active monetary when �scal policy does not guarantee solvency of the

government under all circumstances is of particular importance because in economies in which money a�ects

real variables only through aggregate demand, no equilibrium exists locally under this type of monetary-�scal

regime.

The common notion that active monetary policy is tantamount to aggregate stability is further challenged

when one does not restrict the analysis to local stability. In sticky-price environments, we �nd that if money

enters in the production function, active monetary policy may give rise to a continuum of equilibria in each

of which real variables converge to a deterministic cycle.

Finally, we extend the analysis to feedback rules in which the interest rate depends not only on current

in
ation but also on past or expected future rates of in
ation. We �nd that the results described above are

generally robust to this extension. Backward-looking feedback rules tend to reduce the range of parameter

values for which the equilibrium is indeterminate and forward-looking rules tend to increase it.

The remainder of the paper is organized in four sections. Section 2 studies a 
exible-price economy.

Section 3 characterizes local and periodic equilibria in the Rotemberg sticky-price model. Section 4 extends

the results to backward- and forward-looking interest rate feedback rules and to an economy with Calvo-type

price staggering. Section 5 concludes.

2 A 
exible-price model

In this section, we study the determinacy of equilibrium under alternative monetary and �scal policies in a


exible-price model in which in
ation may a�ect consumption and production as in Calvo (1979).2

1See, for example, Leeper (1991), Sims (1994, 1997), Woodford (1994, 1995, 1996), Clarida, Gal��, and Gertler (1997), and

Schmitt-Groh�e and Uribe (1997).
2The monetary-�scal regimes analyzed by Calvo (1979) are di�erent from those studied in this paper. Calvo focuses on

monetary policies whereby the central bank pegs either the money growth rate or the in
ation rate in combination with a

�scal policy that speci�es zero public debt at all times implying full monetization of primary de�cits. By contrast, as will be

explained in detail shortly, we analyze interest rate feedback rules in combination with �scal policies in which the real primary

surplus is either constant or proportional to the stock of real government liabilities. Another example of a study of price level

determination in a model with money in the production function is Taylor (1977). Like Calvo, Taylor considers monetary policy

regimes that are di�erent from those studied in this paper. However, unlike Calvo, Taylor conducts his analysis in the context
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The household

The household's lifetime utility function is given by

U =

Z
1

0

e�rtu (c;mnp) dt (1)

where r > 0 denotes the rate of time preference, c consumption, mnp �Mnp=P real balances held for non-

production purposes, Mnp nominal money balances held for non-production purposes, and P the nominal

price level. The instant utility function u(�; �) satis�es assumption 1, which implies that c and mnp are

normal goods.

Assumption 1 u(�; �) is strictly increasing and strictly concave, and satis�es ucc � ucmuc=um < 0 and

umm � ucmum=uc < 0.

We consider two alternative production technologies: (i) output is produced with real balances held by

the household for production purposes, mp � Mp=P , where Mp denotes nominal money balances held for

production purposes, and (ii) output is equal to a positive constant. Formally, the production technology,

y(mp), satis�es either assumption 2 or assumption 20.

Assumption 2 y(mp) is positive, strictly increasing, strictly concave,

limmp
!0 y

0(mp) =1, and limmp
!1 y0(mp) = 0.

Assumption 20 y(mp) is a positive constant.

In addition to money, the household can hold nominal bonds, B, which pay the nominal interest rate

R > 0. Letting a � (Mnp+Mp+B)=P denote the household's real �nancial wealth, � real lump-sum taxes,

and � � _P=P the in
ation rate, the household's instant budget constraint can be written as

_a = (R� �)a�R(mnp +mp) + y(mp)� c� �: (2)

The household chooses sequences for c, mnp, mp � 0 and a so as to maximize (1) subject to (2) and the

following no-Ponzi-game condition

lim
t!1

e�
R
t

0
[R(s)��(s)]dsa(t) � 0; (3)

taking as given a(0) and the time paths of � , R, and �. The optimality conditions associated with the

household's problem are

uc(c;m
np) = � (4)

mp [y0(mp)�R] = 0 (5)

um(c;m
np)

uc(c;mnp)
= R (6)

� (r + � �R) = _� (7)

lim
t!1

e�
R
t

0
[R(s)��(s)]dsa(t) = 0 (8)

where � is the Lagrange multiplier associated with the household's instant budget constraint. Assumption 2

together with equation (5) and R > 0 implies that mp is a strictly decreasing function of R:

mp = mp(R); (9)

with mp0 � dmp=dR < 0. Alternatively, assumption 20, equation (5), and the fact that R > 0 imply that

mp = mp0 = 0. Using equation (6) and assumption 1, mnp can be expressed as a function of consumption

and the nominal interest rate that is increasing in c and decreasing in R:

mnp = mnp(c; R): (10)

of a non-optimizing framework.
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The government

We assume that monetary policy takes the form of an interest rate feedback rule whereby the nominal interest

rate is set as an increasing function of the in
ation rate. Speci�cally, we assume that

R = �(�); (11)

where �(�) is continuous, non-decreasing, and strictly positive and there exists at least one �� > �r such

that �(��) = r+ ��. Following Leeper (1991), we refer to monetary policy as active if �0 > 1 and as passive

if �0 < 1.

The sequential budget constraint of the government is given by _B = RB � _Mnp � _Mp � P� , which can

be written as

_a = (R � �)a�R(mnp +mp)� �: (12)

Because the nominal value of initial government liabilities, A(0), is predetermined, the initial condition a(0)
must satisfy

a(0) =
A(0)

P (0)
: (13)

We classify �scal policies into two categories: Ricardian �scal policies and non-Ricardian ones. Ricar-

dian �scal policies are those that ensure that the present discounted value of total government liabilities

converges to zero|that is, equation (8) is satis�ed|under all possible, equilibrium or o�-equilibrium, paths

of endogenous variables such as the price level, the money supply, in
ation, or the nominal interest rate.3

Throughout the paper, we restrict attention to one particular Ricardian �scal policy that takes the form

� +R(mnp +mp) = �a (14)

where the sequence � is chosen arbitrarily by the government subject to the constraint that it is positive and

bounded below by � > 0. This policy states that consolidated government revenues, that is, tax revenues plus

interest savings from the issuance of money, are always higher than a certain fraction � of total government

liabilities. A special case of this type of policy is a balanced-budget rule whereby tax revenues are equal to

interest payments on the debt, which results when � = R (provided R is bounded away from zero). To see

that the �scal policy given by (14) is Ricardian, let d � exp[� R t
0
(R� �)ds] and x � d a. The de�nition of a

Ricardian �scal policy requires that x! 0 as t!1. Note that _x = d [ _a� (R� �)a]. Using equations (12)

and (14), this expression can be written as _x = ��x, which implies that x converges monotonically to zero.

We will also analyze a particular non-Ricardian �scal policy consisting of an exogenous path for lump-sum

taxes

� = �� : (15)

Equilibrium

In equilibrium the goods market must clear

c = y(mp): (16)

Using equations (9){(11) and (16) to replace mp, mnp, R, and c in equation (4), � can be expressed as a

function of �,

� = �(�) (17)

3Our de�nition of Ricardian �scal policy is di�erent from the one given in Woodford (1995). In the �rst place, Woodford

uses the term Ricardian to refer to monetary-�scal regimes rather than to �scal regimes alone. Second, according to Woodford,

Ricardian regimes are combinations of monetary and �scal policies that ensure that the present discounted value of public debt,

not total government liabilities, converges to zero. Thus, for example, a balanced-budget rule in combination with an interest

rate peg is Ricardian according to our de�nition but not according to Woodford's (see Schmitt-Groh�e and Uribe, 1997). Also,

Ricardian �scal policies are not necessarily passive in the sense of Leeper (1991) because they do not guarantee that the real

value of public debt remains bounded.
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with

�0(�) = �0 [uccy
0mp0 + ucm(m

np
c y0mp0 +mnp

R )] (18)

where mnp
c and mnp

R denote the partial derivatives of mnp with respect to c and R, respectively. Using this

expression, (9){(11), and (16), equations (7), (8), (12), and (14) can be rewritten as

�0(�) _� = �(�) [r + � � �(�)] (19)

_a = [�(�)� �]a� �(�)[mnp(y(mp(�(�))); �(�)) +mp(�(�))] � � (20)

lim
t!1

e�
R
t

0
[�(�)��(s)]dsa(t) = 0 (21)

� + �(�)[mnp(y(mp(�(�))); �(�)) +mp(�(�))] = �a (22)

De�nition 1 (Perfect-foresight equilibrium in the 
exible-price economy) In the 
exible-price econ-

omy, a perfect-foresight equilibrium is a set of sequences f�; a; �g and an initial price level P (0) > 0 satisfying

(13), (19){(21) and either (15) if �scal policy is non-Ricardian or (22) if �scal policy is Ricardian, given

A(0) > 0.

Given an equilibrium sequence for �, equations (9){(11), (16), and (17) uniquely determine the equilib-

rium sequences fc;mnp;mp; �; Rg. If the equilibrium time path of in
ation is unique, then so is the equilib-

rium real allocation fc;mnp;mpg independently of whether the equilibrium price level is unique. Thus, it is

useful to introduce the following terminology:

De�nition 2 (Real and Nominal Indeterminacy) The equilibrium displays real indeterminacy if there

exists an in�nite number of equilibrium sequences f�g. The equilibrium exhibits nominal indeterminacy if

for any equilibrium sequence f�g, there exists an in�nite number of initial price levels P (0) > 0 consistent

with a perfect-foresight equilibrium.

In the remainder of this section, we restrict the analysis to equilibria in which the in
ation rate converges

asymptotically to a steady-state value, ��, which is de�ned as a constant value of � that solves (19), that

is, a solution to r + � = �(�). By assumption, �� exists and is greater than �r.4
Under a Ricardian �scal policy, the set of equilibrium conditions includes equation (22). Given a sequence

f�g satisfying (19) and an initial price level P (0) > 0, equations (20) and (22) can be used to construct a

pair of sequences fa; �g. Because the �scal policy is Ricardian, the transversality condition (21) is always

satis�ed. If instead the �scal authority follows the non-Ricardian �scal policy given in (15), combining (13),

(20), and (21) yields

A(0)

P (0)
=

Z
1

0

e�
R
t

0
[�(�)��]ds f�(�) [mnp(y(mp(�(�))); �(�)) +mp(�(�))] + ��g ds (23)

which given A(0) > 0 and a sequence for � converging to �� uniquely determines the initial price level P (0).
The above analysis demonstrates that for the class of monetary-�scal regimes studied in this paper

nominal determinacy depends only on �scal policy and not on monetary policy|a result that has been

emphasized in the recent literature on the �scal determination of the price level and that we summarize in

the following proposition:

Proposition 2.1 If �scal policy is Ricardian, the equilibrium exhibits nominal indeterminacy. Under the

non-Ricardian �scal policy given by (15), the equilibrium displays nominal determinacy.

4Note that �� may not be unique. In particular, if there exists a steady state �� with �0(��) > 1, then since �(�) is assumed

to be continuous and strictly positive there must also exist a steady state with �0 < 1.
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By contrast, the determinacy of the real allocation is independent of �scal policy but depends on the

stance of monetary policy and on the particular way in which in
ation a�ects production and consumption.

To see this, consider solutions to equation (19). If �0(��) and 1 � �0(��) are of opposite sign, any initial

in
ation rate near the steady state �� will give rise to an in
ation trajectory that converges to ��. If, on the

other hand, �0(��) and 1 � �0(��) are of the same sign, the only sequence of in
ation rates that converges

asymptotically to �� is one in which the in
ation rate is constant and equal to ��. If �0(�) = 0 for all �,
then equations (18) and (19) imply that � and � are constant. Thus, under a pure interest rate peg the

economy exhibits real determinacy.

To understand the conditions under which the model displays real indeterminacy, it is instructive to con-

sider the following two polar cases. Consider �rst the case in which preferences are separable in consumption

and money (ucm = 0) and money is productive (assumption 2 holds). In this case, equation (18) implies that

�0 = �0uccy
0mp0 > 0, so that the model displays real indeterminacy if 1 � �0(��) < 0, that is, if monetary

policy is active, and is unique if 1� �0(��) > 0, that is, if monetary policy is passive. The intuition behind

this result is as follows. Suppose �rms initially hold more real balances for production purposes than in the

steady state. This will happen only if the nominal interest rate is below its steady-state level. By the interest

rate feedback rule, the in
ation rate has to be below its steady-state value as well. If monetary policy is

active, the decline in the in
ation rate is accompanied by a decline in the real interest rate, R � �, which
in turn induces negative consumption growth. Since in equilibrium consumption equals output, and output

is an increasing function of real balances, real balances for production purposes will be expected to decline.

Therefore, the initial increase in real balances is reversed and the resulting trajectory is consistent with

equilibrium. If, on the other hand, monetary policy is passive, the decline in the in
ation rate is associated

with a rise in the real interest rate, and thus consumption will be expected to grow, moving output and real

balances even further away from the steady state. Such a trajectory for real balances would not be remain

bounded in a neighborhood around the steady state and thus would not be consistent with an equilibrium

in which in
ation converges to ��. This result is summarized in the following proposition.

Proposition 2.2 Suppose preferences are separable in consumption and money (ucm = 0) and money is

productive (assumption 2 holds), then if monetary policy is active (�0(��) > 1), the equilibrium displays real

indeterminacy, whereas if monetary policy is passive (�0(��) < 1), then the only perfect-foresight equilibrium

in which the real allocation converges to the steady state is the steady state itself.

Consider now the case in which money is not productive, that is, assumption 20 holds. In this case,

equation (18) implies that �0 = �0ucmm
np
R which is positive if ucm < 0, that is, if consumption and money

are Edgeworth-substitutes, and is negative if ucm > 0, that is, if consumption and money are complements.

Thus the economy displays real indeterminacy if monetary policy is active and consumption and money are

substitutes or if monetary policy is passive and consumption and money are complements.5 The intuition

behind this indeterminacy result is as follows. Consider the case that monetary policy is passive and ucm > 0.

Suppose that real balances for non-productive purposes are increased above their steady-state level. Because

the money demand function of the household is decreasing in the nominal interest rate and consumption is

constant, it follows that the nominal interest rate has to be below its steady-state level. At the same time,

passive monetary policy implies that the decline in the nominal interest rate is associated with an increase

in the real interest rate. In response to the increase in the real interest rate agents will lower the growth

rate of the marginal utility of consumption. With consumption constant and ucm > 0, this requires that

the growth rate of real balances be negative. Thus real balances will return to their steady level and this

trajectory is consistent with equilibrium. The next two propositions summarize these results.

Proposition 2.3 Suppose that money is not productive (assumption 20 holds) and consumption and money

are Edgeworth-substitutes (ucm < 0). Then, if monetary policy is active (�0(��) > 1), the real allocation is

indeterminate, and if monetary policy is passive (�0(��) < 1), then the only perfect-foresight equilibrium in

which the real allocation converges to the steady state is the steady state itself.

Proposition 2.4 Suppose that money is not productive (assumption 20 holds) and consumption and money

are Edgeworth-complements (ucm > 0). Then, if monetary policy is passive (�0(��) < 1), the real allocation

5As is well-known, there exists an exact correspondence between the equilibrium conditions of the economy with y0 = 0 and

ucm > 0 and those of the cash-in-advance economy with cash and credit goods developed by Lucas and Stokey (1987). Therefore,

in the (continuous-time version of the) Lucas{Stokey model, the real allocation is indeterminate under passive monetary policy.
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is indeterminate, and if monetary policy is active (�0(��) > 1), then the only perfect-foresight equilibrium in

which the real allocation converges to the steady state is the steady state itself.

Combining the case of non-productive money (assumption 20) with preferences that are separable in

consumption and real balances (ucm = 0) results in the continuous time version of the economy analyzed

in Leeper (1991). In this case equation (18) implies that � is constant. It then follows that �, R and mnp

are also constant, and the only equilibrium real allocation is the steady state. This result di�ers from that

obtained by Leeper who �nds that under passive monetary policy the in
ation rate is indeterminate. The

di�erence stems from the fact that in Leeper's discrete-time model the nominal interest rate in period t
is assumed to be a function of the change in the price level between periods t � 1 and t, whereas in the

continuous time model analyzed here, the in
ation rate is the right hand side derivative of the price level,

so its discrete-time counterpart is better approximated by the change in the price level between periods t
and t+ 1. In fact, it is straightforward to show that if in Leeper's discrete-time model the feedback rule is

assumed to be forward looking|that is, Rt = �(Pt+1=Pt)|the equilibrium displays real determinacy.

Table 1: Real Indeterminacy in the Flexible-Price Model

Monetary Non-productive money Productive money

Policy (y0 = 0) (y0 > 0)

ucm > 0 ucm < 0 ucm = 0 ucm > 0 ucm < 0 ucm = 0

Passive (�0(��) < 1) I D D A D D

Active (�0(��) > 1) D I D A I I
Note: The notation is: D, determinate; I, indeterminate; A, ambiguous. (Under A the real allocation may be

determinate or indeterminate depending on speci�c parameter values.)

Table 1 summarizes the combinations of preference, technology, and monetary policy speci�cations under

which real indeterminacy arises in the 
exible-price model. The second row of the table highlights the

main result of this section, namely, that, contrary to what is often asserted, real indeterminacy may arise

under active monetary policy. Most existing studies have restricted attention to the case in which money

is not productive (y0 = 0) and money and consumption goods either are complements in preferences or

enter the utility function in a separable fashion (ucm � 0). As a result these studies have arrived at the

potentially misleading conclusion that an active monetary policy stabilizes the economy by bringing about

real determinacy.

We should also note that the results on local uniqueness under active monetary policy should be in-

terpreted with care from a global perspective. As pointed out above, if there exists a steady state ��

with �0(��) > 1, then since �(�) is assumed to be continuous and strictly positive, there must also exist a

steady state with �0 < 1, which can be indeterminate precisely under those assumptions that assure local

determinacy at the steady state ��:

3 A sticky-price model

In this section, we extend the model developed in the previous section to allow for nominal rigidities. Fol-

lowing Rotemberg (1982), we introduce price stickiness by assuming that the household{�rm unit operates

in imperfectly competitive product markets and dislikes changing the price it charges for the goods it pro-

duces.6 Speci�cally, we assume that there exists a continuum of household{�rm units indexed by j, each of

which produces a di�erentiated good Y j and faces a demand function Y dd
�
P j

P

�
, where Y d denotes the level

of aggregate demand, P j the price �rm j charges for its output, and P the aggregate price level. Such a

demand function can be derived by assuming that households have preferences over a composite good that

is produced from di�erentiated intermediate goods via a Dixit-Stiglitz production function. The function

d(�) is assumed to satisfy d(1) = 1 and d0(1) < �1. The restriction imposed on d0(1) is necessary for the

6In section 4.2, we show that the results on local determinacy derived in this section also obtain under Calvo-Yun type price

staggering.
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�rm's problem to be well de�ned in a symmetric equilibrium. The production of good j is assumed to take

real money balances, mpj , as the only input

Y j = y(mpj)

where y(�) satis�es assumption 2.

The household's lifetime utility function is assumed to be of the form

U j =

Z
1

0

e�rt

2
4u(cj ;mnpj)� 


2

 
_P j

P j
� ��

!2
3
5 dt (24)

where cj denotes consumption of the composite good by household j, mnpj �Mnpj=P denotes real money

balances held by household j for non-productive purposes, Mnpj denotes nominal money balances, and

�� > �r denotes the steady-state in
ation rate. The utility function u(�; �) satis�es assumption 1, and the

parameter 
, measuring the degree to which household{�rm units dislike to deviate in their price-setting

behavior from the long-run level of aggregate price in
ation, is positive. The household's instant budget

constraint and no-Ponzi-game restriction are

_aj = (R � �)aj �R(mnpj +mpj) +
P j

P
y(mpj)� cj � � (25)

and

lim
t!1

e�
R
t

0
[R(s)��(s)]dsaj(t) � 0: (26)

In addition, �rms are subject to the constraint that given the price they charge, their sales are demand-

determined

y(mpj) = Y dd

�
P j

P

�
: (27)

The household chooses sequences for cj , mnpj , mpj , P j � 0, and aj so as to maximize (24) subject to

(25){(27) taking as given aj(0), P j(0), and the time paths of � , R, Y d, and P . The Hamiltonian of the

household's optimization problem takes the form

e�rt

8<
:u(cj ;mnpj)� 


2

 
_P j

P j
� ��

!2

+ �j
h
(R � �)aj �R(mnpj +mpj)

+
P j

P
y(mpj)� cj � � � _aj

�
+ �j

�
Y dd

�
P j

P

�
� y(mpj)

��
:

The �rst-order conditions associated with cj , mnpj , mpj , aj , and P j and the transversality condition are,

respectively,

uc(c
j ;mnpj) = �j (28)

um(c
j ;mnpj) = �jR (29)

�j
�
P j

P
y0(mpj)�R

�
= �jy0(mpj) (30)

_�j = �j (r + � �R) (31)
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�j
P j

P
y(mpj) + �j

P j

P
Y dd0

�
P j

P

�
= 
r(�j � ��)� 
 _�j (32)

lim
t!1

e�
R
t

0
[R(s)��(s)]dsaj(t) = 0 (33)

where �j � _P j=P j . Combining equations (28) and (29), the demand for real balances for non-production

purposes can be expressed as

mnpj = mnp(cj ; R) (34)

which by assumption 1 is increasing in cj and decreasing in R.

Equilibrium

In a symmetric equilibrium all household{�rm units choose identical sequences for consumption, asset hold-

ings, and prices. Thus, cj = c, mpj = mp, mnpj = mnp, aj = a, P j = P , �j = �, �j = �, and �j = �.
In addition, the goods markets clear and the no-Ponzi-game restriction holds with equality, that is, equa-

tions (8) and (16) are part of the equilibrium conditions. Using (11), (16), and (34), to eliminate mnp, c,
and R in (28) yields

uc(y(m
p);mnp(y(mp); �(�))) = �: (35)

Equation (35) together with assumption 1 implies that mp can be expressed as a function of � and � that

is decreasing in � and decreasing (increasing) in � if ucm > 0(< 0). Formally,7

mp = mp(�; �); (36)

where mp
� < 0, mp

�ucm < 0 if ucm 6= 0, and mp
� = 0 if ucm = 0. Let � � d0(1)<�1 denote the equilibrium

price elasticity of the demand function faced by the individual �rm. Using (11), (16), (30), and (36) to

eliminate mp, mnp, �, R, and c from equations (8), (12), (14), (31), and (32) yields

_� = � [r + � � �(�)] (37)


 _� = 
r(� � ��)� y(mp(�; �))�

�
1 + �

�
1� �(�)

y0(mp(�; �))

��
(38)

_a = [�(�)� �]a� �(�) [mnp(y(mp(�; �)); �(�)) +mp(�; �)] � � (39)

0 = lim
t!1

e�
R
t

0
[�(�)��]dsa(t) (40)

� = ��(�) [mnp(y(mp(�; �)); �(�)) +mp(�; �)] + �a (41)

De�nition 3 (Perfect-foresight equilibrium in the sticky-price economy) In the sticky-price econ-

omy, a perfect-foresight equilibrium is a set of sequences f�; �; �; ag satisfying (37){(40) and either (15) if

the �scal regime is non-Ricardian or (41) if the �scal regime is Ricardian, given a(0).

Given the equilibrium sequences f�; �; �; ag, the corresponding equilibrium sequences fc;mnp;mp; Rg are
uniquely determined by (11), (16), (34), and (36).

Ricardian �scal policy

In this case, the equilibrium conditions include equation (41). Given a pair of sequences f�; �g, equations
(39) and (41) can be used to construct time paths for a and � . Because the �scal policy is Ricardian, the

sequences f�; ag satisfy the transversality condition (40). Thus any pair of sequences f�; �g satisfying (37)

and (38) can be supported as a perfect-foresight equilibrium.

7Di�erentiating equation (35), it follows that m
p

�
= [umm� (um=uc)ucm]=[y0(uccumm�u2cm)]. The concavity of the instant

utility function and the normality of consumption imply, respectively, that the denominator of this expression is positive and

the numerator negative. Also, m
p
� = �m

p

�
ucmm

np

R
�0, which is of the opposite sign of ucm.

8



Consider �rst perfect-foresight equilibria in which f�; �g converge to a steady-state f��; ��g. The steady-
state values �� and �� are de�ned as constant values of � and � that solve (37) and (38). Thus, �� is a

solution to r+�� = �(��), which by assumption exists but is not necessarily unique. Given a ��, the steady-
state value of real balances for production purposes, mp�, is given by the solution to y0(mp�) = �=(1+ �)R�,
where R� = �(��) is the steady state value of the nominal interest rate. By assumption 2, mp� exists and is

positive and unique for a given ��. Finally, �� is given by �� = uc(c
�;mnp(c�; R�)) > 0, where c� = y(mp�)

denotes the steady-state level of consumption. In a neighborhood around (��; ��), the equilibrium paths of

� and � can be approximated by the solutions to the following linearization of (37) and (38) around f��; ��g

�
_�
_�

�
= A

�
�� ��

� � ��

�
(42)

where

A =

�
0 uc(1� �0)
A21 A22

�

A21 = �ucc
� �R�y00mp

�


y02
> 0

A22 = r +
ucc

��




�
�0

y0
� R�

y02
y00mp

�

�

If at the particular steady state considered monetary policy is passive (�0(��) < 1), the determinant of A,
given by �A21uc(1� �0), is negative, implying that A has one positive real root and one negative real root.

Since both � and � are jump variables, it follows that there exists a neighborhood around the steady state

such that for any initial �(0) there exists a �(0) in that neighborhood such that the trajectories of � and �
implied by (42) will converge asymptotically to the steady state. The following proposition summarizes this

result.

Proposition 3.1 If �scal policy is Ricardian and monetary policy is passive (�0 (��) < 1), then there exists a

continuum of perfect-foresight equilibria in which � and � converge asymptotically to the steady state (��; ��).

Under active monetary policy (�0(��) > 1) the determinant of A is positive and hence the real parts of its

eigenvalues have the same sign. If the trace of A, given by A22, is negative, then the real parts of the roots

are negative, which implies that near the steady state there exists an in�nite number of perfect-foresight

equilibria converging to the steady state. If, on the other hand, the trace of A is positive, both eigenvalues

have positive real parts, and therefore the only perfect-foresight equilibrium converging to the steady state

is the steady state itself. We formally state these results in the following proposition.

Proposition 3.2 If �scal policy is Ricardian and monetary policy is active (�0(��) > 1), then, if A22 > 0(<
0), there exists a unique (a continuum of) perfect-foresight equilibria in which � and � converge to the steady

state (��; ��).

To illustrate that either of these two cases is possible consider the simple case that the instant utility

function is separable in consumption and money and logarithmic in consumption, so that ucc
� = 1. In this

case, the trace of A is given by8

trace (A) = r +
(1 + �)�0


R�
(43)

Let ��0 � � r R� 

1+�

denote the value of �0 at which the trace vanishes. Clearly, ��0 may be greater or less than

one. If ��0 � 1, then the equilibrium is indeterminate for any active monetary policy. We highlight this result

in the following corollary.

8In deriving this expression we used the facts that when ucm = 0, m
p
� = 0 and that in the steady state y0 = R��=(1 + �).
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Corollary 1 Suppose �scal policy is Ricardian and preferences are log-linear in consumption and real bal-

ances. If ��0 � � r R� 

1+�

is less than or equal to one, then there exists a continuum of perfect-foresight equilibria

in which � and � converge to the steady state (��; ��) for any active monetary policy.

On the other hand, if ��0 > 1, then for values of �0 2 (1; ��0) the trace of A is positive, and the only

equilibrium paths f�; �g converging to the steady state are ones in which � and � are constant and equal to

their steady-state values. For values of �0 > ��0 the trace of A is negative and the perfect-foresight equilibrium

is indeterminate.9

To facilitate comparison to recent studies on the macroeconomic e�ects of alternative interest rate feed-

back rules continue to assume that the instant utility function is log-linear in consumption. In this case,

equations (37) and (38) are qualitatively equivalent to the IS and aggregate supply equations arising from

a Calvo-type sticky-price model in which money does not enter the production function, like (a continuous

time version of) Woodford (1996), Bernanke and Woodford (1997), or Clarida, Gal��, and Gertler (1997),

with one important exception: in our model the aggregate supply equation features an ambiguous partial

derivative of _� with respect to � given by r + (1+�)�0


R�
whereas in the models just cited this derivative is

unambiguously positive and equal to r.
If the partial derivative of _� with respect to � is positive, then A22 is positive and by propositions 3.1 and

3.2 the equilibrium is locally indeterminate under passive monetary policy and is locally determinate under

active monetary policy, that is, in this case our �ndings coincide with those reported in, for example, Clarida,

Gal��, and Gertler (1997). On the other hand, if the partial derivative of _� with respect to � is negative,

that is, A22 < 0, then equilibrium is indeterminate not only under passive but also under active monetary

policy. By comparison, in a continuous time version of the sticky-price model just cited, indeterminacy can

never obtain under active monetary policy.10 This di�erence in results is important because it calls into

question the policy recommendation implicit in the analysis of previous papers that active monetary policy

is stabilizing.

Periodic perfect-foresight equilibria

So far we have restricted attention to perfect-foresight equilibria in which f�; �g converge asymptotically

to f��; ��g. We now investigate the existence of perfect-foresight equilibria in which � and � converge

asymptotically to a deterministic cycle. Consider an economy with preferences given by u(c;mnp) = (1 �
s)�1c1�s + V (mnp), s > 0; technology given by y(mp) = (mp)

�
, 0 < � < 1; and a smooth interest-rate

feedback rule, �(�) > 0, which in for � in the neighborhood of �� takes the form �(�) = R�+ a (�+ r�R�),
a > 0, R� > 0.11 Consider the steady state in
ation rate �� = R�� r. In this case the trace of A is given by

trace(A) = r +
�a

�


�
�

1 + �

R�

�

� 1��s

��1

Let �a � �r�

�

�
�

1+�
R�

�

� 1��s

��1

denote the value of a at which the trace of A is equal to zero. Consider parameter

con�gurations for which �a > 1. As a crosses �a from below, the real parts of the two complex roots of A
change sign from positive to negative. This is the standard case of a Hopf bifurcation, which implies that

generically (i.e., if the system is non-linear), there will exist a family of cycles for a either in a left or in a

right neighborhood of �a.12 Furthermore, if the cycle is to the left of �a where the steady state is unstable (i.e.,
the bifurcation point is supercritical), the cycle will be attracting. The implication is that if the bifurcation

is supercritical, any trajectory f�; �g that starts out in the neighborhood of f��; ��g will converge to a cycle,
9In the context of a discrete-time, 
exible-price, cash-in-advance economy with cash and credit goods, Schmitt-Groh�e and

Uribe (1997) obtain a similar result, namely, the perfect-foresight equilibrium is indeterminate for passive and very active

monetary policy and is determinate for moderately active policies.
10Technically, this follows from the fact that in this case A22 is necesarily positive, so that if monetary policy is active, both

eigenvalues of the matrix A have positive real parts.
11Because a linear rule de�ned for all possible values of � would yield negative nominal interest rates for some �, we do not

require the linear speci�cation to hold globally.
12The Hopf Bifurcation Theorem postulates the existence of a family of cycles, which in the pure linear system pile up at

the bifurcation value �a and create a center: any nonlinearity will spread them out to either a left or a right neighborhood of �a.

Generically in the non-linear case the amplitude of the cycle varies continuously with a� �a and is zero at a = �a.
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so that the equilibrium is indeterminate. The following proposition provides simple conditions under which

a supercritical Hopf bifurcation exists.

Proposition 3.3 Consider an economy with preferences given by u(c;mnp) = (1�s)�1c1�s+V (mnp), s > 0;

technology given by y(mp) = (mp)
�
, 0 < � < 1; and monetary policy given by a smooth interest-rate feedback

rule, �(�) > 0, which for � in the neighborhood of �� takes the form �(�) = R� + a (� + r � R�), a > 0,

R� > 0. Let �scal policy be Ricardian and let the parameter con�guration satisfy �a � �r�

�

�
�

1+�
R�

�

� 1��s

��1

> 1

and 1 < s < 1=�. Then there exists an in�nite number of active monetary policies satisfying a < �a for

each of which the perfect foresight equilibrium is indeterminate and � and � converge asymptotically to a

deterministic cycle.

Proof: See the appendix.

The implications of the results obtained under sticky prices and Ricardian �scal policy can be summarized

as follows. It is often argued (typically in the context of discrete-time models) that under �scal policies

which guarantee the solvency of the government, a moderately active monetary policy, that is, a policy such

that �0 (��) > 1 but below a certain threshold, is stabilizing in the sense that it ensures nominal and real

determinacy.13 However, propositions 3.2 and 3.3 show that even moderately active monetary policies may

not eliminate the possibility of real indeterminacy in a sticky-price economy, and corollary 1 gives su�cient

conditions for indeterminacy under any active monetary policy. In addition, as noted in section 2, if the

nominal interest rate rule is positive, non-decreasing, and continuous for all �, the existence of a steady state
at which monetary policy is active implies the existence of another steady state at which monetary policy is

passive, and which by proposition 3.1 is necessarily indeterminate.

Non-ricardian �scal policy

Suppose now that the government follows the non-Ricardian �scal policy described in equation (15), that

is, a �scal policy whereby the time path of real lump-sum taxes is exogenous. Using (15) to replace � in

equation (39) yields

_a = [�(�)� �]a� �(�) [mnp(y(mp(�; �)); �(�)) +mp(�; �)] � �� : (44)

As before, we restrict attention to equilibria in which f�; �g converge to a steady-state (��; ��). It is clear
from equation (44) that sequences f�; �g that converge to (��; ��) will in general be associated with sequences
for a that grow asymptotically at the rate �(��) � �� = r > 0, thus violating the transversality condition

(40). As a consequence equations (44) and (40) impose restrictions on the set of sequences f�; �g that are

consistent with a perfect-foresight equilibrium of the type we are considering. Speci�cally, only sequences

f�; �g converging to the steady state (��; ��) that imply (via equation (44)) a sequence for a that converges

to a constant value constitute a perfect-foresight equilibrium. Thus, one can analyze the dynamic properties

of the model by restricting attention to a linear approximation of the equilibrium conditions (37), (38), and

(44), which can be written as 0
@ _�

_�
_a

1
A =

�
A 0

� r

�0@ �� ��

� � ��

a� a�

1
A (45)

where A is de�ned in (42) and � is a one by two vector whose elements are the steady-state derivatives of

R(mnp +mp) with respect to � and �.
Since the Jacobian in (45) is quasi-diagonal, its three eigenvalues are given by the two eigenvalues of

the matrix A and r > 0. Because a is the only non-jump variable of the system, there exist multiple

equilibria converging to the steady state if and only if both roots of A have negative real parts. Since|as

pointed out above|�0 > 1 is a necessary and su�cient conditions for both eigenvalues of A to be of the

same sign, the possibility of multiple equilibrium paths f�; �g converging asymptotically to the steady-state

13See for example, Bernanke and Woodford (1997), Clarida, Gal��, and Gertler (1997) or Schmitt-Groh�e and Uribe (1997).
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can only arise under active monetary policy. Under passive monetary policy the matrix A has exactly one

negative eigenvalue, therefore, there exists a unique equilibrium converging to the steady state. Finally, if

all eigenvalues of A have positive real parts, which will be the case if monetary policy is active and A22 is

positive, there exists no equilibrium converging to the steady state. These results are summarized in the

following propositions

Proposition 3.4 If �scal policy is non-Ricardian and monetary policy is passive (�0 (��) < 1), then there ex-

ists a unique perfect-foresight equilibrium in which f�; �g converge asymptotically to the steady state (��; ��).

Proposition 3.5 If �scal policy is non-Ricardian and monetary policy is active (�0 (��) > 1), then if A22 >
0(< 0), there exists no (a continuum of) perfect-foresight equilibria in which f�; �g converge asymptotically

to the steady state (��; ��).

The result contained in proposition 3.4 is similar to the one obtained in Woodford (1996) in the context of

a discrete-time Calvo-type sticky-price model without money in the production function. What distinguishes

our �ndings from previous studies is the result that the equilibrium can be locally indeterminate under non-

Ricardian �scal policy (proposition 3.5). As pointed out above, in a continuous-time version of Woodford

(1996), the trace of A is positive and equal to r, so that at least one eigenvalue of A is always positive. Thus,

in such a model indeterminacy can never arise under non-Ricardian �scal policy.

Periodic perfect-foresight equilibria

In the case that monetary policy is active and both eigenvalues of A are positive, there may exist

bounded equilibria that converge to a stable cycle around the steady state. Note that for the system (37),

(38), and (44) the dynamics of f�; �g are independent of a, and thus the analysis of periodic equilibria of

the previous section still applies. For example, under the preference and technology speci�cation of the

economy described in proposition 3.3, if cycles exist, any initial condition for (�; �) in the neighborhood

of the steady state will converge to a cycle. To assure that a does not explode, however, we must restrict

ourselves to a one dimensional manifold in f�; �g : This follows because while cycles restricted to the f�; �g
plane are attracting, in the three dimensional space the cycle in f�; �; ag will have only a two dimensional

stable manifold: initial values of � and � will have to be chosen to assure that the triple f�; �; ag converges
to the cycle and a remains bounded.

Table 2: Real indeterminacy in the Sticky-Price Model

Fiscal Policy

Monetary Policy Ricardian Non-Ricardian

Passive (�0(��) < 1) I D

Active (�0(��) > 1)

A22 < 0 I I

A22 > 0 I or D I or NE

Note: The notation is D, determinate; I, indeterminate; NE, no perfect-foresight equilibrium exists.

Table 2 summarizes the results of this section. It shows the combinations of �scal and monetary policies for

which the real allocation is indeterminate in the sticky-price model. The last two rows of the table illustrate

a central point of the paper, namely that active monetary policy need not guarantee real determinacy. In

fact, in our model the only monetary-�scal regime that generates real determinacy without any further

restrictions on the parameters governing the speed of nominal adjustment is one in which monetary policy

is passive.
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4 Extensions

4.1 Backward- and forward-looking feedback rules

Flexible-price model

We now analyze a generalization of the interest-rate feedback rule in which the nominal interest rate depends

not only on current but also on past or future rates of in
ation. Consider �rst the following backward-looking

feedback rule

R = �(q� + (1� q)�p); �0 > 0; q 2 [0; 1] (46)

where �p is a weighted average of past rates of in
ation and is de�ned as

�p = b

Z t

�1

�eb(s�t)ds; b > 0 (47)

Di�erentiating this expression with respect to time yields

_�p = b(� � �p) (48)

The rest of the equilibrium conditions are identical to those obtained in section 2. In particular, we have

that

�0(R) _R = �(R)[r + � �R] (49)

where

�0(R) = [uccy
0mp0 + ucm(m

np
c y0mp0 +mnp

R )] (50)

Using equation (46) to eliminate � from (48) and (49) and linearizing around the steady state results in the

following system of linear di�erential equations

�
_R
_�p

�
=

"
�
�0

�
1
�0q
� 1
�

� �
�0

(1�q)
q

b 1
�0q

� b
q

# �
R�R�

�p � ��

�

Let J denote the Jacobian matrix of this system. Because R is a jump variable and �p is predetermined, the

real allocation is locally unique if the real parts of the eigenvalues of J have opposite signs, or, equivalently,

if the determinant of J is negative. On the other hand, the real allocation is locally indeterminate if both

eigenvalues have negative real parts, that is, if the determinant of J is positive and its trace is negative. The

determinant and trace of J are given by

det(J) =
�

�0
b

�0q
(�0 � 1)

trace(J) =
�

�0

�
1

�0q
� 1

�
� b

q

As in section 2, consider the two polar cases of money entering only through preferences (y0 = 0) and money

entering only through production (ucm = mnp
R = 0). If money enters only through preferences and money

and consumption are Edgeworth complements (ucm > 0), then equation (50) implies that �0 is negative. It
follows directly from the above two expressions that the conditions governing the local determinacy of R
are identical to those obtained under a purely contemporaneous feedback rule. Namely, the equilibrium is

unique under active monetary policy (�0 > 1) and is indeterminate under passive monetary policy (�0 < 1).

When money enters only through production or only through preferences with consumption and money

being Edgeworth substitutes, �0 is positive. Thus, the equilibrium is always locally determinate under

passive monetary policy, as was the case under purely contemporaneous feedback rules. However, contrary
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to the case of purely contemporaneous feedback rules, if monetary policy is active, then equilibria in which

R converges to its steady state may not exist. To see this, note that in this case the determinant of J is

positive, so that the real parts of the roots of J have the same sign as the trace of J . However, the trace

of J can have either sign. If the trace is positive, then no equilibrium converging to the steady state exists.

If it is negative, the equilibrium is indeterminate. For large enough values of �0 the trace of J becomes

negative. Thus, highly active monetary policy induces indeterminacy. Furthermore, the larger the emphasis

the feedback rule places on contemporaneous in
ation (q close to one) or the lower the weight it assigns to

in
ation rates observed in the distant past (b large), the smaller is the minimum value of �0 beyond which

the equilibrium becomes indeterminate. In the limit, as q approaches unity or b approaches in�nity, the

equilibrium becomes indeterminate under every active monetary policy, which is the result obtained under

purely contemporaneous feedback rules. On the other hand, as the monetary policy becomes purely backward

looking (q ! 0), no equilibrium in which R converges to its steady state exists under active monetary policy.

We conclude that the more backward-looking the feedback rule is, the less likely it is that active monetary

policy renders the equilibrium locally indeterminate. This is not to say, however, that backward-looking

behavior in the conduct of monetary policy makes it more likely for the equilibrium to be determinate

under active monetary policy. Instead, backward-looking behavior makes a range of active monetary policies

for which the equilibrium is indeterminate under purely contemporaneous behavior inconsistent with the

existence of equilibria in which the real allocation converges to its steady state.

Consider now a feedback rule whereby the nominal interest rate responds to changes in contemporaneous

and expected future in
ation. Speci�cally, assume that the feedback rule takes the form

R = �(q� + (1� q)�f ); �0 > 0; q 2 [0; 1] (51)

where �f is a weighted average of expected future rates of in
ation and is de�ned as

�f = d

Z
1

t

�e�d(s�t)ds; d > 0 (52)

It is straightforward to show that in this case the system describing the equilibrium dynamics is identical

to the one obtained under backward-looking feedback rules with b replaced by �d and �p replaced by �f .
Thus, in this case the determinant and trace of the Jacobian become

det(J) = � �

�0
d

�0q
(�0 � 1)

trace(J) =
�

�0

�
1

�0q
� 1

�
+
d

q

Because neither R nor �f are predetermined variables, the real allocation is locally unique if both eigenvalues

of J have positive real parts and is locally indeterminate if at least one of the roots of J has a negative real

part. As in the previous case, the conditions governing the local determinacy of the real allocation are

identical to those obtained under purely contemporaneous feedback rules except for one case: if �0 < 0,

active monetary policy ensures local uniqueness when the feedback rule depends only on current in
ation,

but may induce indeterminacy if the feedback rule depends on current and future expected in
ation. Thus,

we conclude that the more forward-looking monetary policy is, the more likely it is that active monetary

policy renders the equilibrium locally indeterminate.

It is noteworthy that the dichotomy between nominal and real determinacy that appears when the

feedback rule depends only on current in
ation survives under backward- and forward-looking policies. If

the real allocation is locally unique, then the determinacy of the price level depends exclusively on �scal

policy. As under purely contemporaneous monetary feedback rules, the price level is determinate if �scal

policy is non-Ricardian and is indeterminate if �scal policy is Ricardian.

Sticky-price model

The pattern that arises under sticky prices is that if monetary policy is active, the introduction of a backward-

looking component in monetary policy makes determinacy more likely, whereas a forward-looking component
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makes indeterminacy more likely. To facilitate the analysis, we reproduce here the equilibrium conditions

for the sticky-price model.

_� = � [r + � �R] (53)


 _� = 
r(� � ��)� y(mp(�;R))�

�
1 + �

�
1� R

y0(mp(�;R))

��
(54)

_a = [R� �]a�R [mnp(y(mp(�;R)); R) +mp(�;R)] � �

� =

�
� non-Ricardian �scal policy

�a�R [mnp(y(mp(�;R)); R) +mp(�;R)] Ricardian �scal policy

0 = lim
t!1

e�
R
t

0
[R��]dsa(t)

where mp(�;R) results from replacing �(�) by R in equation (35) and is decreasing in � and increasing

(decreasing) in R if ucm is negative (positive).

Consider �rst a backward-looking feedback rule like the one described in equations (46) and (47). Com-

bining these two equations to eliminate �p and linearizing around the steady state yields

_R = q�0 _� + �0 (� � ��)� b(R�R�):

Using this expression and linearizing equations (53) and (54), the evolution of �, �, and R is described by

the following system of di�erential equations:0
@ _�

_�
_R

1
A = A

0
@ �� ��

� � ��

R�R�

1
A

where

A =

2
4 0 uc �uc

A21 r A23

�0qA21 �0(b+ qr) �b+ �0qA23

3
5

and

A21 = �ucc
��R�y00mp

�


y02
> 0

A23 =

�
ucc

��


y0

��
1� R�

y0
y00mp

R

�
:

Because �p is predetermined and R is a function of � and �p, it follows that a linear combination of ���� and
R�R� is predetermined. In addition, � is a jump variable. Assume �rst that �scal policy is Ricardian. Then

the local determinacy of the perfect-foresight equilibrium is governed by the eigenvalues of A. Speci�cally,
the equilibrium is indeterminate if the real part of at least two roots of A are negative.

Assume that monetary policy is active (�0 > 1). We found in section 3 that under a purely contempo-

raneous feedback rule, the combination of Ricardian �scal policy and active monetary policy can render the

real allocation either locally determinate or indeterminate, depending on parameter values. By contrast, if

the feedback rule is su�ciently backward looking (q; b ! 0), the equilibrium is always unique. To see this,

note that when �0 > 1 the determinant of A, which is given by

Det(A) = bucA21 (1� �0) ;

is negative. Thus, the number of roots of A with a negative real part is either one or three. If at the same

time the trace of A is positive, then the number of roots of A with a negative real part is exactly equal to

one. The trace of A is given by

Trace(A) = r � b+ �0qA23:
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Clearly, as q and b approach zero, the trace of A becomes positive.

Assume now that monetary policy is passive (�0 < 1). As shown in 3, the combination of Ricardian

�scal policy and passive monetary policy always renders the real allocation locally indeterminate under a

purely contemporaneous feedback rule. It is straightforward to show that introducing a backward-looking

component in the feedback rule cannot bring about local determinacy. To see this, note that if �0 < 1, the

determinant of A is positive, so the number of roots of A with a negative real part can never be exactly equal

to one. Unlike the case of purely contemporaneous rules, though, a perfect-foresight equilibrium in which

the real allocation converges to its steady state may not exist. This will be the case when all eigenvalues

of A have positive real parts. However, if the feedback rule is highly contemporaneous either because q
approaches unity or because b approaches in�nity, then the equilibrium is always locally indeterminate. To

see this, we appeal to the following condition:14 The number of roots of A with positive real parts is equal

to the number of variations of sign in the scheme:

�1 Trace(A) �B +
Trace(A)

Det(A)
Det(A); (55)

where

B = Sum of the principal minors of A = �ucA21(1� q�0)� rb� b�0A23:

This condition implies that in order for all roots of A to have a positive real part, it is necessary that both

the trace of A and B be positive. Consider �rst the case in which q ! 1. Then the trace of A is positive if

and only if r + �0A23 > 0. But r + �0A23 > 0 implies that B is negative. To see that the equilibrium is also

indeterminate when b!1, note that in this case the trace of A becomes negative.15

If �scal policy is non-Ricardian, then the local determinacy of the perfect-foresight equilibrium is governed

by the eigenvalues of a four-by-four Jacobian matrix de�ning the law of motion of �, �, R, and a. One of

the eigenvalues of this matrix is r > 0 and the other three are those of the matrix A. Because a and a

combination of R and � are predetermined, the equilibrium is locally unique if and only if the Jacobian has

exactly two roots with positive real parts. If monetary policy is active, it follows from our previous analysis

that the Jacobian matrix has either one or three roots with negative real parts. Thus, local determinacy is

impossible. This is the same result as under purely contemporaneous feedback rules. However, if the feedback

rule is strongly backward-looking (b; q ! 0) then no equilibrium in which the real allocation converges to its

steady state exists. If monetary policy is passive, the determinant of the Jacobian is positive, implying that

there exist either two or zero roots with negative real parts. Thus, as in the case of purely contemporaneous

feedback rules, local indeterminacy is impossible. However, unlike the case of contemporaneous rules, under

backward-looking monetary policy an equilibrium may not exist.

Finally, consider the case of a forward-looking feedback rule like the one described by equations (51) and

(52). We will limit the analysis to the case of Ricardian �scal policy, leaving the non-Ricardian case to the

reader. The law of motion of the vector (� � R) is described by a Jacobian matrix that is identical to A with

b replaced by �d. In addition, the three variables of the system are non-predetermined. Therefore, as long

as the Jacobian has at least one root with a negative real part, the perfect-foresight equilibrium is locally

indeterminate. Local determinacy requires that all three roots have positive real parts.

Suppose �rst that monetary policy is active. Under contemporaneous feedback rules, the equilibrium can

be locally determinate or indeterminate. The same result obtains under forward-looking rules. However, if

the rule is strongly forward-looking (d; q ! 0) the equilibrium is necessarily locally indeterminate. To see

this, note that in this case the trace of the Jacobian tends to r > 0 and that B tends to �ucA21 < 0, so that

the pattern of signs in the scheme (55) is � + ++. If monetary policy is passive, then the determinant is

negative, therefore, as in the case of purely contemporaneous rules, the equilibrium is locally indeterminate.

14This is an application to our special case of a more general theorem due to Routh (see Gantmacher, 1960).
15Highly backward-looking policies do not necessarily eliminate the local existence of equilibrium. For example, the equi-

librium is indeterminate when the feedback rule places a relatively high weight on in
ation rates observed in the distant past

(b! 0). This is because in this case B is negative.
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4.2 A model with Calvo-Yun-type price staggering

In this extension, we develop a continuous-time, money-in-the-production function version of Yun's (1996)

sticky-price model.16 We show that it implies equilibrium conditions that are qualitatively identical to those

obtained under the Rotemberg model. Thus, all the results on local determinacy obtained in section 3 carry

over to environments with Calvo-Yun price staggering.

Households

The representative household's lifetime utility function is assumed to be of the formZ
1

0

e�rtu(c;mnp)dt; (56)

where u(�; �) satis�es assumption 1. The household's instant budget constraint is

_a = (R� �)a�Rmnp + x� c� �; (57)

where x denotes the household's income measured in units of the composite good, which consists of pro�ts

from ownership of shares in �rms. The household chooses sequences for c, mnp, and a so as to maximize (56)

subject to (57) and the no-Ponzi-game borrowing constraint (26), taking as given a(0) and the time paths

of � , R, x, and �. The �rst-order conditions associated with the household's optimization problem are (28),

(29), and (31) and (26) holding with equality. Combining (28), (29), and (11) yields

c = c(�; �); c� < 0; c�ucm � 0 (58)

Firms

The production technology and market structure are identical to those assumed in section 3. The di�erence

with the Rotemberg model stems from the source of nominal rigidities. Following Calvo (1983), suppose

that a �rm can change the nominal price of the good it produces only when it receives a price-change signal.

If the �rm does not receive a signal, then its price is assumed to increase automatically at the steady-state

in
ation rate. The probability of receiving a price-change signal between periods t and s > t is assumed to

be given by

1� e��(s�t); � > 0: (59)

Consider the problem faced by �rm j that receives a price-change signal at time t. The expected stream of

pro�ts associated with a particular price P j(t) is given by

�(P j) =

Z
1

t

e��(s�t)e�r(s�t)�(s)

�
P j(t)e�

�(s�t)

P (s)
Y d(s)d

�
P j(t)e�

�(s�t)

P (s)

�
�R(s)mp(s)j

�
ds: (60)

The expression within square brackets represents pro�ts at time s in the event that the �rm has not received

a price-change signal between times t and s. We ignore the pro�ts corresponding to the events in which the

�rm receives a price-change signal after time t because they are irrelevant to the �rm's current price-setting

decision. The present discounted value of the �rm's pro�ts are multiplied by e��(s�t), the probability that the
price set in t will still be in place at time s. The �rm discounts pro�ts accruing at time s using the pricing

kernel e�r(s�t)�(s) that results from the representative household's optimization problem. This kernel is

deterministic because households are assumed to be able to insure against �rm-speci�c risks by holding a

portfolio containing shares from all �rms in the economy. The �rm chooses P j(t) so as to maximize �(P j),

subject to the constraint that sales are demand determined:

y(mj) � Y dd

�
P j

P

�
:

16Yun's model is a variation of Calvo's (1983) model in which �rms are assumed to set prices so as to maximize the present

value of pro�ts, instead of following a rule of thumb as assumed by Calvo.
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The �rst-order condition associated with this optimization problem is

0 =

Z
1

t

e�(�+r)s�(s)Y d(s)d

�
P j(t)e�

�(s�t)

P (s)

��
P j(t)e�

�(s�t)

P (s)

1 + �

�
� R(s)

y0(mp(s)j)

�
ds; (61)

where, as in section 3, � < �1 denotes the price elasticity of the demand faced by an individual �rm and is

assumed to be constant. The expression within square brackets is the di�erence between marginal revenue

and marginal cost. Thus, the �rm chooses to set today's price so that on average marginal revenue equals

marginal cost.

Equilibrium

We show in the appendix that in equilibrium this �rst-order condition gives rise to the following aggregate

supply equation

_� = ~A21(�� ��) + ~A22(� � ��) (62)

where

~A21 = (� + r)�
y00

y02
c� > 0

~A22 = r � (� + r)�

�
�0

y0
�

1 + �
� y00

y02
[c� + �=�]

�

The remaining equilibrium conditions are identical to those of the Rotemberg sticky-price model developed

in section 3. Comparing ~A21 with A21 in the aggregate supply function of the Rotemberg model (equation

(42)), it follows that the determinants of the Jacobian matrices of the Rotemberg and Calvo models have the

same sign. This implies that the results on local indeterminacy under passive monetary policy are identical

under both models. Furthermore, by an analysis similar to the one carried out in section 3, it is possible to

show that, like A22, ~A22 may take either sign. This is important because it implies that, like the Rotemberg

model, the Calvo model can generate local indeterminacy under active monetary policy (regardless of the

stance of �scal policy). This result is entirely due to the assumption that money a�ects real variables through

production. As mentioned earlier, in the Calvo model without money in the production function, the trace

of the Jacobian is always positive and equal to r.

5 Conclusion

In this paper we have shown that the implications of particular interest rate feedback rules for the determinacy

of equilibrium depend not only on the �scal policy regime but also on the structure of preferences and

technologies. An important consequence of this �nding is that the design of monetary policy should be

guided not just by the stance of �scal policy but also by the knowledge of the deep structural parameters

describing preferences and technologies, which signi�cantly complicates the task of the monetary policy

maker.
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Appendix

A. Proof of proposition 3.3

In the economy under analysis, the equilibrium conditions (37) and (38) take the form

_�

�
= (1� a)(� � ��) (63)

_� = r (� � ��)� 
�1�((s�1)=s)

�
1 + �

�
1� R� + a(� � ��)

��((1��)=�s)

��
(64)

To prove orbital stability, we use the formula provided by Guckenheimer and Holmes (1983, p. 152), which

requires a change of variables and expressing the above system at the Hopf bifurcation as�
_u
_v

�
=

�
0 �!
! 0

��
u
v

�
+

�
f(u; v)
g(u; v)

�

where ! is a function of the parameters of the model and f(�; �) and g(�; �) satisfy f(0; 0) = g(0; 0) = 0 and

fi(0; 0) = gi(0; 0) = 0 for i = 1; 2; that is, f(�; �) and g(�; �) have no constant or linear terms. The Hopf

bifurcation is supercritical (and thus stable cycles exist) if

� � (fuuu + fuvv + guuv + gvvv)

+
1

!
[fuv(fuu + fvv)� guv (guu + gvv)� fuuguu + fvvgvv] < 0

at u = v = 0. We obtain this condition by steps.

STEP 1: Let p = � � �� and z = ln(�=��), where �� denotes the steady-state value of �. Then

equations (63) and (64) can be written as

_z = (1� a) p

_p = rp+M
�
e�z � e�z

�
+Npe�z

where � = s�1
s
, � = � + ��1

�s
, M = 
�1 (1 + �)��� < 0, and N = 
�1���1a��� < 0.

STEP 2: Write the system of di�erential equations as:�
_z
_p

�
=

�
0 1� a

M (� � �) 0

��
z
p

�
+

�
0

G (z; p)

�

where

G (z; p) =M [e�z � e�z � (� � �)z] + p(Ne�z + r)

Note that the matrix in the linear part satis�es:

DET = �M(� � �)(1� a)

TRACE = 0

Assume that a > 1 and N = �r. That is, the parameter con�guration corresponds to a Hopf bifurcation.

Then letting ! =
p
DET , � =

q
M(���)

a�1
, v = �z, and u = ��1p, the two di�erential equations become:

�
_u
_v

�
=

�
0 �!
! 0

��
u
v

�
+

�
f (u; v)

0

�
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where

f(u; v) =
M

�
[e��v � e��v + (� � �)v] + u(Ne��v + r)

Note that f(0; 0) = fu(0; 0) = fv(0; 0) = 0. Also, in our formulation g(�; �) = 0.

STEP 3: The relevant derivatives of f are

fvv =
M

�
[�2e��v � �2e��v ] + �uN�2e��v

fuu = 0

fuuu = 0

fuv = ��Ne��v

fuvv = �2Ne��v

Setting u = v = 0, it follows that

� = (�N)[� � ��1!�1M(�2 � �2)]

Noting that ��1!�1M = (� � �)
�1

and recalling that N = �r, � reduces to

� = �r�

Thus � will be less than zero if and only if

1 < s <
1

�

�

B. Derivation of the aggregate supply function in the Calvo-Yun model

In a symmetric equilibrium all �rms that receive a price-change signal will choose the same price. Let this

price be denoted by P(t). Let p(t) � P(t)=P (t). Then equation (61) can be written as

0 =

Z
1

t

e�(�+r)s�(s)Y d(s) d
�
p(t)e�

R
s

t
[�(r)���]dr

��1 + �

�
p(t)e�

R
s

t
[�(r)���]dr � R(s)

y0(mp(s)j

�
ds:

Linearizing this expression around the steady state yields

0 =

Z
1

t

e�(�+r)s

�
1 + �

�

�
[p(t)� p�]�

Z s

t

[�(r) � ��]dr

�
(65)

��0

y0
[�(s)� ��] +

R�y00

y02
[mp(s)

j �mp�]

�
ds:

Assume that the consumption good is a composite of the goods produced by each �rm. Let the aggregator

function be of the Dixit-Stiglitz form with an elasticity of substitution across goods of �. Then, the price of
the composite good is given by

P (t) =

�Z t

�1

�e��(t�s)P(s)1+�
� 1
1+�

ds;

Di�erentiate this expression to obtain

�(t)� �� =
�

1 + �

�
p(t)1+� � 1

�
; (66)
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which after linearizing can be written as

[p(t)� p�] =
1

�
[�(t)� ��]

Using this equation to eliminate p(t)� p� from equation (65) and di�erentiating the result with respect to t
yields

_� = r[� � ��] + (� + r)�
�

1 + �

�
��0

y0
[� � ��] +

R�y00

y02
[mpj �mp�]

�
: (67)

Using equations (58) and (66) and the fact that in equilibrium y(mpj) = cd(p) one can express mpj as a

function of � and �, whose linearized form is

mpj �mp� =
1

y0
[c�(�� ��) + (c� + �=�)(� � ��)]

Finally, use this expression to eliminate (mpj �mp�) from (67) to get (62).
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