Board of Governors of the Federal Reserve System

International Finance Discussion Papers
Number 488

October 1994

A DISTRIBUTED BLOCK APPROACH TO SOLVING
NEAR-BLOCK-DIAGONAL SYSTEMS WITH AN APPLICATION TO A
LARGE MACROECONOMETRIC MODEL

Jon Faust and Ralph Tryon

NOTE: International Finance Discussion Papers are preliminary materials
circulated to stimulate discussion and critical comment. References to Inter-
national Finance Discussion Papers (other than an acknowledgment that the
writer has had access to unpublished material) should be cleared with the
author or authors.

Abstract

This paper demonstrates two advantages of well-known block variants of
standard algorithms for solving nonlinear systems. First, if a problem is suf-
ficiently close to block-diagonal, block algorithms may offer significant speed
advantages on a single processor. Second, block Jacobi algorithms can easily
and efficiently be distributed across multiple processors. We illustrate the
use of a distributed block Jacobi algorithm to solve a large nonlinear macroe-
conometric model. For our application, on a four-processor Unix server, the
algorithm achieves a speedup factor of more than 6 over the standard algo-
rithm on a single processor. A speedup factor of about 2 is due to the added
efficiency of the block algorithm on a single processor, and the remaining

factor of 3 results from distributing the work over four processors.

A distributed block approach to solving near-block-diagonal

systems with an application to a large macreconometric model
Jon Faust and Ralph Tryon!

A great many economists now have access to hardware that will support limited
distributed processing. This hardware may be a local area network of DOS PCs
or Unix workstations or possibly a workstation with multiple processors. From the
standpoint of distributed processing, these systems may be limited by the relatively
small number of processors that could reliably be used, say, between 3 and 15, and by
slow communication amang the processors. Given these constraints, algorithms that
can ne efficiently distributed over a small number of potentially diverse processors
with slow inter-processor communication may have widespread applicability.?

In this paper, we demonstrate that in solving certain nonlinear systems, sub-
stantial benefits can be obtained by using a distributed algorithm that can trivially
be implemented using widely available software and hardware. The application that
motivated this is the solution of a large multi-country macroeconomic model with
forward looking expectations at the Federal Reserve Board. We designed a dis-
tributed, block Jacobi variant of the Fair-Taylor algorithm to run on a network of
Uﬁix workstations or on a network of PCs. On a four-processor Solbourne server,
the algorithm achieves a typical speedup factor of more than 6 over the standard
algorithm on a single processor for our application. A speedup factor of about 2
is due to the added efficiency of the block algorithm on a single processor, and the

remaining factor of 3 results from distributing the work over four processors.

! The authors are, respectively, a staff economist and a section chief at the International Finance
Division of the Board of Governors of the Federal Reserve System. The authors thank Ray Board,
Neil Ericsson, and Mico Loretan for helpful comments. The views in this paper are solely the
respor sibility of the authors and should not be interpreted as reflecting the views of the Board of
Governors of the Federal Reserve System or of any other person associated with the Federal Reserve
Systera. :

? Coleman [1993] provides one example of such an algorithm for solving nonlinear dynamic
models. ’

1 Distributed processing

The ideal problem for distributing across a small number of diverse processors would
be divisible into a small number of totally independent blocks that could be solved
simultaneously. Unfortunately, no solution algorithm for a simultaneous system can
be divided into totally independent blocks, and one must consider breaking the
algorithm into sub-problems that do have independent blocks.

For example, consider Jacobi’s algorithm for solving the linear system,
0= HY +h, (1)

where Y = (y1,...,¥x) and H is invertible. Jacobi’s algorithm starts with the LDU
decomposition, H = L+ D + U, where D is a diagonal matrix and L and U are the

upper and lower triangles of H. Rearranging (1) gives
Y =-D YL+ U)Y - DA,
and suggests Jacobi iterations of the form,

Y+l = —D YL+ U)Y'-D'h,
= AY'+h (2)

Viewing each successive evaluation of (2) as a sub-problem, each eqﬁation of (2)
is an independent block within the sub-problem. A distributed J acdbi algorithm
could execute each iteration by simultaneously solving all the equations on different
processors. The results of the iteration could then be collected from the various
processors to form the inputs to the next iteration.

It is obviously important that the time benefits derived from simultaneously
executing the blocks on different processors outweigh the overhead cost involved
in communicating the problems to the various processors at the beginning of the
sub-problem and collecting the answers upon conclusion. Given the constrainf of
relatively slow communication, one obviously wants to cast the problem in a way that

is coarse-grained®>—that requires many computations between each communication

3 Wilson [1993] provides a useful introduction to the jargon of distributed computing.

2

event—and requires relatively small messages to be sent in each communication
event. Such an algorithm will have a high computation-to-communication ratio.
The distributed Jacobi algorithm is likely to score poorly on this criterion. In
a system with a large number of equations, evaluating one equation may take very
few computations, but if each processor must communicate the result for its equa-
ticn to a large number of other processors before proceeding to the next iteration,
the communication overhead may entirely wipe out the benefit from simultaneous
evaluation. The simplest way to raise the computation-to-communication ratio in

this case involves using a block variant of Jacobi’s method.

2 Two benefits of block algorithms

Block variants of Jacobi, Gauss-Seidel, and other standard iterative algorithms are
well established [e.g., Varga, 1962; and Ortega and Rheinboldt, 1970]. Klein [1983],
for example, discusses an early use of block Gauss-Seidel to solve the Brookings
macroeconometric model. This section highlights two potential benefits of block
algorithms for nearly block-diagonal systems. First, the block algorithms may have
a substantial efficiency advantage over standard algorithms when executed on a
single processor. Second, if a small number of blocks is chosen, the distributed block
algorithm will have a high computation-to-communication ratio, allowing efficient

distribution over multiple processors.

2.1 Faster solution time on a single processor

We begin with the linear case introduced above to provide intuition for the nonlinear
case. The basic results here are based on Varga [1962].

2.1.1 The linear case

To generalize the point Jacobi algorithm introduced above to the block Jacobi method,

begin by selecting an ordering of the elements of Y and partitioning the vector into

b blocks:
Y =(Y/,....Y))

Form the block LDU decomposition of H, H = Lg + Dg + Up, where subscript B
indicates the partitioning of H conformably with Y such that Dp is block diagonal
with b square blocks. Assuming that each diagonal block is invertible, we can proceed

as before:

Y = —Dg'(Lp+Up)Y' - Dg'h

HpY' + hp (3)

Iterations on (3) will converge starting from any Y©° if the spectral radius (the
modulus of the largest eigenvalue) of Hg, p(fIB), is less than one. The asymptotic
rate of convergence is — log(p(Hp)) [e.g., Varga 1962].

Block variants of Jacobi’s method provide a range of solution options with direct
inversion and point Jacobi as polar cases. With b = 1, Dg = H and block Jacobi
corresponds to direct inversion; with b = n, Dg = D and the algorithm reduces to
point Jacobi. The value of b that minimizes solution time depends on the trade-
off between the computational resources required to invert Dg and those required
for iterating on (3). Since the number of computations required to invert Dpg is
inversely related to the number of blocks,* setting b = 1 maximizes the number of
computations required to invert Dp but minimizes the number of iterations required
at zero. Selecting a larger number of blocks will be warranted if the gain in speed in
inverting Dp exceeds any slowdown from raising the required number of iterations.

While raising the number of blocks from 1 to 2 must weakly raise the number
of iterations required, little else can be said about the relation between the way a
problem is blocked and rate of convergence.® Clearly, however, if H is block diagoral
for some blocking, then for that blocking Lg+Ug = 0 and no iterations are required.

More generally, as the largest element of Lg+Up goes to zero, the asymptotic rate of

* For b diagonal blocks of roughly size n/b, inverting Dp is of order n®/b? when treating inversion
of an (n x n) matrix as order n®.
® Varga [1962] gives some results.

convergence rises without bound for any fixed Dp 8 Thus, if a problem is sufficiently
close to block diagonal, a block algorithm with an intermediate b may be quicker

than either direct inversion (b = 1) or point Jacobi (b = n).

2.1.2 The nonlinear case

Now consider solving the (n X 1) nonlinear equation system,
0=G(), (4)
for the (n x 1) vector Y. Point Jacobi iterations now take the form

0=gi(Wi, - Ui, ¥ o Yo%) G =1.m,

where g; is the j** equation of G. If g; is nonlinear, an iterative method for solving
g, will generally be required. In the neighborhood of a solution, Y*, the system
is approximately of the form (1) with H = 0G(Y*)/dY. Thus, the reasoning of
the linear case regarding convergence and optimal blocking will apply locally in the
nonlinear case.

The block Jacobi algorithm involves repeatedly evaluating blocks of the form,
0= Gi(Yy,... Y, LY, %) =10, (5)

where G; is the jt* block of equations in G. When (5) is nonlinear, evaluation will
generally require an iterative method. The iterations required to solve (5) on each
Jacobi iteration are the nonlinear analog of invefting Dp in the linear case. In the
nonlinear case, there is no explicit inverse, and the inverse must be taken implicitly -
on each iteration. For concreteness, consider solving the blocks by Newton’s method.
(In our application, the blocks are solved by Fair-Taylor; most standard iterative

methods could be substituted for Newton in this discussion.) Given the problem

% The asymptotic speed of convergence is governed by — log(p(f{B)). The spectral radius p(Hg),
is bounded above by the largest absolute row sum: max; y ._ |[H5];,|- For any Dp, the maximum
row sum must go to zero with the largest absolute element of Lp+Ug, implying that the asymptotic
rate of convergence rises without bound.

F(X) =0, Newton iterations are of the form

: -1
X7t = xi - (6—};()151—)) F(X7) (6)

Iterations over (5) are called outer loop iterations. The Newton iterations required
to solve (5) are called inner loop iterations.

Substituting Newton’s method for direct inversion of Dg, we can repeat the
optimal blocking arguments of the linear case. The block method provides a range
of options between Newton’s method (with b = 1) and point Jacobi (b = n). Raising
b will make each inner loop iteration quicker, since each Newton iteration across all
the blocks requires inverting b Jabobian matrices of size (n/bx n/b). More generally,
raising b will speed the inner loop iterations for any inner loop algorithm that has
some step the computational cost of which rises faster than one-for-one with block
size.

If G(Y) is block diagonal, for some blocking, in the sense that 2% is block
diagonal, then the block algorithm for this blocking gives precisely the same answer
as Newton’s method.” When %,q is sufficiently close to block diagonal (globally or
local to the solution), then the logic of the linear case can be repeated to show that
the computations of the block algorithm will nearly correspond to those of straight
Newton (globally or locally). In this case substantial time savings can result from
using a block Jacobi algorithm (b > 1) and Newton on the inner loops in place of
straight Newton (b = 1).

The basic intuition for this result is that the number of calculations required to
complete an iteration may be reduced by judiciously setting certain partial deriva-
tives to zero. If these partial derivatives are sufficiently near zero, setting them tc
zero for certain calculations will not substantially degrade the progress made toward

a solution on each iteration.

" The block algorithm may be faster in this case than Newton, but the same speed advantage
could be obtained using a sparse matrix inversion routine in the Newton algorithm that recognized
the block structure of the Jacobian.

2.2 Good computation-to-communication ratio

The second potential benefit of the block Jacobi algorithm is that it can be simply
and efficiently distributed. The inner loop of the block algorithm involves iterative
solution of b independent blocks of equations. These blocks clearly could be solved
simultaneously on b separate processors.® If the total number of equations is large
relative to the number of blocks, each block will require many computations to solve
and the computation-to-communication ratio is likely to be quite favorable.

For example, suppose that we hold the number of blocks fixed at b, assume that
the blocks are approximately equal in size, and raise the number of equations, n.
The amount of information each block must read before and write after each inner
loop iteration rises at most linearly with n: the block must write its solution to at
most n/b equations and read the solution to at most (b — 1)n/b equations solved
by the other blocks.? As noted above, the number of computations required to
solve each block will rise faster than linearly with block size. With the number of
blocks fixed, as the system grows, the cost of solving the blocks rises faster than the
communication cost, and the computation-to-communication ratio becomes more
favorable. Thus, the block Jacobi method is likely to be useful on large systems

being evaluated using a small number of processors.

3 The distributed algorithm

This section provides a stylized description of the way we implemented the block
algorithm—further detail is provided below in the discussion of the application. The
only hardware required for the algorithm are multiple processors (perhaps separate »
computers) that share access to some file storage device. The software requirements

are similarly minimal. We assume that the user has a solution algorithm for solving

8 This distributability explains the preference for block Jacobi over block Gauss-Seidel, for
example. In block Gauss-Seidel, the updated answers from blocks 1 through j — 1 are used in
solving the j** block, which requires that the blocks be run sequentially.

® The use of at most is required because, for example, if the system is somewhat sparse—that
is, if some variables do not occur in blocks—then those variables need not be read by all blocks.

the blocks in the inner loop. The primary software requirement is that the inner
loop algorithm be implemented in software that provides minimal programmability:
one must be able to wrap a programming loop around the inner loop solution algo-
rithm, write and read disk files on the shared server, and branch within the program
depending on the contents of the disk files.

All communication is done through disk files on the shared file server; thus, no
special software for handling interprocess communication is required. This method
of communication may be quite slow, but was chosen in the interest of creating the
most portable and simplest possible illustration of distributed processing. Below we
verify that for our application, the cost of choosing this inelegant communication
approach is small.

The algorithm is programmed in a simple master-worker setup. There is one
worker process per block running the software with the inner loop algorithm. The
master controls the operation of the workers, and involves a simple program:

Master program

1. Initialize all workers.

2. Loop:
3 Start each worker.
4. Wait until all workers stop.
5 Read status of each worker.
6
7

Continue loop until all workers report convergence.
Stop all workers.

The master-worker communication is conducted by writing flags to disk files.
When the workers are running, the master periodically reads the flags to see if any
workers are still running. When the workers have stopped, they periodically read
the flags to see if the master has told them to re-start.

In the worker program, X; is defined as those elements of Y, that enter some
equation in any block other than the j®* block. These are the variables that are
endogenous to the j* block and also enter some other block; thus, they are the only

variables that must be communicated among the workers.1°

10

worker 7 need only read in those elements of Xj, j # 1, that are used in block i. The workers
in our implementation exploit this efficiency, which is not shown in the summary here.

8

Program for worker j

1 Outer loop:

2 Wait until master says start.

3 Read Xj,k # j, from common space.

4. Set on = YJ-" from previous call or initialization.
5. Store X?.

6 1= 0.

7 Inner loop:

8 Compute Yj'“ from Y; and Xy, k # j.
9. Increment 1.

10. Continug loop until d(}’j‘,l/ji_l) <e€ori>au.
11. Write X to common space.

12. If i <7and d(X j,X?) < €, report convergence;

otherwise report nonconvergence.
13. Continue loop until master says stop.

[n steps (10) and (12), d is a metric on the distance between two successive
answers. In our implementation,

d(v,w) = max I—vk——wkl (7
k€l,.on |wi| + 7
for any (n x 1) vectors v and w.!! In our case, v = 10.

As implemented in worker step (10), the inner loop iterations stop in two cases: if
the convergence criterion for the problem is met, and if a maximum iteration count,
t, is reached. The workers stop after 7 iterations even if they have not converged in
order to allow the workers to share whatever progress they have made. If one sets
? too high, time may be wasted on early outer loop iterations needlessly refining
solutions for the blocks. With 7 too low, too much time may be spent sharing
results that have not changed much from the previous outer loop iteration. In our
application, 7 = 5; the results were not very sensitive to setting 7 between 2 and 10,
but ‘were sensitive to setting 7 too high.

A worker reports overall convergence to the master in (12) if the block has
converged in (10), and if X; did not change by more than ¢ from the initial value,

X]Q, ‘or the current outer loop iteration. The value X]“J is what all the other workers

"' This is the standard form of convergence criteria used in solving large macroeconometric
mode s. Other criteria might well be of interest, e.g., [Wolfe, 1978].

9

are taking as exogenous on the current outer loop iteration. Thus, the worker reports
convergence if the updated value of X reported in (11) is no more than € away from
the previous report.

In order to divide the gains from the distributed block algorithm between the
gains from blocking alone and‘ the ‘gains from distributing the blocks, we also im-
plemented a single processor (SP) version of the block algorithm. This required few
changes to the distributed processor (DP) version. Basically, in step 3 of the master,
each of the blocks is run in sequence, rather than running all of them simultane-
ously. The SP and DP versions of the aligoritvhm execute the same computations
and arrive at the same solution. While the maximum theoretical speedup factor
for the DP algorithm over the SP algorithm is equal to the number of processors
applied, two factors will limit the speedup obtained. First, the SP algorithm avoids
inter-pro.cessor communication overhead of the DP algorithm. Second, the DP al-
gorithm has a synchronization barrier: at the end of each outer loop iteration, each
worker must wait until all others have finished. Thus, if the load on the workers is

not balanced, some processors may lay idle for a time.

4 Application to a multi_fcountry model

We applied the algorithm to solving a multi-country macroeconometric model with
conventional rational expectations. The model is nonlinear, involving, for examole,
log and log-linear specifications. The rational expectations involve equations with

forward looking variables of the form'?

Yit = f(Yie415Yi-1,Yit)- (8)

While much work is underway on alternative solution methods for these models
[e.g., Fisher, 1992; Boucekkine, 1994; Brauset, 1994], the standard approach to
solving such models is the Fair-Taylor algorithm [Fair and Taylor, 1983].1% We

12 1t is not the dating conventions, but the roots of the system that ultimately determine what
variables are forward looking and must be solved forward. See, e.g., Blanchard and Kahn [1980].

13 Fisher [1992] has a detailed discussion of Fair-Taylor and other approaches to the soluticn of
models with forward-looking expectations.

10

chose to explore a block Jacobi variant of Fair-Taylor.

The Fair-Taylor algorithm is a multi-step procedure. The innermost step uses
some standard algorithm to solve the model conditional on paths for the forward-
looking variables (y; 41 in (8))—in our implementation, Newton’s method is used.
The algorithm then repeatedly substitutes the actual solutions for the forward look-
ing variables for the assumed paths on the previous iteration and re-solves the model
until convergence is reached.'* Terminal conditions for each forward-looking vari-
able must be specified—the model is simulated sufficiently far into the future that

the solution over the period of interest is invariant to the terminal conditions chosen.

4.1 The RE7 multi-country model

We apply the distributed-processing block algorithm to solve RE7, an experimental
macroeconometric model of the major industrial countries developed in the Division
of International Finance at the Federal Reserve Board.!® RE7 has about 1050
equations that make up seven country models. The individual country models are
similar in structure but are not identical: the largest has almost 200 equations, and
the smallest about 140 equations.

A crucial decision in implementing a block variant of F air-Taylor is how to block
the system. The goal, of course, is to order the equations such that the Jacobian (at
the solution) is nearly block-diagonal. We made each of the seven country models
a block.'® While there are many important interactions among the country blocks,
these are considerably less important than the interactions within a country block.

Further, these international interactions operate through relatively few channels: the

* In the standard terminology, we have just described two of three Fair-Taylor steps: Fair-
Taylor type 2 iterations involve repeatedly solving the model with updated values for the forward
looking variables. Type 2 iterations nest type 1 iterations—the iterations required to solve the
model conditional on a given path for the forward-looking variables. Type 3 iterations, used to test
sensitivity to terminal conditions, are not considered here.

5 Ralph Tryon and Joseph Gagnon developed RE7, which is a rational expectations version of
the Multi-Country Model developed at the Board. See Edison, Marquez, and Tryon [1987] and
Stevens et al. [1984].

1Al exchange rates in the model are bilateral exchange rates with the U.S., and the exchange
rate equations were included in the U.S. block.

11

typical country block has six X variables—variables that are treated as endogenous
in the country block, but treated as exogenous in some other country block. This
gives the system a strong element of block-diagonality given our blocking along
country borders.!” We did not explore other approaches to blocking.®

The model is typically used to simulate alternative policy scenarios. First, a
baseline solution is obtained for the time period of interest, either historical or
forecast. Then an alternative path for an exogenous variable—such as the price of
oil, or the growth rate of money—is specified, and the model is solved again. For
a model as large as RE7, obtaining a Fair-Taylor solution to such problems can

require several hours on a fast UNIX workstation.

4.2 Software and hardware implementation

The RE7 model is implemented in Portable TROLL running under the SunOS
(UNIX) operating system. Portable TROLL is a software package designed for
developing and simulating large time-series econometric models.’® The basic Fair-
Taylor algorithm and block algorithms used for this paper were implemented by the
authors using Portable TROLL’s macro programming language. The outcome of
this experiment could be distorted if the TROLL implementation of Fair-Taylor were
poorly designed to handle large systems. Brillet [1994] presents some evidence that
TROLL’s Fair-Taylor algorithm is very efficient, at least relative to other available
packages.?0

The block algorithm closely follows the program outlined in the previous section.

The Fair-Taylor algorithm is used for the inner loop iterations. Each worker ‘s a

17 This procedure is very similar to that used in Project LINK, which involves a large number of
country models [Klein, 1983].

18 Gilli [1992] and Gilli and Pauletto [1994] systematically explore the block structure of the
Jacobian of macroeconomic models, not heavily exploiting particularities of the model. Board and
Tinsley [1994] explore search algorithms for finding block structure of an economic model.

19 Tntex Solutions, Inc., Needham, Massachusetts. Portable TROLL was written by Peter
Hollinger and Leonid Spivakovsky, drawing on the mainframe TROLL program developed at the
Massachusetts Institute of Technology and the National Bureau of Economic Research.

2% On limited range of experiments on a 501 equation model, TROLL’s Fair-Taylor algorithm
was five times faster in simulating than the nearest of the three other packages tested.

12

separate process in UNIX running TROLL to solve one of the country model blocks.
The worker processes share data directories with each other and with the master.
The master communicates with the workers using status flags written to disk files.
To prevent read/write conflicts, the master and the worker each wait for exclusive
write access to the status flag while either reading or writing.

At the beginning of each outer loop step, each worker reads the required X
variables from a subdirectory shared with all the other worker processes. At the
end of each outer loop iteration, each worker writes its X variables to the shared
subdirectory. Each worker builds the lists of variables to read and write during
initialization, so the user need not specify them.

The primary hardware platform is a Solbourne model 704/6E UNIX server with
four processors which can run up to four processes simultaneously with only a slight
overhead cost. (If more than four processes are running simultaneously, they share
the four processors.) We also tested the algorithm on seven 33-MHz 80486-based
PCs running under DOS and communicating across a Token Ring. The results for

the DOS-based test are reported in footnote 22.

4.3 The results

The experiments involve solving for the change from baseline caused by shocks to
some exogenous variables. We report results for three different shocks with RE7.
Shock A is a change in monetary policy in one country that has little real impact
on other countries. Shock B is a single-country fiscal policy scenario, which given
the structure of RE7 has relatively strong feedbacks among all the countries. Shock
Cisa world‘ﬁscal policy change that is balanced across the countries.

Table 1 repofts the simulation time for simulating these three scenarios in RE7
using one block (i.e., conventional Fair-Taylor) and with seven blocks, running on

a single processor.?' Solving the model in seven blocks yields a speedup factor of

2! These experiments use i = 5, ¢ = 0.00001, v = 10. Throughout, the € and v parameters are the
same for the Fair-Taylor and block algorithms; thus, each stops when two successive answers are
sufhiciently close as measured by (7). Convergence of the Fair-Taylor algorithm in this sense does
not imply convergence of the block algorithm, and vice versa. Thus, some care must be taken in

13

Shock 1 Block 7 Blocks Speedup factor

Shock A 3646 1425 2.6
Shock B 6726 3539 1.9
Shock C 8749 4088 2.1

Single processor, time in seconds.

Table 1: Solution times with and without blocking

Shock 1 Block 7 Blocks Speedup factor
seconds # seconds

Shock A 78 46.7 69 20.7 2.3

Shock B 146 46.1 164 21.6 2.1

Shock C 210 41.7 230 184 2.3

Single processor; speedup factor is per iteration.

Table 2: Number of inner loop iterations and time per iteration

between 1.9 and 2.6 over the time for solving it as one block. This speedup can
be decomposed into the speedup on each inner loop iteration and any rise or fall in
the required number of inner loop iterations. The number of inner loop iterations
required is roughly the same for the blocked and unblocked solutions (Table 2).
Thus, the speedup from blocking essentially comes from the fact that the blocked
inner-loop iterations are quicker to execute by a factor of more than 2.

Table 3 compares the results from running the 7-block algorithm on one processor
and on four processors simultaneously. The speedup factor shown here is purely
the result of distributing the problem onto multiple processors, since the algorithm
follows exactly the same iterations in either case. The distributed processing speedup
factor is between 3.1 and 3.3. This is less than the theoretical limit of 4 by about
20 percent.

Two major factors can account for this shortfall. The first is communication

interpreting these speedup numbers. We did very limited work tightening the convergence criteria
(shrinking €) and verifying that the algorithms converge to the same point and that the speedup
was relatively stable for a range of €.

14

Shock © One Processor Four Processors Speedup factor

Shock A 1425 441 3.2
Shock B 3539 1088 3.3
:Shock C - 4088 1315 3.1

Seven blocks.

Table 3: Solution times with one processor and four processors

overhead—the time spent writing messages to disk, waiting for the messages to be
read, and -writing and reading the X variables. Since we have chosen the simple
approach of communicating through disk files, it is important to know what penalty
we are paying for not using a more elegant approach. Our data indicate that at most
5:percent of the solution time could be attributed to this communication overhead.
Sending messages instantaneously, therefore could have raised the typical speedup
factor to about 3.4.

The vast majority of the shortfall relative to the potential speedup of factor of
4 is due to the synchronization barrier. The load on the processors is not balanced,
and some processors lay idle at the end of some outer loop iterations. While it would
be impossible to select a blocking that distributed the work evenly for all shocks,
we might: achieve better average performance by breaking up the U.S. block, which
is about one-third larger than the smallest country block. Setting a lower 7 or looser
convergence criteria for the U.S. block on early iterations might also help.

The total speedup factor for the distributed, block algorithm is the product of
the gain from blocking and the gain from distributing. This factor is 8.3 for Shock
A, 6.3 for Shock B, and 6.5 for Shock C.22

22 As noted above, we also ran shock A on a network of seven DOS-based 33-MHz PCs. The
times were 5819 seconds for one processor and 1373 for seven, giving a speedup of 4.2. Almost all

of the short-fall from the theoretical bound of a seven times speedup was due to the unbalanced
load.

15

5 Conclusions

We set out to explore the gains that could be obtained by taking the simplest steps
toward distributed processing to solve a large macroeconometric model. For our
model, blocking and distributing over 4 processors yielded a speedup factor of over
6. Gains of this magnitude were required to make regular use of the model feasible,
and the algorithm is now used in production work at the Federal Reserve Board. A
variant of the algorithm using a different inner-loop algorithm is being investigatec
for use in solving the International Monetary Fund’s Multimod model.

Block Jacobi methods can easily be applied to a wide range of problems. The
method will perform best in nearly block-diagonal problems. While we did not
explore the required degree of block-diagonality, our application illustrated that the
substantial speedup per iteration from solving a problem in small blocks—a factor
of about two in our case—could pay for a substantial penalty in terms of number of
iterations to convergence. Thus, the approach may be useful even in problems that
are not as close to block-diagonal as our model.

A large number of economic and econometric problems have a degree of block
diagonality. For example, any sectoral model with limited channels for feedback has
this form—whether the sectors are countries, sectors of a single economy, or nearly
separable portions of individual decision problems. In econometrics, the information
matrix associated with many maximum likelihood problems will be near block di-
agonal. For example, the Gaussian information matrix for vector autoregressions is

block diagonal, and will be nearly so given some restrictions on the autoregression.

16

References

Blanchard, O.J., and C.M. Kahn. 1980. “The solution of linear difference model
under rational expectations,” Econometrica, 48, 1305-1311.

Board, Raymond, and Peter Tinsley. 1994. “Smart systems and simple agents: in-
dustry pricing by parallel and genetic strategies” manuscript, Federal Reserve
Board, June.

Boucekkine, R. 1994. “An alternative methodology for solving nonlinear forward-
looking models,” Journal of Economic Dynamics and Control, forthcoming.

Brillet, Jean Louis. 1994. “Solving large models on micro-computers: a review of
available packages,” manuscript, INSEE.

Bruaset, Are. 1994. “Efficient solution of linear equations arising in a nonlinear
economic model,” manuscript, SINTEF.

Coleman, John. 1993. “Solving nonlinear dynamic models on parallel computers,”
Journal of Business and Economic Statistics, 11(3), 325-330.

Edison, Hali J., Jaime R. Marquez and Ralph W. Tryon. 1987. “The structure
and properties of the Federal Reserve Board Multicountry Model,” Economic
Modelling, 4 (2), 115-315.

Fair, Ray C. and John B. Taylor. 1983. “Solution and maximum likelihood es-
timation of dynamic nonlinear rational expectations models,” Econometrica,
51, 1169-1186.

Fisher, Paul. 1992. Rational ezpectations in macroeconometric models. Kluwer:
Boston.

Gilli, Manfred. 1992. “Causal ordering and beyond,” International Economic
Review, 33(4), 957-971.

Gilli, Manfred and Giorgio Pauletto. 1994. “Parallel algorithms for solving rational
expectations models,” manuscript, University of Geneva, June.

Klein, Lawrence, 1983. Lectures in Econometrics. Elsevier: Amsterdam.

Ortega, J.M. and W.C. Rheinboldt. 1970. Iterative solution of nonlinear equations
in several variables. Academic Press: New York.

Stevens, Guy, Richard Berner, Peter Clark, Ernesto Hernandez-Cata, Howard
Howe and Sung Kwack, 1984. The U.S. Economy in an Interdependent World:

A multicountry Model, Board of Governors of the Federal Reserve System,
Washington, D.C.

17

Varga, Richard S. 1962. Matriz iterative analysis. Prentice-Hall: Englewood Cliffs,
New Jersey.

Wilson, Gregory. 1993. “A glossary of parallel computing terminology,” IEEE
Parallel and Distributed Technology, Feb., 52-67.

Wolfe, M.A. 1978. Numerical methods for unconstrained optimization. Van Nos-
trand Reinhold: Wokingham, Berkshire, England.

18

IFDP
Number

438

487

486

485

484

483

482

481

480

479

478

477

476

International Finance Discussion Papers

A distributed block approach to solving
near-block-diagonal systems with an application
to a large macroeconometric model

Conditional and Structural Error Correction Models

Bank Positions and Forecasts of Exchange Rate
Movements

Technological Progress and Endogenous Capital
Depreciation: Evidence from the U.S. and Japan

Are Banks Market Timers or Market Makers?
Explaining Foreign Exchange Trading Profits

Constant Returns and Small Markups in U.S.
Manufacturing

The Real Exchange Rate and Fiscal Policy During
the Gold Standard Period: Evidence from the
United States and Great Britain

The Debt Crisis: Lessons of the 1980s for
the 1990s

Who Will Join EMU? Impact of the Maastricht
Convergence Criteria on Economic Policy Choice
and Performance

Determinants of the 1991-93 Japanese Recession:
Evidence from a Structural Model of the Japanese
Economy

On Risk, Rational Expectations, and Efficient
Asset Markets

Finance and Growth: A Synthesis and Interpretation
of the Evidence

Trade Barriers and Trade Flows Across Countries
and Industries

Author(s)

John Faust
Ralph Tryon
Neil R. Ericsson

Michael P. Leahy
Robert Dekle
John Ammer

Allan D. Brunner

Susanto Basu
John G. Fernald

Graciela L. Kaminsky
Michael Klein
Graciela L. Kaminsky

Alfredo Pereira

R. Sean Craig

Allan D. Brunner
Steven B. Kamin

Guy V.G. Stevens
Dara Akbarian

Alexander Galetovic

Jong-Wha Lee
Phillip Swagel

Please address requests for copies to International Finance Discussion Papers, Division of
International Finance, Stop 24, Board of Governors of the Federal Reserve System,
Washingten, D.C. 20551.

19

IFDP
Number

475

474

473

472
471

470

469

468

467

466

465

464
463

462

International Finance Discussion Papers

The Constancy of Illusions or the Illusion of
Constancies: Income and Price Elasticities
for U.S. Imports, 1890-1992

The Dollar as an Official Reserve Currency under
EMU

Inflation Targeting in the 1990s: The Experiences
of New Zealand, Canada, and the United Kingdom

International Capital Mobility in the 1990s

The Effect of Changes in Reserve Requirements
on Investment and GNP

International Economic Implications of the End of
the Soviet Union

International Dimension of European Monetary Union:

Implications For The Dollar

European Monetary Arrangements: Implications for
the Dollar, Exchange Rate Variability and
Credibility

Fiscal Policy Coordination and Flexibility Under
European Monetary Union: Implications for
Macroeconomic Stabilization

The Federal Funds Rate and the Implementation
of Monetary Policy: Estimating the Federal
Reserve’s Reaction Function

Understanding the Empirical Literature on
Purchasing Power Parity: The Post-Bretton
Woods Era

Inflation, Inflation Risk, and Stock Returns

Are Apparent Productive Spillovers a Figment of
Specification Error?

When do long-run identifying restrictions give
reliable results?

20

Author(s)

Jaime Marquzz

Michael P. Lzahy
John Ammer

Richard T. Freeman
Maurice Obstfeld

Prakash Loungani
Mark Rush

William L. Helkie
David H. Howard
Jaime Marquez

Karen H. Johinson

Hali J. Edison
Linda S. Kole

Jay H. Bryscn

Allan D. Brunner

Hali J. Edison
Joseph E. Gagnon
William R. Melick

John Ammer

Susanto Basu
John S. Ferrald

Jon Faust
Eric M. Leeper

