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Abstract

I develop new results for long-horizon predictive regressions with overlapping observations. I show

that rather than using auto-correlation robust standard errors, the standard t-statistic can simply be

divided by the square root of the forecasting horizon to correct for the e¤ects of the overlap in the data;

this is asymptotically an exact correction and not an approximate result. Further, when the regressors

are persistent and endogenous, the long-run OLS estimator su¤ers from the same problems as does the

short-run OLS estimator, and it is shown how similar corrections and test procedures as those proposed

for the short-run case can also be implemented in the long-run. New results for the power properties of

long-horizon tests are also developed. The theoretical results are illustrated with an application to long-

run stock-return predictability, where it is shown that once correctly sized tests are used, the evidence of

predictability is generally much stronger at short rather than long horizons.

JEL classi�cation: C22, G1.
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1 Introduction

Predictive regressions are used frequently in empirical �nance and economics. The underlying economic

motivation is often the test of a rational expectations model, which implies that the innovations to the

dependent variable should be orthogonal to all past information; i.e., the dependent variable should not

be predictable using any lagged regressors. Although this orthogonality condition should hold at any time

horizon, it is popular to test for predictability by regressing sums of future values of the dependent variable

onto the current value of the regressor. A leading example is the question of stock return predictability,

where regressions with 5 or 10 year returns are often used (e.g. Campbell and Shiller, 1988, and Fama and

French, 1988). While stock return predictability will also serve as the motivating example in this paper, the

results derived are applicable to a much wider range of empirical questions.1

The main inferential issue in long-horizon regressions has been the uncertainty regarding the proper

calculation of standard errors. Since overlapping observations are typically used, the regression residuals will

exhibit strong serial correlation; standard errors failing to account for this fact will lead to biased inference.

Typically, auto-correlation robust estimation of the standard errors (e.g. Newey and West, 1987) is therefore

used. However, these robust estimators tend to perform poorly in �nite samples since the serial correlation

induced in the error terms by overlapping data is often very strong.2

The main contribution of this paper is the development of new asymptotic results for long-run regressions

with overlapping observations. Using a framework where the predictors are highly persistent variables, as

in Stambaugh (1999) and Campbell and Yogo (2006), I show how to obtain asymptotically correct test-

statistics, with good small sample properties, for the null hypothesis of no predictability.3 Rather than using

robust standard errors, I �nd that the standard t�statistic can simply be divided by the square root of the

forecasting horizon to correct for the e¤ects of the overlap in the data. This is not an approximation, but

rather an exact asymptotic result. Further, when the regressor is persistent and endogenous, the long-run

OLS estimator su¤ers from the same problems as does the short-run OLS estimator, and similar corrections

and test procedures as those proposed by Campbell and Yogo (2006) for the short-run case should also be

1Other applications of long-horizon regressions include tests of exchange rate predictability (Mark, 1995, Berkowitz and
Giorgianni, 2001, and Rossi 2005), the Fisher e¤ect (Mishkin, 1990, 1992, and Boudoukh and Richardson, 1993), and the
neutrality of money (Fisher and Seater, 1993).

2Ang and Bekaert (2007) suggest using Hodrick (1992) auto-correlation robust standard errors, which they argue have good
�nite sample properties. However, these rely on the regressors being covariance stationary, which is a restrictive assumption for
most forecasting variables as evidenced by the results in the empirical analysis in this paper.

3There is now a large literature on regressions with overlapping observations. Additional references to those mentioned
previously include Hansen and Hodrick (1980), Richardson and Stock (1989), Richardson and Smith (1991), Nelson and Kim
(1993), Goetzman and Jorion (1993), Campbell (2001), Daniel (2001), Mark and Sul (2004), Moon et al. (2004), Torous et al.
(2004), Boudoukh et al. (2005), and Rapach and Wohar (2005). The study by Valkanov (2003) is the most closely related to
this paper and is discussed in more detail below.
Studies on (short-run) predictive regressions in the context of persistent regressors include Mankiw and Shapiro (1986),

Cavanagh et al. (1995), Stambaugh (1999), Lewellen (2004), Campbell and Yogo (2006), Janson and Moreira (2006), and Polk
et al. (2006).
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used in the long-run; again, the resulting test statistics should be scaled due to the overlap.4 Thus, these

results lead to simple and more e¢ cient inference in long-run regressions by obviating the need for robust

standard error estimation methods and controlling for the endogeneity and persistence of the regressor.

The results in this paper are derived under the assumption that the forecasting horizon increases with

the sample size, but at a slower pace. Most previous work, e.g. Richardson and Stock (1989) and Valkanov

(2003), rely on the assumption that the forecasting horizon grows at the same pace as the sample size so that

the forecasting horizon remains a fraction of the sample size asymptotically. In some related work, Moon

et al. (2004) consider both asymptotic approaches and �nd that although the asymptotic distributions are

seemingly quite di¤erent under the two assumptions, they both tend to provide good approximations for

the �nite sample properties. Indeed, Valkanov (2003), who studies a similar econometric model to the one

analyzed in this paper, derives a similar scaling result to the one found here. Asymptotic results are, of

course, only useful to the extent that they provide us with relevant information regarding the �nite sample

properties of an econometric procedure. As shown in Monte Carlo simulations, both the asymptotic results

derived under the assumptions in this paper and those derived under the assumptions in Valkanov�s paper

provide good approximations of �nite sample behavior.

In relation to Valkanov�s study, the current paper makes two important contributions. First, I show

that with exogenous regressors the scaled standard t�statistic will be normally distributed and standard

inference can thus be performed. Second, when the regressors are endogenous, the inferential methods

can be suitably modi�ed to correct for the biasing endogeneity e¤ects; this can be seen as an analogue

of the inferential procedures developed by Campbell and Yogo (2006) for short-run, one-period horizon,

regressions. Importantly, the modi�ed test-statistic in the endogenous case is again normally distributed. In

contrast, Valkanov�s test statistics have highly non-standard distributions, both for exogenous and endogenous

regressors, which require simulation of the critical values for each speci�c case.

Monte Carlo simulations show that the asymptotic normal distribution of the test statistics derived in

this paper provides a good approximation in �nite samples, resulting in rejection rates that are very close

to the nominal size of the test under the null hypothesis. This is also true when the overlap in the data is

large. This shows that although the asymptotic results are derived under an assumption that the forecasting

horizon is small compared to the sample size, the normal distribution of the scaled test statistics is not very

sensitive to this restriction. In fact, the tests tend to become somewhat conservative and under reject, rather

than over reject, as the forecasting horizon becomes large.

4A predictive regressor is generally referred to as endogenous if the innovations to the returns are contemporaneously corre-
lated with the innovations to the regressor. When the regressor is strictly stationary, such endogeneity has no impact on the
properties of the estimator, but when the regressor is persistent in some manner, the properties of the estimator will be a¤ected
(e.g. Stambaugh, 1999). Nelson and Kim (1993) may be the �rst to raise the biasing problems of endogenous regressors in the
long-horizon case.
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Since the size properties of both the tests proposed here and those of Valkanov (2003) are good, it

becomes interesting to compare the power properties. Using Monte Carlo simulations, it is evident that for

exogenous regressors the power properties of the test proposed here are quite similar to that of Valkanov,

although there are typically some slight power advantages to the current procedure. When the regressors are

endogenous, however, the test procedure derived here is often much more powerful than the test proposed by

Valkanov. This stems partly from the fact that the test here explicitly takes into account, and controls for,

the biasing e¤ects of the endogenous regressors, whereas Valkanov�s test only adjusts the critical values of the

test statistic. Part of the power gains are also achieved by using a Bonferroni method, as in Campbell and

Yogo (2006), to control for the unknown persistence in the regressors, whereas Valkanov relies on a sup-bound

method, which is typically less e¢ cient; Campbell and Yogo (2006) �nd the same result in the one-period

case when they compare their method to the sup-bound method proposed by Lewellen (2004).

In fact, the power simulations, and additional asymptotic results, reveal three interesting facts about the

properties of long-run predictive tests. First, the power of long-run tests increases only with the sample size

relative to the forecasting horizon. Keeping this ratio �xed as the sample size increases does not lead to any

power gains for the larger sample size. This result also suggests that for a given sample size, the power of

a test will generally decrease as the forecasting horizon increases; additional simulations also support this

conjecture and �nd that in general the one-period test will be the most powerful test. Second, when the

regressors are endogenous, tests that are based on the standard long-run OLS estimator will result in power

curves that are sometimes decreasing in the magnitude of the slope coe¢ cient. That is, as the model drifts

further away from the null hypothesis, the power may decrease. This is true both for Valkanov�s test, but

also if one uses, for instance, Newey-West standard errors in a normal t�statistic. The test proposed here

for the case of endogenous regressors does not su¤er from this problem. The third �nding is related to the

second one, and shows that although the power of the long-horizon tests increases with the magnitude of

the slope coe¢ cient for alternatives close to the null hypothesis, there are no gains in power as the slope

coe¢ cient grows large. That is, the power curve is asymptotically horizontal when viewed as a function of the

slope coe¢ cient. Both the second and third �ndings arise from the fact that when forecasting over multiple

horizons, there is uncertainty not just regarding the future path of the outcome variable (e.g. future excess

stock returns), but also about the future path of the forecasting variable over these multiple horizons. These

results therefore add a further note of caution to attempts at forecasting at very long-horizons relative to the

sample size: even though correctly sized tests are available, the power properties of the test can be very poor.

The sometimes decreasing power curves for endogenous regressors also makes the case stronger for using test

of the type proposed here, which attempts to correct for the bias and ine¢ ciency induced in the estimation

procedure by the endogeneity, and not just correct the critical values.
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The theoretical results in the paper are illustrated with an application to stock-return predictability. I use

a U.S. data set with excess returns on the S&P 500, as well as the value weighted CRSP index as dependent

variables. The dividend price ratio, the smoothed earnings price ratio suggested by Campbell and Shiller

(1988), the short interest rate and the yield spread are used as predictor variables. In addition, I also analyze

an international data set with nine additional countries with monthly data spanning at least �fty years for

each country. The predictor variables in the international data include the dividend-price ratio and measures

of both the short interest rate and the term spread.

The evidence of predictability using the dividend- and earnings-price ratios is overall fairly weak, both

in the U.S. and the international data, once the endogeneity and persistence in the regressors have been

controlled for. The empirical results are more favorable of predictability when using either of the interest

rate variables as predictors. This is particularly true in the U.S. data, but also to some extent in other

countries. Contrary to some popular beliefs, however, the case for predictability does not increase with the

forecast horizon. In fact, the near opposite is true, with generally declining t�statistics as the forecasting

horizon increases (similar results are also found by Torous et al., 2004, and Ang and Bekaert, 2007). Given

the fairly weak evidence of predictability at the short horizon, these results are consistent with a loss of power

as the forecasting horizon increases, which is in line with the theoretical results derived in this paper.

The rest of the paper is organized as follows. Section 2 sets up the model and derives the theoretical

results and Section 3 discusses the practical implementation of the methods in the paper. Section 4 describes

the Monte-Carlo simulations that illustrate the �nite sample properties of the methods and Section 5 pro-

vides further discussion and analysis of the power properties of long-horizon tests under an alternative of

predictability. The empirical application is given in Section 6 and Section 7 concludes. Technical proofs are

found in the Appendix.

2 Long-run estimation

2.1 Model and assumptions

Although the results derived in this paper are of general applicability, it is helpful to discuss the model and

derivations in light of the speci�c question of stock return predictability. Thus, let the dependent variable be

denoted rt, which would typically represent excess stock returns when analyzing return predictability, and
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the corresponding regressor, xt.5 The behavior of rt and xt are assumed to satisfy,

rt+1 = �+ �xt + ut+1; (1)

xt+1 = 
 + �xt + vt+1; (2)

where � = 1 + c=T; t = 1; :::; T , and T is the sample size. The error processes are assumed to satisfy the

following conditions.

Assumption 1 Let wt = (ut; vt)
0 and Ft = fwsj s � tg be the �ltration generated by wt. Then

1. E [wtj Ft�1] = 0:

2. E [wtw0t] = 
 = [(!11; !12) ; (!12; !22)] :

3. suptE
�
u4t
�
<1, suptE

�
v4t
�
<1, and E

�
x20
�
<1.

The model described by equations (1) and (2) and Assumption 1 captures the essential features of a pre-

dictive regression with a nearly persistent regressor. It states the usual martingale di¤erence assumption for

the error terms and allows the innovations to be conditionally heteroskedastic, as long as they are covariance

stationary. The error terms ut and vt are also often highly correlated; the regressor will be referred to as

endogenous whenever this correlation, which will be labelled � � !12=
p
!11!22, is non-zero.

The auto-regressive root of the regressor is parameterized as being local-to-unity, which captures the

near unit-root, or highly persistent, behavior of many predictor variables, but is less restrictive than a pure

unit-root assumption. The near unit-root construction, where the autoregressive root drifts closer to unity as

the sample size increases, is used as a tool to enable an asymptotic analysis where the persistence in the data

remains large relative to the sample size, also as the sample size increases to in�nity. That is, if � is treated

as �xed and strictly less than unity, then as the sample size grows, the process xt will behave as a strictly

stationary process asymptotically, and the standard �rst order asymptotic results will not provide a good

guide to the actual small sample properties of the model. For � = 1, the usual unit-root asymptotics apply

to the model, but this is clearly a restrictive assumption for most potential predictor variables. Instead, by

letting � = 1 + c=T , the e¤ects from the high persistence in the regressor will appear also in the asymptotic

results, but without imposing the strict assumption of a unit root. Cavanagh et al. (1995), Lanne (2002),

Valkanov (2003), Torous et al. (2004), and Campbell and Yogo (2006) all use similar models, with a near

unit-root construct, to analyze the predictability of stock returns.

The greatest problem in dealing with regressors that are near unit-root processes is the nuisance parameter

c; c is generally unknown and not consistently estimable.6 It is nevertheless useful to �rst derive inferential
5The asymptotic results presented in Section 2 all generalize immediately to the case of multiple regressors. However, the

Bonferroni methods described in Section 3 are currently only developed for the case of a single regressor.
6That is, � can be estimated consistently, but not with enough precision to identify c = T (�� 1).

5



methods under the assumption that c is known, and then use the arguments of Cavanagh et al. (1995) to

construct feasible tests. The remainder of this section derives and outlines the inferential methods used for

estimating and performing tests on � in equation (1), treating c as known. Section 3 discusses how the

methods of Cavanagh et al. (1995), and Campbell and Yogo (2006), can be used to construct feasible tests

with c unknown.

2.2 The �tted regression

In long-run regressions, the focus of interest is the �tted regression,

rt+q (q) = �q + �qxt + ut+q (q) ; (3)

where rt (q) =
Pq

j=1 rt�q+j , and long-run future returns are regressed onto a one period predictor.

Let the OLS estimator of �q in equation (3), using overlapping observations, be denoted by �̂q. A long-

standing issue is the calculation of correct standard errors for �̂q. Since overlapping observations are used

to form the estimates, the residuals ut (q) will exhibit serial correlation; standard errors failing to account

for this fact will lead to biased inference. The common solution to this problem has been to calculate auto-

correlation robust standard errors, using methods described by Hansen and Hodrick (1980) and Newey and

West (1987). However, these robust estimators tend to have rather poor �nite sample properties.

In this section, I derive the asymptotic properties of �̂q under the assumption that the forecasting horizon

q grows with the sample size but at a slower pace. The results complement those of Valkanov (2003),

who treats the case where the forecasting horizon grows at the same rate as the sample size. Simulation

results in Valkanov (2003) and later on in this paper show that both asymptotic approaches provide limiting

distributions that are good proxies for the �nite sample behavior of the long-run estimators. The asymptotic

results derived here also provide additional understanding of the properties of the long-run estimators. In

particular, the results here show the strong connection between the limiting distributions of the short- and

long-run estimators. This �nding has important implications for the construction of more e¢ cient estimators

and test-statistics that control for the endogeneity and persistence in the regressors. Unlike Valkanov (2003),

the procedures in this paper avoid the need for simulation methods; the proposed test-statistics have limiting

normal distributions, although in the case of endogenous regressors with unknown persistence, Bonferroni

type methods need to be used to construct feasible tests.
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2.3 The limiting distribution of the long-run OLS estimator

The following theorem states the asymptotic distribution of the long-run OLS estimator of equation (3), and

provides the key building block for the rest of the analysis. The result is derived under the null hypothesis

of no predictability, in which case the one period data generating process is simply rt = ut, and the long-run

coe¢ cient �q will also be equal to zero.

Theorem 1 Suppose the data is generated by equations (1) and (2), and that Assumption 1 holds. Under

the null hypothesis of no predictability such that � = 0, as q; T !1, with q=T ! 0,

T

q

�
�̂q � 0

�
)
�Z 1

0

dB1Jc

��Z 1

0

J2c

��1
; (4)

where B (�) = (B1 (�) ; B2 (�))0 denotes a two dimensional Brownian motion with variance-covariance matrix


, Jc (r) =
R r
0
e(r�s)cdB2 (s), and Jc = Jc �

R 1
0
Jc.

Theorem 1 shows that under the null of no predictability, the limiting distribution of �̂q is identical to that

of the standard short-run, one-period, OLS estimator �̂ in equation (1), which is easily shown to converge

to this distribution at a rate T (Cavanagh et al., 1995), although �̂q needs to be standardized by q
�1. This

additional standardization follows since the estimated parameter �q is of an order q times larger than the

original short-run parameter �, as discussed at length in Boudoukh et al. (2005).

The convergence rate of T=q for the long-run estimator also con�rms the conjecture made by Nelson

and Kim (1993), regarding the size of the bias in a long-run regression with endogenous regressors. They

conjecture, based on simulation results, that the size of the bias is consistent with Stambaugh�s (1999)

approximation of the one-period bias, if one takes the total number of non-overlapping observations as the

relevant sample size. In the near unit-root framework analyzed here, the Stambaugh bias is revealed in the

non-standard asymptotic distribution of �̂q, which has a non-zero mean whenever the correlation between

ut and vt di¤ers from zero. Thus, since the rate of convergence is T=q, the size of the bias in a given �nite

sample will be proportional to the number of non-overlapping observations.

The equality between the long-run asymptotic distribution under the null hypothesis, shown in Theorem

1, and that of the short-run OLS estimator may seem puzzling. The intuition behind this result stems from

the persistent nature of the regressors. In a (near) unit-root process, the long-run movements dominate the

behavior of the process. Therefore, regardless of whether one focuses on the long-run behavior, as is done in

a long-horizon regression, or includes both the short-run and long-run information as is done in a standard

one-period OLS estimation, the asymptotic result is the same since, asymptotically, the long-run movements
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are all that matter.7

The limiting distribution of �̂q is non-standard and a function of the local-to-unity parameter c. Since c is

not known, and not consistently estimable, the exact limiting distribution is therefore not known in practice,

which makes valid inference di¢ cult. Cavanagh et al. (1995) suggest putting bounds on c in some manner,

and �nd the most conservative value of the limiting distribution for some value of c within these bounds.

Campbell and Yogo (2006) suggest �rst modifying the estimator or, ultimately, the resulting test-statistic,

in an optimal manner for a known value of c, which results in more powerful tests. Again using a bounds

procedure, the most conservative value of the modi�ed test-statistic can be chosen for a value of c within

these bounds. I will pursue a long-run analogue of this latter approach here since it leads to more e¢ cient

tests and because the relevant limiting distribution is standard normal, which greatly simpli�es practical

inference. Before deriving the modi�ed estimator and test statistic, however, it is instructive to consider the

special case of exogenous regressors where no modi�cations are needed.

2.4 The special case of exogenous regressors

Suppose the regressor xt is exogenous in the sense that ut is uncorrelated with vt and thus � = !12 = 0. In

this case, the limiting processes B1 and Jc are orthogonal to each other and the limiting distribution in (4)

simpli�es. In particular, it follows that

T

q

�
�̂q � 0

�
)
�Z 1

0

dB1Jc

��Z 1

0

J2c

��1
�MN

 
0; !11

�Z 1

0

J2c

��1!
(5)

where MN (�) denotes a mixed normal distribution. That is, �̂q is asymptotically distributed as a normal

distribution with a random variance. Thus, conditional on this variance, �̂q is asymptotically normally dis-

tributed. The practical implication of this result is that regular test statistics will have standard distributions.

In fact, the following convenient result for the standard t�statistic now follows easily.

Corollary 1 Let tq denote the standard t�statistic corresponding to �̂q. That is,

tq =
�̂qr�

1
T�q

PT�q
t=1 û

+
t (q)

2
��PT�q

t=1 xtx
0
t

��1 ; (6)

where û+t+q (q) = rt+q (q) � �̂q � �̂qxt are the estimated residuals. Then, under Assumption 1 and the null
7A similar point is made by Phillips (1991b) and Corbae et al. (2002) in regards to frequency domain estimation with

persistent variables. They show that the asympototic distribution of the narrow band least squares estimator, which only uses
frequencies close to zero and thus captures the long-run relationship in the data, is identical to the asymptotic distribution of
the full frequency estimator (which is identical to standard OLS).
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hypothesis of � = 0, as q; T !1, such that q=T ! 0,

tqp
q
) N (0; 1) : (7)

Thus, by standardizing the t�statistic for �̂q by the square root of the forecasting horizon, the e¤ects

of the overlap in the data are controlled for and a standard normal distribution is obtained. Although the

mechanics behind this result are spelled out in the proof in the Appendix, it is useful to outline the intuition.

Note that the result in (5) implies that

t =

T
q �̂qr

!̂11

�
1
T 2

PT
t=1 xtx

0
t

��1 = �̂qr
q2!̂11

�PT
t=1 xtx

0
t

��1 ) N (0; 1) (8)

for some consistent estimator !̂11, since 1
T 2

PT
t=1 xtx

0
t )

R 1
0
J2c . Now, as discussed in the Appendix, a

consistent estimator of !11 is given by 1
qT

PT�q
t=1 û

+
t (q)

2 where the extra division by q is required given the

overlapping nature of the residuals. The result now follows immediately from the de�nition of tq above.

2.5 Endogeneity corrections

As discussed above, the long-run OLS estimator su¤ers from the same endogeneity problems as the short-

run estimator; that is, when the regressors are endogenous, the limiting distribution is non-standard and a

function of the unknown parameter c. To address this issue, I consider a version of the augmented regression

of Phillips (1991a), together with the Bonferroni methods of Campbell and Yogo (2006). For now, I assume

that �, or equivalently c, is known and derive an estimator and test statistic under this assumption.

Note that, for a given �, the innovations vt can be obtained from vt = xt � �xt�1. Consider �rst the

one-period regression. Once the innovations vt are obtained, an implementation of the augmented regression

equation of Phillips (1991a), which he proposed for the pure unit-root case, is now possible:

rt+1 = �+ �xt + 
vt+1 + ut+1�v: (9)

Here ut�v = ut � !12!�122 vt and 
 = !12!
�1
22 (Phillips, 1991a), and denote the variance of ut�v as !11�2 =

!11 � !212!�122 . The idea behind (9) is that by including the innovations vt as a regressor, the part of ut that

is correlated with vt is removed from the regression residuals, which are now denoted ut�v to emphasize this

fact. The regressor xt therefore behaves as if it were exogenous. It follows that under Assumption 1, the OLS

estimator of � in equation (9) will have an asymptotic mixed normal distribution, with the same implications

as discussed above in the case of exogenous regressors.
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As discussed in Hjalmarsson (2007), there is a close relationship between inference based on the augmented

regression equation (9) and the inferential procedures proposed by Campbell and Yogo (2006). To see this,

suppose �rst that the covariance matrix for the innovation process, 
, is known, and hence also 
 = !12!
�1
22

and !11�2. The t�test for � = 0 in (9) is then asymptotically equivalent to

taug =

PT�1
t=1

�
rt+1 � 
vt+1

�
xtr

!11�2

�PT�1
t=1 x

2
t

� =

PT�1
t=1

�
rt+1 � !12!�122 vt+1

�
xtr

!11�2

�PT�1
t=1 x

2
t

� ; (10)

which is, in fact, identical to Campbell and Yogo�s Q�statistic. In practice, 
 is not known, but 
 will be

consistently estimated by OLS estimation of (9) and !11�2 is estimated as the sample variance of the residuals.

Campbell and Yogo derive their Q�statistic as the optimal test in a Gaussian framework. The optimality of

the t�test in the augmented regression equation thus follows from their analysis, but also directly from the

analysis of Phillips (1991a). He shows that OLS estimation of (9) is identical to Gaussian full information

maximum likelihood of the system described by equations (1) and (2), which thus immediately leads to the

optimality result.

In the current context, the augmented regression equation is attractive since it can easily be generalized

to the long-horizon case. Thus, consider the augmented long-run regression equation

rt+q (q) = �q + �qxt + 
qvt+q (q) + ut+q�2 (q) ; (11)

where vt (q) =
Pq

j=1 vt�q+j . The idea is the same as in the one-period case, only now the corresponding

long-run innovations vt+q (q) are included as an additional regressor. Let �̂
+

q be the OLS estimator of �q in

equation (11), using overlapping observations. The following result now holds.

Theorem 2 Suppose the data is generated by equations (1) and (2), and that Assumption 1 holds. Under

the null hypothesis that � = 0, as q; T !1, such that q=T ! 0,

T

q

�
�̂
+

q � 0
�
)MN

 
0; !11�2

�Z 1

0

J2c

��1!
: (12)

The only di¤erence from the result for the exogenous regressor case is the variance !11�2, which re�ects

the fact that the variation in ut that is correlated with vt has been removed. As in the exogenous case,

given the asymptotically mixed normal distributions of �̂
+

q , standard test procedures can now be applied to

test the null of no predictability. In particular, the scaled t�statistic corresponding to �̂
+

q will be normally

distributed, as shown in the following corollary.
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Corollary 2 Let t+q denote the standard t�statistic corresponding to �̂
+

q . That is,

t+q =
�̂
+

qr�
1

T�q
PT�q

t=1 û
+
t�v (q)

2
�
a0
�PT�q

t=1 ztz
0
t

��1
a

; (13)

where û+t�v (q) are the estimated residuals, zt = (xt; vt+q (q)), and a = (1; 0)
0. Then, under Assumption 1 and

the null-hypothesis of � = 0, as q; T !1, such that q=T ! 0,

t+qp
q
) N (0; 1) : (14)

Thus, for a given �, inference becomes trivial also in the case with endogenous regressors since the scaled

t�statistic corresponding to the estimate of �q from the augmented regression equation (11) is normally

distributed. In practice, � is typically unknown and the next section outlines methods for implementing a

feasible test.

3 Feasible methods

To implement the methods for endogenous regressors described in the previous section, knowledge of the

parameter c (or equivalently, for a given sample size, �) is required. Since c is typically unknown and not

estimable in general, the bounds procedures of Cavanagh et al. (1995) and Campbell and Yogo (2006) can

be used to obtain feasible tests.

Although c is not estimable, a con�dence interval for c can be obtained, as described by Stock (1991).

By evaluating the estimator and corresponding test-statistic for each value of c in that con�dence interval,

a range of possible estimates and values of the test-statistic are obtained. A conservative test can then be

formed by choosing the most conservative value of the test statistic, given the alternative hypothesis. If the

con�dence interval for c has a coverage rate of 100 (1� �1)% and the nominal size of the test is �2 percent,

then by Bonferroni�s inequality, the �nal conservative test will have a size no greater than � = �1 + �2

percent.

Thus, suppose that one wants to test H0 : �q = 0 versus H1 : �q > 0. The �rst step is to obtain a con-

�dence interval for c, with con�dence level 100 (1� �1)%, which is denoted [c; c]. For all values of ~c 2 [c; c],

�̂
+

q (~c) and the corresponding t
+
q (~c) are calculated, where the estimator and test statistic are written as func-

tions of ~c to emphasize the fact that a di¤erent value is obtained for each ~c 2 [c; c]. Let t+q;min � min~c2[c;c] t+q (~c)

be the minimum value of t+q (~c) that is obtained for ~c 2 [c; c] and t+q;max � max~c2[c;c] t+q (~c) be the maximum

value. A conservative test of the null hypothesis of no predictability, against a positive alternative, is then

11



given by evaluating t+q;min
.p

q against the critical values of a standard normal distribution; the null is re-

jected if t+q;min � z�2 , where z�2 denotes the 1��2 quantile of the standard normal distribution. The resulting

test of the null hypothesis will have a size no greater than � = �1+�2. An analogous procedure can be used

to test against a negative alternative.8

Unlike in the short-run methods in Campbell and Yogo (2006), there is no guarantee that argmin~c2[c;c] t+q (~c)

and argmax t+q (~c) will be the endpoints of the con�dence interval for c, although for most values of q they

typically are; in fact, it is easy to show that asymptotically the minimum and maximum will always be at

the endpoints, but this does not hold in �nite samples for q > 1. The test-statistic should thus be evaluated

for all values in [c; c] in order to �nd t+q;min and t
+
q;max; for q = 1, the same result as in Campbell and Yogo

(2006) holds and the extreme values of the test statistic will always be obtained at the endpoints.

In general, Bonferroni�s inequality will be strict and the overall size of the test just outlined will be less

than �. A test with a pre-speci�ed size can be achieved by �xing �2 and adjusting �1. That is, by shrinking

the size of the con�dence interval for c, a test of a desired size can be achieved. Such procedures are discussed

at length in Campbell and Yogo (2006) and I rely on their results here. That is, since, for all values of q, the

asymptotic properties of the estimators and corresponding test-statistics derived here are identical to those

in Campbell and Yogo, it is reasonable to test if their adjustments to the con�dence level of the interval for

c also work in the long-run case considered here. Since the Campbell and Yogo methods are frequently used

in one-period regressions, this allows the use of very similar procedures in long-run regressions. As discussed

below in conjunction with the Monte Carlo results, using the Campbell and Yogo adjustments in the long-run

case appear to work well, although there is a tendency to under reject when the forecasting horizon is large

relative to the sample size. The power properties of the test still remain good, however. Thus, there may be

some scope for improving the procedure by size adjusting the con�dence interval for c di¤erently for di¤erent

combinations of q and T , but at the expense of much simplicity. Since the potential gains do not appear

large, I do not pursue that here, although it would be relatively easy to implement on a case by case basis in

applied work.

Campbell and Yogo �x �2 at ten percent, so that the nominal size of the tests evaluated for each ~c is

equal to ten percent. They also set the desired size of the overall Bonferroni test, which they label ~�, to

ten percent. Since the degree of endogeneity, and hence the size of the biasing e¤ects, is a function of the

correlation � between the innovations ut and vt, they then search for each value of �, for values of �1, such

8An alternative approach is to invert the test-statistics and form conservative con�dence intervals instead. This approach
will deliver qualitatively identical results, in terms of whether the null hypothesis is rejected or not. However, the distribution of
the long-run estimator under the alternative hypothesis is not the same as under the null hypothesis (see the proofs of Theorems
3 and 4 in the Appendix), in which case the con�dence intervals are only valid under the null hypothesis. Presenting con�dence
intervals based on the distribution under the null hypothesis may therefore be misleading.
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that the overall size of the test will be no greater than ~�.9

The practical implementation of the methods in this paper can be summarized as follows:

(i) Using OLS estimation for each equation, obtain the estimated residuals from equations (1) and (2).

Calculate the correlation � from these residuals.

(ii) Calculate the DF-GLS unit-root test statistic of Elliot et al. (1996), and obtain c and c from Tables

2-11 in Campbell and Yogo (2005) corresponding to the estimated value of �.

(iii) For a grid of values ~c 2 [c; c], calculate �̂
+

q (~c) and t
+
q (~c) and �nd t

+
q;min � min~c2[c;c] t+q (~c), and t+q;max �

max~c2[c;c] t
+
q (~c).

(iv) If the alternative hypothesis is �q > 0, compare t+q;min
.p

q to the 95 percent critical values of the

standard normal distribution (i.e. 1:645) and if the alternative hypothesis is �q < 0, compare t
+
q;max

�p
q

to the �ve percent critical values of the standard normal distribution.

The above procedure results in a one-sided test at the �ve percent level, or alternatively a two-sided

test at the ten percent level. Note that, although the analysis in Section 2.5 proposes an improved point

estimator, �̂
+

q , for a given �, in practice it is merely used as a device to deliver an improved and feasible test

statistic. That is, since � is not known in practice, the scope for improving upon the standard (long-run)

OLS estimator is limited, even though improved test statistics are obtained.

The estimate of � and the con�dence interval for c can be made more robust by allowing the regressors

to follow an autoregressive process with p lags (AR (p)), rather than an AR (1) process. That is, an AR (p)

process can be estimated for the regressor, and the DF-GLS statistic can be calculated using p lags. Since the

outcome of �̂
+

q and t
+
q can be quite sensitive to the choice of c, when � is large in absolute terms, it can be

important to pin down the con�dence interval [c; c] as well as possible. Although the augmented regression

equation is only formally justi�ed for the AR (1) case, the outcome of �̂
+

q and t
+
q will in general be much

more sensitive to the choice of c than the e¤ects of a, typically small, serially correlated component for higher

order lags in the regressor. Thus, the main bene�ts from allowing for a richer auto-correlation structure in

the regressor come from the proper calculation of [c; c]; the e¤ects of using the augmented regression equation

rather than a method that explicitly controls for higher order auto-correlations should be small on the other

hand. In practice, as evidenced in Campbell and Yogo (2006), the di¤erence between results based on an

AR (1) and an AR (p) assumption seems to be fairly small. However, in order to keep the analysis as robust

as possible, the empirical results in Section 6 are obtained using the AR (p) speci�cation; the implementation

9 In practice, the con�dence levels of the lower and upper bounds in the shrunk con�dence interval are not symmetrical, and
Campbell and Yogo (2006) �nd separate con�dence levels �1 and �1 that correspond to the lower and upper bounds.
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follows the methods described in Campbell and Yogo (2005), using the Bayesian information criterion (BIC)

to choose the appropriate lag length.

4 Monte Carlo results

All of the above asymptotic results are derived under the assumption that the forecasting horizon grows with

the sample size, but at a slower rate. Valkanov (2003) also studies long-run regressions with near-integrated

regressors, but derives his asymptotic results under the assumption that q=T ! � 2 (0; 1) as q; T !1. That

is, he assumes that the forecasting horizon grows at the same pace as the sample size. Under such conditions,

the asymptotic results are, at least at �rst glance, quite di¤erent from those derived in this paper. There is,

of course, no right or wrong way to perform the asymptotic analysis; what matters in the end is how well

the asymptotic distributions capture the actual �nite sample properties of the test statistics. To this end,

Monte Carlo simulations are therefore conducted. Since Valkanov�s methods are known to have good size

properties, I merely present power results for his tests.

4.1 Size properties

I start with analyzing the size properties of the scaled t�statistics proposed earlier in the paper. Equations

(1) and (2) are simulated, with ut and vt drawn from an iid bivariate normal distribution with mean zero,

unit variance and correlations � = 0;�0:25;�0:50;�0:75; and �0:95. The intercept � is set to zero and the

local-to-unity parameter c is set to either 0 or �10. The sample size is either equal to T = 100 or T = 500.

Since the size of the tests are evaluated, the slope coe¢ cient � is set to zero, which implies that �q = 0 as

well. All results are based on 10; 000 repetitions.

Three di¤erent test statistics are considered: the scaled t�statistic corresponding to the long-run OLS

estimate �̂q, the scaled Bonferroni t�statistic described above
�
i.e. t+q;min

.p
q
�
, and the scaled infeasible

t�statistic corresponding to the infeasible estimate �̂
+

q for a known value of c. In practice, of course, the

infeasible test is not feasible but in the Monte Carlo simulations the parameter c is known, and the test based

on the infeasible estimate thus provides a benchmark. All tests are evaluated against a positive one-sided

alternative at the �ve percent level; i.e. the null is rejected if the scaled test statistic exceeds 1:645.

The results are shown in Table 1. The �rst set of columns shows the rejection rates for the scaled OLS

t�statistic under the null hypothesis of no predictability. When the regressors are exogenous, such that

� = 0, this test statistic should be asymptotically normally distributed. The normal distribution appears

to work well in �nite samples, with rejection rates close to the nominal �ve percent size. For c = �10 and

for large q relative to T , the size drops and the test becomes somewhat conservative; this is primarily true
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for forecasting horizons that span more than 10 percent of the sample size. Overall, however, the scaling

by 1/
p
q of the standard t�test appears to work well in practice for exogenous regressors. As is expected

from the asymptotic analysis previously, the scaled OLS t�test tends to over reject for endogenous regressors

with � < 0, which highlights that the biasing e¤ects of endogenous regressors are a great problem also in

long-horizon regressions.

The next set of columns shows the results for the scaled Bonferroni test. The rejection rates for all �

are now typically close to, or below, �ve percent, indicating that the proposed correction in the augmented

regressions equation (9) works well in �nite samples. Only for T = 100 and c = 0 is there a slight tendency

to over reject when q is small, but the average rejection rates are still well within the acceptable range;

Campbell and Yogo (2006) �nd similar rejection rates in their one-period test, for T = 100. Again, as in the

OLS case, there is a tendency to under reject for large q relative to the sample size T . Since the Bonferroni

test is formed based on the shrunk con�dence intervals for c with the con�dence levels provided in Table

2 of Campbell and Yogo (2006), this could perhaps be somewhat remedied by adjusting these con�dence

levels for large q.10 However, as seen in the power simulations below, the Bonferroni test is not dramatically

less powerful than the infeasible test, and there seems to be little need for complicating the procedure by

requiring di¤erent tables for the con�dence level for c, for di¤erent combinations of q and T .

Finally, the last set of columns in Table 1 shows the rejection rates for the scaled infeasible t�test t+q
�p

q,

resulting from the infeasible estimate �̂
+

q , which uses knowledge of the true value of c. As in the case of the

Bonferroni test, the rejection rates are all close to the nominal �ve percent level, although there is still a

tendency to under reject when q=T is large.

In summary, the above simulations con�rm the main conclusions from the formal asymptotic analysis: (i)

when the regressor is exogenous, the standard t�statistic scaled by the square root of the forecasting horizon

will be normally distributed, and (ii) when the regressor is endogenous, the scaled t�statistic corresponding to

the augmented regression equation will be normally distributed. The simulations also show that these scaled

tests tend to be somewhat conservative when q is large relative to T ; this observation is further discussed in

the context of the power properties of the tests, analyzed below.

The size simulations were also performed under the assumption that the innovation processes were drawn

from t�distributions with �ve degrees of freedom, to proxy for the fat tails that are observed in returns data.

The results were very similar to those presented here and are available upon request.

10Table 2 in Campbell and Yogo (2006) gives the con�dence levels for the con�dence interval for c that is used in the Bonferroni
test, for a given �. Tables 2-11 in Campbell and Yogo (2005) give the actual con�dence intervals for c, for a given � and value
of the DF-GLS unit-root test statistic. That is, for a given value of � and the DF-GLS statistic, Tables 2-11 in Campbell and
Yogo (2005) present the con�dence intervals for c with con�dence levels corresponding to those in Table 2 in Campbell and Yogo
(2006).
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4.2 Power properties

Since the test procedures proposed in this paper appear to have good size properties and, if anything, under

reject rather than over reject the null, the second important consideration is their power to reject the null

when the alternative is in fact true. The same simulation design as above is used, with the data generated by

equations (1) and (2). In order to assess the power of the tests, however, the slope coe¢ cient � in equation

(1) now varies between 0 and 0:5. For simplicity, I only consider the cases of � = 0 and � = �0:9.

In addition to the three scaled t�statistics considered in the size simulations �i.e. the scaled OLS t�test,

the scaled Bonferroni test, and the scaled infeasible test �I now also study two additional test-statistics based

on Valkanov (2003). Valkanov derives his asymptotic results under the assumption that q=T ! � 2 (0; 1)

as q; T ! 1, and shows that under this assumption, t=
p
T will have a well de�ned distribution. That is,

he proposes to scale the standard OLS t�statistic by the square root of the sample size, rather than by

the square root of the forecasting horizon, as suggested in this paper. The scaled t�statistic in Valkanov�s

analysis is not normally distributed. It�s asymptotic distribution is a function of the parameters � (the degree

of overlap), the local-to-unity parameter c, and the degree of endogeneity �; critical values must be obtained

by simulation for a given combination of these three parameters.11 Since the critical values are a function of

c, Valkanov�s scaled t�test is generally infeasible since this parameter is unknown. He therefore proposes a

so-called sup-bound test, where the test is evaluated at some bound for c, outside of which it is assumed that

c will not lie. Ruling out explosive processes, he suggests using c = 0 in the sup-bound test, which results

in a conservative one-sided test against � > 0 for � < 0.12 In the results below, I report the power curves

for both the infeasible test and the sup-bound test; for c = 0, they are identical. To avoid confusion, I will

continue to refer to the tests proposed in this paper as scaled tests, whereas I will refer to the tests suggested

by Valkanov explicitly as Valkanov�s infeasible and sup-bound tests. Following Valkanov�s exposition, I focus

on the case of q=T = 0:1, but given the apparently conservative nature of the tests proposed here for large q,

I also consider some results for q=T = 0:2.

Figure 1 shows the power curves for the scaled OLS t�test proposed in this paper and the two tests

suggested by Valkanov, for � = 0; q = 10, and T = 100. For c = 0, the power curves are virtually identical,

whereas for c = �10, Valkanov�s infeasible test has some power advantages. The scaled OLS t�test is,

however, marginally more powerful than Valkanov�s sup-bound test for c = �10. Overall, for the case

of exogenous regressors, there appears to be no loss of power from using the simple scaled and normally

distributed t�test suggested here.
11Valkanov (2003) provides critical values for q=T = 0:1, for di¤erent combinations of c and �, and I use these values when

applicable. In the power simulations below where q=T = 0:2, I simulate critical values in the same manner as in the original
paper, with T = 750, and using 100; 000 repetitions.
12Lewellen (2004) suggests a similar procedure in one-period (short-run) regressions.
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Figure 2 shows the results for endogenous regressors with � = �0:9; q = 10, and T = 100. Since the scaled

t�test based on the OLS estimator is known to be biased in this case, I only show the results for the scaled

Bonferroni test and the scaled infeasible test based on the augmented regression, along with Valkanov�s two

tests. The results are qualitatively similar to those for exogenous regressors with � = 0. For c = 0, the

power curves for the three tests are nearly identical, although the scaled infeasible test proposed in this paper

tends to slightly dominate Valkanov�s infeasible test. For c = �10, the scaled infeasible test is still the most

powerful, and Valkanov�s infeasible test is somewhat more powerful than the scaled Bonferroni test. The least

powerful test is Valkanov�s (feasible) sup-bound test. Note that one would expect the scaled infeasible test

proposed here to be more powerful than Valkanov�s infeasible test, since the test proposed here attempts to

correct the bias in the estimation procedure and not just adjust the critical values of the test; this comparison

is thus the analogue of the comparison between the infeasible (short-run) Q�test proposed by Campbell and

Yogo and the infeasible t�test proposed by Cavanagh et al. (1995). Finally, it is noteworthy that the power

of Valkanov�s sup-bound test appears to decrease for large values of � when c = �10. A similar pattern

is also hinted at for Valkanov�s test with c = 0. These patterns become clearer as the forecasting horizon

increases and will be analyzed at length below.

Given that the scaled Bonferroni test, in particular, seemed to be under sized for large values of q relative

to T , it is interesting to see if this also translates into poor power properties. Figure 3 shows the results

for � = �0:9, T = 100, and q = 20. Two observations are immediately obvious from studying the plots.

First, the scaled Bonferroni test is reasonably powerful when compared to the infeasible scaled test, and

very powerful compared to Valkanov�s sup-bound test. Second, the declining pattern in the power curves for

Valkanov�s two tests that were hinted at in Figure 2 are now evident; as � becomes larger, the power of these

two tests decline. This result is of course perplexing, since Valkanov�s tests were explicitly derived under the

assumption that q is large relative to the sample size T . In the following section, additional analytical results

are derived that will shed some light on these �ndings. However, before turning to the formal analysis, results

shown in Figure 4 provide further con�rmation of the results in Figure 3, as well as highlight some additional

�ndings.

Figure 4 con�rms and elaborates on the �ndings in Figure 3. The right hand graph shows the power

curves for � = �0:9; c = �10, T = 500, and q = 100. Using T = 500 con�rms that the previous �ndings were

not just a small sample artefact. The same pattern as in Figure 3 emerges for Valkanov�s two tests: after an

initial increase in power as � becomes larger, the power starts to decrease. Further results for larger values of

�, which are not shown, indicate that the power curves do not converge to zero as � grows large; rather, they

seem to level out after the initial decrease. Furthermore, the power curves for the scaled Bonferroni test and

the scaled infeasible test do not seem to converge to one as � increases, although they do not decrease either,
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and stabilize at a much higher level than the power curves for Valkanov�s tests. In addition, the power curve

for the scaled OLS t�test is also shown. This test is biased for � 6= 0 but provides an interesting comparison

to the power curves of Valkanov�s test. As is seen, the scaled OLS t�test behaves in a very similar manner

to Valkanov�s infeasible test. It is thus apparent that the di¤erence in behavior between the Bonferroni test

and Valkanov�s tests stems primarily from the endogeneity correction and not the manner in which they are

scaled. Finally, the right hand graph in Figure 4 also shows that the patterns established for the power curves

of the tests proposed both in this paper and in Valkanov (2003) are not a result of scaling the test statistic

by either the sample size or the forecasting horizon. As shown, if one uses Newey-West standard errors to

calculate the (non scaled) t�statistic from the long-run OLS regression, a similar pattern emerges; note that

the test based on Newey-West standard errors will be biased both for the well established reason that the

standard errors do not properly control for the overlap in the data, but also because the t�statistic from the

long-run OLS regression does not control for the endogeneity in the regressors. The Newey-West standard

errors were calculated using q lags.

It is worth pointing out that Valkanov (2003) also performs a Monte Carlo experiment of the power

properties of his proposed test-statistics, without �nding the sometimes decreasing patterns in the power

curves reported here. However, Valkanov (2003) only considers the case with � = �0:9; q = 10, and T = 100,

for values of � between 0 and 0:1. As seen in Figure 2 here, the power curves of all the tests are strictly

increasing in � for these parameter values.

The left hand graph in Figure 4 further illustrates the above observations for the scaled OLS t�statistic

in the case of � = 0. Here, with T = 500, q = 100 and c = 0, the power of the scaled OLS t�statistic and

Valkanov�s (infeasible) test statistic are almost identical and again seem to converge to some �xed level less

than one. The results also suggest that the decrease in power seen for Valkanov�s test in the previous plots

does not occur when the regressors are exogenous. The t�statistic based on Newey-West standard errors is

also shown to exhibit the same pattern; here, the bias in this test resulting from the overlap in the data alone

is evident, with a rejection rate around 20 percent under the null.

To sum up, the simulations show that both the scaled OLS t�test and the scaled Bonferroni test have

good (local) power properties when compared to the tests proposed by Valkanov (2003). This is especially

true for the Bonferroni test used with endogenous regressors, which tends to dominate Valkanov�s sup test

for all values of �, and also dominates Valkanov�s infeasible test for large values of �.

However, all of the tests discussed here, including the standard t�test based on Newey-West standard

errors, seem to behave in a non-standard way as the value of the slope coe¢ cient drift further away from

the null hypothesis: rather than converging to one as � grows large, the power of the tests seem to converge

to some value less than unity. In the next section, I provide an analytical explanation of these �ndings and
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discuss its implications.

5 Long-run inference under the alternative of predictability

5.1 Asymptotic power properties of long-run tests

The simulation evidence in the previous section raises questions about the properties of long-run tests under

the alternative of predictability. In particular, the power of the tests does not seem to converge to one as

the slope coe¢ cient increases and, in addition, the power curves appear to sometimes decrease as the slope

coe¢ cient drifts away from the null hypothesis. In this section, I therefore derive some analytical results for

the power properties of long-run tests. I �rst start by considering a �xed alternative, which provides the

answer to why the power does not converge to unity when the slope coe¢ cient increases. In the following

sub-section, I consider the power against a local alternative, which helps explain the hump shaped pattern

in the power curves. These analytical results also reveal some interesting features about the consistency of

long-run tests. I focus on the standard (scaled) OLS t�statistic, since the behavior of the t+q �statistic is

similar to the former with exogenous regressors.

The following theorem provides the asymptotic results for the distribution of the t�statistic under a �xed

alternative of predictability. Results are given both for the asymptotics considered so far in this paper, i.e.

q=T = o (1), as well as the type of asymptotics considered by Valkanov (2003).

Theorem 3 Suppose the data is generated by equations (1) and (2), and that Assumption 1 holds. Under

the alternative hypothesis that � 6= 0:

(i) As q; T !1, such that q=T ! 0,

q

T

t
p
q
)
r

3

!22

�Z 1

0

J2c

�1=2
and thus

t
p
q
= Op

�
T

q

�
: (15)

(ii) As q; T !1, such that q=T ! �,

tp
T
)

R 1��
0

Jc (r;�)r�R 1��
0

J2c (r;�)
��R 1��

0
J2c

� = Op (1) : (16)

where Jc (r;�) =
R r+�
r

Jc (r).

The asymptotic results in Theorem 3 help shed light on the general patterns seen in the �gures above.

Part (i) of the theorem, which provides the limiting distribution of the scaled t�test analyzed in this paper,
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shows that the power of this test will increase with the relative size of the sample to the forecasting horizon;

thus, as long as the ratio between q and T is �xed, there are no asymptotic power gains. The power is also

independent of the value of the slope coe¢ cient �, as long as it is di¤erent from zero. This explains the

leveling out of the power curves as � grows large, and their failure to converge to one for large values of

�. The intuition behind the independence of � in the limiting distribution is best understood by explicitly

writing out the equation for the long-run returns under the alternative of predictability. That is, since the

true model is given by equations (1) and (2), the long-run regression equation is a �tted regression, rather

than the data generating process. As shown in the proof of Theorem 3 in the Appendix, under the alternative

of predictability, the long-run returns rt+q (q) actually satisfy the following relationship when ignoring the

constant, derived from equations (1) and (2):

rt+q (q) = �qxt + �

q�1X
h=1

0@q�1X
p=h

�p�h

1A vt+h + ut+q (q) : (17)

There are now, in e¤ect, two error terms, the usual ut+q (q) plus the additional term �
Pq�1

h=1

�Pq�1
p=h �

p�h
�
vt+h,

which stems from the fact that at time t there is uncertainty regarding the path of xt+j for j = 1; :::; q � 1.

That is, since the true model is given by equations (1) and (2), there is uncertainty regarding both the future

realizations of the returns, as well as of the predictor variable, when forming q�period ahead forecasts. Since

the �rst error term �
Pq�1

h=1

�Pq�1
p=h �

p�h
�
vt+h is of an order of magnitude larger than ut+q (q), it will dom-

inate the asymptotic behavior of the least squares estimator of �q. As seen in the proof, the multiplication

of this error term by � ultimately explains why a larger � will also lead to a larger error term, cancelling out

any power gains that might otherwise have occurred as � drifts further away from zero.

Part (ii) of the theorem states that Valkanov�s scaled t�statistic converges to a well de�ned limiting

distribution that is independent of � and T , although it is a function of � = q=T . Thus, under the assumptions

on q and T maintained by Valkanov, the t�statistic scaled by
p
T does not diverge and hence the power of the

test does not converge to one. Of course, for a �xed q=T = �, the same heuristic result follows from part (i),

since as long as q=T does not change, there are no power gains. Thus, although some caution is required when

comparing the results in parts (i) and (ii) of the theorem, since they are derived under di¤erent assumptions,

they lead to the same heuristic result. Indeed, for a �xed q=T = �, it follows that
p
q =

p
�T and that the

results for the scaled tests in this paper should be similar to those of Valkanov�s tests.

The main message of Theorem 3 is thus that the only way to achieve power gains in long-run regressions

is by increasing the sample size relative to the forecasting horizon; as long as this ratio is �xed, there are no

asymptotic power gains as the sample size increases. The results in Theorem 3 also provide some intuition to
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a somewhat counter intuitive result in Valkanov (2003). As shown there, under the assumption that q=T = �

asymptotically, the estimator of the long-run coe¢ cient �q is not consistent; however, a scaled version of the

t�statistic has a well de�ned distribution. That is, even though the coe¢ cient is not estimated consistently,

valid tests can still be performed. Theorem 3 shows the limitation of this result: like the estimator, the test

is not consistent since there are no asymptotic power gains for a �xed q=T .

Part (i) of Theorem 3 also suggests that for a �xed sample size, more powerful tests of predictability

are achieved by setting the forecasting horizon as small as possible. That is, in general, one might expect

power to be decreasing with the forecasting horizon. This is merely a heuristic argument, since the result

in part (i) of Theorem 3 is an asymptotic result based on the assumption that q=T = o (1). Nevertheless,

it is interesting to brie�y compare the �nite sample power properties between tests at di¤erent horizons.

The simulation results in the previous section already support the conjecture that power is decreasing with

the horizon, in �nite samples, as evidenced by the rather poor power properties for the really long horizons

studied in Figures 3 and 4. The simulations in Figure 5 make these results even clearer. The simulation setup

is the same as before, with T = 100 and c = 0. The left hand graph shows the power curves for the scaled

OLS t�test, when � = 0, for three di¤erent forecasting horizons, q = 1; 10; and 20. It is evident that as q

increases, the power uniformly decreases. The right hand graph shows the case of � = �0:9, and illustrates

the power curves for the scaled Bonferroni test, for q = 1; 10; and 20. Again, there is a clear ranking of the

power curves from short to long horizon. Qualitatively identical results, which are not shown, are obtained

for c = �10, and for T = 500.

Overall, the results here are thus supportive of the notion that tests of predictability generally lose power

as the forecasting horizon increases. This is in line with what one might expect based on classical statistical

and econometric theory. In the case of exogenous regressors, the OLS estimates of the single period (q = 1)

regression in equation (1) are identical to the full information maximum likelihood estimates and in the

endogenous regressor case, OLS estimation of the one-period augmented regression equation (9) is likewise

e¢ cient. Standard analysis of power against a sequence of local alternatives then implies that a one-period

Wald test (or, equivalently, a t�test) is asymptotically optimal (Engle, 1984). Campbell (2001) makes this

point, but also �nds that some alternative ways of comparing asymptotic power across horizons suggest that

there may be power gains from using longer horizons; however, he �nds little support for this in his Monte

Carlo simulations.
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5.2 Local asymptotic power

The asymptotic power properties in the previous section were derived under the assumption of a �xed

alternative � 6= 0. As seen in the power curves in the �gures above, it is clear that for small values of �,

the power of the long-run tests is a function of �. And, in particular, there appears to be regions of the

parameter space where the power of the tests are decreasing in the magnitude of the slope coe¢ cient. These

facts are not re�ected in the results in Theorem 3, however, and the power properties in these regions of

the parameter space are therefore likely better analyzed with a local alternative for �, as is common in the

literature on evaluating the power of statistical tests. The following theorem provides a guide to the local

power properties of the scaled OLS t�test proposed in this paper.

Theorem 4 Suppose the data is generated by equations (1) and (2), and that Assumption 1 holds. Under

the local alternative of � = b=q,

t
p
q
� T

q

b+ q
T

�R 1
0
dB1Jc +

b
2

R 1
0
dB2Jc

��R 1
0
J2c

��1
r�

!11 + b!12 +
b2!22
3

��R 1
0
J2c

��1 ; (18)

where ���denotes an approximate distributional equivalence.

This theorem heuristically shows the approximate distribution of the scaled OLS t�statistic for alterna-

tives that are close to the null hypothesis, in the sense that the slope coe¢ cient � shrinks towards zero with

the forecasting horizon. For small to moderate values of b, it is evident that the t�statistic, and hence the

power of the test, will depend on the value of b. For large b, and small q relative to T , it follows that

t
p
q
� T

q

r
3

!22

�Z 1

0

J2c

�1=2
= Op

�
T

q

�
; (19)

which is independent of b and identical to the result under the �xed alternative. For b = 0, the distribution

under the null hypothesis is recovered. In fact, it is useful to separate the numerator of the t�statistic as

follows:
T

q
b+

�Z 1

0

dB1Jc

��Z 1

0

J2c

��1
+
b

2

�Z 1

0

dB2Jc

��Z 1

0

J2c

��1
: (20)

Here the �rst term is the pure drift part, which will dominate asymptotically provided that q=T ! 0, the

second term is the usual variance term under the null hypothesis, and the third term re�ects the uncertainty

regarding the future path of the regressor xt in a long-run regression, as discussed above in conjunction with

the representation in equation (17). Obviously, the pure drift term is increasing in b, and the second term

does not change with b. The third term is on average decreasing in b, since the outcomes of the random
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variable
R 1
0
dB2Jc tend to be negative. That is, by e¤ectively omitting the term �

Pq�1
h=1

�Pq�1
p=h �

p�h
�
vt+h

in equation (17), a downward bias is induced in the estimator and the subsequent t�statistic because the

relevant asymptotic �covariance�measure between xt and vt is negative. However, these terms are all linear

in the coe¢ cient b, and can therefore not explain the non-monotonicity in the power curves that were found

in the Monte Carlo simulations. Instead, the answer must be in the denominator.

For large b, the denominator is increasing in b but, in the case of !12 < 0, there is a range of b for

which the denominator is decreasing in b; this explains the hump-shaped pattern in the power curves that

was documented in the Monte Carlo study. To form an intuition behind these results, consider again the

representation of the long-run regression in equation (17). Under the assumption that � = b=q, the usual

error term ut+q (q) and the additional term �
Pq�1

h=1

�Pq�1
p=h �

p�h
�
vt+h will both be of the same order of

magnitude. When calculating the variance of the �tted residual, which enters into the denominator of the

t�statistic, the variance of both of these terms as well as their covariance will thus enter. The covariance

!12, when it is negative, will induce the non-monotonicity in the t�statistic as a function of b. Initially, as

the slope coe¢ cient drifts away from zero, the �rst term will dominate and the power of the test is increasing

in b, since the variance of ut+q (q) is independent of b. In a middle stage, the covariance term becomes

important as well and the t�statistic decreases with the slope coe¢ cient. Finally, as b grows large, the last

term dominates and will exactly cancel out the dependence on b in the numerator and denominator.

Figure 6 shows the average power curves that result from direct simulations of the limiting random

variables in equation (18). As in the previous simulations, the variances !11 and !22 are both set equal to

one. I let T=q = 5 so that the results correspond to the �nite sample power curves shown in Figures 3 and

4, where the forecasting horizon is equal to 20 percent of the sample size. The local-to-unity parameter c is

set equal to zero and 10; 000 repetitions are used.

The left hand graph in Figure 6 shows the case of exogenous regressors (� = !12 = 0). The local power

curve is weakly increasing and looks very similar to the �nite sample results seen in Figure 4. For endogenous

regressors with � = �0:9, shown in the right hand graph in Figure 6, the same hump shaped pattern as in

Figures 3 and 4 is evident; the biased nature of the OLS t�test with endogenous regressors is also clearly

evident with a rejection rate around 40 percent under the null. The power curves based directly on the

asymptotic results in Theorem 4 thus seem to correspond well to the �nite sample ones.

5.3 Practical implications

The results in this section help shed more light on the properties of long-run tests under the alternative

of predictability. The main lesson is that the power of long-horizon tests only grows with the size of the
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sample relative to the forecasting horizon; keeping q=T �xed as T increases does not result in any power

gains. The practical implications and recommendations must therefore be that inference on forecasts at very

long horizons will be imprecise, and caution should be used in extending the forecasting horizon as larger

samples become available. The results here also show that the asymptotic device used in this paper, where

q=T = o (1), provides an important benchmark comparison to the commonly used framework with q=T = �,

since the test statistics are only consistent under the former assumption. The theoretical results here also

help explain the puzzling non-monotonicity in the power curves for long-run regressors, a �nding which adds

an additional note of caution to the use of long forecasting horizons. Note that the turning point of the

power curve is not outside the relevant parameter region. As seen in Figure 3, for c = 0, the power is already

declining for � = 0:1; the results in Campbell and Yogo (2006) show that in annual data, which the 100

observations in each simulated sample used to generate Figure 3 might represent, the estimates of � are

between 0:1 and 0:3 for the dividend and earnings-price ratios. This also provides a strong case for the test

based on the long-run augmented regression equation suggested in this paper, since it does not su¤er from

non-monotone power.

The results here also suggest that the power of predictive tests may be decreasing with the forecasting

horizon, which would seem to imply that using one period tests is the best approach. The simulation results

are supportive of this conjecture and the empirical results presented in the next section can also be interpreted

as favorable of this view. However, the power comparisons across di¤erent forecasting horizons conducted in

this paper are all informal and heuristic; a more thorough analysis, which is outside the scope of the current

study, is required before any de�nitive statements can be made. Finally, one should recall one important

caveat. The power results are all derived under the assumption that the true model is the one given by

equations (1) and (2). This is a standard assumption used by, for instance, Nelson and Kim (1993) and

Campbell (2001), but clearly other potential data generating processes that might lead to di¤erent results

are possible. The results under the model analyzed here, however, can be considered a point of reference

against which to compare other speci�cations.

6 Long-run stock return predictability

To illustrate the theoretical results derived in this paper, I revisit the question of stock return predictability.

There have been many con�icting results regarding the existence of a predictable component in stock returns.

However, recent work by Lewellen (2004) and Campbell and Yogo (2006), which rely on both more robust

as well as more e¢ cient methods of inference than previous research, do �nd evidence that stock returns are

predictable to some degree. In this section, I extend their empirical analysis to the long-horizon case. Since

24



the scaled long-run Bonferroni test, which controls for the endogeneity and persistence in the regressors, is

e¤ectively a long-run version of the methods developed in Campbell and Yogo (2006), the empirical results

presented here provide a direct comparison with previous work. In the �rst part of the empirical analysis,

I therefore analyze the same data as those used by Campbell and Yogo. I then consider the evidence in an

international data set from nine additional countries. The section ends with a discussion of the results.

6.1 The data

6.1.1 The U.S. data

The data on U.S. stock returns and predictor variables are the same as those used by Campbell and Yogo

(2006).13 The returns data consist of the monthly and annual excess returns on the CRSP NYSE/AMEX

value-weighted index over the period 1926-2002, as well as annual returns on the S&P 500 index over the

period 1880-2002. The excess returns are calculated as the stock returns over the risk free rate, measured

by the return on the one-month T-bill for the monthly data, and by the return on the three-month T-bill

rolled over quarterly for the annual data. The predictor variables are the dividend-price ratio (d� p), the

smoothed earnings-price ratio (e� p) suggested by Campbell and Shiller (1988), the 3-month T-bill rate (r3),

and the long-short yield spread (y � r1), which is de�ned as the di¤erence between Moody�s seasoned Aaa

corporate bond yield and the one month T-bill rate. The dividend-price ratio is calculated as dividends over

the past year divided by the current price and the (smoothed) earnings-price ratio as the average earnings

of the past 10 years divided by the current price. Since earnings are not available for the CRSP data, the

corresponding S&P 500 earnings are used. All regressions are run using log-transformed variables with the

log excess returns as the dependent variable. The regressions involving the short-rate and the yield-spread

as predictors are estimated over the period 1952-2002, since prior to this time period the interest rate was

pegged by the Federal Reserve. The regressions with the CRSP data, using the dividend- and earnings-price

ratios as predictors, are also analyzed over this period as a comparison to the full sample results.

6.1.2 The international data

The international data used in this paper come from Global Financial Data. Total returns, including direct

returns from dividends, on market-wide indices in nine countries with at least 50 years of data were obtained,

as well as the corresponding dividend-price ratios. Earnings data were typically only available over much

shorter time periods and long-run regressions with the earnings-price ratio as a predictor are therefore not

included in the international analysis. In addition, for each country, measures of the short and long interest

13These data were downloaded from Professor Yogo�s website: http://�nance.wharton.upenn.edu/~yogo/.
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rates were obtained, from which measures of the term spread were constructed. The variable de�nitions

follow the usual conventions in the literature. The dividend-price ratio is de�ned as the sum of dividends

during the past year, divided by the current price. The measure of the short interest rate comes from the

interest rate series constructed by Global Financial Data and uses rates on 3-month T-bills when available

or, otherwise, private discount rates or interbank rates. The long rate is measured by the yield on long-term

government bonds. When available, a 10 year bond is used; otherwise, I use that with the closest maturity to

10 years. The term spread is de�ned as the log di¤erence between the long and the short rate. Excess stock

returns are de�ned as the return on stocks, in the local currency, over the local short rate, which provides

the international analogue of the typical forecasting regressions estimated for U.S. data.

The predictor variables used in the international sample are therefore the dividend-price ratio (d� p),

the short interest rate (rs) and the term spread (rl � rs), where the latter two are meant to capture similar

features of stock return predictability as the corresponding interest rate variables in the U.S. sample, even

though they are not de�ned in an identical manner.

The countries in the data are: Australia, Belgium, Canada, France, Germany, Italy, Japan, Sweden, and

the U.K. The end date for each series is March 2004, although the starting date varies between the countries.

The longest series is for Australia, which dates back to 1882, and the shortest for Germany, which goes back

to 1953. All returns and interest rate data are on a monthly frequency. For a few of the older observations,

the dividend-price ratios are given on an annual basis; these are transformed to monthly data by �lling in

the monthly dividends over the year with the previous year�s values.14

All regressions are run using log-transformed variables with the log excess returns over the domestic short

rate as the dependent variable. Following the convention used in the U.S. data, the data used in all interest

rate regressions are restricted to start in 1952 or after.15 Again, as a comparison, the predictive regression

with the dividend price ratios are also run over this restricted sample period; in the international data, this

is particularly useful, since the starting points of the series vary from country to country and imposing a

common starting date allows for easier cross-country comparison.

14Certain countries had longer periods over which, for instance, data on dividends were missing (e.g. the U.K.), or where no
data at all were available during some periods, such as the years around the two world wars (e.g. Germany). In these cases, I
restrict myself to the longest available consecutive time-series, and do not attempt to parse together the discontinuous series.
15 In the U.S., the interest rate was pegged by the Federal Reserve before this date. Of course, in other countries, deregulation

of the interest rate markets occurred at di¤erent times, most of which are later than 1952. As seen in the international �nance
literature (e.g. Kaminsky and Schmukler, 2002), however, it is often di¢ cult to determine the exact date of deregulation. And,
if one follows classi�cation schemes, such as those in Kaminsky and Schmukler (2002), then most markets are not considered
to be fully deregulated until the 1980s, resulting in a very small sample period to study. Thus, the extent to which observed
interest rates re�ect actual market rates is hard to determine and one should keep this caveat in mind when interpreting the
results.
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6.2 Characteristics of the predictor variables

The two key data characteristics that de�ne the properties of the regression estimators analyzed in this

paper are the near persistence and endogeneity of the regressors. For the U.S. data, Table 2 shows con�dence

intervals for the autoregressive root �, and the analogue intervals for the local-to-unity parameter c, calculated

by inverting the DF-GLS unit-root test, as well as estimates of the correlation between the innovations to

returns and the innovations to the regressors (�). The results are shown both for the full sample period, as

well as for the post 1952 sample. As is evident, there is a large negative correlation between the innovations

to the returns and the valuation-ratios. The short interest rate is nearly exogenous, however. The yield

spread is also almost exogenous in the monthly data, although it exhibits a somewhat larger correlation in

the annual data. Standard OLS inference might thus be expected to work fairly well when using the short

rate or the yield spread as predictor variables. In addition, all variables, except perhaps the annual yield

spread, show signs of having autoregressive roots that are close to unity.

The corresponding results for the international data are given in Table 3, where the sample period available

for each country is also given. Overall, the international predictor variables are similar to the corresponding

U.S. ones. The dividend-price ratio is highly persistent in all countries, and the null hypothesis of a unit root

can typically not be rejected based on the DF-GLS test statistic. Furthermore, the dividend-price ratio is

generally fairly endogenous, in the sense that the estimates of �, the correlation between the innovations to

the returns and the predictor process, are large in absolute value. Compared to the U.S. data, however, the

estimates of � for the dividend-price ratio are generally somewhat smaller in absolute value, typically ranging

from �0:5 to �0:8, whereas in the U.S. data absolute values above 0:9 are common. The short interest rate

and the term spread also behave similar to the U.S. counterparts. They are mostly exogenous but still highly

persistent.

Both the U.S. and the international data thus seem to �t well the assumptions under which the results

in this paper are derived. In addition, at least for the valuation ratios, there is a strong case for using test

statistics that take into account the bias induced by the endogeneity and persistence in the regressors. For

the interest rate variables, OLS inference should be fairly accurate.

6.3 Long-run regression results for the U.S. data

The results from the long-run regressions are presented graphically as plots of the scaled t�statistics against

the forecasting horizon q. Although the results in previous sections suggest that using very long forecasting

horizons are generally not advisable, I will show results for forecasting horizons out to 20 years in the annual

data and 10 years in the monthly data, to illustrate the properties of the test statistics across most potential
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forecasting horizons that may be used in applied work.

In each plot, the values of the scaled OLS t�statistics along with the scaled Bonferroni t�statistics are

plotted against the forecasting horizon; as a point of reference, the �ve percent signi�cance level in a one

sided test is also shown, i.e. a �at line equal to 1:645. The Bonferroni test statistic is calculated in the same

manner as described in Section 3. Given the asymptotic results developed previously, the scaled Bonferroni

t�statistic will be approximately normally distributed for all predictor variables, whereas for the scaled OLS

t�test, the normal approximation will only be satis�ed for exogenous variables and might thus be expected

to work well with the interest rate variables. In addition to the scaled Bonferroni test statistic, I also show

the value of the scaled t+q statistic evaluated for c = 0 (i.e. � = 1). The maximum of this test statistic and

the Bonferroni test statistic can be seen as the value of the Bonferroni test when explosive (� > 1) roots are

ruled out a priori.16 This additional statistic is not shown for the interest rate variables where the Bonferroni

and OLS statistics are already very close to each other.17

The �rst set of results are displayed in Figure 7, which shows the scaled OLS and Bonferroni t�statistics

from the regressions with the dividend- and earnings-price ratios in the annual full sample U.S. data. As

is to be expected, the results for the one period forecasting horizon are qualitatively identical to those in

Campbell and Yogo (2006). Thus, at the shorter horizons, there is some mixed evidence of predictability,

with the null rejected for both the S&P 500 and the CRSP returns when using the earnings-price ratio,

but only for the CRSP returns when using the dividend-price ratio. It is interesting to note that although

the Bonferroni test is more robust than the OLS test, the numerical outcome of the Bonferroni test need

not always be smaller than the biased OLS t�statistic. In addition, in Figure 7, the t�statistics based on

Newey-West standard errors are also shown, calculated using q lags. Comparing the plots of these against

the properly scaled t�statistics, it is apparent that Newey-West errors can fail substantially in controlling

the size of long-horizon test. They also illustrate why long-run predictability is often thought to be stronger

than short-run predictability. Given the well known biases in the Newey-West statistics, in the subsequent

�gures they are not shown in order to keep the graphs more easily readable.

Similar results to those in Figure 7 are also found in Figure 8, which shows the results for monthly CRSP

returns, both for the full sample from 1926 and in the post 1952 sample, using the dividend- and earnings-

price ratios as predictors. Again, there is mixed evidence of predictability. The results in Figure 8 also

16For � < 0, the t+q statistic is asymptotically decreasing in �, and restricting � to be less than or equal to one (or equivalently
c � 0) thus results in a more powerful test. In �nite samples, the t+q statistic is not always monotonically decreasing in c and
the statement in the text is thus not always necesarrily true. That is, there could be some value for ~c 2 [c; c], with ~c < 0 such
that t+q (~c) < t+q (0), in which case even though explosive roots are ruled out, the most conservative value is not obtained for
� = 1. In this case, the procedure described in the text is not correct since it could lead to a test that over rejects. However,
in all but one of the cases considered here, the statement in the text holds true and it is only marginally wrong once, with no
qualitative impact at all. In fact, interior optima seems very rare in practice.
17Note also that it is only for � < 0 and an alternative of � > 0 for which � = 1 will provide a conservative upper bound. For

other parameter combinations, the conservative bound might be achieved for small values of �.
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illustrates that ruling out explosive processes, i.e. restricting � to be less than or equal to one, can have a

substantial impact on the results. In the sub sample from 1952-2002, the evidence in favour of predictability

is substantially greater when ruling out explosive processes. This great sensitivity stems from the extreme

endogeneity of the dividend- and earnings-price ratios in the U.S. data, with absolute values of � upwards of

0:99.

From the perspective of the theoretical analysis in the current paper, the results in Figures 7 and 8

illustrate two key �ndings. First, and contrary to many popular beliefs, the evidence of predictability does

not typically become stronger at longer forecasting horizons. There are some exceptions, such as the results

for the dividend-price ratio in the full CRSP sample in Figure 8, but overall there is little tendency for the

results to look stronger at longer horizons. If anything, there is a tendency for the properly scaled t�statistics

to become smaller as the horizon increases, which would be consistent with a loss of power. Second, these

results show that it is important to control for the biasing e¤ect of persistent and endogenous regressors also

in long-horizon regressions, as seen from the often large di¤erence between the OLS and the Bonferroni test

statistics.

Figure 9 shows the results for the short rate and the yield spread, both for the annual and the monthly

data. As expected, the OLS and Bonferroni results are now very close to each other, re�ecting the nearly

exogenous nature of the interest rate variables. For the short rate, the one-sided alternative is now a negative

coe¢ cient. In order to achieve easy comparison with the rest of the results in general, and the yield-spread

in particular, the negative of the test statistics are plotted for the short rate. As seen, there is evidence of

predictability at very short horizons, which disappears very fast as the horizon increases. In fact, the evidence

is already gone in the annual data at the one-period horizon. A similar result is found for the yield spread,

where the expected coe¢ cient under the alternative of predictability is again positive.

The one-period, or short-run, empirical �ndings for the U.S. data are qualitatively identical to those of

Campbell and Yogo (2006). The bottom line is that there is fairly robust evidence of predictability in U.S.

data in the short run when using the two interest rate variables as predictors, whereas the evidence for the

valuation ratios is more mixed. The results from the regressions with the dividend- and earnings-price ratios

are made more di¢ cult to interpret given the large endogeneity of the regressors. As is seen, for instance,

restricting the autoregressive root to be less than or equal to unity can change the results rather dramatically,

a point which is discussed in detail in Campbell and Yogo (2006); these results thus illustrate well the power

gains that can be made with additional knowledge regarding the true autoregressive root in the process.

Although restricting the regressor to be a non-explosive process seems like a fairly sensible restriction in

most cases, it should also be stressed that imposing a non-explosive condition on the dividend-price ratio,

for instance, is not necessarily completely innocuous. Lettau and Van Nieuwerburgh (2007) show that there
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is evidence of structural breaks in the valuation ratios in U.S. data and that if one takes into account these

breaks, the predictive ability of these ratios improves. A structural break process is inherently non-stationary

and is indeed very hard to distinguish from a highly persistent process of the kinds analyzed in this paper,

especially if one allows for explosive roots. Some caution is therefore required in ruling out explosive processes,

a point also made by Campbell and Yogo (2006).

6.4 Long-run regression results for the international data

The results for the international data are shown in Figures 10-13. The results for the dividend-price ratio

are shown in Figure 10 for the full sample and in Figure 11 for the post 1952 sample. Given the somewhat

mixed and overall fairly weak results in the U.S. data, the international results are close to what one might

expect. There is some weak evidence of predictability in the full sample for Canada, as well as for Japan.

In both the Canadian and Japanese cases, however, these results are no longer signi�cant in the post 1952

sample, which is particularly striking for Japan since the full sample only stretches back to 1949. The results

for both Canada and Japan are also sensitive to the exclusion of explosive roots. The only country for which

there is consistently strong evidence is the U.K. Again, there is little evidence of stronger predictability in

the long-run. The only signi�cant result in this direction is for the full Canadian sample where there is no

predictability at the �rst few horizons; the results are far from striking, however.

The results for the interest rate variables, shown in Figures 12 and 13, are somewhat more favorable of

predictability. For the short-rate, shown in Figure 12, where again the alternative hypothesis is a negative

coe¢ cient and the negative of the test statistic is plotted, signi�cance is found at short horizons in Canada

and Germany, and close to signi�cance in Australia, France, and Italy. The corrections for endogeneity have

little e¤ect, and the OLS and Bonferroni results are very close to each other. The only exception is at long

horizons for Japan where there is some discrepancy, although not enough to change any conclusions if one

were to rely on the OLS analysis.

For the term spread, shown in Figure 13, the results look similar but somewhat stronger, with signi�cant

short-run coe¢ cients found for Canada, France, Germany, and Italy, and for a few horizons for Australia.

Again, with the exception of Australia, the evidence of predictability disappears very fast as the horizon

increases.

The results from the international data support the U.S. conclusions to some extent. The evidence in

favour of predictability using the dividend-price ratio in international data is overall weak, with the only solid

evidence coming from the U.K. data. The evidence from Canada and Japan is weaker and more sensitive to

the sampling period. Although the scaled Bonferroni statistic is generally much smaller than the scaled OLS
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t�statistic in the international data as well, the evidence based on the OLS results themselves is not that

supportive of a predictive relationship either. Thus, although some power gains would still be had from a

more precise knowledge of the autoregressive root in the data, the international results may be somewhat less

susceptible to this critique than the U.S. results. The international results for the interest rate variables are

again similar to those of the U.S. data, but do not fully support any generic statements about the predictive

ability of these variables. However, there is some commonality across the country results for these variables.

This is particularly true for Australia, Canada, France, Germany, and Italy, where the signi�cant results are

found.

6.5 Discussion of the empirical �ndings

The empirical �ndings can broadly be summed up as follows: (i) The evidence of predictability using the

valuation ratios is overall fairly weak, both in the U.S. and the international data. (ii) The predictive ability

of the interest rate variables appears fairly robust in the U.S. data and extends to some degree to the

international data. (iii) With few exceptions, all evidence of predictability is found for the shortest horizons

and any evidence that does exist tends to disappear as the forecasting horizon increases; this is particularly

true for the interest rate variables where the test statistics are often almost monotonically declining in value

with the forecasting horizons.

Points (i) and (ii) are discussed at some length in Campbell and Yogo (2006) and Ang and Bekaert (2007),

although the international sample used by the latter is somewhat smaller than the one used here. Instead,

I will focus on the third point regarding the long-run results. Contrary to many popular beliefs, the results

here show that evidence of predictability in the long-run is not stronger than in the short-run. In fact, in

most cases the opposite appears true.

If the data are generated by the standard model in equations (1) and (2), predictability in the short-run

also implies predictability in the long-run. However, the analytical results in this paper also show that tests

lose power as the horizon increases, which could explain the �ndings presented here. That is, even if the

results from the one-period regressions are correct, and there is predictability in some cases, there is no

guarantee that this predictability will be evident at longer horizons, given a decrease in the power to detect

it. In practice, the evidence of predictability is weak also at short horizons, and it should therefore not be

surprising that the null of no predictability cannot be rejected for longer horizons.18 The empirical results

are thus consistent with the model in equations (1) and (2), under which the analytical results were derived.

18 In making statements about multiple horizons, there is always the issue of multiple testing, which is not adressed here.
However, since the baseline assumption that would arise from the theoretical analysis is that the short-run results should be
stronger than the long-run results, and these predictions are re�ected in the actual results, the multiple testing issue seems less
of a concern in the current discussion.
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Consistent empirical �ndings of long-run, but not short-run, predictability, on the other hand, would suggest

that equations (1) and (2) are not adequate tools for modelling return predictability.

Torous et al. (2004) and Ang and Bekaert (2007) also �nd that the evidence of predictability tends

to be strongest at shorter horizons, although they do not suggest the possibility that this may be due to

a lack of power in long horizon tests. Boudoukh et al. (2005) explicitly question the prevailing view of

long-horizon predictability and reach similar conclusions to those presented here, although their focus is

on the joint properties of the regression estimators across di¤erent horizons. Taken together, there is thus

mounting evidence against the previously prevailing view that stock return predictability is more apparent

in the long-run than in the short-run.

7 Conclusion

I derive several new results for long-horizon regressions that use overlapping observations when the regressors

are endogenous and highly persistent. I show how to properly correct for the overlap in the data in a simple

manner that obviates the need for auto-correlation robust standard error methods in these regressions. Fur-

ther, when the regressors are persistent and endogenous, I show how to correct the long-run OLS estimators

and test procedures in a manner similar to that proposed by Campbell and Yogo (2006) for the short-run

case.

The analysis also highlights the boundaries of long-horizon regressions. Analytical results, supported by

Monte Carlo simulations, show that there are no power gains to long-run tests as long as the ratio between

the forecasting horizon and the sample size is �xed. Thus, increasing the forecasting horizon as more data

becomes available is not a good strategy.

An empirical application to stock-return predictability illustrates these results and shows that, in line

with the theoretical results of this paper, the evidence for predictability is typically weaker as the forecasting

horizon gets longer, re�ecting at least to some extent the loss of power in long-run tests.

A Proofs

For ease of notation the case with no intercept is treated. The results generalize immediately to regressions

with �tted intercepts by replacing all variables by their demeaned versions. Unless otherwise noted, all limits

as q; T !1 are under the condition that q=T ! 0.
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Proof of Theorem 1. Under the null hypothesis,
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distributional equivalence, it follows that,
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where the asymptotic limit follows by same argument as in the previous proof.
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Proof of Theorem 3. (i) Consider �rst the case when q=T = o (1) as q; T !1. Under the alternative of
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predictability, by summing up on both sides in equation (1), it follows that

rt+q (q) = � (xt + xt+1 + :::+ xt+q�1) + ut+q (q)

= �

 �
xt + �xt + :::+ �

q�1xt
�
+ vt+1 + (�vt+1 + vt+2) + :::+

qX
p=2

�q�pvt+p�1

!
+ ut+q (q)

= �qxt + �

q�1X
h=1

0@q�1X
p=h

�p�h

1A vt+h + ut+q (q) ;
where �q = �

�
1 + �+ :::+ �q�1

�
= �� (�; q) = q+ o (1), since � = 1+ c=T . Using the results in Hjalmarsson

(2008), it follows easily that, as q; T ! 1, with q=T = o (1), Tq

�
�̂q
q �

�q
q

�
) �

2

�R 1
0
dB2Jc

��R 1
0
J2c

��1
,

and thus �̂q=q = � + op (1). Using the expression above, ût+q (q) = rt+q (q) � �̂qxt =
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ther, by similar arguments as before,
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Table 2: Characteristics of the predictor variables in the U.S. data. This table reports the key time-series
characteristics of the dividend-price ratio (d� p), the earnings-price ratio (e� p), the short interest rate (r3),
and the yield spread (y�r1). The S&P 500 variables are on an annual frequency, whereas results for both the
annual and monthly CRSP data are reported. All series end in 2002. The �rst two columns indicate the data
set and predictor variable being used. The following three columns show the sampling frequency, the start
date of the sample period, and the number of observations in that sample. The column labeled DF-GLS gives
the value of the DF-GLS unit-root test statistic, and the column labeled � gives the estimated correlations
between the innovations to the predictor variables and the innovations to the corresponding excess returns.
The last two columns give the 95% con�dence intervals for the autoregressive root � and the corresponding
local-to-unity parameter c, obtained by inverting the DF-GLS unit-root test statistic.
Series Variable Sample Freq. Sample Begins Obs. DF-GLS � 95% CI for � 95% CI for c

S&P 500 d� p Annual 1880 123 �0:855 �0:845 [0:949; 1:033] [�6:107; 4:020]
S&P 500 e� p Annual 1880 123 �2:888 �0:962 [0:768; 0:965] [�28:262;�4:232]
CRSP d� p Annual 1926 77 �1:033 �0:721 [0:903; 1:050] [�7:343; 3:781]
CRSP e� p Annual 1926 77 �2:229 �0:957 [0:748; 1:000] [�19:132;�0:027]
CSRP d� p Monthly 1926:12 913 �1:657 �0:950 [0:986; 1:003] [�12:683; 2:377]
CRSP e� p Monthly 1926:12 913 �1:859 �0:987 [0:984; 1:002] [�14:797; 1:711]
CRSP d� p Monthly 1952:1 612 �0:072 �0:965 [0:996; 1:007] [�2:736; 4:555]
CRSP e� p Monthly 1952:1 612 �0:953 �0:982 [0:989; 1:006] [�6:722; 3:893]
CSRP r3 Annual 1952 51 �2:078 0:039 [0:647; 1:014] [�17:309; 0:703]
CRSP y � r1 Annual 1952 51 �3:121 �0:243 [0:363; 0:878] [�31:870;�6:100]
CSRP r3 Monthly 1952:1 612 �1:557 �0:070 [0:981; 1:004] [�11:683; 2:714]
CRSP y � r1 Monthly 1952:1 612 �4:085 �0:067 [0:921; 0:974] [�48:847;�15:890]
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Table 3: Characteristics of the predictor variables in the international data. This table reports the key
time-series characteristics of the dividend-price ratio (d�p), the short interest rate (rs), and the term spread
(rl� rs). All data are on a monthly frequency, and all series end in 2004. The �rst two columns indicate the
country and predictor variable being used, and the next two columns show the start date of the sample period
and the number of observations in that sample. The column labeled DF-GLS gives the value of the DF-GLS
unit-root test statistic, and the column labeled � gives the estimated correlations between the innovations to
the predictor variables and the innovations to the corresponding excess returns. The last two columns give
the 95% con�dence intervals for the autoregressive root � and the corresponding local-to-unity parameter c,
obtained by inverting the DF-GLS unit-root test statistic.
Country Variable Sample Begins Obs. DF-GLS � 95% CI for � 95% CI for c

Australia d� p 1882:12 1456 �2:054 �0:567 [0:988; 1:001] [�17:019; 0:829]
Belgium d� p 1952:1 627 �1:927 �0:761 [0:975; 1:002] [�15:540; 1:376]
Canada d� p 1934:3 841 �0:646 �0:746 [0:994; 1:005] [�4:960; 4:217]
France d� p 1941:5 755 �1:468 �0:618 [0:986; 1:004] [�10:848; 2:954]
Germany d� p 1953:2 614 �1:725 �0:761 [0:978; 1:003] [�13:377; 2:112]
Italy d� p 1925:3 949 �1:766 �0:150 [0:985; 1:002] [�13:802; 1:972]
Japan d� p 1949:7 657 �0:232 �0:533 [0:995; 1:007] [�3:209; 4:476]
Sweden d� p 1919:2 1022 �2:403 �0:587 [0:979; 0:999] [�21:373;�1:040]
UK d� p 1924:2 962 �3:250 �0:637 [0:965; 0:992] [�33:865;�7:243]
Australia d� p 1952:1 627 �1:335 �0:736 [0:985; 1:005] [�9:666; 3:286]
Belgium d� p 1952:1 627 �1:927 �0:761 [0:975; 1:002] [�15:540; 1:376]
Canada d� p 1952:1 627 �0:078 �0:900 [0:996; 1:007] [�2:753; 4:552]
France d� p 1952:1 627 �1:372 �0:760 [0:984; 1:005] [�9:951; 3:204]
Germany d� p 1953:2 614 �1:725 �0:761 [0:978; 1:003] [�13:377; 2:112]
Italy d� p 1952:1 627 �1:421 �0:592 [0:983; 1:005] [�10:398; 3:078]
Japan d� p 1952:1 627 0:253 �0:535 [0:997; 1:008] [�1:876; 4:702]
Sweden d� p 1952:1 627 �1:812 �0:762 [0:977; 1:003] [�14:285; 1:853]
UK d� p 1952:1 627 �1:576 �0:752 [0:981; 1:004] [�11:865; 2:656]
Australia rs 1952:1 627 �0:882 �0:164 [0:990; 1:006] [�6:295; 3:993]
Belgium rs 1952:1 627 �1:128 �0:139 [0:987; 1:006] [�7:993; 3:641]
Canada rs 1952:1 627 �1:451 �0:176 [0:983; 1:005] [�10:681; 3:001]
France rs 1952:1 627 �1:498 �0:159 [0:982; 1:005] [�11:130; 2:874]
Germany rs 1953:1 615 �2:263 �0:051 [0:968; 1:000] [�19:544;�0:197]
Italy rs 1952:1 627 �1:192 �0:108 [0:986; 1:006] [�8:457; 3:544]
Japan rs 1952:1 627 �0:195 �0:096 [0:995; 1:007] [�3:100; 4:499]
Sweden rs 1952:1 627 �1:547 �0:155 [0:981; 1:004] [�11:590; 2:744]
UK rs 1952:1 627 �1:250 �0:242 [0:986; 1:006] [�8:972; 3:447]
Australia rl � rs 1952:1 627 �1:624 0:024 [0:980; 1:004] [�12:343; 2:512]
Belgium rl � rs 1952:1 627 �3:249 �0:027 [0:946; 0:988] [�33:847;�7:235]
Canada rl � rs 1952:1 627 �3:307 0:059 [0:944; 0:987] [�34:840;�7:900]
France rl � rs 1952:1 627 �2:424 0:068 [0:965; 0:998] [�21:647;�1:166]
Germany rl � rs 1953:1 615 �2:751 �0:032 [0:957; 0:995] [�26:159;�3:251]
Italy rl � rs 1952:1 627 �3:373 �0:002 [0:943; 0:987] [�35:981;�8:409]
Japan rl � rs 1952:1 627 �1:306 0:040 [0:985; 1:005] [�9:402; 3:341]
Sweden rl � rs 1952:1 627 �5:169 0:093 [0:885; 0:951] [�71:688;�30:638]
UK rl � rs 1952:1 627 �2:226 0:031 [0:969; 1:000] [�19:092;�0:011]
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Figure 1: Power curves for exogenous regressors with T = 100, q = 10, and � = 0:0: The graphs show
the average rejection rates for a one-sided 5 percent test of the null hypothesis of � = 0 against a positive
alternative. The x�axis shows the true value of the parameter �, and the y�axis indicates the average
rejection rate. The left-hand graph gives the results for the case of c = 0 (� = 1), and the right-hand graph
gives the results for c = �10 (� = 0:9). The results for the scaled OLS t�test derived in this paper are
given by the solid lines, the results for Valkanov�s infeasible test are given by the long dashed lines, and the
results for Valkanov�s feasible sup-bound test are given by the short dashed lines. The results are based on
the Monte Carlo simulations described in the main text, and the power is calculated as the average rejection
rates over 10; 000 repetitions.
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Figure 2: Power curves for endogenous regressors with T = 100, q = 10, and � = �0:9: The graphs show
the average rejection rates for a one-sided 5 percent test of the null hypothesis of � = 0 against a positive
alternative. The x�axis shows the true value of the parameter �, and the y�axis indicates the average
rejection rate. The left-hand graph gives the results for the case of c = 0 (� = 1), and the right-hand graph
gives the results for c = �10 (� = 0:9). The results for the scaled Bonferroni test are given by the solid
lines, the results for the scaled infeasible t�test

�
t+q
�p

q
�
from the augmented regression equation, which

uses knowledge of the true value of c, are given by the dotted line, the results for Valkanov�s infeasible test
are given by the long dashed lines, and the results for Valkanov�s feasible sup-bound test are given by the
short dashed lines. The results are based on the Monte Carlo simulations described in the main text, and
the power is calculated as the average rejection rates over 10; 000 repetitions.

46



Figure 3: Power curves for endogenous regressors with T = 100, q = 20, and � = �0:9: The graphs show
the average rejection rates for a one-sided 5 percent test of the null hypothesis of � = 0 against a positive
alternative. The x�axis shows the true value of the parameter �, and the y�axis indicates the average
rejection rate. The left-hand graph gives the results for the case of c = 0 (� = 1), and the right-hand graph
gives the results for c = �10 (� = 0:9). The results for the scaled Bonferroni test are given by the solid
lines, the results for the scaled infeasible t�test

�
t+q
�p

q
�
from the augmented regression equation, which

uses knowledge of the true value of c, are given by the dotted line, the results for Valkanov�s infeasible test
are given by the long dashed lines, and the results for Valkanov�s feasible sup-bound test are given by the
short dashed lines. The results are based on the Monte Carlo simulations described in the main text, and
the power is calculated as the average rejection rates over 10; 000 repetitions.
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Figure 4: Power curves for T = 500, and q = 100. The graphs show the average rejection rates for a one-sided
5 percent test of the null hypothesis of � = 0 against a positive alternative. The x�axis shows the true value
of the parameter �, and the y�axis indicates the average rejection rate. The left hand graph gives the results
for the case of exogenous regressors with � = 0 and c = 0. The results for the scaled OLS t�test are given
by the solid lines, the results for Valkanov�s infeasible test, which coincides with Valkanov�s sup-bound test
for c = 0, are given by the long dashed lines, and the results for the (non-scaled) t�test using Newey-West
standard errors are given by the dotted and dashed line. The right hand graph gives the results for the case
of endogenous regressors with � = �0:9 and c = �10. The results for the scaled Bonferroni test are given by
the solid lines, the results for the scaled infeasible t�test

�
t+q
�p

q
�
from the augmented regression equation,

which uses knowledge of the true value of c, are given by the dotted line, the results for Valkanov�s infeasible
test are given by the long dashed lines, the results for Valkanov�s feasible sup-bound test are given by the
short dashed lines, the results for the (non-scaled) t�test using Newey-West standard errors are given by the
dotted and dashed line, and the results for the scaled OLS t�test are given by the �nely dotted line. The
results are based on the Monte Carlo simulations described in the main text, and the power is calculated as
the average rejection rates over 10; 000 repetitions.
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Figure 5: Comparison of power across horizons for T = 100 and c = 0. The graphs show the average rejection
rates for a one-sided 5 percent test of the null hypothesis of � = 0 against a positive alternative. The x�axis
shows the true value of the parameter �, and the y�axis indicates the average rejection rate. The left hand
graph gives the results for the case of exogenous regressors with � = 0. The results for the one period OLS
t�test are given by the solid line (q = 1), and the results for the scaled OLS t�tests for q = 10 and q = 20 are
given by the the short dashed line and the dotted line, respectively. The right hand graph gives the results
for the case of endogenous regressors with � = �0:9. The results for the one period (q = 1) Bonferroni test
are given by the solid line, and the results for the scaled Bonferroni tests for q = 10 and q = 20 are given
by the the short dashed line and the dotted line, respectively. The results are based on the Monte Carlo
simulations described in the main text, and the power is calculated as the average rejection rates over 10; 000
repetitions.
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Figure 6: Local power curves for T=q = 5 and c = 0. The graphs show the average power curves for a one-
sided 5 percent test of the null hypothesis against a positive local alternative, based on the distribution of
the scaled OLS t�statistic derived in Theorem 4. The x�axis shows the true value of the parameter b = �q,
and the y�axis indicates the average rejection rate. The left-hand graph gives the results for exogenous
regressors with � = 0 , and the right-hand graph gives the results for endogeneous regressors with � = �0:9.
The results are obtained from direct simulation of the limiting random variables in equation (18), and the
power is calculated as the average rejection rate over 10; 000 repetitions.
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Figure 7: Empirical results for the annual U.S. data with valuation ratios as predictors. The graphs show
the outcomes of the long-run test statistics as functions of the forecasting horizon. The x�axis shows the
forecasting horizon q, and the y�axis shows the value of the test statistic. The left-hand graphs give the
results for the dividend price ratio (d� p), and the right-hand graphs give the results for the earnings-price
ratio (e� p). Results for the S&P 500 data are shown in the top graphs and results for the CRSP data in
the bottom graphs. The results for the scaled OLS t�test are given by the short dashed lines, the results for
the scaled Bonferroni test are given by the dotted lines, the results for the scaled t�test from the augmented
regression equation under the assumption of � = 1 are given by the long dashed lines, and the results for
the (non-scaled) t�test using Newey-West standard errors are given by the dotted and dashed line. The �at
solid line shows the 5% signi�cance level, equal to 1:645 based on the normal distribution, for the one sided
test.
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Figure 8: Empirical results for the monthly U.S. data with valuation ratios as predictors. The graphs show
the outcomes of the long-run test statistics as functions of the forecasting horizon. The x�axis shows the
forecasting horizon q, and the y�axis shows the value of the test statistic. The left-hand graphs give the
results for the dividend price ratio (d� p), and the right-hand graphs give the results for the earnings-price
ratio (e� p). Results for the full CRSP sample from 1926-2002 are shown in the top graphs and results for
the restricted CRSP sample from 1952-2002 in the bottom graphs. The results for the scaled OLS t�test are
given by the short dashed lines, the results for the scaled Bonferroni test are given by the dotted lines, and
the results for the scaled t�test from the augmented regression equation under the assumption of � = 1 are
given by the long dashed lines. The �at solid line shows the 5% signi�cance level, equal to 1:645 based on
the normal distribution, for the one sided test.
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Figure 9: Empirical results for the U.S. data with interest rate variables as predictors. The graphs show
the outcomes of the long-run test statistics as functions of the forecasting horizon. The x�axis shows
the forecasting horizon q, and the y�axis shows the value of the test statistic. The left-hand graphs give
the results for the short interest rate (r3), and the right-hand graphs give the results for the yield spread
(y � r1). Results for the annual data are shown in the top graphs and results for the monthly data in the
bottom graphs. The results for the scaled OLS t�test are given by the short dashed lines and the results for
the scaled Bonferroni test are given by the dotted lines. The �at solid line shows the 5% signi�cance level,
equal to 1:645 based on the normal distribution, for the one sided test.
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Figure 10: Empirical results for the international data with the dividend-price ratio as predictor, using the
full sample for each country. The graphs show the outcomes of the long-run test statistics as functions of
the forecasting horizon. The x�axis shows the forecasting horizon q, and the y�axis shows the value of
the test statistic. The title of each graph indicates the country and sample period to which the results
correspond. The results for the scaled OLS t�test are given by the short dashed lines, the results for the
scaled Bonferroni test are given by the dotted lines, and the results for the scaled t�test from the augmented
regression equation under the assumption of � = 1 are given by the long dashed lines. The �at solid line
shows the 5% signi�cance level, equal to 1:645 based on the normal distribution, for the one sided test.
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Figure 11: Empirical results for the international data with the dividend-price ratio as predictor, using data
after 1952. The graphs show the outcomes of the long-run test statistics as functions of the forecasting
horizon. The x�axis shows the forecasting horizon q, and the y�axis shows the value of the test statistic.
The title of each graph indicates the country and sample period to which the results correspond. The results
for the scaled OLS t�test are given by the short dashed lines, the results for the scaled Bonferroni test are
given by the dotted lines, and the results for the scaled t�test from the augmented regression equation under
the assumption of � = 1 are given by the long dashed lines. The �at solid line shows the 5% signi�cance
level, equal to 1:645 based on the normal distribution, for the one sided test.
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Figure 12: Empirical results for the international data with the short interest rate as predictor. The graphs
show the outcomes of the long-run test statistics as functions of the forecasting horizon. The x�axis shows
the forecasting horizon q, and the y�axis shows the value of the test statistic. The title of each graph indicates
the country and sample period to which the results correspond. The results for the scaled OLS t�test are
given by the short dashed lines and the results for the scaled Bonferroni test are given by the dotted lines.
The �at solid line shows the 5% signi�cance level, equal to 1:645 based on the normal distribution, for the
one sided test.
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Figure 13: Empirical results for the international data with the term spread as predictor. The graphs show
the outcomes of the long-run test statistics as functions of the forecasting horizon. The x�axis shows the
forecasting horizon q, and the y�axis shows the value of the test statistic. The title of each graph indicates
the country and sample period to which the results correspond. The results for the scaled OLS t�test are
given by the short dashed lines and the results for the scaled Bonferroni test are given by the dotted lines.
The �at solid line shows the 5% signi�cance level, equal to 1:645 based on the normal distribution, for the
one sided test.
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