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Firm Networks and Asset Returns

ABSTRACT

This paper argues that changes in the propagation of idiosyncratic shocks along firm networks

are important to understanding variations in asset returns. When calibrated to match key

features of supplier–customer networks in the United States, an equilibrium model in which

investors have recursive preferences and firms are interlinked via enduring relationships gen-

erates long-run consumption risks. Additionally, the model matches cross-sectional patterns

of portfolio returns sorted by network centrality, a feature unaccounted for by standard asset

pricing models.



Firms do not function as isolated entities. Instead, they are interlinked via a variety of

material relationships, such as strategic alliances, joint ventures, research and development

(R&D) partnerships, and supplier–customer relationships. As shown by recent empirical

evidence, these relationships may serve as propagation mechanisms of shocks to individual

firms and, in doing so, potentially alter asset returns.1 Despite this evidence, the asset

pricing implications of such shock propagation remains, at best, imperfectly understood. In

this paper, I develop an equilibrium model to study the asset pricing properties that stem

from the propagation of idiosyncratic shocks along firm networks and the extent to which

such shock propagation quantitatively explains asset market phenomena.

I show that changes in the propagation of idiosyncratic shocks along firm networks are

important to understanding variations in asset returns, both in the aggregate and in the cross

section. In particular, the model generates long-run consumption risk when calibrated to

match key characteristics of supplier–customer networks in the United States. Consequently,

the model replicates prime characteristics of asset market data, such as a high and volatile

risk premium and a low and stable risk-free rate. Additionally, the model matches cross-

sectional patterns of portfolio returns sorted by network centrality.

The model has two main features. First, idiosyncratic shocks propagate via long-lasting

relationships. As a consequence, firms’ cash-flow growth rates are related via a firm network.

Second, investors have a preference for early resolution of uncertainty and, thus, care about

uncertainty regarding firms’ long-term growth prospects.

Aside from aggregate shocks, the distribution of aggregate consumption growth is shaped

by two characteristics within the model: (a) the topology of the firm network and (b)

the propensities of relationships to transmit idiosyncratic shocks, henceforth referred to as

propensities. Propensities are assumed to vary over time. Such variation captures temporal

changes in relationship-specific characteristics that make firms more susceptible to shocks

1See Hertzel et al. (2008), Jorion and Zhang (2009), Boone and Ivanov (2012), Carvalho et al. (2014),
Boyarchenko and Costello (2015), Todo et al. (2015), Boehm et al. (2015) and Barrot and Sauvagnat (2016)
among others. Using French firm-level data from 1990 to 2007, Di Giovanni et al. (2014) provide empirical
evidence of the importance of firm-specific shocks in generating aggregate fluctuations.
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affecting their neighbors. As propensities vary over time, the connectivity of the firm net-

work also varies over time. This variation introduces a time-varying correlation structure

among firms’ cash-flow growth rates, which in equilibrium generates stochastic volatility in

consumption growth.

In the calibrated model, changes in network connectivity are infrequent because firms

tend to engage in enduring and stable relationships with their major customers. Then, the

nature of these relationships generates long-lasting interdependencies among firms’ cash-flow

growth rates. In such an economy, idiosyncratic shocks to one firm have the potential not

only to change the current cash flows of every neighboring firm, but also to change the long-

term growth prospects of all such firms. Such infrequent changes in network connectivity are

what fundamentally drive low-frequency movements in aggregate output growth, which, in

equilibrium, generate a persistent component in expected aggregate consumption growth. As

a result of investors having preferences for early resolution of uncertainty, the model generates

long-run consumption risks. The model accounts for sizable risk premiums because investors

fear that extended periods of low economic growth coincide with low asset prices. The model

generates a small risk-free rate as a result of investors saving for long periods of low economic

growth.

Besides generating long-run consumption risk, the calibrated model matches cross-sectional

patterns of portfolio returns sorted by network centrality. Central firms command lower risk

premiums than peripheral firms because, in the data, relationships of peripheral firms tend

to exhibit higher propensities than relationships of central firms, as peripheral firms tend

to rely more heavily on their major customers. As a consequence, central firms are less ex-

posed to contagion risk than peripheral firms, commanding lower risk premiums. The model

generates a realistic monthly return spread of 0.8% between firms in the lowest and firms in

the highest decile of centrality. This economically and statistically significant return spread

arises naturally in equilibrium as compensation for contagion risk, a feature unaccounted for

by standard asset pricing models.
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The small and persistent component in expected consumption growth generated by low-

frequency movements in network connectivity provides an equilibrium foundation for long-

run risk models in the spirit of Bansal and Yaron (2004). Moreover, the model helps explain

the cross section of expected returns, as it provides a mapping between firms’ importance

in the network and their contagion risk. Overall, these results suggest that extending stan-

dard asset pricing models to take into account how idiosyncratic shocks propagate along

firm networks can make significant progress toward generating a unifying framework that

simultaneously captures dynamics of the aggregate and the cross section of stock returns.

This paper contributes to three strands of the literature. First, the paper develops a

new theoretical framework that adds to a growing body of work focused on understanding

the effects of economic linkages in asset pricing, for example, Buraschi and Porchia (2012),

Ahern (2013), and Herskovic (2017).2 Unlike these papers, however, this model emphasizes

relationships at the firm level to explore the asset pricing properties that stem from the

propagation of idiosyncratic shocks along firm networks.

Second, this paper adds to a body of work that explores how granular shocks may lead to

aggregate fluctuations in the presence of linkages among different sectors of the economy, for

example, Carvalho (2010), Gabaix (2011), Acemoglu et al. (2012, 2015), Oberfield (2013),

Carvalho and Gabaix (2013), Blume et al. (2013), Elliott et al. (2014), Chaney (2014, 2016),

and Lim (2016). This paper contributes to this literature by exploring the asset pricing

implications of linkages at the firm level and studying how changes in the propagation of

idiosyncratic shocks affect not only aggregate variables but also asset returns and aggregate

risk premia.

Third, this paper adds to recent research that examines the potential sources of long-run

risks, for example, Kaltenbrunner and Lochstoer (2010), Kung and Schmid (2015), Bidder

2Buraschi and Porchia (2012) show that more central firms in a market-based network have lower price
dividend ratios and higher expected returns. Using the network of intersectoral trade, Ahern (2013) provides
evidence that firms in more central industries have greater exposure to systematic risk. Herskovic (2017)
focuses on efficiency gains that come from changes in the input-output network and how those changes are
priced in equilibrium. My paper, on the other hand, focuses on how changes in the propagation of shocks
within a fixed network alter equilibrium asset prices and risk premia.
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and Dew-Becker (2016), and Collin-Dufresne et al. (2016).3 This paper contributes to this

literature by showing that changes in the propagation of idiosyncratic shocks along firm

networks can generate long-run risks.

I. Baseline Model

Though stylized, the baseline model conveys the main intuition for how changes in the

propagation of idiosyncratic shocks along firm networks, in combination with recursive pref-

erences, generates long-run consumption risks and implications for the cross section of asset

returns. To facilitate exposition, the baseline model abstracts from firms’ production deci-

sions and considers a single-good economy in which firm cash flows are related via a network

of long-lasting relationships. Internet Appendix A shows that under some conditions, the

main intuition continues to hold within an equilibrium framework where production is ex-

plicitly modeled.

A. The environment

Consider an economy with one perishable good and an infinite time horizon. Time is

discrete and indexed by t ∈ {0, 1, 2, · · · }. In each period, the single good is produced by n

infinitely lived firms, with n being potentially large. Firms’ outputs, henceforth cash flows,

are related via a network of long-lasting relationships.4 Because I focus on the effect of the

firm network on asset returns rather than on strategic network formation, relationships are

3Kaltenbrunner and Lochstoer (2010) shows that long-run risks endogenously arise in a standard pro-
duction economy model, even when technology growth is i.i.d., because of consumption smoothing. Kung
and Schmid (2015) shows that a model of endogenous innovation and R&D is able to generate long-run risks,
while Bidder and Dew-Becker (2016) shows that long-run risks arise in an economy in which investors are
pessimistic and not sure about the true model driving the economy. Collin-Dufresne et al. (2016) shows
that parameter learning generates long-lasting risks that help explain standard asset pricing puzzles in an
economy where investors are uncertain about the structural parameters governing the model economy.

4Long-lasting relationships potentially allow firms to circumvent difficulties in contracting due to un-
foreseen contingencies, asymmetries of information, and specificity on firms’ investments, for example,
Williamson (1979, 1983).
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assumed to be exogenously determined and fixed before t = 0.5 Besides firms, there is a

large number of identical, infinitely lived individuals who are aggregated into a representative

investor with Epstein-Zin-Weil preferences who owns all assets in the economy.

B. The firm network and firms’ cash flows

Firms’ cash flows vary stochastically over time and depend on aggregate and firm-level

shocks. Input, labor, and capital decisions are deliberately normalized to 1. Firm i’s cash

flow at t, yi,t, follows

log

(
yi,t
Yt−1

)
≡ ãt + z̃i,t , i ∈ {1, · · · , n} , (1)

where Yt−1 denotes the aggregate output of the economy at t− 1, ãt
d−→ i.i.d. N (0, 2σ2

a) is a

shock that affects all firms in the economy at t, and z̃it is a shock that affects firm i at t.

A key feature of this model is that the firm network determines the dependence structure

among shocks to individual firms. In particular, long-lasting relationships have a dual nature

within the model. While relationships may increase firms’ growth opportunities via efficiency

gains, relationships may also have additional consequences as they increase a firm’s reliance

on its neighbors and, thus, increase a firm’s exposure to negative idiosyncratic shocks affect-

ing a broader set of firms in the economy. To capture such a trade-off, z̃i,t+1 is assumed to

follow

z̃i,t+1 = α1di − α2ε̃i,t+1 , i ∈ {1, · · · , n} , (2)

where parameters α1 and α2 are non-negative and equal across firms. Parameter di represents

the number of direct relationships of firm i—which may differ across firms. Uncertainty on

z̃i,t+1 is introduced by a Bernoulli random variable ε̃i,t+1. If firm i is either directly affected by

5See Demange and Wooders (2005), Goyal (2007), and Jackson (2008) for a detailed description of
network formation models. For models of endogenous formation of production networks, see Oberfield
(2013), Chaney (2014, 2016), and Lim (2016), among others.

7



an idiosyncratic shock or affected by an idiosyncratic shock that affects one of its neighbors,

then ε̃i,t+1 = 1. Otherwise, ε̃i,t+1 = 0.

To simplify the modeling, the distribution of ε̃i,t+1 is determined by the following stochas-

tic process—which abstracts from the temporal propagation of idiosyncratic shocks. At the

beginning of t + 1, each firm faces a negative shock independently of other firms with prob-

ability 0 < q < 1, which is equal across firms and time invariant. A negative idiosyncratic

shock to firm i at t + 1 also affects firm j at t + 1, and, thus, ε̃i,t+1 = ε̃j,t+1 = 1 if two

things happen: (1) there exists a sequence of relationships that connects i and j in the firm

network and (2) each relationship in that sequence transmits shocks at t+ 1.6 The relation-

ship between firms i and j either transmits shocks at t+ 1 or does not, independently of all

other relationships, with probability p̃ij,t+1. For simplicity, relationships are assumed to be

undirected, and, thus, p̃ijt = p̃jit, ∀(i, j), ∀ t. Consequently, p̃ij,t+1 measures the propensity

of relation (i, j) to transmit idiosyncratic shocks from firm i (j) to j (i) at t+ 1.7

At a fundamental level, the value of p̃ij,t+1 captures interdependencies between the cash

flows of firm i and firm j at t+1. Such interdependencies, which cannot be mitigated through

6Within the baseline model, only negative idiosyncratic shocks are allowed to propagate in a probabilistic
manner. However, the baseline model can be easily extended to allow positive and negative shocks to
propagate along the network. To do so, define ψ̃i,t+1 ≡ ε̃i,t+1 − 1/2 so that shocks can be positive and
negative. Then, redefine equation (2) so that

z̃i,t+1 = α1di − α2ψ̃i,t

= α2/2 + α1di − α2ε̃i,t+1,

which is similar to equation (2). The cross sectional results in this paper continue to hold as long as the
decrease in firms’ cash flow growth due to negative shocks is larger than the increase in firms’ cash flow
growth due to positive shocks.

7In each period, this stochastic process can be thought of as a variation of either a reliability network or a
bond percolation model. In a typical reliability network model, the edges of a given network are independently
removed with some probability. The remaining edges are assumed to transmit a message. A message from
node i to j is transmitted as long as there is at least one path from i to j after edge removal—see Colbourn
(1987) for more details. Similarly, in a bond percolation model, edges of a given network are removed at
random with some probability. Edges that are not removed are assumed to percolate a liquid. The question
in percolation is whether the liquid percolates from one node to another in the network—which is similar
to the problem of transmitting a message in a reliability context. For more details, see Grimmett (1989),
Stauffer and Aharony (1994), and Newman (2010, Chapter 16.1). Blume et al. (2013) analyze a propagation
mechanism similar to the one analyzed here. They focus, however, on strategic network formation issues in
a static environment. They provide asymptotic bounds on the welfare of both optimal and stable networks
and show that small amounts of “over-linking” may impose large losses in welfare to networks’ participants.
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contractual protections, may be driven by the characteristics of the relationship between i

and j. Intuitively, the higher the value of p̃ij,t+1, the higher the likelihood that disruptions

affecting the cash flow of firm i (j) also affect the cash flow of firm j (i) at t+ 1.8

Probabilities {p̃ij,t+1}(i,j) are drawn from a Beta distribution with parameters ζ1,t+1 > 0

and ζ2,t+1 > 0 at the beginning of period t + 1. Parameters ζi,t+1 > 0, i = {1, 2}, which are

drawn prior to drawing from the Beta distribution, determine the shape of the distribution

of propensities across relationships at period t+1. The model timeline at period t is depicted

in figure 1.

ζ1t and ζ2t
are drawn

{p̃ijt}(i,j) ∈ Gn

are drawn from β (ζ1t, ζ2t)

Relationships that
transmit shocks
are determined

Firm-specific shocks
are realized

Shocks
propagate

Period t

Figure 1. Model timeline in period t.

C. Propagation of idiosyncratic shocks and the distribution of {ε̃i,t}ni=1

To fix notation, let Gn denote the network of relationships among n firms—where nodes

represent firms and edges represent relationships. Given how idiosyncratic shocks propagate

along the network, the joint distribution of {ε̃i,t}ni=1 is determined by Gn, q, and the process

driving the stochastic propensity matrix p̃t ≡ [p̃ijt](i,j). The marginal distribution of ε̃i,t,

conditional on p̃t, depends on q, the network Gn, and the location of firm i in Gn. In other

8In the context of supply chains, p̃ij,t+1 may capture restrictions on firm i’s and j’s use of alternative
inputs at t+ 1. The higher the value of p̃ij,t+1, the higher the switching costs firms i or j may face at t+ 1
and, thus, the higher the likelihood that a negative shock to firm i (j) also affects firm j (i), provided that
firm j (i) may not be able to restructure its production sufficiently fast to overcome firm i (j)’s disruption
in production.
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words,

P
(
ε̃i,t = 1

∣∣p̃t
)

= f (q,Gn, location of firm i in Gn) ,

where P
(
ε̃i,t = 0

∣∣p̃t
)
= 1−P

(
ε̃i,t = 1

∣∣p̃t
)
, and f(·) is a mapping characterized by the stochas-

tic process described in section I.B, which generates a time-varying correlation structure

among firms’ cash-flow growth as p̃t varies over time.

Despite the fact that the mapping f(·) is hard to characterize for large n, its properties

are easy to describe given the formulation of the stochastic process that generates it. First,

in the absence of relationships, P
(
ε̃i,t = 1

∣∣p̃t
)
= P (ε̃i,t = 1) = q , ∀ i and ∀ t, so firm-level

shocks are independent and identically distributed across firms over time. Second, if only

one sequence of relationships exists between two firms, the longer the sequence, the smaller

the correlation between firm-level shocks.9

D. Temporal changes in shock propagation

To capture temporal changes in relationship-specific characteristics, the shape parameters

ζit, i = {1, 2}, are allowed to vary over time. Variation in the shape parameters may arise

from changes in complementarities among firms’ activities or the arrival of new technologies

that reshape the economy’s long-term growth prospects. For simplicity, ζit takes two values,

ζiL or ζiH , with ζiL < ζiH, and the shape parameter vector ζt ≡ [ζ1t ζ2t] follows a four-state

ergodic Markov process with transition matrix Ω and states ζLL ≡ [ζ1L ζ2L], ζLH ≡ [ζ1L ζ2H ],

ζHL ≡ [ζ1H ζ2L], and ζHH ≡ [ζ1H ζ2H ].
10

9Having this feature—which is sometimes called correlation decay, as in, for example, Gamarnik (2013)—
greatly helps obtain numerical solutions of the model relatively fast when n is large.

10The main results are robust to variations in the number of values that ζit can take. In unreported
results, I allow ζit to take K values, with K = {3, 4, 5}, and, hence, the vector ζt follows a 9-, 16-, and 25-
ergodic Markov process. In all those cases, the main results continue to hold.
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II. Aggregate Consumption Growth

Aside from aggregate shocks, two features of the model are important to understand-

ing the distribution of aggregate consumption growth: (a) the topology of Gn and (b) how

idiosyncratic shocks propagate along Gn, captured by the propensity matrix p̃t and its dy-

namics. In this section, I study how changes in these two features affect the distribution of

aggregate consumption growth and, thus, alter the distribution of the pricing kernel.

Let ∆c̃t+1 ≡ log
(

Ct+1

Ct

)
and x̃t+1 ≡ log

(
Yt+1

Yt

)
denote log consumption and output growth

at t+ 1, respectively. Rather than assuming that aggregate consumption is the dividend on

the portfolio of all invested wealth, I follow Campbell (1986), Cecchetti et al. (1993), and Abel

(1999), and make the slightly more general assumption that the dividend on the aggregate

stock market equals aggregate consumption raised to a power. Thus ∆c̃t+1 and x̃t+1 satisfy

x̃t+1 =

(
1

τ

)
∆c̃t+1, (3)

where τ is a constant. Hence, the representative investor is assumed to have access to labor

income. As in Abel (1999), (1/τ) represents the leverage ratio on equity. If τ = 1, then the

market portfolio is a claim to total wealth. For tractability, consider Yt ≡
∏n

i=1 y
1/n
i,t . It then

follows from equations (1), (2), and (3) that

∆c̃t+1 = τ x̃t+1 = τ log

(
n∏

i=1

(
yi,t+1

Yt

)1/n
)

= τ


ãt+1 + α1

(
1

n

n∑

i=1

di

)

︸ ︷︷ ︸
−α2

(
1

n

n∑

i=1

ε̃i,t+1

)

︸ ︷︷ ︸




= τ
(
ãt+1 + α1 d̄ − α2 W̃n,t+1

)
, (4)

where d̄ denotes the average number of relationships per firm in the economy, whereas W̃n,t+1

denotes the average number of firms affected by idiosyncratic shocks at t + 1. It follows
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from equation (4) that the distribution of ∆c̃t+1 critically depends on W̃n,t+1. Given how

idiosyncratic shocks propagate along the network, the distribution of W̃n,t+1 is affected by

p̃t+1 and the topology of Gn. As a result, these two features affect the distribution of ∆c̃t+1.

To appreciate the importance of p̃t+1 and the topology of Gn in determining the distribu-

tion of ∆c̃t+1, consider two cases. First, suppose there are no relationships. Then, {ε̃i,t+1}ni=1

is a sequence of i.i.d. Bernoulli random variables and nW̃n,t+1 follows a Binomial distribution.

By the Central Limit Theorem (CLT),
√
n(W̃n,t+1 − q) is normally distributed as n grows

large. Provided the absence of relationships, the matrix p̃t+1 is irrelevant to determining the

distribution of ∆c̃t+1, as the unconditional mean and variance of
√
nW̃n,t+1 are q and q(1−q)

n
,

respectively. Second, suppose every firm has two relationships and each relationship has

propensity p, which does not vary over time. Then, {ε̃i,t+1}ni=1 is a sequence of dependent

Bernoulli random variables and nW̃n,t+1 approximately follows a Binomial distribution if p

is sufficiently small—see Soon (1996). In this case, p affects the distribution of consumption

growth, as the unconditional mean and variance of W̃n,t+1 are approximately π and π(1−π)
n

,

respectively, where π ∈ [0, 1] solves the following equation:

π = q + (1− q)πp (πp+ 2 [p(1− π) + π(1− p)]) .

Despite the fact that W̃n,t+1 is the aggregation of shocks to individual firms, there is

no guarantee that ∆c̃t+1 is normally distributed, as {ε̃i,t+1}ni=1 is a sequence of dependent

Bernoulli random variables in the presence of relationships. Figure 2 illustrates the previous

point. Figure 2(a) depicts a star network in an economy with n = 5 firms, whereas figure 2(b)

depicts the empirical probability density function of W̃n,t+1 for the star network depicted

in figure 2(a). As figure 2(b) shows, the distribution of W̃n,t+1 may differ from a normal

distribution if the elements of the matrix p̃t+1 are sufficiently close to 1. In particular, as

some components in p̃t+1 tend toward one, the distribution of W̃n,t+1 tends to be bimodal.11

11For a large variety of network topologies, simulation shows that the distribution of ∆c̃t+1 may differ
from a normal distribution. In particular, if some elements of the matrix p̃t+1 are sufficiently close to one
and Gn is locally connected—i.e., there is at least one sequence of relationships between any two firms in an
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Despite the existence of relationships—and the convoluted dependencies they may gener-

ate among firm-level shocks—the topology of Gn and matrix p̃t+1 can be restricted so that (1)

the distribution of W̃n,t+1 can be approximated by well-known distributions, and (2) ∆c̃t+1

is normally distributed as the economy grows large. If ∆c̃t+1 is normally distributed, keep-

ing track of temporal changes in the distribution of ∆c̃t+1 is equivalent to keeping track of

temporal changes in averages and standard deviations. Then, the dynamics of consumption

growth can be recast as a version of Hamilton (1989) Markov-switching model. Internet

Appendix B provides conditions under which W̃n,t+1 follows a Poisson distribution when n is

finite and conditions under which W̃n,t+1 follows a normal distribution when n grows large.

III. Asset Pricing

To see what Gn and ζt imply for asset returns, I embed the output correlation structure

generated by the firm network into a standard asset pricing framework. The representative

investor has Epstein-Zin-Weil recursive preferences to account for asset pricing phenomena

that are challenging to address with power utility preferences. The asset pricing restrictions

on the gross return of firm i, R̃i,t+1, are

Et

(
M̃t+1R̃i,t+1

)
= 1, (5)

where M̃t+1 ≡
[
β
(
e∆c̃t+1

)−ρ
] 1−γ

1−ρ
[
R̃a,t+1

] 1−γ

1−ρ
−1

represents the pricing kernel at t+1 and R̃a,t+1

denotes the gross return on aggregate wealth—an asset that delivers aggregate consumption

as its dividend each period.

To solve the model, I look for equilibrium asset prices so that price–dividend ratios

are stationary, as in Mehra and Prescott (1985), Weil (1989), and Kandel and Stambaugh

(1991). Because equilibrium values are time-invariant functions of the state of the economy,

arbitrarily large neighborhood around any given firm—then a non-negligible fraction of firms in the economy
are almost surely affected by negative shocks. Therefore, the distribution of ∆c̃t+1 may exhibit thicker tails
than a normal distribution would.
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which is determined by the state of the vector ζt, index t can be eliminated. Hereinafter,

s ∈ S ≡ {LL,LH,HL,HH} denotes the current state of vector ζ .

The expected gross return of aggregate wealth in the current state is (see Appendix A

for detailed derivations)

E (Ra|s) = eτ(α1 d̄+τσ2
a)
∑

s′∈S

ωs,s′

(
wa

s′ + 1

wa
s

)
E

(
e−τα2W̃n,t+1

∣∣s′
)
, (6)

where wa
s is the current price of aggregate wealth and is the solution of the following system

of equations,

wa
s = βeτ(1−ρ)(τ(1−γ)σ2

a+α1d̄)

(
∑

s′∈S

ωs,s′E

(
e−τ(1−γ)α2W̃n,t+1

∣∣s′
)
(wa

s′ + 1)
1−γ

1−ρ

) 1−ρ

1−γ

.

It follows from the above equations that the expected return and price of aggregate wealth

are affected by (a) aggregate shocks, parameterized by σ2
a, (b) the topology of Gn, which

determines d̄; and (c) the dynamics of ζt, which jointly with Gn, determines the distribution

of W̃n,t+1. The dynamics of ζt, parameterized by Ω, affect the price and the expected return

of aggregate wealth, as Ω determines the persistence of changes in network connectivity.

Next, I consider the risk-free asset, which pays one unit of the consumption good during

the next period with certainty. If Rf (s) denotes the gross return of the risk-free asset in the

current state, then Rf (s) solves

1

Rf (s)
= β

1−γ

1−ρ e−τγ(α1 d̄−τγσ2
a)

(
∑

s′∈S

ωs,s′E

(
eτγα2W̃n,t+1

∣∣s′
)(wa

s′ + 1

wa
s

) ρ−γ

1−ρ

)
. (7)

Therefore, the equilibrium risk-free rate is also driven by aggregate shocks, the topology of

Gn, and the dynamics of ζt, as these three features affect the distribution of W̃n,t+1 and prices

of aggregate wealth.

I now study the cross section of expected asset returns. To do so, it is convenient to

express Gn as the union of connected components, which are sets of firms connected via
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at least one sequence of relationships. If Gi
n denotes the connected component that firm i

belongs to, then Gn can be written as

Gn ≡
⋃

i∈Gn

Gi
n.

Define the following averages,

W̃ i
n,t+1 ≡

1

n


∑

j∈Gi
n

ε̃j,t+1


 and W̃−i

n,t+1 ≡
1

n


 ∑

j∈Gn\Gi
n

ε̃j,t+1


 ,

where W̃ i
n,t+1 represents the average number of firms in Gi

n affected by idiosyncratic shocks

at t+ 1, whereas W̃−i
n,t+1 represents the average number of firms in Gn \ Gi

n (the complement

set of Gi
n) affected by idiosyncratic shocks at t + 1. If vi(s) denotes the current state-price

of firm i, then the expected gross return of firm i is given by

E

(
R̃i,t+1

∣∣s
)

=
e(1/τ)((1/τ)σ

2
a+α1d̄)

vi(s)

(
∑

s′∈S

ωs,s′vi(s
′)E
(
e−(1/τ)α2W̃n,t+1

∣∣s′
))

+
eσ

2
a+α1di

vi(s)

(
∑

s′∈S

ωs,s′E
(
e−α2ε̃i,t+1

∣∣s′
)
)
, (8)

where vi(s) solves

vi(s) = β
1−γ

1−ρ e((1/τ)−γ)2σ2
a+α1((1/τ)−γ)d̄

(
∑

s′∈S

ωs,s′

(
wa

s′ + 1

wa
s

) ρ−γ

1−ρ

E

(
e−((1/τ)−γ)α2W̃n,t+1

∣∣s′
)
vi(s

′)

)

+ β
1−γ

1−ρ e(1+γ2)σ2
a+α1(di−γd̄)

(
∑

s′∈S

ωs,s′πi(s
′)π−i(s

′)

(
wa

s′ + 1

wa
s

) ρ−γ

1−ρ

)
,

with πi(s
′) ≡ E

(
eα2γ(W̃ i

n,t+1
−ε̃i,t+1)

∣∣∣∣s′
)

and π−i(s
′) ≡ E

(
eα2γW̃

−i
n,t+1

∣∣∣∣s′
)
.

To appreciate how firms’ connectivity affects expected returns, suppose all firms have

the same number of relationships and relationships have the same propensity to transmit

idiosyncratic shocks. In this case, the connectivity of any firm is equal to the connectivity
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of any other firm. Consequently, state-prices are equal across firms, as di = d̄, P[ε̃i,t+1 =

1|s] = p, πi = π, and π−i = π′ ∀ i. Therefore, cross-sectional differences in state-prices and

expected returns arise solely from differences in firms’ connectivity.

As shown in (8), firm i’s state-price and expected return are altered by how frequently

other firms are affected by idiosyncratic shocks. To see this effect more clearly, consider

two cases. First, consider firms within the same connected component as firm i. If the

average number of firms affected by idiosyncratic shocks in Gi
n increases, but the likelihood

that ε̃i,t+1 = 1 does not, πi increases and, thus, vi increases. vi increases because firm i is

less vulnerable to idiosyncratic shocks affecting firms within the same connected component.

Consequently, firm i’s expected return decreases as a result of the decrease in exposure to

contagion risk. Second, consider firms in connected components that are different from the

one that firm i belongs to. The higher the average number of firms affected by idiosyncratic

shocks in Gn \Gi
n, the higher π−i and, thus, the higher vi. vi increases because firms in Gi

n are

not vulnerable to idiosyncratic shock affecting firms in Gn \Gi
n and, thus, they serve investors

to improve their portfolio diversification. Consequently, firm i’s expected return decreases

as a result of gains in diversification. Therefore, firms’ expected returns are affected by (a)

firms’ vulnerability to idiosyncratic shocks that affect other firms within the same connected

component and (b) how frequently firms in other connected components are affected by

idiosyncratic shocks.

IV. Calibration

So far, the model illustrates how changes in the propagation of idiosyncratic shocks along

a firm network potentially alter equilibrium asset prices and expected returns. I now calibrate

the model to match several features of supplier–customer networks in the United States and

explore the extent to which the model quantitatively explains asset market phenomena.

Section IV.A describes the data. Section IV.B describes the strategy employed to calibrate
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Gn and ζt. Section IV.C describes the selection of the rest of the parameters in the model.

A. Data

A.1. Material relationships among U.S. public firms

I use annual data on relationships among U.S. public firms and their major customers to

identify material relationships. The Statement of Financial Accounting Standards (SFAS)

No.131 requires public firms to report information about customers who represent more

than 10% of their annual revenues or sales; firms sometimes report customers below the

10% threshold. Reported customers’ information is available on the COMPUSTAT Segment

files. However, sometimes customers’ names are abbreviated inconsistently over time. For

these cases, I use a string-matching algorithm, similar to the one used by Atalay et al. (2011),

which generates a list of potential customers in COMPUSTAT.12 I then select the best match

by inspecting a firm’s name and industry information.

The dataset spans from 1976 to 2016 and consists of 8,779 different public firms. Similar

to Barrot and Sauvagnat (2016), I consider firms i and j to be connected in all years ranging

from the first to the last year that i reports j as one of its major customers. This assumption

yields 66,355 unique annual supplier–customer relationships. Table I reports the distribution

of firms across major industry groups. More than 65% of companies in the sample are

classified as either manufacturing or service firms. Table II reports the evolution of the set

of most connected firms over the sample period. Large manufactures, such as General Motors

and Ford, dominate the early eighties. By the end of the sample, the shift in activity from

manufacturing to retail and services is widespread, with Walmart and Cardinal Health being

the most connected firms. The distribution of firms’ sizes resembles the size distribution

of the CRSP universe, but the size distribution of firms’ customers is tilted toward large

companies, as firms are only required to report customers that represent more than 10% of

12I thank Enghin Atalay for sharing the soundex code used in Atalay et al. (2011).
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their annual revenues or sales.13

A.2. Propensity of relationships

Pivotal for my analysis is identifying the propensity of relationships to transmit idiosyn-

cratic shocks. Unfortunately, propensities of supplier–customer relationships are unobserv-

able. To deal with this issue, I rely on a composite of two measures to proxy for p̃ijt. The

first measure is the percentage of annual sales that customers represent for their suppliers.

The higher the percentage, the more likely it is that shocks affecting a customer also affect

its supplier, other things being equal. The second measure uses information about the speci-

ficity of suppliers, as evidence documented by Barrot and Sauvagnat (2016) suggest that

input specificity is a key driver in the propagation of idiosyncratic shocks along production

networks. Their idea is simple: if supplier i is highly specific, then it is more likely that i is

hard to replace in case of distress and, therefore, the likelihood that shocks affecting i also

affect j is higher, all other things being equal. With these measures at hand, I proxy for p̃ijt

as

p̃ijt = % company i’s sales accounted for by j at t× Specificity of i at t. (9)

Percentages of annual sales are obtained from COMPUSTAT. To measure the specificity

of suppliers, I construct a composite of three measures of input specificity, which I borrow

from Barrot and Sauvagnat (2016).14 Following Barrot and Sauvagnat (2016), I assume that

firms are more likely to produce specific goods if they (a) operate in industries producing

differentiated goods, (b) have high levels of R&D, or (c) hold a large number of patents. I

13Because firms need to be sufficiently large to represent at least 10% of the annual sales of publicly
traded companies, many firms and their relationships are overlooked. As a consequence, one may be able to
construct, in the most favorable case, a network that resembles a sparse representation of the U.S. economy.
To partially ensure that the topology of the benchmark economy provides a fair representation of the U.S.
economy, I compare the topology of the benchmark economy with the topology of networks constructed from
BEA input–output tables. In unreported results, I show that the network in the benchmark economy does
a good job representing some features of the time series of U.S. inter–industry networks and, in doing so,
potentially provides a reasonable representation of the aggregate U.S. economy.

14I thank Julien Sauvagnat for sharing this dataset.
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then compute the specificity of supplier i at t as

Specificity of supplier i at t =

(
Rauch(i,t) + R&D(i,t-2) + Patents(i,t)

3

)
,

where Rauch(i,t) ∈ [0, 1] denotes the share of differentiated goods produced in the industry

of firm i at t according to Rauch (1999)’s classification of differentiated goods. R&D(i,t)

∈ [0, 1] denotes the ratio of R&D expenses to sales of firm i at t−2, as innovations may take

some time to produce changes in the specificity of good i. Patents(i,t) ∈ [0, 1] denotes the

ratio of the number of patents issued by firm i from t − 2 to t to the maximum number of

patents issued by any given firm within firm i’s industry from t− 2 to t.15

A.3. Firm-Level Financial Data

Monthly returns and annual financial data on firms are obtained from the CRSP/COMPUSTAT

Merged Database and COMPUSTAT.16 All continuous variables are winsorized at the 1st

and 99th percentiles of their distributions.

A.4. Summary Statistics

Table III reports summary statistics for the sample. Panel A presents statistics at the

annual level. The average and median percentages of sales that customers represent for their

suppliers are 19% and 14%, whereas the average and median for suppliers’ specificity scores

are 34.2% and 34.9%. The main variable of interest is the propensity of relationships to

transmit idiosyncratic shocks. The average and median for this variable are 11.4% and 4.4%,

respectively. On average, there are eight years between the first and the last year a firm

reports another firm as a major customer.

15 Rauch (1999) classifies inputs into differentiated or homogeneous depending on whether goods are
traded on an organized exchange. Each industry is coded as being either sold on an exchange, reference
priced, or homogeneous. The ratio of R&D expenses to sales aims to capture the importance of relationship
specific investments. The number of patents issued by suppliers aims to capture restrictions on alternative
sources of inputs. For more details about the construction of these measures see Barrot and Sauvagnat
(2016).

16Accessed via Wharton Research Data Service (WRDS).
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To examine the persistence of the above variables, Panel B presents statistics regarding

autocorrelation coefficients computed at the relationship level. The average first and second

autocorrelation coefficients for the percentage of sales that customers represent for their

suppliers are 31.5% and 26.8%, and their medians are 27.3% and 25.7%. The average first

and second autocorrelation coefficients for suppliers’ specificity scores are 29.5% and 23.8%,

with medians of 25.1% and 21.4%. The propensities of relationships are also fairly persistent

as their average first and second autocorrelation coefficients are 29.9% and 24.8%, with

medians of 25.9% and 23%.

B. Uncovering Gn and ζt

B.1. Uncovering Gn

To calibrate Gn, I construct firm networks at an annual frequency over the sample period.

Nodes represent firms and links represent supplier–customer relationships.

Table IV reports averages and standard deviations for key characteristics of U.S. supplier–

customer networks. On average, there are 1,112 firms, 1,109 relationships, and 154 connected

components per network. For illustration, Internet Appendix C depicts the time series of

such networks. As these figures show, U.S. production networks are highly asymmetric in

the sense that only a few firms are connected to many others, while most firms have either

one or at most two connections. The degree distributions of these networks, which measure

the frequency of firms with a given number of customers and suppliers, are highly skewed to

the right. Most importantly, this high asymmetry is fairly persistent.17

I use the U.S. supplier–customer network in 2015 (depicted in figure 3) to pin down

Gn as its topology matches several of the averages reported in Table IV. Thus, there are

17If a power law distribution is fitted to the degree distribution of each network, one obtains

SD(exponent of power law distribution fitted to degree distribution)

Mean(exponent of power law distribution fitted to degree distribution)
=

0.15

2.23
= 6%,

which emphasizes the fact that between 1976 and 2016 the level of asymmetry in U.S. production networks
has been persistently high.
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n = 1, 110 firms, 1, 146 relationships, and 159 connected components in the benchmark

economy. The main results continue to hold if supplier–customer networks of other years are

fed into the benchmark economy, as the asymmetric structure of U.S. production networks

is fairly persistent.

B.2. Uncovering ζt

To calibrate ζt, I use the cross-sectional distributions of propensities
{
{p̃ijt}(i,j)

}2016

t=1976

constructed following equation (9). Using these values, I fit a Beta distribution to each cross

sectional distribution. From this procedure, I obtain a time series of estimates, {ζ∗t }2016t=1976,

which are depicted in figure 4. I then fit a vector autoregressive (VAR) process to the time

series of estimates. After doing so, I discretize the fitted VAR into a four-state Markov chain

using Gospodinov and Lkhagvasuren (2014)’s method and obtain ζ∗1L = 0.67, ζ∗1H = 0.78,

ζ∗2L = 3.24, ζ∗2H = 4.01, and

Ω∗ =




0.57 0.27 0.06 0.05

0.25 0.63 0.02 0.12

0.12 0.02 0.63 0.25

0.05 0.06 0.27 0.57




,

with a stationary distribution given by P(ζ∗LH) = P(ζ∗HL) = P(ζ∗LL) = P(ζ∗HH) = 0.25.

C. Selecting the rest of the parameter values

The rest of the parameters can be separated mainly into two groups. Parameters in the

first group define the preferences of the representative investor, which I select in line with

Bansal and Yaron (2004). Thus, β = 0.997, γ = 10 and ρ = 0.65 (IES ≈ 1.5). Parameters

in the second group define the dynamics of firms’ cash flows, which I proxy with operating

income. I restrict my focus to firms in the supplier–customer database, as relationships

are known only for such firms. With these restrictions, I use the following regressions to
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determine α1. First, I run the following OLS regressions,

log

(
operating incomei,t+1∑

j operating incomej,t

)
= Controls+ ǫat+1 + ǫindi + ǫzi,t+1 (10)

where ǫat+1 and ǫindi capture year and industry fixed effects, respectively. Controls include

lagged values for firms’ assets, age, and return on assets, to ensure that variation in the error

term ǫzi,t+1 is not driven by trends in large, young, or profitable firms. Second, I run the

following regressions at the annual frequency,

ǫ̂zi,t = β0 + β1di + ǫεi,t,

where ǫ̂zi,t+1 are the residuals obtained from regression (10). I set α1 = 0.3 so that α1 equals

the average annual estimate of β1 over the sample. I set α2 = 0.3 and q = 0.1 so that the

unconditional mean and volatility of consumption growth generated by the model are similar

to the ones found in the data. I use annual data on Total Factor Productivity (TFP) growth

from the Federal Reserve Bank of San Francisco to determine the volatility of aggregate

shocks, σa. I set σa = 1.7 so that σa equals the annual volatility of TFP growth. Finally, I

follow Bansal and Yaron (2004) and set τ = 1/3. Table V summarizes the key parameter

values in the calibrated model.

V. Implications of the Calibrated Model

This section quantitatively evaluates the ability of the calibrated model to rationalize

features of stock returns. It shows that changes in the propagation of idiosyncratic shocks,

within a firm network that captures key characteristics of U.S. supplier–customer networks,

are important to understanding variations in stock returns in both the aggregate and the

cross section. Section V.A shows that the model generates long-run consumption risks. Sec-

tion V.B shows that the model also matches cross-sectional patterns of portfolio returns
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sorted by network centrality. Internet Appendix D describes the methodology used to simu-

late the model.

A. Firm Networks and Long-Run Risks

Table VI exhibits moments generated under the benchmark parameterization. By con-

struction, the benchmark economy delivers annual averages and volatilities of consumption

and dividend growth similar to those found in the data. It also delivers an average market

return of 12.3%, an annual volatility of the market return of 19.5%, an average risk-free rate

of 2.16%, an annual volatility of the risk-free rate of 1.8%, an annual equity premium of 10%,

and an average Sharpe ratio of 0.51. With the exception of the volatility of the risk-free rate

and Sharpe ratio, all values are aligned with those found in the data.

Besides matching the above moments, the calibrated model generates a persistent com-

ponent in expected consumption growth and stochastic consumption volatility similar to

those assumed by the long-run risks (LRR) model of Bansal and Yaron (2004). As Bansal

and Yaron (2004) and Bansal et al. (2012) show, these two features, together with Epstein-

Zin-Weil preferences, help quantitatively explain an array of important asset market phe-

nomena.18 Table VII reports summary statistics of several similarity measures of time series

generated with either the calibrated model or the LRR model. To compute averages and

standard deviations, I sample from the calibrated model and the LRR model to construct two

distributions for each similarity measure: one for expected consumption growth, Et [∆c̃t+1],

and one for the conditional volatility of consumption growth, Volt [∆c̃t+1]. Reported values

are based on 300 simulated economies over 620 periods. The first 100 periods are disregarded

to eliminate any bias coming from the initial condition. As table VII suggests, both models

generate similar time series for conditional expected consumption growth and conditional

18Since Bansal and Yaron (2004), several authors have used the long-run risk framework to explain an
array of market phenomena. For instance, Kiku (2006) provides an explanation of the value premium within
the long-run risks framework. Drechsler and Yaron (2011) show that a calibrated long-run risks model
generates a variance premium with time variation and return predictability that is consistent with the data.
Bansal and Shaliastovich (2013) develop a long-run risks model that accounts for bond return predictability
and violations of uncovered interest parity in currency markets.
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consumption volatility.

It is important to appreciate that the persistent component in expected consumption

growth and stochastic consumption volatility are endogenously generated rather than ex-

ogenously imposed, as in many asset pricing models. The calibrated model generates these

two features for two reasons: (1) relationships are long-lasting, and (2) the four parameter

vectors estimated from the data, ζ∗LL, ζ
∗
LH , ζ

∗
HL, and ζ∗HH , generate similar cross-sectional

distributions of {p̃ijt}(i,j)∈Gn
, as figure 5 shows. Consequently, the connectivity of the firm

network is fairly stable over time and, thus, the propagation mechanism of idiosyncratic

shocks changes infrequently in the benchmark economy. These infrequent changes generate

low-frequency movements in firms’ growth prospects which, in turn, generate a persistent

component in aggregate output and expected consumption growth.

Changes in the propagation mechanism of idiosyncratic shocks are infrequent because

in the data firms tend to engage in enduring and stable relationships with their major

customers. For instance, on average, relationships with major customers last more than

eight years. The interdependency of such relationships generates long-term interdependencies

among firms’ cash-flow growth rates, fundamentally driving low-frequency movements in

aggregate output growth. These low-frequency movements generate persistent changes in

aggregate consumption growth in equilibrium. In such an economy, an idiosyncratic shock

to a firm has the potential to affect not only the current cash flow growth of all neighboring

firms, but also the long-term growth prospects of all such firms, enhancing the temporal

effect of idiosyncratic shocks.

While the model endogeneously generates long-run consumption risks, it does not provide

a complete micro-foundation of such risks because of the exogenous determination of the

relationship structure. Nonetheless, the model provides a novel link between asset returns

and firm networks and suggests that changes in the propagation mechanism of idiosyncratic

shocks in fairly sticky production networks are quantitatively relevant to understanding asset

market phenomena.
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B. Firms’ Centrality and the Cross Section of Risk Premiums

Besides endogenizing long-run consumption risks, the model helps in understanding the

cross section of expected returns as it provides a mapping between firms’ quantities of priced

risk and firms’ importance in the network. To measure the importance of a firm in the

network, I define the centrality of firm i at period t as the average number of firms that

can be affected by an idiosyncratic shock to firm i at t. This measure captures the relative

importance of firm i in propagating idiosyncratic shocks at t. Because the cross-sectional

distribution of {p̃ijt}(i,j)∈Gn
changes over time, firms’ centrality scores change over time as

well.

To quantitatively assess the effect of a firm’s importance in the network on a firm’s risk–

return trade off, I simulate the benchmark economy at a monthly frequency and construct

portfolios based on centrality. Firms are assigned into centrality deciles once per year, and

the value-weighted portfolios are not rebalanced for the next 12 months. This exercise

reveals that a portfolio that is long the lowest centrality decile portfolio and short the highest

centrality decile portfolio generates a statistically significant return of 0.8% per month. Such

a return is computed using 200 simulated economies over 1100 monthly observations. I

disregard the first 100 observations in each simulation to eliminate any potential bias coming

from the initial condition.

The above result is explained by the fact that relationships of peripheral firms in the

calibrated model (as in data) tend to exhibit higher propensities than relationships of central

firms.19 Consequently, peripheral firms tend to have higher exposure to idiosyncratic shocks

affecting their neighbors. On average, such contagion risk outweighs the potential benefits

peripheral firms receive from their few relationships and, thus, peripheral firms command

higher risk premiums than central firms. Central firms, however, seem to benefit from

diversification of their neighbors as their relationships exhibit, on average, small propensities.

19Empirical support for this fact can be found if one plots propensity versus centrality of relationships
for each annual U.S. supplier–customer network. These plots are depicted in Internet Appendix E.
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As a result, their contagion risk is outweighed by the benefits generated by their many

relationships.

Table VIII shows that the calibrated model generates a realistic spread between low and

high centrality portfolios as the average monthly return difference between low and high

centrality portfolios for firms in the database is 0.82% (with a t-statistic of 4.06). Table

VIII reports monthly average raw returns, alphas and loadings from the five–factor model

of Fama and French (2015) for two portfolios of stocks sorted by annual centrality as well as

the portfolio that is long the lowest centrality decile and short the highest centrality decile.

As table VIII suggests, there is a significant negative relation between firms’ centrality

and future returns in the data that cannot be captured by standard asset pricing models such

as the five-factor model. Firms in the lowest centrality decile command an average monthly

return of 2.28%, whereas firms in the highest centrality decile command an average monthly

return of 1.45%. The 0.82% monthly difference in returns between these two portfolios is

economically and statistically significant and appears naturally in an equilibrium context as

a compensation for contagion risk.20

VI. Conclusion

This paper studies the asset pricing properties that stem from the propagation of idiosyn-

cratic shocks along firm networks. The fundamental insight of this paper is that extending

standard asset pricing models to take into account how idiosyncratic shocks propagate along

firm networks can make significant progress toward generating a unifying framework that

simultaneously captures dynamics of the aggregate and the cross section of stock returns.

A calibrated model that matches key features of supplier–customer networks in the United

States generates long-run consumption risks, high and volatile risk premiums, and a low

20If one focuses on manufacturing and service firms—as they jointly represent more than 65% of firms in
the dataset—the results tend to be stronger, which is consistent with empirical evidence documented by Wu
and Birge (2014). See the tables in Internet Appendix E, which report results on manufacturing and service
firms.
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and stable risk-free rate. In the model, low-frequency changes in the shock propagation

mechanism endogenously generate persistence in firms’ growth prospects which, in turn,

drives a small but persistent component in expected aggregate consumption growth. With

investors with preference for early resolution of uncertainty, sizable risk premiums arise

because investors fear that extended periods of low economic growth coincide with low asset

prices. Similarly, a small risk-free rate is driven by investors saving for long periods of low

economic growth.

Additionally, the model helps in understanding the cross section of expected returns, as

it provides a mapping between firms’ quantities of priced risk and firms’ importance in the

network. In the calibrated economy, firms that are more central in the network command

lower risk premiums than firms that are less central: Central firms tend to benefit from

the diversification of their neighbors and, thus, they mitigate contagion risk better than

peripheral firms.
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Appendix A. Mathematical Derivations

This section contains the derivations of formulas in the body of the paper. Let st denote the state

of the parameter vector ζt. Because the firm network is fixed, st determines the equilibrium distribution

of aggregate consumption growth at t. Because ζt follows a Markov process, the distribution of aggregate

consumption growth varies over time and the dynamics of its moments satisfy the Markov property.

Price and Expected Return of Aggregate Wealth: I look for an equilibrium such that price-

dividend ratios are stationary. I conjecture that if c is the current aggregate consumption and s the current

state of ζt, then Pa(c, s) = wa
sc, in which Pa is the price of aggregate wealth and wa

s is a number that

depends on state s. If st = s and st+1 = s′, the realized gross return at period t+1 of the asset that delivers

aggregate consumption as its dividend each period, R̃a,t+1, equals

R̃a,t+1 =
P̃a,t+1 + Ct+1

Pa,t
=

wa
s′ + 1

wa
s

Ct+1

Ct
.

Setting R̃i,t+1 = R̃a,t+1 in equation (5) yields

Et



[
β

(Ct+1

Ct

)−ρ
] 1−γ

1−ρ [
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] 1−γ
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Because st follows a Markov process, the above equation can be rewritten as
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Reordering the above equation yields
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Risk-free Asset: Setting R̃i,t+1 = Rf in equation (5) yields
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Because st follows a Markov process and Pa(c, s) = wa
s c, the left-hand side of the above equation can be

rewritten as
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Firm i’s Expected Return: Consider st = s and st+1 = s′. Equation (5) can be rewritten as

Pi,t = Et

(
M̃t+1

(
P̃i,t+1 + yi,t+1

))
i = 1, · · · , n (A3)
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represents the pricing kernel. Dividing equation (A3) by Yt yields
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which can be rewritten as
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with vi,t ≡ vi(s) ≡ Pi,t

Yt
. Because st follows a Markov process and Pa(c, s) = wa

s c, the first term in the

right-hand side of equation (A4) can be rewritten as
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whereas the second term in the right hand side of equation (A4) can be rewritten as
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The expectation term in the right hand side of the above equation can be written as
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As a consequence,
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To solve for the second expectation in the right-hand side of the above equation, it is convenient to express

Gn as a set of connected components. If Gi
n denotes the connected component that firm i belongs to, then

Gn can be written as
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Define the following averages,
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where W̃ i
n,t+1 represents the average number of firms in Gi

n that face firm-level shocks at t + 1, whereas

W̃−i
n,t+1 represents the average number of firms in Gn \Gi

n that face firm-level shocks at t+1. Because W̃ i
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n,t+1 are independent,
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Therefore,
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Using the above computations, the expected one-period gross return of firm i is given by
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Appendix B. Tables and Figures

This section contains tables and figures mentioned in the body of the paper.

Table I

Major Industry Groups

The table reports the distribution of firms across major industry groups in the dataset. Major industry

groups are defined by the first two digits of firms’ SIC codes.

Industry Number of firms

Agriculture, forestry, and fishing 31
Construction 94
Finance, insurance, and real estate 569
Manufacturing 4275
Mining 588
Retail 345
Service 1598
Transportation, communications, electric, gas, and sanitary 881
Wholesale 290
Nonclassifiable establishments 108
Total 8,779
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Table II

Most Connected Firms

The table reports the average number of relationships—considering customers and suppliers—of the five most

connected firms in the following five-year intervals: 1976–1980, 1981–1985, 1986–1990, 1991–1995, 1996–2000,

2001–2005, 2006–2010, and 2011–2015.

1976 to 1995

1976–1980 1981–1985 1986–1990 1991–1995

Name N Name N Name N Name N

General Motors 290 General Motors 393 General Motors 395 Walmart 446
Ford 157 IBM 226 AT&T 373 AT&T 437
Sears Roebuck 106 AT&T 206 IBM 303 General Motors 377
JC Penney 90 Ford 191 Ford 237 IBM 344
Sears Holdings 76 Sears Roebuck 184 Chrysler 143 Ford 334

1996 to 2015

1996–2000 2001–2005 2006–2010 2011–2015

Name N Name N Name N Name N

Walmart 525 Walmart 585 Walmart 570 Walmart 555
General Motors 305 General Motors 259 Cardinal Health 180 Cardinal Health 187
Ford 275 Ford 200 Mckesson 154 Amerisourcebergen 155
AT&T 270 Daimler 185 Amerisourcebergen 139 Mckesson 144
IBM 253 Home Depot 134 AT&T 135 AT&T 144
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Table III

Descriptive Statistics

The table reports descriptive statistics for the sample. The sample contains 8,779 different firms and 17,322

supplier–customer relationships among different pairs of firms from 1976 to 2016. These relationships rep-

resent 66,355 unique annual linkages. Panel A reports summary statistics at the annual level for (a) the

percentage of sales that customers represent for their suppliers, (b) the specificity of suppliers, (c) the Rauch

(1999)’s score, (d) the R&D’s score, (e) the patent’s score, (f) p̃ijt, and (g) the duration of relationships in

years. Panel B present summary statistics at the relationship level. |AC1| and |AC2| report the first and

second autocorrelation coefficients of: (a) the percentage of sales that customers represent for their supplier,

(b) the specificity of suppliers, and (c) the propensity of relationships. In Panels A and B, column Obs

denotes the number of non–missing observations used to compute summary statistics. Summary statistics

are in percentages; with the exception of duration. All continuous variables are winsorized at the 1st and

99th percentiles of their distributions.

Panel A: Annual level

Obs Mean 25th Per. Median 75th Per. Min Max
% of sales 53,620 19.0 9.8 14.0 22.6 0.6 95.0
Specificity of suppliers 62,447 34.2 0.0 34.9 50.2 0.0 100
Rauch’s score 60,904 56.6 0.0 100 100 0.0 100
R&D score 26,897 10.0 1.0 4.0 14.0 0.0 78.1
Patent score 43,967 13.1 0.0 0.0 6.3 0.0 100
p̃ijt 65,232 11.4 0.0 4.4 12.1 0.0 100
Duration 66,355 8.37 3 6 12 1 39

Panel B: Relationship level

Obs Mean 25th Per. Median 75th Per. Min Max
|AC1| % of sales 6,411 31.5 11.9 27.3 49.9 0.0 92.8
|AC2| % of sales 6,336 26.8 12.0 25.7 41.3 0.0 85.2
|AC1| specificity 5,032 29.5 13.3 25.1 44.8 0.0 90.1
|AC2| specificity 5,017 23.8 9.4 21.4 34.3 0.0 77.5
|AC1| p̃ijt 6,057 29.9 11.4 25.9 46.3 0.0 94.1
|AC2| p̃ijt 6,061 24.8 10.2 23.0 37.7 0.0 84.9
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Table IV

Characteristics of Supplier–Customer Networks

The table reports characteristics of supplier–customer networks generated at an annual frequency from 1976

to 2016. Firms i and j are connected in the network of year t if firm i (j) reports j (i) as a principal

customer. The number of connected components per network is computed via a depth-first search algorithm

as in Tarjan (1972). The benchmark column reports the characteristics of the network in the benchmark

economy.

Characteristic Mean Standard Deviation Benchmark

Number of firms per supplier–customer network 1,112 365 1,110
Number of relationships per supplier–customer network 1,109 393 1,146
Average number of suppliers per firm 0.98 0.06 1.03
Average number of suppliers and customers per firm 1.96 0.13 2.06
Number of connected components per network 154 43 159

Table V

Benchmark Parameterization

The table reports the list of parameter values in the benchmark parameterization. Parameters in the first

group define the preferences of the representative investor: β represents the time discount factor, γ represents

the coefficient of relative risk aversion for static gambles, and ρ represents the inverse of the inter-temporal

elasticity of substitution. Parameters in the second group describe firms’ cash flows: σa measures the

volatility of aggregate shocks, α1 measures the marginal benefits a firm receives from each relationship, and

α2 measures the decrease in a firm’s cash-flow growth if that firm is affected by a negative firm-level shock.

Parameters in the third group define the stochastic process that determines the propagation of firm-level

shocks. Parameter q measures how frequently firms face negative idiosyncratic shocks. The rest of parameters

define the cross sectional distribution from which propensities of relationships are drawn: ζ1L, ζ1H , ζ2L, and

ζ2H .

Preferences Firms’ cash flows Propagation of shocks

β γ ρ σa α1 α2 ζ1L ζ1H q ζ2L ζ2H
0.997 10 0.65 1.7 0.03 0.3 0.67 0.78 0.1 3.24 4.01
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Table VI

Moments under the Benchmark Parameterization

The table reports the first two moments of consumption and dividend growth as well as a set of key asset

pricing moments. Column Data reports moments found in the data. Column Model reports moments

generated under the benchmark parameterization described in Table V. Column BY2004 reports moments

generated under the long-run risks model of Bansal and Yaron (2004). Data on consumption and dividends

are obtained from Robert Shiller’s website http://www.econ.yale.edu/ shiller/data.htm. Moments on the

return on aggregate wealth, risk-free rate, equity premium, and Sharpe ratio are based on data from 1928

to 2014 and obtained from Aswath Damodaran’s website: http://pages.stern.nyu.edu/∼adamodar/. The

annual return on aggregate wealth is approximated by the annual return of the S&P 500. The return on the

risk-free asset is approximated by the yield on three-month T-bills. All values are in percentages with the

exception of average Sharpe ratios.

Moments Data Model BY2004

Average annual log of consumption growth rate 1.9 1.9 1.8
Annual volatility of log consumption rate 3.5 3.5 2.8
Average annual log dividend growth rate 3.8 3.8 1.8
Annual volatility of the log dividend growth rate 11.63 11.9 12.3
Average annual market return (S&P 500) 11.53 12.3 7.2
Annual volatility of the market return 19 19.5 19.42
Average annual risk-free rate (3-month T-bill) 3.53 2.16 0.86
Annual volatility of risk-free rate 3 1.8 0.97
Average annual equity risk premium 8 10 6.33
Average annual Sharpe ratio 0.4 0.51 0.33
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Table VII

Similarities between the calibrated model and the LRR model

The table reports averages and standard deviations of similarity measures between time series generated

with either the calibrated model or the benchmark parameterization in the LRR model of Bansal and Yaron

(2004). To compute averages and standard deviations, I sample from the calibrated model and the LRR

model to construct two empirical distributions for each similarity measure: one for expected consumption

growth, Et [∆c̃t+1], and one for the conditional volatility of consumption growth, Volt [∆c̃t+1]. Reported

values are based on 300 simulated samples over 620 periods. The first 100 periods in each sample are

disregarded to eliminate bias coming from the initial condition. All similarity measures report scores com-

puted as 1
1+distance

, where distance is defined according to each similarity measure. Let XT = (X1, · · · , XT )

and YT = (Y1, · · · , YT ) denote realizations from two time series, X = {Xt} and Y = {Yt}. The first

and second similarity measures focus on the proximity between X and Y at specific points of time. The

euclidean distance (ED) is defined as
√∑T

t=1(Xt − Yt)2, whereas the dynamic time warping (DTW) dis-

tance is defined as minr (
∑m

i=1 |Xai
− Ybi |), where r = ((Xa1

, Yb1), · · · , (Xam
, Ybm)) is a sequence of m pairs

that preserves the order of observations, i.e., ai < aj and bi < bj if j > i. DTW seeks to find a map-

ping such that the distance between X and Y is minimized. This way of computing distance allows two

time series that are similar but locally out of phase to align in a nonlinear manner. The third measure

focuses on correlation-based distances. It uses the partial autocorrelation function (PACF) to define the

distance between time series. In particular, distance is defined as
√
(ρ̂Xt

− ρ̂Yt
)′Ω(ρ̂Xt

− ρ̂Yt
), where Ω is

a matrix of weights, whereas ρ̂Xt
and ρ̂Yt

are the estimated partial autocorrelations of X and Y , respec-

tively. The fourth and fifth measures assume that a specific model generates both time series. The idea is

to fit the specific model to each time series and then measure the dissimilarity between the fitted models.

The fourth measure computes the distance between two time series as the ED between the truncated AR

operators. In this case, distance is defined as
√∑k

j=1(ej,Xt
− ej,Yt

)2, where eXt
= (e1,Xt

, · · · , ek,Xt
) and

eYt
= (e1,Yt

, · · · , ek,Yt
) denote the vectors of AR(k) parameter estimators for X and Y , respectively. The

fifth measure computes dissimilarity between two time series in terms of their linear predictive coding in

ARIMA processes, as in Kalpakis et al. (2001). The last measure defines distance based on nonparametric

spectral estimators. Let fXT
and fYT

denote the spectral densities of XT and YT , respectively. The dissim-

ilarity measure is given by a nonparametric statistic that checks the equality of the log-spectra of the two

time series. It defines distance as
∑n

k=1

[
Zk − µ̂(λk)− 2 log(1 + eZk−µ̂(λk))

]
−∑n

k=1

[
Zk − 2 log(1 + eZk)

]
,

where Zk = log(IXT
(λk)) − log(IYT

(λk)), and µ̂(λk) is the local maximum log-likelihood estimator of

µ(λk) = log(fXT
(λk)) − log(fYT

(λk)) computed with local lineal smoothers of the periodograms. All simi-

larity measures are computed using the R package TSclust (see Montero and Vilar (2014)).

Et [∆c̃t+1] Volt [∆c̃t+1]
Similarity Measure Mean Standard Deviation Mean Standard Deviation

ED 0.99 0.02 0.96 0.01
DTW 0.74 0.10 0.75 0.12
PACF 0.80 0.04 0.78 0.05
ED in AR 0.90 0.12 0.93 0.11
Linear predictive in ARIMA 0.77 0.34 0.75 0.33
Spectral distance 1.00 0.00 1.00 0.00
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Table VIII

Performance of Centrality Portfolios

The table reports monthly average raw returns, alphas and loadings from the five-factor model of Fama and

French (2015) for three portfolios constructed by sorting stocks based on centrality: a portfolio that holds

stocks on the lowest decile of centrality (Low), a portfolio that holds stocks on the highest decile of centrality

(High), and a portfolio that is long on stocks on the lowest decile and short on stocks on the highest decile of

centrality (Low - High). The bottom row provides the t-statistics for the low minus high portfolio. Firms are

assigned into deciles at the end of October every year and the value-weighted portfolios are not rebalanced

for the next 12 months. The sample is from June 1976 to December 2016. Raw returns and alphas are in

percent.

Raw 5-Factor Model
Decile Return Alpha MKT SMB HML RMW CMA
Low 2.28 1.38 0.98 0.41 -0.27 -0.47 0.06
High 1.45 0.55 0.94 -0.23 -0.07 -0.06 0.10
Low - High 0.82 0.43 0.05 0.64 -0.20 -0.40 -0.02
t-statistic [4.06] [2.49] [1.22] [10.49] [-2.58] [-4.84] [-0.21]
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Figure 2. The figure illustrates how changes in the propensity of inter-firm relationships to transmit shocks at t, p̃t, affect
the distribution of W̃n,t. Figure 2(a) depicts an economy with n = 5 firms, whereas figure 2(b) depicts estimates of the density

function of W̃n,t for different values of p̃t. These estimates are computed via normal kernel smoothing estimators using function
ksdensity(·) in MATLAB.
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Figure 3. The figure shows the customer-supplier network in the benchmark parameterization.
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Figure 4. The figure shows annual estimates of parameters ζ1 and ζ2. I obtain these estimates by fitting Beta distributions to
the annual link weight distributions using maximum likelihood.
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This internet appendix contains supporting results, tables, and figures to supplement the analysis in

the paper “Firm Networks and Asset Returns.” Section A presents an equilibrium network model where

production is explicitly modeled. Section B provides conditions under which W̃n,+1 follows a Poisson or

Normal distribution. Section C depicts the time series of U.S. supplier–customer networks over the sample

period. Section D provides a description of the algorithm used to simulate the model. Section E presents

figures that depict the propensity versus centrality of relationships in U.S. supplier–customer networks as

well as tables that support the cross–sectional results of the paper.

A. A Production-Based Equilibrium Network Model

The model embeds a variant of the multisector models of Long and Plosser (1983) and Acemoglu et al.

(2012) into a standard asset pricing model with investors with Epstein-Zin-Weil preferences. Section A.A

describes the production side of the economy. Section A.B describes investors preferences. Section A.C

defines the equilibrium. Section A.D examines the equilibrium distribution of consumption growth. Using

approximate analytical solutions, section A.E analyzes the asset pricing implications of changes in the prop-

agation of idiosyncratic shocks along a firm network. Section A.F presents the results of a simple calibration

exercise to check whether the cross-sectional results obtained in the paper can be supported by a calibrated

version of the production-based network equilibrium model.

A. Production

Consider an economy with n different perishable goods and an infinite time horizon, with n being po-

tentially large. Time is discrete and indexed by t ∈ {0, 1, 2, · · · }. Goods are produced using both labor and

intermediate inputs. Each good is potentially used as an input in the production of every other good. There

are n different competitive sectors, each populated by a large number of identical, infinitely lived firms that

are aggregated into a representative firm. Within each period, representative firm i produces good i, with

i ∈ {1, 2, · · · , n}. Representative firms, henceforth referred to as firms, buy inputs and produce at the same

time. There is one share per firm.

Firms use Cobb-Douglas technologies with constant returns to scale. Firm i’s output at period t, denoted

∗Board of Governors of the Federal Reserve System. The information in this manuscript represents the view of the author,
and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or other members
of its staff. E-mail: carlos.ramirez@frb.gov.
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by yit, is given by

yit ≡ (atzitlit)
χ

n∏

j=1

y
(1−χ)wij
ijt , with

n∑

j=1

wij = 1,

where log (at)
d−→ i.i.d. N (0, σ2

a) is an aggregate productivity shock at period t, zit is a productivity shock

to firm i at period t, lit is the amount of labor hired by firm i at period t, and yijt is the amount of good j

used in the production of good i at period t. Parameter χ ∈ (0, 1) represents the share of labor. Parameter

wij denotes the share of good j used in the production of good i.

Let pit denote the price of good i at period t. Taking input prices as given, firms choose how much

labor and inputs to buy to maximize per-period profits. For simplicity, firms’ choice of labor is deliberately

normalized to 1.1 Thus, at period t firm i solves

πi,t ≡ max
{yijt}

n
j=1

, lit
pityit −

n∑

j=1

pjtyijt

st. lit = 1.

where πi,t denotes the dividend of firm i at t.

A.1. The firm network and firm-level productivity shocks

If firm-level productivity shocks are independent across firms, as in Acemoglu et al. (2012), they affect

downstream production only via changes in production costs.2 For example, if firm i faces a negative

productivity shock at period t, its production decreases and its output price increases, which, in turn,

increases production costs in all firms that (directly or indirectly) use good i as an input in period t. However,

if firm-level productivity shocks are dependent across firms, they affect downstream production not only via

changes in production costs but also via changes in firms’ productivity.

I assume that the dependence structure among shocks to firm-level productivity growth is determined by

a firm network. In particular, ∆zi,t+1 ≡ log
(
zi,t+1

zi,t

)
follows

∆zi,t+1 = α1di − α2ε̃i,t+1 , i ∈ {1, · · · , n} ,

where parameters α1 and α2 are non-negative and equal across firms. Parameter di represents the number

of relationships of firm i. Uncertainty on ∆zi,t+1 is introduced by ε̃i,t+1 which equals one if firm i is affected

by a negative firm-level productivity shock at period t+ 1 and zero otherwise.

The distribution of ε̃i,t+1 is determined as in the baseline model. Similarly, propensities {p̃ij,t+1}(i,j) are
drawn from a Beta distribution with parameters ζ1,t+1 > 0 and ζ2,t+1 > 0, which are drawn prior to drawing

from the Beta distribution at period t + 1. The shape parameter vector ζt ≡ [ζ1t ζ2t] follows a four-state

ergodic Markov process with transition matrix Ω.

1The main results continue to hold if a competitive labor market is introduced.
2In principle, firm-level productivity shocks would also affect upstream demand, as they not only change a firm’s output,

but also change the amount of input needed to produce any given level of output. Shea (2002) shows that these two effects
cancel out with Cobb-Douglas technologies.
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B. Representative Investor

The economy is populated by a large number of identical, infinitely lived individuals who are aggregated

into a representative investor. The representative investor owns all assets in the economy and is endowed with

n units of labor each period. The representative investor does not benefit from leisure and her preferences

are defined over the following consumption bundle:

Ct ≡
n∏

i=1

c
1/n
i,t ,

where ci,t denotes her consumption of good i at period t. The representative investor has Epstein-Zin-Weil

preferences and, hence,

Ut =

[
(1− β)C1−ρ

t + βEt

[
U1−γ
t+1

] 1−ρ
1−γ

] 1
1−ρ

represents her utility at period t. Parameter ρ > 0, ρ 6= 1, represents the inverse of the inter-temporal

elasticity of substitution (IES), γ > 0 is the coefficient of relative risk aversion for static gambles, and β > 0

measures the subjective discount factor under certainty.

The representative investor’s budget constraint is given by

n∑

i=1

pitcit +
n∑

i=1

(vit − πit)φi,t+1 =
n∑

i=1

vitφi,t

where vi,t denotes the cum-dividend value of firm i at t, and φi,t denotes the number of shares of firm i

owned by the representative investor at the beginning of t (determined at t− 1).

C. Competitive Equilibrium

DEFINITION 1: A competitive equilibrium of the economy at period t consists of spot prices (p∗1t, · · · , p∗nt),
a consumption bundle C∗

t =
(
c∗1,t, · · · , c∗n,t

)
, and quantities

(
φ∗i,t, l

∗
it, y

∗
it,
{
y∗ijt
}
j

)
i=1···n

such that: (a) each

firm maximizes per-period profits, (b) the representative investor maximizes utility, and (c) labor and good

markets clear; that is,

y∗it = c∗i,t +
n∑

j=1

y∗jit, ∀i,

n∑

i=1

l∗it = n,

φ∗i,t = 1, ∀i.

D. Equilibrium Consumption Growth

The first-order conditions of firm i imply

y∗ijt =

(
pit
pjt

)
(1 − χ)wijy

∗
it.
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Substituting these values into the market clearing condition yields

y∗it = c∗i,t +
n∑

j=1

(
p∗jt
p∗it

)
(1− χ)wjiy

∗
jt

= c∗i,t (1 + q∗it)

where q∗it ≡ (1− χ)
∑
n
j=1

p∗jtwjiy
∗

jt

p∗
it
c∗
i,t

. Thus,

log (y∗it) = log
(
c∗i,t
)
+ log (1 + q∗it)

= log
(
c∗i,t
)
+ q∗it −

1

2
(q∗it)

2
+

1

3
(q∗it)

3
+ · · ·

Consequently,

log

(
y∗it+1

y∗it

)
= log

(
c∗i,t+1

c∗i,t

)
+ (q∗it+1 − q∗it)−

1

2
(
(
q∗it+1

)2 − (q∗it)
2
) +

1

3
(
(
q∗it+1

)3 − (q∗it)
3
) + · · ·

= log

(
c∗i,t+1

c∗i,t

)
+ (q∗it+1 − q∗it)

{
1− 1

2
(q∗it+1 + q∗it) +

1

3
((q∗it+1)

2 + q∗it+1q
∗
it + (q∗it)

2) + · · ·
}
.

Because φ∗i,t = 1 at equilibrium, the representative investor’s budget constraint implies c∗i,t = χy∗i,t when

equilibrium prices are different from zero. As a consequence, the second term in the right-hand side of the

previous equation is zero. Hence,

1

n

n∑

i=1

log

(
y∗it+1

y∗it

)
=

1

n

n∑

i=1

log

(
c∗i,t+1

c∗i,t

)

at equilibrium.

Now, I express 1
n

∑n
i=1 log

(
y∗it+1

y∗
it

)
as a function of the propagation of idiosyncratic shocks along the

network. Taking the logarithm of y∗i,t and using the first-order conditions of firm i into firm i production

function yields

log(y∗i,t) = χ log(atzi,t) + (1− χ)
n∑

j=1

wij

{
log

(
p∗i,t
p∗j,t

)
+ log(1 − χ) + log(wij) + log(y∗i,t)

}
.

Provided that
∑n
j=1 wij = 1, the above expression can be reduced to

log(y∗i,t) = log(atzi,t) +

(
1− χ

χ

)


n∑

j=1

wij log

(
p∗i,t
p∗j,t

)
+

(
1− χ

χ

)
log(1− χ)

+

(
1− χ

χ

)∑

j=1

wij log(wij).

Therefore, log
(
y∗i,t+1

y∗
i,t

)
can be rewritten as

log

(
y∗i,t+1

y∗i,t

)
= log

(
at+1

at

)
+ log

(
zi,t+1

zi,t

)
+

(
1− χ

χ

)


n∑

j=1

wij

{
log

(
p∗i,t+1

p∗j,t+1

)
− log

(
p∗i,t
p∗j,t

)}
 .
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To simplify the above expression, I use the following normalization on spot prices

n∏

i=1

n∏

j=1

(
p∗i,t
p∗j,t

)wij
= 1, ∀t.

Using the above price normalization and summing over all firms yields

1

n

n∑

i=1

log

(
y∗i,t+1

y∗i,t

)
= log

(
at+1

at

)
+

1

n

n∑

i=1

log

(
zi,t+1

zi,t

)
.

As a result, ∆c̃t+1 ≡ log
(

C∗

t+1

C∗

t

)
equals

∆c̃t+1 = log




n∏

i=1

(
c∗i,t+1

c∗i,t

)1/n



=
1

n

n∑

i=1

log

(
y∗it+1

y∗it

)

= log

(
at+1

at

)
+

1

n

n∑

i=1

log

(
zi,t+1

zi,t

)

= log

(
at+1

at

)

︸ ︷︷ ︸
+α1

(
1

n

n∑

i=1

di

)

︸ ︷︷ ︸
−α2

(
1

n

n∑

i=1

ε̃i,t+1

)

︸ ︷︷ ︸

= ∆at+1 + α1 d̄ − α2 W̃n,t+1 ,

where ∆at+1 denotes innovations to aggregate TFP and d̄ denotes the average number of relationships per

firm, and W̃n,t+1 denotes the average number of firms affected by negative shocks to firm-level productivity

growth at period t + 1. Consequently, innovations to consumption growth are driven by either innovations

in aggregate productivity or innovations in W̃n,t+1 as in the baseline model; see equation (4).

E. Equilibrium Asset Pricing

Although the model is solved numerically, the mechanisms working at equilibrium are shown via ap-

proximate analytical solutions. I first derive approximate equalities among variables of interest using log

linearizations. I then use those equalities to explore the equilibrium asset pricing implication of changes in

the propagation of idiosyncratic shocks along the network.

E.1. Approximate Equalities

Let Yt ≡
∏n
i=1 y

1/n
i,t . Define

gi,t+1 ≡ log

(
yi,t+1

Yt

)
, ŷi,t+1 ≡ log

(
yi,t+1

Yt+1

)
, p̂i,t+1 ≡ log

(
pi,t+1

Yt+1

)
, p̂a,t+1 ≡ log

(
pa,t+1

Yt+1

)
,

where pa,t+1 denotes the price of aggregate wealth at t+ 1.
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At equilibrium, the following two conditions must hold:

pa,t+1 =
n∑

i=1

pi,t+1,

and

∆c̃t+1 =
1

n

n∑

i=1

log

(
y∗it+1

y∗it

)

=
1

n

n∑

i=1

gi,t+1 +
1

n

n∑

i=1

ŷi,t

︸ ︷︷ ︸
(IA.1)

= 0 (provided Yt definition).

Relationship between p̂a,t+1 and p̂i,t+1: Using a first-order Taylor approximations yields

p̂a,t+1 ≈ ϕ0 +

n∑

i=1

ϕip̂i,t+1, (IA.2)

where ϕi = E

(
p̂i,t∑
n
j=1

p̂j,t

)
, and

∑n
i=1 ϕi = 1. The term ϕ0 is selected to ensure that first order approximations

hold in levels as well.

Conditional distribution of gi,t+1: At equilibrium,

gi,t+1 = ∆at+1 +∆zi,t+1 + ŷi,t.

Then, the conditional distribution of gi,t+1 at t is given by

gi,t+1
d−→ N

(
Et[∆zi,t+1] + ŷi,t, 2σ

2
a + Vart[∆zi,t+1]

)
.

Consequently, gi,t+1 can be approximated by

gi,t+1 ≈ xi,t + σi,tηi,t+1,

where ηi,t+1
d−→ N (0, 1) and

xi,t ≡ α1di − α2Et [ε̃i,t+1] + ŷi,t,

σ2
i,t ≡ 2σ2

a + α2
2Et [ε̃i,t+1] (1− Et [ε̃i,t+1]) .

Given the information at time t, xi,t determines Et[gi,t+1] while σi,t determines the conditional volatility of

gi,t+1. Because the propensity matrix p̃t follows an ergodic Markov process, xi,t and σ
2
i,t can be approximated

by the following autoregressive processes:

xi,t+1 ≈ µ0 + µ1xi,t + µ2σi,tζp,t+1,

σ2
i,t+1 ≈ ν0 + ν1σ

2
i,t + ν2σpζp,t+1,

where 0 < µ1 < 1, µ2 > 0, 0 < ν1 < 1 and ν2 > 0. Variable ζp,t+1
d−→ N (0, 1) represents the uncertainty
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coming from unexpected changes in p̃t+1 (network connectivity). Variable ηi,t+1 represents the uncertainty

coming from the unexpected changes in exposure of firm i to idiosyncratic productivity shocks affecting other

firms in the economy.

Approximate equalities for equilibrium asset returns: Define the continuous return of firm i at

t+ 1 as

ri,t+1 ≡ log

(
pi,t+1 + yi,t+1

pi,t

)
,

and the continuous return on the market portfolio at t+ 1 as

ra,t+1 ≡ log

(
pa,t+1 + Ct+1

pa,t

)
≈ log

(
pa,t+1 + Yt+1

pa,t

)
.

Using first-order Taylor approximations yields3

ri,t+1 ≈ ki + ρip̂i,t+1 − p̂i,t + ρi∆c̃t+1 + (1 − ρi)gi,t+1, (IA.3)

ra,t+1 ≈ km − p̂a,t + ρmp̂a,t+1 +∆c̃t+1, (IA.4)

where {ki}ni=1 and km ensure that first-order approximations hold in levels.

E.2. Equilibrium Asset Returns

With the above definitions and approximations at hand, I study the asset pricing implication of changes

in the propagation of idiosyncratic shocks along the network.

The pricing kernel is given by

mt+1 ≡ θ log(β) − θ

ψ
∆c̃t+1 + (θ − 1)ra,t+1.

with θ ≡ 1−γ
1− 1

ψ

and ψ = 1
ρ .

The stock price and return of firm i can be determined using the pricing kernel and the representative

investor’s first-order condition

Et [exp (mt+1 + ri,t+1)] = 1. (IA.5)

I first solve for the return of the market portfolio ra,t+1 substituting ri,t+1 for ra,t+1 in (IA.5). I then

solve for the risk-free rate. Finally, I solve for the risk premium of firm i, ∀ i ∈ {1, · · · , n}.
Return of the Market Portfolio: I conjecture that firm i’s log price-output ratio follows

p̂i,t = a0 + a1xi,t + a2σ
2
i,t. (IA.6)

3Approximation (IA.4) follows directly from the dividend-ratio model of Campbell and Shiller (1989). Approximation (IA.3)
follows from Campbell and Shiller (1989) once noting that

ri,t+1 ≈ ki + log

(
yi,t

pi,t

)

− ρi log

(
yi,t+1

pi,t+1

)

+ log

(
yi,t+1

yi,t

)

,

= ki + log

(
yi,t

Yt−1

Yt

pi,t

Yt−1

Yt

)

− ρi log

(
yi,t+1

Yt

Yt+1

pi,t+1

Yt

Yt+1

)

+ log

(
yi,t+1

Yt

Yt

Yt−1

Yt−1

yi,t

)

,

= ki + ρip̂i,t+1 − p̂i,t + ρi∆c̃t+1 + (1− ρi)gi,t+1

7



To solve for constants a0, a1 and a2 I substitute (IA.1), (IA.2) and (IA.4) into the Euler equation (IA.5).

As ηi,t+1 and ζp,t+1 are conditionally normal, ra,t+1 and mt+1 are also normal. Exploiting this normality,

I write down the Euler equation in terms of the state variables {xi,t, σi,t}ni=1. As the Euler equation must

hold for all values of the states variables, the terms involving xi,t must satisfy

ϕi

{(
1− 1

ψ

)
− a1 + ρma1µ1

}
−
(
ϕi −

1

n

)(
1− 1

ψ

)
= 0

ASSUMPTION 1: To a first order approximation, ϕi ≈ 1
n .

Assumption 1 is satisfied if Gn is regular (i.e. all firms have the same degree). If Gn exhibits power-law

degree distributions, assumption 1 is also satisfied for a large fraction of firms.

If assumption 1 is satisfied, then

a1 ≈

(
1− 1

ψ

)

1− µ1ρm
.

Assume n is large. Collecting all terms that involve σ2
i,t yields

a2 ≈
θ
2

((
1− 1

ψ

)2
+ ρ2ma

2
1µ

2
2

)

1− ν1ρm + θ
2ρ

2
ma1µ2ν2σp

.

Using (IA.6), the innovation to the return of the market portfolio can be written as

ra,t+1 − Et[ra,t+1] ≈ ρm

(
a1µ2

(
n∑

i=1

ϕiσi,t

)
+ a2ν2σp

)
ζp,t+1 +

1

n

n∑

i=1

σi,tηi,t+1

≈ ρm

(
a1µ2

(
n∑

i=1

ϕiσi,t

)
+ a2ν2σp

)
ζp,t+1 +

n∑

i=1

ϕiσi,tηi,t+1

= ρm∆p,tζp,t+1 +

n∑

i=1

ϕiσi,tηi,t+1 (IA.7)

where ∆p,t ≡ a1µ2 (
∑n
i=1 ϕiσi,t) + a2ν2σp. The conditional variance of the market portfolio is given by

Vart[ra,t+1] ≈ ρ2m∆2
p,t +Vart

(
n∑

i=1

ϕiσi,tηi,t+1

)
+ 2ρm∆p,t

n∑

i=1

ϕiσi,tCovt (ζp,t+1, ηi,t+1)

NOTATION 1: Given two sequences {an}n and {bn}n, I write an = o(bn) if an
bn

→ 0 as n → ∞, and

an = O(bn) if
∣∣an
bn

∣∣ is bounded from above as n→ ∞.

REMARK 1: If assumption 1 is satisfied and

Vart

(
n∑

i=1

σi,tηi,t+1

)
= o(n2) and

n∑

i=1

σi,tCovt (ζp,t+1, ηi,t+1) = o(n),

then

lim
n→∞

Vart[ra,t+1] = a22ν
2
2ρ

2
mσ

2
p.

8



Hence, the volatility of the market portfolio is only driven by changes in network connectivity.

Pricing Kernel: Using (IA.1) and (IA.4), I rewrite the pricing kernel in terms of the state variables,

mt+1 ≡ θ log(β) − θ

ψ
∆c̃t+1 + (θ − 1)ra,t+1

≈ θ log(β) − θ

ψ

(
n∑

i=1

ϕi(xi,t + σi,tηi,t+1)

)

+ (θ − 1)

(
km − ϕ0 −

n∑

i=1

ϕi
(
a0 + a1xi,t + a2σ

2
i,t

)
)

+ (θ − 1)ρm

(
ϕ0 +

n∑

i=1

ϕi (a0 + a1µ0 + a1µ2xi,t + a1µ2σi,tζp,t+1)

)

+ (θ − 1)ρm

(
n∑

i=1

ϕi
(
a2ν0 + a2ν1σ

2
i,t + a2ν2σpζp,t+1

)
)

+ (θ − 1)

(
n∑

i=1

ϕi(xi,t + σi,tσi,t+1)

)
.

Innovations to the pricing kernel are then given by

mt+1 − Et[mt+1] ≈ λm,q

(
n∑

i=1

ϕiσi,tηi,t+1

)
+ λm,p∆p,tζp,t+1, (IA.8)

where λ represents the aggregate market price of risk for each source of risk, namely {ηi,t+1}ni=1 and ζp,t+1,

which are defined as

λm,q ≡ θ

(
1− 1

ψ

)
− 1,

λm,p ≡ (θ − 1)ρm.

It follows from (IA.8) that the conditional variance of the pricing kernel is given by

Vart[mt+1] ≈ λ2m,qVart

(
n∑

i=1

ϕiσi,tηi,t+1

)
+ λ2m,p∆

2
p,t + 2λm,qλm,p∆p,t

n∑

i=1

ϕiσi,tCovt (ηi,t+1, ζp,t+1) (IA.9)

REMARK 2: If assumption 1 is satisfied and

Vart

(
n∑

i=1

σi,tηi,t+1

)
= o(n2) and

n∑

i=1

σi,tCovt (ζp,t+1, ηi,t+1) = o(n),

then

lim
n→∞

Vart[mt+1] = λ2m,pa
2
2ν

2
2σ

2
p.

Hence, the volatility of the pricing kernel is only driven by changes in network connectivity.

Equity Premium: The risk premium of the market return is determined by the conditional covariance

9



between the market portfolio and the pricing kernel. It follows that

Et[ra,t+1 − rf,t] = −Covt (mt+1 − Et[mt+1], ra,t+1 − Et[ra,t+1])−
1

2
Vart(ra,t+1)

Substituting (IA.7) and (IA.8) in the above equation yields

Et[ra,t+1 − rf,t] ≈ −
(
λm,q +

1

2

)
Vart

(
n∑

i=1

ϕiσi,tηi,t+1

)
− ρm

(
λm,p +

ρm
2

)
∆2
p,t

− ∆p,t (λm,qρm + λm,p + ρm)

(
n∑

i=1

ϕiσi,tCovt (ηi,t+1, ζp,t+1)

)
(IA.10)

REMARK 3: If assumption 1 is satisfied and

Vart

(
n∑

i=1

σi,tηi,t+1

)
= o(n2) and

n∑

i=1

σi,tCovt (ζp,t+1, ηi,t+1) = o(n),

then

lim
n→∞

Et[ra,t+1 − rf,t] = −ρm
(
λm,p +

ρm
2

)
a22ν

2
2σ

2
p.

Hence, the equity premium is determined by temporal changes in network connectivity.

Risk-free Rate: The risk-free rate satisfies

rf,t = − log(β) +
1

ψ
Et[∆c̃t+1] +

1− θ

θ
Et[ra,t+1 − rf,t]−

1

2θ
Vart[mt+1]

Substituting (IA.9) and (IA.10) in the above equation yields

rf,t ≈ − log(β) +
1

ψ

(
n∑

i=1

ϕixi,t

)

− 1− θ

θ

((
λm,q +

1

2

)
Vart

(
n∑

i=1

ϕiσi,tηi,t+1

)
+ ρm

(
λm,p +

ρm
2

)
∆2
p,t

)

− 1− θ

θ
∆p,t (λm,qρm + λm,p + ρm)

(
n∑

i=1

ϕiσi,tCovt (ηi,t+1, ζp,t+1)

)

− 1

2θ

(
λ2m,qVart

(
n∑

i=1

ϕiσi,tηi,t+1

)
+ λ2m,p∆

2
p,t + 2λm,qλm,p∆p,t

n∑

i=1

ϕiσi,tCovt (ηi,t+1, ζp,t+1)

)

Firms’ Risk Premiums: As with the market portfolio, the risk premium of firm i is determined by the

conditional covariance between firm i’s return and the pricing kernel. Therefore,

Et[ri,t+1 − rf,t] = −Covt (mt+1 − Et[mt+1], ri,t+1 − Et[ri,t+1])−
1

2
Vart(ri,t+1) (IA.11)
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To simplify the above expression, it becomes convenient to compute the innovations on firm i’s return,

ri,t+1 − Et[ri,t+1] ≈ ρi (a1µ2σi,t + a2ν2σp) ζp,t+1

+ ρi




n∑

j 6=i

ϕjσj,tηj,t+1


 + (1− ρi(1 − ϕi))σi,tηi,t+1

= ρi∇i,tζp,t+1 + ρi




n∑

j=1

ϕjσj,tηj,t+1


+ (1− ρi)σi,tηi,t+1 (IA.12)

where ∇i,t ≡ a1µ2σi,t + a2ν2σp. Then, it follows from (IA.12) that

Vart(ri,t+1) ≈ ρ2i∇2
i,t + ρ2iVart




n∑

j=1

ϕjσj,tηj,t+1


+ (1− ρi)

2σ2
i,t

+ ρi(1− ρi)σi,t


Covt (ζp,t+1, ηi,t+1) +

n∑

j=1

ϕjσj,tCovt (ηj,t+1, ηi,t+1)




+ ρ2i∇i,t

n∑

j=1

ϕjσj,tCovt (ηj,t+1, ζp,t+1)

REMARK 4: Suppose assumption 1 is satisfied and

Vart

(
n∑

i=1

σi,tηi,t+1

)
= o(n2) and

n∑

i=1

σi,tCovt (ζp,t+1, ηi,t+1) = o(n),

then

lim
n→∞

Vart(ri,t+1) = ρ2i∇2
i,t + (1− ρi)

2σ2
i,t + ρi(1− ρi)σi,t


Covt (ζp,t+1, ηi,t+1) +

n∑

j=1

ϕjσj,tCovt (ηj,t+1, ηi,t+1)


 .

Hence, firm i’s return volatility depends on σi,t and the covariance of ηi,t+1 with innovations to network

connectivity and idiosyncratic productivity shocks to other firms. Additionally, if firm i is such that

∑

j=1

σj,tCovt (ηj,t+1, ηi,t+1) = o(n),

then

lim
n→∞

Vart(ri,t+1) = ρ2i∇2
i,t + (1− ρi)

2σ2
i,t + ρi(1− ρi)σi,tCovt (ζp,t+1, ηi,t+1) .
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Substituting (IA.8) and (IA.12) in (IA.11) yields

Et[ri,t+1 − rf,t] ≈ −ρi (λm,q∇i,t + λm,p∆p,t)




n∑

j=1

ϕjσj,tCovt (ηj,t+1, ζp,t+1)


− λm,qρiVart




n∑

j=1

ϕjσj,tηj,t+1




− λm,q(1− ρi)σi,t

n∑

j=1

ϕjσj,tCovt (ηj,t+1, ηi,t+1)− λm,p∆p,tρi∇i,t

− λm,p∆p,t(1 − ρi)σi,tCovt (ηi,t+1, ζp,t+1)−
1

2
Vart(ri,t+1). (IA.13)

REMARK 5: Suppose assumption 1 is satisfied and

Vart

(
n∑

i=1

σi,tηi,t+1

)
= o(n2) and

n∑

i=1

σi,tCovt (ζp,t+1, ηi,t+1) = o(n).

Define

ϑi,t ≡ −λm,p∆p,tρi∇i,t −
1

2

(
ρ2i∇2

i,t + (1 − ρi)
2σ2
i,t

)
.

Then,

lim
n→∞

Et[ri,t+1 − rf,t] = ϑi,t − (1 − ρi)σi,t

(
λm,p∆p,t +

1

2
ρi

)
Covt (ηi,t+1, ζp,t+1)

− (1 − ρi)σi,t(λm,q + ρi)




n∑

j=1

ϕjσj,tCovt (ηj,t+1, ηi,t+1)


 .

F. Calibration exercise

This section analyzes whether the main results obtained in the paper can be supported by a calibrated

version of the production-based network equilibrium model.

F.1. Values for model parameters

I follow Bansal and Yaron (2004) and set the preferences parameters to β = 0.997, γ = 10, and ρ = 0.65.

I follow Acemoglu et al. (2012) and set the share of labor to χ = 0.55. As in the paper, I set σa = 1.7 so

that σa equals the annual volatility of aggregate TFP growth. To compute the share of good j used in good

i, {wij}(i,j), I use industry-level data from BEA Input-Output (IO) tables from 1997 to 2015. IO tables

are at the annual frequency. I compute the percentage of industry j’s sales purchased by industry i at year

t following Ahern and Harford (2014). I then set wij equal to the average percentage of industry j’s sales

purchased by industry i over the sample period. Firms in the same industry are assumed to share the same

values for {wij}(i,j). To calibrate the benchmark topology, I use the U.S. supplier–customer network of 2015

as in the paper. Thus, n = 1, 100 and the network exhibits a power-law degree distribution. The shape

parameter vector ζt and its dynamics are calibrated as in the paper. I set α1 = 0.1 and α2 = 1 so that the

unconditional mean and volatility of consumption growth generated by the calibrated model are similar to

the ones found in data.
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F.2. Implications of the calibrated model

Because equilibrium consumption growth can be decomposed as in the baseline model, long-run consump-

tion risks endogenously arise as long as W̃n,t+1 exhibits a long-run predictable component. This is the case

because the shape parameter vector ζt follows a persistent process, and thus, changes in network connectivity

are infrequent.

To analyze whether cross-sectional results in the paper can be supported by a production-based equilib-

rium framework, I study how the risk premium of a firm changes in the presence of a small increase in its

centrality. Let κit denote the centrality of firm i at t as defined in the paper. If assumption 1 is satisfied

and the following two equalities hold:

Vart

(
n∑

i=1

σi,tηi,t+1

)
= o(n2) and

n∑

i=1

σi,tCovt (ζp,t+1, ηi,t+1) = o(n).

then the following approximation is accurate for a large fraction of firms in the economy:

∂Et[ri,t+1 − rf,t]

∂κi,t
≈ ∂ϑi,t

∂κi,t
− (1− ρi)

∂

∂κi,t

(
σi,t

(
λm,p∆p,t +

1

2
ρi

)
Covt (ηi,t+1, ζp,t+1)

)

− (1 − ρi)(λm,q + ρi)
∂

∂κi,t


σi,t




n∑

j=1

ϕjσj,tCovt (ηj,t+1, ηi,t+1)




 ,

because n is large and the network exhibits a power-law degree distribution.

Note that

∂ϑi,t
∂κi,t

= −a1µ2

(
ρiλm,p(ϕi∇i,t +∆p,t) + ρ2i∇i,t + (1 − ρi)

2 σi,t
a1µ2

)
∂σi,t
∂κi,t

.

Additionally, the following first-order approximations hold

∂

∂κi,t

(
σi,t

(
λm,p∆p,t +

1

2
ρi

)
Covt (ηi,t+1, ζp,t+1)

)
≈

(
∂σi,t
∂κi,t

)(
λm,p∆p,t +

1

2
ρi + λm,pa1µ2ϕiσi,t

)
Covt (ηi,t+1, ζp,t+1) ,

∂

∂κi,t


σi,t




n∑

j=1

ϕjσj,tCovt (ηj,t+1, ηi,t+1)




 ≈ ∂σi,t

∂κi,t




n∑

j=1

ϕjσj,tCovt (ηj,t+1, ηi,t+1)


 .

Under the benchmark parameterization, a1 > 0, and thus,
∂ϑi,t
∂κi,t

< 0. In addition, the previous two

derivatives are non-negative in the benchmark parameterization. As a result,
∂Et[ri,t+1−rf,t]

∂κi,t
≤ 0. This result

shows that central firms command lower risk premiums than peripheral firms within a calibrated version

of the production-based equilibrium framework. A realistic spread between firms in the highest and lowest

centrality decile can be generated by fine tuning the values of µ0 and ν0.

B. Distribution of W̃n,t+1 and ∆c̃t+1

Under specific dependence assumptions, explicit bounds between the distribution of W̃n,t+1 and well-

known distributions can be found. For instance, effective bounds between the distribution of W̃n,t+1 and the

Poisson and Binomial distributions can be found if the dependence structure among variables {ε̃i,t+1}ni=1

decreases as the distance between them increases. Chen (1975) finds bounds between the distribution of
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the sum of dependent Bernoulli trials and the Poisson distribution. Soon (1996) finds bounds between the

distribution of the sum of dependent Bernoulli trials and the Binomial distribution.

A. Distribution of W̃n,t+1 for finite n.

Given how idiosyncratic shocks propagate along the network, variables {ε̃i,t+1}ni=1 are not independent.

The following definition becomes handy for analyzing the distribution of W̃n,t+1 as it reconciles the notion

of dependence between two random variables ε̃i,t+1 and ε̃j,t+1, and the position of firms i and j in Gn.

DEFINITION 2 (Dependency Graphs): A graph G is said to be a dependency graph for a family of random

variables if the following two conditions are satisfied:

(i) The set of random variables can be indexed by the nodes of G.
(ii) If S1 and S2 are two disjoint set of nodes in G such that no edge in G has one endpoint in S1 and the

other in S2, then the corresponding sets of random variables are independent.

Note that the above definition does not define a unique dependency graph for every family of random

variables. For instance, adding one edge to a dependency graph yields a new dependency graph for the same

family of random variables.

It is worth noting that {ε̃i,t+1}ni=1 has Gn as its dependency graph. Using the previous definition, the

following proposition says that if every firm has a sufficiently small probability of being affected by an

idiosyncratic shock, then W̃n,t+1 follows approximately a Poisson distribution despite the fact that {ε̃i,t+1}ni=1

are not independent.

PROPOSITION 1 (Poisson Approximation of W̃n,t+1): Define

π̃i,t+1 ≡ E
[
ε̃i,t+1

∣∣p̃t+1

]

λt+1 ≡ E
[
W̃n,t+1

∣∣p̃t+1

]

σ2
t+1 ≡ Var

[
W̃n,t+1

∣∣p̃t+1

]

Provided that Gn is the dependency graph of the sequence {ε̃i,t+1}ni=1 then

dTV

(
W̃n,t+1,Po

(
λt+1

))
≤ min

{
1,

1

λt+1

}
σ2

t+1 − λt+1 + 2
n∑

i=1

π̃2
i,t+1 +

∑

(i,j) ∈ Rn

π̃i,t+1π̃j,t+1


 ∀ t

where dTV

(
W̃n,t+1,Po

(
λt+1

))
denotes the total variation distance between the distribution of W̃n,t+1 and a

random variable with Poisson distribution of parameter λt+1, denoted by Po
(
λt+1

)
.4

Proof of Proposition 1. The result follows directly from Janson et al. (2000, Theorem 6.23)

4The total variation distance between the distribution of two random variables X and Y is defined as

dTV

(
X,Y

)
≡ sup

A

∣
∣P[X ∈ A]− P[Y ∈ A]

∣
∣

taking the supremum over all borel sets A. If X and Y are integer valued, then

dTV

(
X,Y

)
≡

1

2

∑

k

∣
∣P[X = k]− P[Y = k]

∣
∣
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B. Distribution of W̃n,t+1 as n grows large

If variables {ε̃i,t+1}ni=1 are independent, the central limit theorem implies that
√
n(W̃n,t+1 − q) is nor-

mally distributed as n grows large. Unfortunately, variables {ε̃i,t+1}ni=1 are not independent. The following

proposition says that if the number of relationships of the most connected firm is not too large, then W̃n,t+1

follows a normal distribution as n grows large.5

PROPOSITION 2 (Asymptotic Normality of W̃n,t+1): Let Dn denote the highest number of relationships

per firm in the economy. If there are no relationships in Gn define Dn = 1. For each t+ 1, define

µt+1 ≡ lim
n→∞

E

[
n∑

i=1

ε̃i,t+1

∣∣∣∣p̃t+1

]
and σ2

t+1 ≡ lim
n→∞

Var

[
n∑

i=1

ε̃i,t+1

∣∣∣∣p̃t+1

]

If there exists an integer m ≥ 3 such that

lim
n→∞

(
n

Dn

) 1
m
(
Dn

nσt

)
= 0 (IA.14)

then, W̃n,t+1
d−→ N

(
µt+1, σ

2
t+1

)
as n→ ∞.6

Proof of Proposition 2. Provided that ε̃i,t are Bernoulli random variables,
∣∣ε̃i,t

∣∣ ≤ 1, ∀ i. As Gn is a depen-

dency graph for the family {ε̃i,t}ni=1, ∀ t, it follows from Janson (1988, Theorem 2) that

n∑

i=1

ε̃i,t
d−→ N

(
µn(t), σ

2
n(t)

)

The following corollary provides a more detailed characterization of the types of economies wherein

W̃n,t+1 follows a normal distribution as n gets large.

COROLLARY 1: Suppose σt < ∞. If Dn = o
(
n
)
then log consumption growth is approximately normally

distributed as n gets large.

Proof of Corollary 1. If σt < ∞ and Dn = o
(
n
)
then (IA.14) is satisfied. Hence W̃n,t+1 and ∆c̃t+1 are

normally distributed as n grows large.

Therefore, as long as the number of relationships of the most connected firm grows less than linearly with

n, W̃n,t+1 and thus, ∆c̃t+1, follow a normal distribution as n grows large.

C. U.S. Supplier–Customer Networks

5See Baldi and Rinott (1989, Corollary 2) for a similar result to that in Janson (1988, Theorem 2).
6If condition (IA.14) is satisfied, then {ε̃i,t}

n
i=1

can be interpreted as a m-dependent sequence of random variables. Namely,
if the distance between variable j and k is greater than m then ε̃j,t is independent of ε̃k,t, for all t. To do so, however, a notion
of distance between ε̃j,t and ε̃k,t needs to be properly defined to reconcile the position of firms i and j in Gn with their position
in the sequence

{
ε̃l,t

}n

l=1
.
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(a) 1976 (b) 1977 (c) 1978

(d) 1979 (e) 1980

Figure IA.1. The figure shows supplier–customer networks from 1976 to 1980.
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(a) 1981 (b) 1982 (c) 1983

(d) 1984 (e) 1985

Figure IA.2. The figure shows supplier–customer networks from 1981 to 1985.
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(a) 1986 (b) 1987 (c) 1988

(d) 1989 (e) 1990

Figure IA.3. The figure shows supplier–customer networks from 1986 to 1990.
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(a) 1991 (b) 1992 (c) 1993

(d) 1994 (e) 1995

Figure IA.4. The figure shows supplier–customer networks from 1991 to 1995.
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(a) 1996 (b) 1997 (c) 1998

(d) 1999 (e) 2000

Figure IA.5. The figure shows supplier–customer networks from 1996 to 2000.
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(a) 2001 (b) 2002 (c) 2003

(d) 2004 (e) 2005

Figure IA.6. The figure shows supplier–customer networks from 2001 to 2005.
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(a) 2006 (b) 2007 (c) 2008

(d) 2009 (e) 2010

Figure IA.7. The figure shows supplier–customer networks from 2006 to 2010.
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(a) 2011 (b) 2012 (c) 2013

(d) 2014 (e) 2015

Figure IA.8. The figure shows supplier–customer networks from 2011 to 2015.
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D. Simulation of the Model

This section describes the algorithm used to simulate the model. Let

Zt+1 ≡ f
(
W̃n,t+1

)
, Ti,t+1 ≡ g

(
W̃ i
n,t+1

)
, Ui,t+1 ≡ h

(
W̃−i
n,t+1

)
, and ei,t+1 ≡ m (ε̃i,t+1)

denote four random variables which are functions of W̃n,t+1, W̃
i
n,t+1, W̃

−i
n,t+1, and ε̃i,t+1, respectively. Given

ζt+1 and q, I use the following procedure to compute the conditional expectation of Zt+1, Ti,t+1, Ui,t+1, and

ei,t+1:

(a) Determine the set of firms that initially face idiosyncratic shocks by drawing a Bernoulli random

variable (with success probability q) per each firm.

(b) Determine the set of relationships that transmit shocks by drawing a Bernoulli random variable per

each relationship. The success probability of relationship (i, j) at t+1 is given by p̃ij,t+1. Probabilities

{p̃ij,t+1}(i,j)∈Gn
are drawn from a Beta distribution of parameter ζt+1. Higher values of p̃ij,t+1 are

assigned to relationships with lower betweenness scores to capture features of the data.

(c) Compute W̃n,t+1 by adding all firms affected by idiosyncratic shock at t + 1. Compute W̃ i
n,t+1 by

adding all firms in Gin affected by idiosyncratic shock at t+ 1. Compute W̃−i
n,t+1 by adding all firms in

the complement set of Gin affected by idiosyncratic shock at t+ 1. Firms are considered to be affected

by idiosyncratic shocks according to the propagation mechanism described in the paper. Using W̃n,t+1,

W̃ i
n,t+1, and W̃

−i
n,t+1, I compute Zt+1 as Zt+1 = f

(
W̃n,t+1

)
, Ti,t+1 as Ti,t+1 = g

(
W̃ i
n,t+1

)
, and Ui,t+1

as Ui,t+1 = h
(
W̃−i
n,t+1

)
.

(c) Repeat steps (a), (b), and (c) 10,000 times. I set E[Zt+1|ζt+1], E[Ti,t+1|ζt+1], and E[Ui,t+1|ζt+1] equal

to their corresponding sample averages. To compute E[ei,t+1|ζt+1], I only repeat steps (a) and (b). I

set E[ei,t+1|ζt+1] equals to the sample average over the 10,000 simulations.

When needed, one needs to repeat the above procedure for each firm. This turns out to be computationally

intensive. To reduce time, one can take advantage of the topology of Gin. In particular, if Gin is a tree, the

following algorithm can be use to compute the probability that firm i is affected by an idiosyncratic shock.

This algorithm exploits the fact that computing such probabilities can be framed as a recursive problem.

Algorithm Firm i’s Probability (Gin, st, q)

(∗ Description: Algorithm that computes firm i’s probability of facing shocks if Gin is a tree ∗)
Input: Gin (a tree), st (state of the economy), q.

Output: Firm i’s probability of facing shocks at time t, π∗
i (st)

1. if firm i has a no connections

2. return π∗
i (st) = q

3. else return Prob(i,Gin,st,q)

where Prob(i,Gin,st,q) corresponds to the following recursive program:

Algorithm Prob(i,Gin,st,q)

(∗ Description: Recursive algorithm that computes firm i’s probability of facing a shock ∗)
Input: Tree Gin wherein node i is the root, st, and q.

Output: π∗
i (st)
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1. Determine the set of children of node i in Gin, say Ci.7
2. if Ci = ∅
3. return π∗

i (st) = q

4. else if every node in Ci has no children

5. return π∗
i (st) = q + (1 − q)

(
1− E

[∏
k∈Ci

(1− qp̃ikt)
∣∣st
])

6. else return π∗
i (st) = q + (1 − q)

(
1− E

[∏
k∈Ci

(1− p̃iktProb(k, Ti,k, st, q))
) ∣∣st

]

where Ti,k denotes the branch of tree Gin that starts at node k.

E. Figures and Tables

7In a rooted tree, the parent of a node is the node connected to it on the path to the root. Every node except the root has
a unique parent. A child of a node v is a node of which v is the parent.
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Figure IA.9. The figure shows the relation between betweenness and specificity scores of relationships in supplier–customer networks from 1980 to
1985.

2
6



0.0 0.2 0.4 0.6 0.8

0
5

10
15

Relationship Betweenness Scores and Specificities in 1986

Relationship specificity

R
el

at
io

ns
hi

p 
be

tw
ee

nn
es

s 
sc

or
e

(a) 1986

0.0 0.2 0.4 0.6 0.8

0
2

4
6

8
10

12

Relationship Betweenness Scores and Specificities in 1987

Relationship specificity

R
el

at
io

ns
hi

p 
be

tw
ee

nn
es

s 
sc

or
e

(b) 1987

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

Relationship Betweenness Scores and Specificities in 1988

Relationship specificity

R
el

at
io

ns
hi

p 
be

tw
ee

nn
es

s 
sc

or
e

(c) 1988

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
5

10
15

20

Relationship Betweenness Scores and Specificities in 1989

Relationship specificity

R
el

at
io

ns
hi

p 
be

tw
ee

nn
es

s 
sc

or
e

(d) 1989

0.0 0.2 0.4 0.6 0.8

0
5

10
15

20

Relationship Betweenness Scores and Specificities in 1990

Relationship specificity

R
el

at
io

ns
hi

p 
be

tw
ee

nn
es

s 
sc

or
e

(e) 1990

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

Relationship Betweenness Scores and Specificities in 1991

Relationship specificity

R
el

at
io

ns
hi

p 
be

tw
ee

nn
es

s 
sc

or
e

(f) 1991

Figure IA.10. The figure shows the relation between betweenness and specificity scores of relationships in supplier–customer networks from 1986 to
1991.
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Figure IA.11. The figure shows the relation between betweenness and specificity scores of relationships in supplier–customer networks from 1992 to
1997.
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Figure IA.12. The figure shows the relation between betweenness and specificity scores of relationships in supplier–customer networks from 1998 to
2003.
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Figure IA.13. The figure shows the relation between betweenness and specificity scores of relationships in supplier–customer networks from 2004 to
2009.
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Figure IA.14. The figure shows the relation between betweenness and specificity scores of relationships in supplier–customer networks from 2010 to
2015.

3
1



Table IA.1

Performance of Centrality Portfolios in Manufacturing

The table reports monthly average raw returns, alphas and loadings from the five-factor model of Fama and French (2015) for

three portfolios constructed by sorting manufacturing stocks based on centrality: a portfolio that holds stocks on the lowest

decile of centrality (Low), a portfolio that holds stocks on the highest decile of centrality (High), and a portfolio that is long

on stocks on the lowest decile and short on stocks on the highest decile of centrality (Low - High). The bottom row provides

the t-statistics for the low minus high portfolio. Manufacturing firms are assigned into deciles at the end of October every year

and the value-weighted portfolios are not rebalanced for the next 12 months. The sample is from June 1976 to December 2016.

Raw returns and alphas are in percent.

Raw 5-Factor Model
Decile Return Alpha MKT SMB HML RMW CMA
Low 2.21 1.24 1.02 0.53 -0.40 -0.34 0.06
High 1.42 0.46 0.94 -0.19 -0.14 -0.02 0.25
Low - High 0.78 0.38 0.08 0.73 -0.27 -0.32 -0.18
t-statistic [4.37] [3.23] [3.03] [17.36] [-4.91] [-5.62] [-2.19]

Table IA.2

Performance of Centrality Portfolios in Service

The table reports monthly average raw returns, alphas and loadings from the five-factor model of Fama and French (2015) for

three portfolios constructed by sorting service stocks based on centrality: a portfolio that holds stocks on the lowest decile of

centrality (Low), a portfolio that holds stocks on the highest decile of centrality (High), and a portfolio that is long on stocks on

the lowest decile and short on stocks on the highest decile of centrality (Low - High). The bottom row provides the t-statistics

for the low minus high portfolio. Service firms are assigned into deciles at the end of October every year and the value-weighted

portfolios are not rebalanced for the next 12 months. The sample is from June 1976 to December 2016. Raw returns and alphas

are in percent.

Raw 5-Factor Model
Decile Return Alpha MKT SMB HML RMW CMA
Low 2.56 1.70 1.11 0.47 -0.56 -0.41 -0.05
High 1.18 0.61 0.84 -0.25 -0.14 -0.24 -0.56
Low - High 1.41 0.67 0.29 0.75 -0.39 -0.17 0.52
t-statistic [4.72] [2.45] [4.37] [7.60] [-3.03] [-1.28] [2.66]

Table IA.3

Performance of Centrality Portfolios in Manufacturing and Service

The table reports monthly average raw returns, alphas and loadings from the five-factor model of Fama and French (2015) for

three portfolios constructed by sorting manufacturing and service stocks based on centrality: a portfolio that holds stocks on

the lowest decile of centrality (Low), a portfolio that holds stocks on the highest decile of centrality (High), and a portfolio that

is long on stocks on the lowest decile and short on stocks on the highest decile of centrality (Low - High). The bottom row

provides the t-statistics for the low minus high portfolio. Manufacturing and service firms are assigned into deciles at the end

of October every year and the value-weighted portfolios are not rebalanced for the next 12 months. The sample is from June

1976 to December 2016. Raw returns and alphas are in percent.

Raw 5-Factor Model
Decile Return Alpha MKT SMB HML RMW CMA
Low 2.31 1.36 1.04 0.52 -0.45 -0.36 0.04
High 1.41 0.51 0.93 -0.20 -0.14 -0.04 0.12
Low - High 0.89 0.45 0.11 0.72 -0.31 -0.32 -0.07
t-statistic [5.05] [4.08] [4.39] [18.27] [-6.06] [-5.95] [-0.91]

32



REFERENCES

Acemoglu, Daron, Vasco M. Carvalho, Asuman Ozdaglar, and Alireza Tahbaz-Salehi, 2012, The network

origins of aggregate fluctuations, Econometrica 80, 1977–2016.

Ahern, Kenneth R., and Jarrad Harford, 2014, The importance of industry links in merger waves, Journal

of Finance 69, 527–576.

Baldi, Pierre, and Yosef Rinott, 1989, On normal approximations of distributions in terms of dependency

graphs, Annals of Probability 17, 1646–1650.

Bansal, Ravi, and Amir Yaron, 2004, Risks for the long run: A potential resolution of asset pricing puzzles,

Journal of Finance 59, 1481–1509.

Campbell, John Y., and Robert J. Shiller, 1989, The dividend-price ratio and expectations of future dividends

and discount factors, Review of Financial Studies 1, 195–228.

Chen, Louis H. Y., 1975, Poisson approximation for dependent trials, The Annals of Probability 3, 534–545.

Fama, Eugene, and Kenneth French, 2015, A five-factor asset pricing model, Journal of Financial Economics

116, 1–22.

Janson, Svante, 1988, Normal convergence by higher semiinvariants with applications to sums of dependent

random variables and random graphs, Annals of Probability 16, 305–312.

Janson, Svante, Tomasz Lucsak, and Andrzej Rucinski, 2000, Random Graphs (Wiley-Interscience Series in

Discrete Mathematics and Optimization).

Long, John B., and Charles I. Plosser, 1983, Real business cycles, Journal of Political Economy 91, 39–69.

Shea, John, 2002, Complementarities and comovements, Journal of Money, Credit and Banking 34, 412–433.

Soon, Spario Y. T., 1996, Binomial approximation for dependent indicators, Statistica Sinica 6, 703–714.

33


	FNAR_Feb2018a
	FNAR_Feb2018b

