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1 Introduction

This paper develops measures of transaction costs that do not require observ-

ing the intraday transaction times or knowing who initiates trades (buyers vs.

sellers). A recent and growing literature on large and previously opaque over-the-

counter (OTC) markets employs transaction data that suffer from these limita-

tions. Examples include studies of the credit default swap market (Chen et al.,

2011; Benos, Wetherilt, and Zikes, 2013; Biswas, Nikolova, and Stahel, 2014), the

interest rate swap market (Chen et al., 2012; Benos, Payne, and Vasios, 2016),

the U.K. sovereign bond market (Benos and Zikes, 2016), and the U.S. corporate

bond market (Bessembinder et al., 2006). But to the best of my knowledge, the

literature has not yet formally tackled the problem of estimating transaction costs

when timestamps and trade direction are missing. The contribution of this paper

is to fill this gap.

I propose three consistent estimators of the effective spread and study their

sampling properties. The first one develops the idea of Benos and Zikes (2016),

who suggest inferring the effective spread from the dispersion of the transaction

prices from (1) some benchmark or reference price (e.g., end-of-day composite

quote) and (2) the average transaction price. The estimator is available in closed

form, which allows me to establish its finite-sample properties analytically and

compare them to some well-known (infeasible) measures, explicitly quantifying

the loss of information due to the missing timestamps, trade direction, or both.

The other two measures I propose are also moment-based and combine the ideas

of Corwin and Schultz (2012) and Benos and Zikes (2016). The first one is based

on the daily range, which is the difference between the daily high and low prices,

together with the sample variance of the transaction prices. The advantage of this

measure is that it is based solely on transaction prices and does not require a daily

benchmark or reference price, which may be difficult to obtain for some illiquid

assets. At the same time, it utilizes all available data (transaction prices), unlike
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the Corwin and Schultz (2012) measure, which only uses the daily high and low

prices. If a benchmark price is available, however, it is, of course, optimal to use all

three moment conditions—the two dispersion metrics and the daily range—and this

is how I construct my third estimator. Because I do not assume that the number of

transactions is large, I have to resort to the simulated method of moments (SMM).

Despite having to approximate the expected range by simulation, the estimator

turns out to be computationally cheap and easy to implement in practice. I provide

simple yet accurate small-sample approximations to the unknown moment that

significantly speed up computations.

To summarize my theoretical results, I find that the absence of timestamps or

trade direction lead to a reduced convergence rate of the effective spread estima-

tors. While in the case of full information the effective spead can be estimated

n-consistently as the number of intraday transactions (n) increases, when times-

tamps or trade direction are missing, only
√
n-consistency can be achieved, and

when both are missing, the effective spread cannot be estimated consistently from

intraday data alone–averaging over an increasing number of days (T ) is necessary.

Thus, accurate estimates can only be obtained from weeks or months worth of

transaction data.

In practice, transaction costs may vary at a higher frequency, however. Is it pos-

sible, then, to estimate transaction cost that vary, say, every day when timestamps

and trade direction are missing? The answer is yes, provided the transaction costs

vary sufficiently smoothly. Employing the recent advances in time-varying estima-

tion by Giraitis, Kapetanios, and Yates (2013), I propose kernel-based estimators

of smoothly-varying effective spread and establish their asymptotic properties. Do-

ing so allows me to uncover smooth changes in transaction costs over time without

relying on an increasing number of intraday observations.

To corroborate the theoretical findings and to study how the various estimators

perform in small samples, I run Monte Carlo simulations. I also provide an em-
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pirical illustration with small-cap stocks listed on the New York Stock Exchange

(NYSE) using data from the Trade and Quote Database (TAQ). To summarize, the

findings of these exercises show that the loss of information due to missing times-

tamps is large. The measures I propose in this paper deliver accurate estimates

of transaction costs in situations where the transactions costs are high relative to

the volatility of the efficient price. They may be, therefore, suitable for relatively

illiquid, infrequently traded assets that exhibit relatively low fundamental volatil-

ity, such as some corporate and municipal bonds. They should not be applied,

however, to highly liquid assets, such as listed equities, which trade with a tight

spread and tend to be quite volatile. Fortunately, for these assets, high-quality

time-stamped transaction data are typically available.

In OTC markets, timestamps are often inaccurate or outright missing for vari-

ous reasons. In the credit default swap and interest rate data mentioned previously,

transaction times are simply not reported, and the trade reporting time does not

necessarily correspond to the actual trade time, making it impossible to chronolog-

ically order transactions. In the U.K. sovereign bond market data used by Benos

and Zikes (2016), the timestamps are not accurate in the sense that two parties

to the same transaction report widely different transaction times. More generally,

though, the trading protocol in OTC markets often involves negotiation that may

stretch over a period of time, and so the exact timing of the trade may be ambigu-

ous; consider, for example, the “workup” protocol recently studied in Duffie and

Zhu (forthcoming).

Trade direction cannot be easily inferred because trades cannot be aligned

with intaday quotes when timestamps are missing, making it impossible to use

trade-signing algorithms such as that of Lee and Ready (1991). Researchers often

assume that clients initiate trades with dealers, motivated by the fact that dealers

are the main liquidity providers in these markets (Bessembinder, Maxwell, and

Venkataraman, 2006; Edwards, Harris, and Piwowar, 2007). However, as recently
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shown by Choi and Huh (2017) for the U.S. corporate bond market, dealers often

initiate trades with clients as well, implying potenitally serious missclassification

issues associated with this identification method. Moreover, in some markets,

interdealer trades account for more than two-thirds of all transactions (Benos et

al., 2013) and so the vast majority of transactions cannot be signed in this way.

Thus, standard methods cannot be used to measure transaction costs in these large

and important financial markets.

Apart from the literature on measuring transaction costs (see Harris, 2015,

and the references therein), my paper is also related to the recent literature on

measuring volatility using high-frequency data starting with Andersen and Boller-

slev (1998) and Barndorff-Nielsen and Shephard (2002); see Aı̈t-Sahalia and Jacod

(2014) for a recent textbook treatment. Some of my estimators employ the range—

that is, the difference between intraday high and low prices—and here I draw on

the ideas of Christensen and Podolskij (2007) and Christensen, Podolskij, and Vet-

ter (2009). Although the data-generating process I assume is very similar to many

papers in this literature, the problem studied in my paper is different in three

important ways. First, my goal is to estimate the effective spread. Thus, what the

realized volatility literature (e.g. Aı̈t-Sahalia, Mykland, and Zhang, 2005; Zhang,

Mykland, and Aı̈t-Sahalia, 2005, Hansen and Lunde, 2006; Christensen, Podolskij,

and Vetter, 2009) treats as microstructure noise is precisely my object of interest,

and what that literature is interested in estimating—the variation of the efficient

price—is a source of noise in my framework. Second, in-fill asymptotics do not

always apply—that is, increasing the number of intraday observations (n) does

not generally improve the precision of the effective spread estimator. I have to rely

on an increasing number of days (T ) and employ large-T asymptotics or double

asymptotics (both n → ∞ and T → ∞). Finally, my estimation framework is

model based, unlike the estimation methods in the realized volatility literature

that operate in a model-free environment.
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The rest of the paper is organized as follows. In Section 2, I set out my theoreti-

cal framework. In Section 3, I propose a closed-form measure of the effective spread

that does not require either timestamps or trade direction and study its properties

analytically, explicitly quantifying the loss of information associated with miss-

ing timestamps, trade direction, or both. In Section 4, I introduce range-based

estimators of the effective spread and propose simple computational methods to

implement the estimator in practice. Section 5 reports Monte Carlo simulations.

In Section 6, I propose kernel-based time-varying estimation of the effective spread.

In Section 7, I present an empirical application to small-cap equities, and Section

8 concludes. Proofs are collected in the Appendix.

2 Framework

The effective spread is defined as two times the difference between the actual

transaction price (P ) and the prevailing mid-quote or some proxy for the true

value of the asset (efficient price) (M) at the time of the transaction. It can be

expressed in absolute terms—that is, 2|P − M |—or in relative terms—that is,

2|P −M |/M or 2| log(P )− log(M)|. Like the bid-offer spread, the effective spread

measures round trip transaction costs, but it is based on actual transaction price

rather than on quoted prices. The effective spread can also be seen as a measure

of the price impact of a trade, and because the price impact and transaction costs

tend to vary inversely with liquidity, it is frequently used as a measure of liquidity

(Foucault, Pagano, and Roell, 2013).

My theoretical framework is essentially borrowed from Roll (1984) and it can

be easily cast in continuous time as in Christensen, Podolskij and Vetter (2009).

Suppose we have a sample of T days and divide each day into n subintervals

of equal length. I assume that a transaction arrives at the beginning of each

of these subintervals and that the associated logarithmic transaction prices—pi,t;
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i = 1, ..., n; t = 1, ..., T—are related to the logarithmic efficient price, mi,t, by

pi,t = mi,t +
s

2
qi,t, (1)

where s is the proportional effective spread and qi,t is a binary variable indicating

whether the i-th transaction on day t is buyer initiated (qi,t = 1) or seller initiated

(qi,t = −1). I initially assume that the efficient price is observable at the end of the

day—that is, at the end of the last subinterval n. I later relax this assumption and

propose estimators that do not require observing m at all. Following Roll (1984)

and Benos and Zikes (2016), I assume that the logarithmic efficient price m follows

a random walk with independently and identically distributed (iid) increments:

mi+1,t = mi,t + εi+1,t, (2)

where E(εi,t) = 0 and E(ε2i,t) = σ2/n. Thus, the daily integrated variance of the

efficient price equals σ2 for any n and t. Finally, I assume that qi,t is uncorrelated

with mj,s for all i, j, t, s and that qi,t is serially uncorrelated with E(qi,t) = 1
2
—that

is, there is the same number of buyer- and seller-initiated trades on average. I

make no assumptions on the overnight return of the efficient price, m0,t −mn,t−1.

3 Baseline estimator

Inspired by Jankowitsch, Nashikkar, and Subrahmanyam (2011), Benos and Zikes

(2016) rely on the dispersion of transaction prices around some benchmark price,

but they recognize that the dispersion metric is affected by the intraday volatility

of the benchmark price in a nontrivial way. They suggest using two dispersion

metrics,

d̂2t =
1

n

n∑
i=1

(pi,t −m0,t)
2, d̃2t =

1

n− 1

n∑
i=1

(pi,t − p̄t)2, (3)
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and show that under the assumptions stated in the previous section, the two met-

rics satisfy

E(d̂2t ) =
s2

4
+
σ2

2

(
n+ 1

n

)
, E(d̃2t ) =

s2

4
+
σ2

6

(
n+ 1

n

)
. (4)

Solving for s2, censoring at zero, and taking the square root yield the relative

effective spread measure:

ESt =

√
max{2(3d̃2t − d̂2t ), 0}. (5)

My baseline estimator develops the idea of Benos and Zikes (2016). I define

ŝ2t = 2(3d̃2t − d̂2t ), where d̂2t and d̃2t are given in equation (3) and start by deriving

the variance of ŝ2t , as it will be invoked repeatedly in the paper.

Proposition 1 Provided that the fourth moment of ε1,1 exists,

Var(ŝ2t ) =
9s4

2n(n− 1)
+

2s2σ2(2n2 + 3n+ 1)

n2(n− 1)
+

2(2nσ4 + σ4 + 2κ)(2n3 + 7n2 + 7n+ 2)

15n3(n− 1)
,

(6)

where κ = E(ε41,1)− 3σ4 is the excess kurtosis of ε1,1.

Equation (6) implies that although ŝ2 is an unbiased estimator of s2, it is not

consistent as the number of intraday transactions increases because Var(ŝ2t ) =

8
15
σ4 + O(n−1) as n → ∞. This result is due to the fact that we are averaging

random walks in levels (prices) as opposed to first differences (returns), which

cannot be constructed due to missing timestamps.

To derive a consistent estimator of s based on ŝ2t , we need to average ŝ2t over

an increasing number of days before censoring at zero and taking the square root

as in equation (5). The resulting estimator, which I denote by ES
(1)
T , is thus given

by

ES
(1)
T =

√√√√max

{
1

T

T∑
t=1

2(3d̃2t − d̂2t ), 0

}
. (7)
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Given the nonlinear nature of the estimator, E(ES
(1)
T ) and Var(ES

(1)
T ) are not

available in closed form. I employ a Taylor series expansion of ES
(1)
T around s,

s > 0, together with equation (6), to establish the leading terms (as T →∞). The

leading term of the bias reads

lim
T→∞

E[T (ES
(1)
T − s)] = − 1

15

σ4

s3
−
(

1

3

σ4

s3
+

1

15

κ

s3
+

1

2

σ2

s

)
1

n
+O

(
1

n2

)
, (8)

implying that ES
(1)
T tends to underestimate the true effective spread. The limiting

variance reads

lim
T→∞

Var[
√
T (ES

(1)
T − s)] =

2

15

σ4

s2
+

(
2

3

σ4

s2
+

2

15

κ

s2
+ σ2

)
1

n
+O

(
1

n2

)
. (9)

As expected, the absolute bias and variance decrease with the signal-to-noise ratio

(SNR) s/σ, so it is more difficult to estimate the effective spread when it is small

relative to the volatility of the efficient price. The absolute bias and variance of

ES
(1)
T also increase with excess kurtosis, but this only matters when the number

of transactions is small; the contribution of κ vanishes as n → ∞. The second

terms in the expansions also show that for sufficiently large n, the absolute bias

and variance of ES
(1)
T decrease with the number of transactions, as the coefficients

on the n−1 terms in equations (8) and (9) are always positive.

It follows from the assumptions stated in Section 2 and standard limit theorems

that as T → ∞, ES
(1)
T →p s and if s > 0 and κ < ∞,

√
T (ES

(1)
T − s) →d

N(0, ω2), where ω2 = 1
4s2

Var(ŝ2). The limiting variance of ES
(1)
T has a particularly

simple form if we consider the asymptotics where both T, n → ∞, which may be

appropriate in situations where the number of daily transactions is large. Then,

from equation (9), we obtain
√
T (ES

(1)
T − s)→d N(0, 2σ4

15s2
). Feasible inference can

be obtained by replacing the unknown s and σ2 in the limiting variance with their
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sample counterparts, ES
(1)
T and σ̂2

T , respectively, where

σ̂2
T = max

{
1

T

T∑
t=1

3(d̃2t − d̂2t ), 0

}
(10)

is a consistent estimator of σ2.

3.1 Comparison with estimators that use timestamps or

trade direction

In this section, I compare the baseline estimator with several well-known measures

of the effective spread that require timestamps or trade direction, or both. The

goal is to assess how serious the loss of information associated with these data

limitations is.1

3.1.1 Observable timestamps

Should timestamps be available, one would typically use the Roll (1984) estimator,

which is equal to minus 4 times the sample first-order autocovariance of intraday

returns:

γ̂2t = − 4

n− 2

n∑
i=3

(pi,t − pi−1,t)(pi−1,t − pi−2,t). (11)

It is easy to show that in my setup the estimator is unbiased for s2, and its variance

reads

Var(γ̂2t ) =

(
16σ4

n2
+

16s2σ2

n
+

2s4(n− 3)

(n− 2)
+ 3s4

)
1

n− 2
. (12)

Clearly, Var(γ̂2t ) = 5s4

n
+ O(n−2), so γ̂2t is a consistent estimator of s2 as n → ∞.

Similar to ES
(1)
T , γ̂2t can be averaged over T days and censored at zero to obtain a

1In the rest of this section, all analytical results are presented without proof to save space.
The derivations follow similar steps as the derivation of equation (6) and can be obtained upon
request.
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nonnegative estimator of s:

RollT =

√√√√max

{
1

T

T∑
t=1

γ̂2t , 0

}
. (13)

Unlike ES
(1)
T , RollT is consistent for s as n→∞ for any T .

But the Roll estimator is not the only
√
n-consistent measure of s. Christensen,

Podolskij, and Vetter (2009) propose an estimator based on realized volatility,

which can be tailored to my framework as follows:

ω̂2
t =

2

n− 1

n−1∑
i=1

(pi+1,t − pi,t)2. (14)

It is straightforward to show that

E(ω̂2
t ) = s2 +

2σ2

n
and Var(ω̂2

t ) =
s4

n− 1
+

8s2σ2

n(n− 1)
+

4(κ− σ4)

n2(n− 1)
(15)

where κ = E(ε41,1), which implies that ω̂2 is asymptotically unbiased and its variance

satisfies Var(ω̂2
t ) = s4

n
+ O(n−2). The limiting variance is five times smaller than

that of the Roll estimator γ̂2t , but the finite-sample bias can be large when σ2 is

large. Unlike ŝ2 or γ̂2, the estimator ω̂2
t is non negative by construction, and hence

there is no need for censoring when constructing a consistent estimator of s based

on T days worth of data:

RV all
T =

√√√√ 1

T

T∑
t=1

ω̂2
t . (16)

Similar to RollT , and unlike ES
(1)
T , RV all

T is consistent for s as n→∞ regardless

of T .
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3.1.2 Observable trade direction

As suggested by Warga (1991) and Schultz (2001), when the trade direction is

observable one can simply regress the difference between the transaction price

and some benchmark price on the trade indicator. Here I continue assuming that

the benchmark price equals the end-of-day mid-quote and suggest running the

following OLS regression:

pi,t −m0,t = β
(1)
t qi,t + u

(1)
i,t . (17)

If the daily benchmark prices are not available, one can use the average transaction

price instead and run the regression

pi,t − p̄t = β
(2)
t qi,t + u

(2)
i,t . (18)

If model (1) is the data-generating process, the regression innovations are given by

u
(1)
i,t = mi,t −m0,t and u

(2)
i,t = mi,t − m̄t − (s/2)q̄t, respectively. It is easy to show

that the ordinary least squares (OLS) estimators of β
(1)
t and β

(2)
t in regressions (17)

and (18) satisfy, under my assumptions:

E(2β̂
(1)
t ) = s, Var(2β̂

(1)
t ) =

2σ2(n+ 1)

n2
, (19)

E(2β̂
(2)
t ) = s− s

n
, Var(2β̂

(2)
t ) =

2σ2(n+ 1)(n− 1)

3n3
+ 2s2

(
1

n2
− 1

n3

)
.(20)

Replacing mi,t with m0,t or p̄t therefore does not render the regression-based esti-

mator inconsistent as it did for d̂2t and d̂2t in Section 3. The OLS estimators 2β̂
(i)
t ,

i = 1, 2 will converge in probability to s at rate
√
n as n→∞ as did the Roll and

RV-based measures in Section 3.1.

Similar to the effective spread measures in the previous section, none of these

OLS estimators are guaranteed to be non-negative. Thus, I censor them at zero
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and denote the regression-based estimators of the effective spread s for day t by

RS
(i)
t = max{2β̂(i)

t , 0}, i = 1, 2. When estimating the effective spread using the full

sample of T days with n transactions each, one simply runs the regressions (17)

and (18) using all nT observations. I denote these estimators by RS
(i)
T , i = 1, 2.

Note that in practice, n does not have to be the same for all days in the sample; I

only make this assumption here to simplify derivations.

3.1.3 Observable timestamps and trade direction

Finally, I investigate the loss of efficiency associated with both missing timestamps

and trade direction. If timestamps were available, one could run the regression of

p on q in first differences:

∆pi,t = β
(3)
t ∆qi,t + u

(3)
i,t . (21)

The gain in efficiency compared with the regressions in levels is simply due to

the fact that u
(3)
i,t = εi,t, which has much smaller variance than either u

(1)
i,t or

u
(2)
i,t and is serially uncorrelated. A complication with the standard OLS estima-

tor β̂(3) in regression (21) is that it is not always well defined. We have β̂(3) =∑n
i=2 ∆pi,t∆qi,t/

∑n
i=2(∆qi,t)

2 and it is not difficult to show that P(
∑n

i=2(∆qi,t)
2 =

0) = (1/2)n−1. But because 1
n−1

∑n
i=2(∆qi,t)

2 converges in probability to 2 as

n → ∞, an asymptotically equivalent, well-defined estimator can be obtained by

simply setting
∑n

i=2(∆qi,t)
2 equal to 2(n− 1) in β̂

(3)
t whenever

∑n
i=2(∆qi,t)

2 = 0—

that is, I define

β̃
(3)
t =

∑n
i=2 ∆pi,t∆qi,t

1{
∑n

i=2(∆qi,t)
2 = 0}2(n− 1) +

∑n
i=2(∆qi,t)

2
. (22)

Clearly, E(2β̃
(3)
t ) = s, so 2β̃

(3)
t is an unbiased estimator of s. It is difficult to

derive the exact variance of β̃
(3)
t , but it is easy to show that the limiting variance

satisfies limn→∞ n
2Var(2β̂

(3)
t ) = 2σ2 and that 2β̃

(3)
t is a n-consistent estimator of s.
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Thus, observing both timestamps and trade direction at the same time improves

the convergence rate further: recall that the RMSE of the estimators RollT , RV all
T ,

RS
(i)
T , i = 1, 2 only decays at rate n1/2. In small samples, β̃

(3)
t can be negative with

positive probability, so I define RS
(3)
t = max{2β̃(3)

t , 0} as an estimator of s for day

t and RS
(3)
T = max{2β̃(3)

T , 0}, where β̃
(3)
T is obtained by running regression (21)

using all nT observations (T days with n transactions each).

3.1.4 Summary

The analytical comparison reveals that the absence of timestamps and/or trade

direction reduces the convergence rates of the effective spread estimators. In the

full-information case, one can achieve n-consistency, while in the absence of either

timestamps or trade direction, only
√
n-consistency is possible. In the absence of

timestamps, the limiting RMSE only depends on s (equations (12) and (15)), while

in the case of missing trade direction, it is solely driven by σ2 (equations (19)).

Finally, when both are missing, consistency cannot be achieved by increasing the

number of intraday observations and averaging over an increasing number of days

is necessary. The limiting variance of the effective spread estimator depends on

the ratio of σ2 and s, see equation (9).

Now, in practice this means that the relative performance of the various esti-

mators depends on the parameter configuration and the number of intraday ob-

servations. To illustrate that, I plot in Figure 1, the RMSE as a function of n on

a log-log scale. Clearly, when the signal-to-noise ratio σ2/s is high, the absence

of time stamps and trade direction lead to significant deterioration in RMSE for

any n. But when σ2/s is small (left panel), there exists a wide range for n where

the infeasible estimators do not really improve much upon the estimator that does

not require either timestamps or trade direction. This is a useful result because

in practice it is precisely illiquid, infrequently traded asses for which these data

limitations occur.
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4 Range-based estimators

The baseline estimator is simple to compute, but it requires observing the bench-

mark price m0,t. When these prices or mid-quotes are not available, d̂t cannot be

calculated and we need an alternative moment condition. Inspired by Corwin and

Schultz (2012), I use the daily range:

r̂2t = (max
j
pj,t −min

j
pj,t)

2. (23)

The range has a long tradition in financial econometrics, dating back to Parkin-

son (1980), and has been widely used for estimating variance from intraday data

(Brandt and Diebold, 2006; Christensen and Podolskij, 2007; Christensen, Podol-

skij, and Vetter, 2009; Dobrev, 2007). It is clear that r̂2t is expected to depend on

both s and σ, as do d̃2t and d̃2t . Corwin and Schultz (2012) combine equation (23)

with a second moment condition based on the squared range over two consecutive

days, that is, (maxj pj,t:t+1−minj pj,t:t+1)
2, where pj,t:t+1 denotes the j-th transac-

tion price in a two-day window starting on day t. To derive their estimator, Corwin

and Schultz (2012) make two strong assumptions that I do not want to make here:

continuous intraday trading and zero overnight returns.2 Moreover, relying solely

on the one-day and two-day range means throwing away a lot of data, so I de-

velop measures that use all available transaction data. My range-based estimators

therefore use only the daily range in equation (23) and work for any finite n.

I continue with the assumptions stated in Section 2 and additionally assume

that the innovations of the efficient price are normally distributed. The expectation

of the squared range can then be approximated by simulation for any finite n

and the SMM employed to consistently estimate s. I proceed as follows. Let

θ = (s, σ2)′ and let p∗s = (p∗1s, p
∗
2s, ..., p

∗
ns)
′ denote a random draw from model (1)

2Corwin and Schultz (2012) suggest a simple correction for non-zero overnight return, but the
correction does not eliminate the overnight return problem completely and the estimator remains
generally biased and inconsistent.
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given θ. Taking S independent draws, I approximate the expectation of r̂2 by

mS(θ, n) =
1

S

S∑
s=1

(max
j
p∗js −min

j
p∗js)

2. (24)

The SMM estimator is then obtained by

θ̂T = arg min
θ∈R++

g′TgT , (25)

where gT = 1
T

∑T
t=1 gt, gt = (g1t, g2t)

′, g1t(θ, n) = d̃2t − E(d̃2t ), and g2t(θ, n) =

r̂2t −mS(θ, n). The objective function g′TgT must be minimized numerically under

the restrictions that s and σ are nonnegative. The range-based estimator of s,

which I denote by ES
(2)
T , is then given by ES

(2)
T = θ̂1,T . It follows that if T/S → 0

as T →∞, ES
(2)
T

p→ s and the SMM estimator is asymptotically equivalent to the

generalized method of moments (GMM) (see chapter 2 in Gourieroux and Monfort,

1996), and the usual GMM inference applies.

My final estimator follows naturally from the previous two. If the benchmark

prices are observable, it is clearly desirable to use all three moment conditions at

the same time. Formally, define g3t(θ, n) = d̂2t − E(d̂2t ) and gt = (g1t, g2t, g3t)
′,

where g1t and g2t are previously given. The over-identified SMM estimator of θ is

given by

θ̃T = arg min
θ∈R++

g′TWTgT (26)

for some positive definite matrix WT . I follow the standard two-stage approach,

whereby I first use WT = I to obtain a preliminary estimate θ̂T and then use the

optimal ŴT (sample variance of gt evaluated at θ̂T ) in the second stage to obtain

θ̃T . My third estimator of s is then given by ES
(3)
T = θ̃1,T . Again, if T/S → 0 as

T →∞, ES
(3)
T

p→ s, and we obtain asymptotic equivalence with GMM.
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4.1 Computational aspects

When the number of transactions is large, the previously described simulation-

based estimation may be slow. The minimization must be done numerically and the

evaluation of the objective function can be costly. Fortunately, simulation-based

or analytical approximations for E(r2t ) can be devised that significantly speed up

computations.

Observe that the price process in equation (2) can be approximated by a process

σW (t) + s
2
q(t), where W (t) is standard Brownian motion and q(t) is a continuous-

time process such that for any t, q(t) = 1 with a probability of 1/2, and q(t) = −1

otherwise. Now due to continuity of Brownian motion, the range of σW (t) + s
2
q(t)

equals the range of σW (u) plus s. Thus, for large n, we can approximate the range

of pi,t by the range of mi,t plus s:

E[(max
j
pj,t −min

j
pj,t)

2] ≈ E[(σ(max
j
zj −min

j
zj) + s)2], (27)

where zj, j = 0, ..., n, is a discretized Brownian motion on [0, 1]. All that has to be

simulated, then, is the expectation of the range and squared range of a discretized

Brownian motion. This simulation needs to be done only once, before the SMM

estimation begins, and not every time the objective function is evaluated. When

n is large, this approximation leads to significant gains in computational speed.

The approximation can be further improved by using the decomposition of

Christensen, Podolskij, and Vetter (2009), Lemma A.1, where the maximum of

the efficient price is only taken over buyer-initiated transactions and the minimum

over seller-intiated transactions when calculating the range of z in (27). Formally,

let bi, i = 0, ..., 1 be an iid binary process independent of z, where bi = 1 with a

probability of 1/2 and bi = −1 otherwise. Given a sample path of b and z, the range

of z is calculated over the set I = {(i, j)|bi = 1, bj = −1]}. The approximation

17



then becomes

E[(max
j
pj,t −min

j
pj,t)

2] ≈ E[(σ max
(i,j)∈I

(zi − zj) + s)2]. (28)

As before, the range on the right-hand side of equation (28) needs to be simulated

only once and not every time the objective function is evaluated.

But the simulation can be avoided altogether because accurate analytical ap-

proximations for the range of discretized Brownian motion in equation (27) exist.

Using Lemma A.8 in Andersen, Dobrev, and Schaumburg (2013) together with

equation (27) leads to the approximation

E[(max
j
pj,t −min

j
pj,t)

2] ≈ (4 log 2)σ2 + 2

√
8

π
σs+ s2 +

ζ(1/2)√
2π

(√
8

π
σ2 + σs

)
4√
n
,

(29)

where ζ(1/2)/
√

2π ≈ −0.5826.

To see how these approximations work, I plot expressions (27),(28), and (29)

together with the true value E[(maxj pj,t−minj pj,t)
2] in Figure 2 for different values

of n. I find that all approximations are generally quite close to the true value for

n > 1000. Interestingly, there is virtually no difference between the analytical

approximations in equations (29) and 27); clearly, the first-order correction in

Andersen, Dobrev, and Schaumburg (2013) works very well, even for small n. But

both of these approximations are significantly upward biased when n is small.

Fortunately, the approximation in equation (28), based on the idea of Christensen,

Podolskij, and Vetter (2009), is significantly more accurate for all values of n and

is very close to the true value when n > 100. Thus, it seems that in practice one

should simulate E[(maxj pj,t−minj pj,t)
2] when n is small—say, less than 100—and

use the approximation in equation (28) to speed up computations when n > 100.

For very large values of n, one can avoid simulations altogether and use equation

(29).
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Another issue that obviously arises in practice is that the number of transac-

tions is not the same every day. This issue poses no problems for my estimators.

All one needs to do is to replace n in equations (3) and (29) with nt, where nt

denotes the number of transactions on day t. Similarly, in the SMM estimation,

one would simply simulate the squared range with the appropriate nt for each t.

5 Simulations

To assess the performance of my estimators ES
(i)
T , i = 1, 2, 3 in a controlled en-

vironment, I run a Monte Carlo experiment. I set the daily integrated volatility

of the efficient price (σ) to 35 basis points, which is approximately equal to the

daily volatility of the 10-year Treasury futures price, and let the efficient price in-

novations follow a normal distribution. I vary the true effective spread (s) between

5 and 50 basis points, the number of daily transactions (n) between 10 and 250,

and the number of days (T ) in the sample between 25 and 250. Recall that the

absolute values of s and σ are not that important—what matters are their relative

values. Each simulation is based on 10,000 Monte Carlo replications.

Table 1 reports the average effective spread obtained in the simulation together

with the associated RMSE. Starting with the results for the baseline estimator

ES
(1)
T , which are reported in the top two rows of each panel, I find that the bias

of the estimator can be either positive or negative in small samples depending on

the true effective spread. But as predicted by theory (see equation (8)), the bias

does become negative for sufficiently large T before eventually converging to zero

as T →∞. The RMSE of the estimator approaches zero at a rate that is broadly

in line with
√
T consistency.

Turning to the just-identified range-based estimator, ES
(2)
T , reported in rows 3

and 4 of each panel in Table 1, I find that the estimator exhibits a bias that can

be either positive or negative depending on n, T , and s, but both the bias and

19



the RMSE decline as T → ∞, as expected. Comparing the performance of ES
(2)
T

with the baseline estimator ES
(1)
T , I find that the two estimators can perform quite

differently. On the one hand, ES
(1)
T does well when s is large and T is small; for

example, when s = 50, n = 50, and T = 50, the RMSE of ES
(1)
T is around three

times smaller than that of ES
(2)
T . On the other hand, ES

(2)
T works relatively well

when s is small and T is large; for example, when s = 5, n = 250, and T = 250,

the RMSE of ES
(1)
T is more than three times larger than that of ES

(2)
T .

It is therefore not surprising that the over-identified estimator, ES
(3)
T , which

combines the moment conditions underlying ES
(1)
T and ES

(2)
T using the optimal

weighting matrix, generally performs the best. The results reported in rows 5

and 6 of Table 1 show that the estimator is typically the most precise in terms of

RMSE, except when T is very small.

6 Time-varying effective spread

In this section, I allow the effective spread to vary over time. As shown previously,

due to the lack of transaction timestamps and trade direction, I am not able to

estimate the effective spread consistently from data spanning a fixed time period

such as a day or week, even if the number of transactions within that period

increases without bound. Transaction costs do fluctuate over time, however, and

so it is worth exploring the conditions under which one can recover the path of

the time-varying effective spread using all available data. It turns out that this is

possible if the effective spread process is sufficiently smooth.

For any given period t (for example, a day), I assume that the effective spread

within the period is constant and equal to st. I follow the recent advances by

Giraitis, Kapetanios, and Yates (2013) and Giraitis et al. (2016) and adopt a

nonparametric approach whereby the law of motion of the parameters is left un-

specified, up to a class of processes, and the parameters are estimated by local
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averaging. The processes I consider for st are bounded stochastic and/or deter-

ministic processes satisfying the smoothness condition:

sup
j:|j−t|<h

||st − sj||2 = Op(h/t) (30)

as t → ∞, h → ∞, and h = o(t). Examples of processes that belong to this

class include st = t−1xt, st = xt
maxj≤T |xj |

, and st = g
(
t
n

)
, where {x} is a unit root

process with stationary increments and g is a smooth deterministic function on the

unit interval. These processes are bounded in probability and are smoother than

random walks.

To estimate st, I take some weights wj,t = w̃j,t/
∑

j w̃j,t, where w̃j,t = K((j −

t)/H) for some kernel function K and bandwidth parameter H. I then define the

kernel estimator of the effective spread at time t as

ES
(1)
t,T =

√√√√max

{
2

T∑
j=1

wj,t(3d̃2j − d̂2j), 0

}
. (31)

The kernel can be uniform, leading to simple rolling estimation with a window

of size H, or have unbounded support, such as the Gaussian kernel. For an un-

bounded kernel, I require that K(x) ≥ 0, x ∈ R, is a continuous bounded func-

tion with a bounded first derivative such that
∫
K(x)dx = 1. K(x) = O(e−cx

2
),

∃c > 0, |K ′(x)| = O(|x|−2), x→∞. Several popular kernel functions satisfy these

conditions—for example, the Gaussian and quartic kernels. Similar to the time-

varying spread st, I assume that the volatility of the efficient price is constant

intraday but varies smoothly over days—that is, σi,t = σt for all i, and that σt is a

bounded stochastic and/or deterministic process satisfying the same smoothness

condition (30). This assumption, of course, contains constant volatility as a special

case.

The key to achieving consistency of the time-varying estimator ES
(1)
t,T is the
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choice of H relative to T . Define H̄ = H if the kernel has bounded support and

H̄ = H log1/2H for an unbounded kernel. Then we have the following.

Proposition 2 For any t = [τT ], 0 < τ < 1, if H → ∞, H̄/T → 0 as T → ∞,

ES
(1)
t,T

p→ st.

The proposition shows that the bandwidth parameter has to grow with T but not

as fast as T . When choosing H, one faces the familiar tradeoff between bias and

variance: Smaller (larger) H produces less (more) biased and more (less) volatile

estimates. There is currently no data-driven method for choosing H, but taking

H =
√
T seems to work well in existing applications (Giraitis, Kapetanios, and

Yates, 2013; Giraitis et al. 2016).

The advantage of the ES
(1)
t,T estimator is that it is available in closed form and

easy to calculate. However, the simulation results reported in the previous section

show that the range-based estimators can perform better. It is therefore desirable

to adapt those estimators to the time-varying parameter setting as well. This

method turns out to be more involved because the expectation of the range is not

known in closed form. Some theoretical results are nonetheless possible to obtain

under the assumption that both n→∞ and T →∞.

To construct the kernel analog to the estimators ES
(2)
T and ES

(3)
T , define

g
(1)
t,T =

T∑
j=1

wjt

(
d̂2j −

s2

4
− σ2

2

)
, (32)

g
(2)
t,T =

T∑
j=1

wjt

(
d̃2j −

s2

4
− σ2

6

)
, (33)

g
(3)
t,T =

T∑
j=1

wjt

(
r̂2j − 4 log 2σ2 − 2

√
8

π
sσ − s2

)
, (34)

and gt,T = (g
(1)
t,T , g

(2)
t,T , g

(2)
t,T )′. Then the kernel estimator of θt = (st, σ

2
t )
′ is given by

θ̃t,T = arg min
θ∈R++

g′t,TWt,Tgt,T (35)
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for some positive definite matrix Wt,T and ES
(3)
t,T = θ̃

(1)
t,T . When using only the

second and third moment conditions, we obtain ES
(2)
t,T . The following proposition

establishes the consistency of these estimators.

Proposition 3 For any t = [τT ], 0 < τ < 1, if n → ∞, H → ∞, H̄/T → 0 as

T →∞, ES
(i)
t,T

p→ st, i = 2 and 3.

7 Empirical illustration

Having explored the behavior of the various effective spread estimators analytically

and through simulations, I now turn to an empirical illustration. The purpose of

this exercise is to assess the performance of my measures against (1) the true effec-

tive spread one would simply calculate if m, q, and timestamps were observable,

and (2) the measures that require either timestamps or trade direction, or both,

that I discussed previously. In other words, I want to examine the performance

of my estimators against those that require progressively more information. This

approach is similar to Goyenko, Holden, and Trzcinka (2009), who compare low-

frequency liquidity measures with their high-frequency counterparts for selected

U.S. stocks.

Now, ideally, I would like to employ data from an OTC market, since that is

where I expect my measures would naturally find applications, but to the best

of my knowledge, no time-stamped OTC trade and quote data are available that

would allow me to do this exercise. I thefore employ the widely-used TAQ data

for selected NYSE-listed stocks; the TAQ data are time stamped to the second

and contain information about m and q, so that the true effective spread can be

readily computed.
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7.1 Data and descriptive statistics

The universe of NYSE-listed stocks is too broad to consider here in full. Because

my measures of effective spread would typically be applied to OTC-traded con-

tracts, which tend to be less liquid and trade less frequently than exchange-traded

instruments, I focus on stocks with small market capitalization. In particular, I

take all stocks in the TAQ database that satisfy two criteria. The first is that the

stock was included in the S&P Small-Cap 600 Index for the entire period between

January 2, 2005, and December 31, 2014. The second is that there are trade and

quote data available for this stock in the TAQ database for every trading day in

this period. These criteria select 147 stocks.

For each stock and day in my sample, I download from the Wharton Research

Data Services (WRDS) the WRDS-derived trades files (WCT data sets), which

contain trades matched with the prevailing National Best Bid and Offer quotes.

I then filter the data and retain only those trades with trade times between 9:35

a.m. and 4:00 p.m., positive transaction price, positive prevailing mid-quote, and

positive quoted spread. In addition, I drop all trades where the prevailing quoted

spread is greater than 50 times the median quoted spread for the same day, and

where the proportional effective spread is greater than 50 times the median propor-

tional effective spread for the same day; these rules are similar to those proposed

by Barndorff-Nielsen et al. (2008).

Table 2 reports some descriptive statistics for the data, separately for five two-

year periods that span my sample. The average daily number of trades varies

between 1,000 and 2,000 for a typical stock day. The average effective spread

varies between 12 and 16 basis points, while the average daily realized volatility

varies between 150 and 250 basis points. The average SNR, which I define here as

the ratio of effective spread and realized volatility (s/σ), fluctuated between 6 and

9 percent. Thus, despite being small cap, the typical stock in my sample traded

relatively frequently and with a fairly tight spread during my sample period. At
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the same time, there are stocks and trading days with relatively little trading and

fairly large effective spreads as indicated by the 5th and 95th percentiles reported

in the table.

7.2 Results

My main empirical results are summarized in Panel A of Table 3. I run the effective

spread estimations separately for each stock month, stock quarter, stock half-year,

and stock year in the sample period and compare the estimates with the actual

effective spreads observed for a given stock in a given time period. Specifically, I

calculate the bias and RMSE associated with each estimator and the correlation

of the estimated spread with the actual effective spreads calculated from TAQ. I

consider my estimators ES
(i)
T , i = 1, 2, 3 and the Roll, RV-based, and regression-

based estimators for comparison. Recall that the latter three are infeasible in the

absence of timestamps.

I find that estimating the effective spread without timestamps is very chal-

lenging. The infeasible estimators are significantly less biased and an order of

magnitude more accurate in terms of RMSE than my estimators; they are also

much more closely correlated with the actual effective spreads. In line with theory,

the over-identified estimator ES
(3)
T is generally most accurate in terms of RMSE

out of my three estimators, although ES
(2)
T tends to be more closely correlated

with the actual spread. The results do not improve as the number of observations

used for estimation increases. As expected, all infeasible estimators deliver RMSE

that is an order of magnitude lower than that of my feasible estimators. The esti-

mator based on realized volatility performs remarkably well, exhibiting almost no

bias and having significantly lower RMSE than the Roll measure.

The relatively poor performance of the feasible estimators should not come as

a surprise: The average SNR for the 147 stocks in my sample is very small, and the

simulation results discussed previously clearly indicate that in such circumstances
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all feasible estimators struggle. To shed more light on the relationship between

the SNR and RMSE, I perform the following experiment. Rather than using the

original transaction prices when computing effective spread estimates, I construct

a new set of transaction prices p̃ where I set p̃i,t = mi,t + 10(pi,t−mi,t) for all i and

t—that is, I artificially inflate the actual effective spread by a factor of 10. This

procedure leaves the intraday volatility and time-series dynamics of the mid-quote

unchanged, but it increases the SNR tenfold. I then reproduce the results reported

in Panel A of Table 3 using the artificial transaction prices p̃ in place of the actual

transaction prices p.

The results are reported in Panel B. I find that the relative performance of

my estimators improves significantly. Although they are still upward biased, their

RMSE is now much smaller relative to the actual spread. Also, while the two

estimators that utilize timestamps (Roll and RV all) still outperform my estimators,

the differences in terms of RMSE have become smaller. The regression-based

estimators that require trade direction perform better that either Roll or RV all.

Finally, the correlation between my estimates and the true spreads has increased

significantly.

In addition to the experiment with the SNR, I study how the intraday number

of transactions (n) affects performance. I do this by sampling sparsely from the

set of transaction prices, retaining only every 10th observation on a given day for

a given stock, and re-run all estimations on the sparsely sampled data. The results

are reported in Panels C and D of Table 3; the former reports results based on

the original data, while the latter shows results based on the artificial transaction

prices previously described (inflated true effective spreads).

Starting with Panel C, I find that the performance of my estimators is largely

unaffected by sparse sampling. This finding is in line with the theoretical result

that n has only a second-order effect on the RMSE of these estimators. In contrast,

the infeasible Roll and RV-based estimators exhibit a significant deterioration in
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precision as n decreases. Notably, the RV-based estimator now exhibits a signifi-

cant upward bias and a substantial increase in RMSE. When I artificially inflate

the actual effective spreads by a factor of 10 (Panel D), the differences between

the RMSE of my estimators and the infeasible ones become even smaller.

In summary, the empirical results based on the 147 stock in my sample are

largely consistent with the theoretical and simulation results reported previously.

The key driver of the performance of my estimators is the SNR. To illustrate this

finding graphically, Figure 3 plots the RMSE expressed as a fraction of the true

spread separately for stock-month sorted into deciles by their SNR. The figure is

based on the same data as Panel D in Table 3. Clearly, as the SNR increases, the

performance improves, and gradually approaches the performance of the infeasible

estimators. This is very much in line with the behavior of the theoretical RMSE

shown in Figure 1 in Section 3.1.

7.3 Time-varying estimation

I now turn to the time-varying kernel estimation proposed in Section 6. I use

the Gaussian kernel and set the bandwidth parameter according to H =
√
T .

Figure 4 summarized the estimation results. Because it is impossible to show the

time-varying estimates for all 147 stocks here, I simply report the cross-sectional

averages over time. Panel A shows results based on the original data, while Panel

B reports results based on the (artificial) transaction prices obtained by inflating

the actual effective spreads by a factor of 10.

I find that my time-varying estimators perform well when the SNR is not very

low, which is hardly surprising given the findings of the previous subsection. When

the SNR is low, the estimators are significantly upward biased and do not capture

the dynamics of the actual effective spread accurately. In particular, ES
(1)
t,T drops

substantially during the financial turmoil of 2008 even though the actual effective

spread increased. While the range-based estimators do not suffer from this problem
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and are generally more closely correlated with the true spreads, they tend to peak

a few months late. When I inflate the true effective spreads, the performance of all

estimators improves considerably, both in terms of bias and correlation with the

true spread.

8 Conclusion

In this paper, I have studied the problem of estimating transaction costs in the

absence of timestamps. Building on insights from the previous literature, I pro-

posed several measures of the effective spread and studied their sampling properties

within the simple framework of Roll (1984). I corroborated my theoretical findings

using a Monte Carlo simulation and assessed the performance of my estimators in

an empirical application to selected NYSE-listed small-cap stocks.

The theoretical, simulation-based, and empirical results show that the loss of

information due to missing timestamps is large. My estimators are suitable for

measuring transaction costs in illiquid OTC markets, where effective spreads tend

to be wide relative to the fundamental volatility, but not necessarily in highly liquid

exchange-based markets such as those for equities and futures contracts, where the

opposite is generally true. But in those cases, accurate transaction timestamps are

typically available, so my estimators would not be necessary.

Throughout the paper, I have worked in the widely used framework of Roll

(1984). Whereas the simplicity of this framework allows for straightforward analyt-

ical derivations, future work may consider more elaborate microstructure models,

such as those by Huang and Stoll (1997); Madhavan, Richardson, and Roomans

(1997); Bessembinder, Maxwell, and Venkataraman (2006); and Edwards, Harris,

and Piwowar (2007). These models allow for a richer relationship between order

flow and returns, and they relax some of the arguably restrictive assumptions of

the Roll (1984) model. It would be interesting to explore whether these models can
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be reliably estimated when timestamps are missing. Last but not least, it would

be interesting to study whether the effective spread can be estimated consistently

in the presence of stochastic volatility of the efficient price.
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A Proofs

Proof of Proposition 1. Dropping the subscript t to simplify notation, we have

ŝ2 − s2 = 2(3d̃− d̂)− s2, (36)

=
3s2

2

[(
1

n− 1

n∑
i=1

(qi − q̄)2
)
− 1

]

+ 2s

[
3

n− 1

n∑
i=1

(mi − m̄)(qi − q̄)−
1

n

n∑
i=1

(mi −m0)qi

]

+ 2

[
3

n− 1

n∑
i=1

(mi − m̄)2 − 1

n

n∑
i=1

(mi −m0)
2

]
(37)

=: An +Bn + Cn. (38)

By construction, E(An) = E(Bn) = E(Cn) = 0, and it is easy to show that E(AnBn) =

E(AnCn) = E(BnCn) = 0 because E(miqj) = 0 for all i and j. Thus, Var(ŝ2) =

E(A2
n) + E(B2

n) + E(C2
n). It is clear from the equation above that ŝ2 does not depend on

m0, so we will set it to zero to simplify notation.

Starting with E(A2
n), write

A2
n =

9s4

4

 1

(n− 1)2

n∑
i=1

n∑
j=1

(qi − q̄)2(qj − q̄)2 −
1

n− 1

n∑
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(qi − q̄)2 + 1

 . (39)
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Because E(qiqj) = 0 if i 6= j and q2i ≡ 1, we have

E

 n∑
i=1

n∑
j=1

(qi − q̄)2(qj − q̄)2
 = n2 − 2E
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 ,

(40)

= n2 − 2n+ 3− 2

n
. (41)

This, together with E
(∑n

i=1(qi − q̄)2
)

= n− 1, gives after some algebra

E(A2
n) =

9s4

2n(n− 1)
. (42)

Turning to E(B2
n), write
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Because E(εiεj) = 0 if i 6= j,
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(44)

Similarly, E
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∑
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∑
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∑
j E(mimj) and E
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∑
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∑
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=

n
∑

i

∑
j E(mimj). Thus, it remains to derive

∑
i

∑
j E(mimj). The case i = j follows

from above, so we focus on the case when i 6= j:
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j=i+1

E

 i∑
p=1

(
i∑

r=1

+

j∑
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= σ2n(n+ 1)− 1

3
σ2(n+ 1)(2n+ 1). (49)

Plugging (44) and (49) into the expectation of (43) and simplifying gives

E(B2
n) =

2s2σ2(2n2 + 3n+ 1)

n2(n− 1)
. (50)

Finally, we derive E(C2
n). Write
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We focus on the last term because the other two terms follow from the derivation of this

term. Observe that
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To save space, we derive here only the expectation of the last term; the other terms

follow using the same approach:

E

 n∑
i=1

n∑
j=1

n∑
k=1

n∑
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σ4

12
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1

n
, (57)

where κ = E(ε41)− 3σ4. Above, we use the fact that

E

 i∑
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i∑
r=1

i∑
s=1

i∑
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2
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=
1

n2
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and

E
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j∑
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εpεrεsεt

 = E

 i∑
p=1

i∑
r=1

εpεr

E
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( j∑
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E(ε2r)

)
, (62)

=
1

n2
σ4i(j − i). (63)

The expectation of the other terms in C2
n can be obtained analogously. We obtain

E(C2
n) =

2(2σ4n+ σ4 + 2κ)(2n3 + 7n2 + 7n+ 2)

15n3(n− 1)
. (64)

The variance of ŝ2 then follows after some algebra. �

Proof of Proposition 2. Write

T∑
j=1

2wjt(3d̃
2
j − d̂2t ) =

T∑
j=1

wjt

(
1

2

[
1

n− 1

n∑
i=1

3(qi,j − q̄j)2 − 1

]
s2j − s2t

)
(65)

+ 2
T∑
j

wjtsj

[
3
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n∑
i=1

(mi,j − m̄j)(qi,j − q̄j)−
1

n

n∑
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(mi,j −m0,j)qi,j

]

+ 2
T∑
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wjt

[
3
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n∑
i=1

(mi,j − m̄j)
2 − 1

n

n∑
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(mi,j −m0,j)
2

]
, (66)

=: At,T +Bt,T + Ct,T . (67)

Define Qj,n = 1
2

[
1

n−1
∑n

i=1 3(qi,j − q̄j)2 − 1
]

and write

At,T =
T∑
j=1

wjt(s
2
j − s2t ) +

T∑
j=1

wjt(Qj,n − 1)s2j . (68)

Now, because Qj,n and sj are uncorrelated and E(Qj,n) = 1, the expectation of the
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second term equals zero, and its variance is given by

E

 T∑
j=1

wjt(Qj,n − 1)s2j

2

= E

 T∑
j=1

w2
jt(Qj,n − 1)2s4j

 , (69)

≤ CE(Qj,n − 1)2
T∑
j=1

w2
jt, (70)

= O((n2H)−1). (71)

Turning to the first term in (68), write

T∑
j=1

wjt(s
2
j − s2t ) =

∑
j:|j−t|<h

wjt(s
2
j − s2t ) +

∑
j:|j−t|≥h

wjt(s
2
j − s2t ). (72)

Following Giraitis et al. (2016), we take h = bH log1/2H for some positive constant b.

Then the second term can be ignored, as it is of smaller order than the first term. Now

∣∣∣∣ ∑
j:|j−t|<h

wjt(s
2
j − s2t )

∣∣∣∣ ≤ C sup
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|sj − st|
∑
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wjt = Op

((
H̄

T

)1/2
)
, (73)

because |sj−st| ≤
[
supj:|j−t|<h(sj − sj)2

]1/2
= Op((H̄/T )1/2) and

∑
j:|j−t|<hwjt = O(1).

Thus, At,T = Op

((
H̄/T

)1/2)
+O

(
(n2H)−1/2

)
.

Turning to Bt,T , define Pj,n := 3
n−1

∑n
i=1(mi,j−m̄j)(qi,j−q̄j)− 1

n

∑n
i=1(mi,j−m0,j)qi,j

and note that E(Pj,n) = 0 and E(Pj,nPk,n) = 0 unless j = k. Thus, E(Bt,T ) = 0. Its

variance satisfies

E(B2
t,T ) = E(4

T∑
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w2
jts

2
jP

2
j,n) ≤ CE(P 2

j,n)

T∑
j=1

w2
jt = CO

(
n−1

)
O
(
H−1

)
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(
(nH)−1

)
,

(74)

as E(P 2
j,n) = O(n−1). Thus, Bt,T = Op((nH)−1/2). Finally, by a similar argument, we

obtain Ct,T = Op
(
H−1/2

)
, which completes the proof. �

Proof of Proposition 3. For the sake of brevity, I present a proof for W = I.

In particular, I show that g′t,Tgt,T converges in probability, at appropriate rates and
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uniformly in θ, to
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1

4
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2
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]2
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4
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6
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[
(4 log 2)(σ2t − σ2) + 2

√
8

π
(stσt − sσ) + (s2t − s2)

]2
, (75)

which is clearly minimized at (st, σt). Starting with g
(1)
t,T , write
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g
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)2
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wjtd̂
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Now
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4
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t
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n
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(77)

Define Mj,n = 1
n

∑n
i=1(mi,j −m0,j)

2 and write

T∑
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wjt(Mj,n −
σ2t
2

) =
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σ2j
2

)
+

1

2
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wjt
(
σ2j − σ2t

)
. (78)

By the same argument as in (72)–(73), the second term in (78) is Op((H̄/T )1/2). The

first term in (78) can be written as

T∑
j=1

wjt

(
Mj,n −

σ2j
2

)
=
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wjt

(
Mj,n −

σ2j
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)
+ op(1), (79)

where E(Mj,n −
σ2
j

2
n+1
n ) = 0 and Var(Mj,n −

σ2
j

2
n+1
n ) = O(1), which can be shown

using the law of iterated expectations and the results in Section 4 of the Supplementary

Appendix. Thus, |
∑T

j=1wjt(Mj,n − σ2j /2)| = Op(H
−1/2). Turning to the second term

in (77), we apply similar arguments to arrive at |
∑T

j=1wjt
(
1
n

∑n
i=1(mi,j −m0,j)qi,j

)
| =
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Op((nH)−1/2). Because st and σ2t are bounded, we have

(
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(1)
t,T

)2
=

(
1

4
(s2t − s2) +

1

2
(σ2t − σ2)

)2

+Op((H̄/T )1/2) +Op(H
−1/2) (80)

uniformly in s and σ. (g
(2)
t,T )2 can be treated analogously. Turning to (g

(3)
t,T )2, write

g
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, (81)

where k1 = 2
√

8/π and k2 = 4 log 2. Define Ij = {(i, k)|qi,j = 1, qk,j = −1]}, j = 1, ..., T ,

and observe that for every j, with probability 21−n,

max
(i,k)∈Ij

(mi,j −mk,j) + s ≤ max
i
pi,j −min

i
pi,j ≤ max

i
mi,j −min

i
mi,j + s. (82)

Thus, we can proceed by conditioning on the event {Ij 6= ∅ for all j}. Define zi,j =

mi,j/σj , j = 1, ..., T , and write

∣∣∣∣∣∣
T∑
j=1

wjt[σj(max
i
zi,j −min

i
zi,j) + sj ]

2 −
T∑
j=1

wjtr̂
2
j

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
T∑
j=1

wjt[σj(max
i
zi,j −min

i
zi,j) + sj ]

2 −
T∑
j=1

wjt[σj max
(i,k)∈Ij

(zi,j − zk,j) + sj ]
2

∣∣∣∣∣∣ (83)

≤ C

∣∣∣∣∣∣
T∑
j=1

wjt[(max
i
zi,j −min

i
zi,j)

2 − ( max
(i,k)∈Ij

(zi,j − zk,j))2]

∣∣∣∣∣∣
+ C

∣∣∣∣∣∣
T∑
j=1

wjt[(max
i
zi,j −min

i
zi,j)− max

(i,k)∈Ij
(zi,j − zk,j)]

∣∣∣∣∣∣ . (84)
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By the Markov inequality,

P

∣∣∣∣∣∣
T∑
j=1

wjt[(max
i
zi,j −min

i
zi,j)

2 − ( max
(i,k)∈Ij

(zi,j − zk,j))2]

∣∣∣∣∣∣ > ε

 ≤ 1

ε
(λ2,n − λ̃2,n), (85)

where λ2,n = E([maxi zi,j − mini zi,j ]
2) and λ̃2,n = E([max(i,k)∈Ij (zi,j − zk,j)]

2). Be-

cause {zi,j} is a scaled symmetric Gaussian random walk, it follows that limn→∞ λ2,n =

limn→∞ λ̃2,n = k2 (Christensen, Podolskij, and Vetter, 2009). The second term in (84)

can be handled similarly. Thus, (83) is op(1) as n→∞, and it suffices to focus on

∣∣∣∣∣∣
T∑
j=1

wjt(σjRjn + sj)
2 − k2σ2t − k1stσt − s2t

∣∣∣∣∣∣ (86)

≤

∣∣∣∣∣∣
T∑
j=1

wjt(σ
2
jR

2
jn − k2σ2t )

∣∣∣∣∣∣+

∣∣∣∣∣∣
T∑
j=1

wjt(2sjσjRjn − k1stσt)

∣∣∣∣∣∣+

∣∣∣∣∣∣
T∑
j=1

wjt(s
2
j − s2t )

∣∣∣∣∣∣ (87)

=: Dt,T + Et,T + Ft,T , (88)

where Rjn = maxi zi,j −mini zi,j , j = 1, ..., T . Now Ft,T = Op((H̄/T )1/2) by (44)–(45),

and for Dt,T we have

Dt,T ≤ C

∣∣∣∣∣∣
T∑
j=1

wjt[R
2
jn − E(R2

jn)]

∣∣∣∣∣∣+ C
∣∣E(R2

jn)− k2
∣∣+ k2

∣∣∣∣∣∣
T∑
j=1

wjt(σ
2
j − σ2t )

∣∣∣∣∣∣ . (89)

By the central limit theorem, the first term on the right-hand side of (89) is Op(H
−1/2),

the second term is o(1) as n → ∞, and the third term is Op((H̄/T )1/2) by the same

argument as in (72)–(73). Thus, Dt,T = Op(H
−1/2)+Op((H̄/T )1/2). Following the same

steps, and noting that ||stσt − sjσj ||2 ≤ C||st − sj ||2 +C||σt − σj ||2 +C|st − sj ||σt − σj |

and hence sup|t−j|≤h ||stσt − sjσj ||2 = Op(h/t), we find that Et,T is of the same order as

Dt,T , which completes the proof. �
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Figure 1: Simulated RMSE of alternative estimators of the effective spread as a
function of n on a log-log scale. The parameter values are σ = 35 bps, κ = 0,
and s = 120 bps (left panel), 50 bps (middle panel), and 10 bps (right panel), and
T = 1.
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True
Simulated approx. (28)
Simulated approx. (27)
Simulated approx. (29)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

20

30

40

(b) σ= 35 bps, s  = 5 bps

Figure 2: Expected squared range of p and its approximations as a function
of log10 n. The line labeled “True” shows the true expectation E[(maxj pj,t −
minj pj,t)

2], “Simulated approx. (28)” shows the right-hand side of (28), “Simu-
lated approx. (27)” shows the right-hand side of (27), and “Analytical approx.
(29)” shows the right-hand side of (29). The various expectations are approxi-
mated by simulation with 100,000 replications. The efficient price innovations are
normally distributed with a volatility of 35 bps.
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Figure 3: Average RMSE expressed as a fraction of the true effective spread for
deciles based on the signal-to-noise (SNR) ratio. Every month, the stocks in the
sample are sorted into deciles by their SNR. The RMSE for each decile is then
calculated by averaging across all stock-month observations in the decile.
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Figure 4: Time-varying effective spread estimates averaged across the 147 stocks
in the sample. The left panel shows results for the original data, and the right
panel shows results based on transaction prices with artificially inflated effective
spreads. All time-varying estimations are performed using the Gaussian kernel,
and the bandwidth is set equal to the square root of the sample size.
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2005–6 2007–8 2009–10 2011–12 2013–14

A. Number of transactions
Mean 975 2098 1947 1697 1757
Std. dev. 1023 2001 2635 2019 1836
5th percentile 174 409 283 228 268
95th percentile 2740 5831 5867 5248 4874

B. Effective spread (bps)
Mean 12.6 13.1 15.6 13.2 13.0
Std. dev. 7.3 9.0 12.1 9.0 8.7
5th percentile 5.8 5.3 5.4 4.8 4.8
95th percentile 25.9 27.7 36.2 30.0 31.0

C. Realized volatility (bps)
Mean 168.8 246.0 252.3 192.0 156.3
Std. dev. 67.7 151.8 133.4 92.3 64.4
5th percentile 86.6 89.7 100.6 84.6 80.9
95th percentile 293.4 559.1 498.0 362.4 272.5

D. Signal-to-noise ratio
Mean 0.078 0.058 0.063 0.071 0.084
Std. dev. 0.046 0.025 0.030 0.036 0.047
5th percentile 0.039 0.030 0.031 0.033 0.040
95th percentile 0.144 0.103 0.116 0.136 0.169

Table 2: The descriptive statistics are calculated over all stock days in a given
two-year period. The effective spread and realized volatility were winsorized at the
99.5% level, separately for each stock, before pooling and calculating the stock-day
descriptive statistics. The sample consists of 147 small-cap stocks over the period
from January 2005 to December 2014, spanning 2,517 business days.
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