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Abstract

We use non-Gaussian features in U.S. macroeconomic data to identify aggregate supply

and demand shocks while imposing minimal economic assumptions. Recessions in the

1970s and 1980s were driven primarily by supply shocks, later recessions were driven

primarily by demand shocks, and the Great Recession exhibited large negative shocks to

both demand and supply. We estimate “macro risk factors” that drive “bad” (negatively

skewed) and “good” (positively skewed) variation for supply and demand shocks. The

Great Moderation is mostly accounted for by a reduction in good variance. In contrast,

bad variances for both supply and demand shocks, which account for most recessions,

shows no secular decline. We document that macro risks significantly contribute to the

variation yields, risk premiums and return variances for nominal bonds. While overall

bond risk premiums are counter-cyclical, an increase in demand variance lowers risk

premiums.
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1 Introduction

Distinguishing supply shocks from demands shocks has long been a goal of em-

pirical macroeconomics (e.g., Shapiro and Watson, 1988, Blanchard and Quah,

1989, or Gali, 1992), in part because the appropriate monetary and fiscal policy

responses may be quite different for adverse demand versus supply shocks. In the

field of asset pricing, supply shocks may prompt quite different responses in nomi-

nal bond prices than do demand shocks. It follows that variation in the magnitude

of supply versus demand shocks may have important effects on the risk profile of

nominal bonds and other asset prices.

We extract aggregate supply and demand shocks for the US economy from data on

inflation, real GDP growth, core inflation and the unemployment gap. We begin

by defining aggregate supply shocks as shocks that move inflation and real activity

in the opposite direction. Similarly, demand shocks are defined as innovations that

move inflation and real activity in the same direction. This identification scheme

is motivated by Blanchard (1989), who finds empirically that the joint behavior of

output, unemployment, prices, wages and nominal money in the U.S. is consistent

with this structure.

Defining supply and demand shocks as above presents an identification problem.

We resolve this issue without further economic assumptions, but instead using a

novel approach exploiting unconditional higher-order moments in the data, which

we show to be highly statistically significant. Despite this economically agnostic

approach, we show that the structural shocks that we identify exhibit some in-

tuitive properties. For example, in a classic paper, Blanchard and Quah (1989)

use a vector-autoregressive dynamic structure to identify “demand-like” shocks as

shocks that affect output temporarily, whereas supply disturbances have a perma-

nent effect on output, with neither having a long-run effect on the unemployment

rate. The shocks that we estimate also exhibit these dynamic properties even

though we do not impose them ex ante.

Next, we define macro risks as the variables that govern the time-varying variance,
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skewness and higher-order moments of supply and demand shocks. To model the

time variation in these risk factors, we use the Bad Environment-Good Environ-

ment model (Bekaert and Engstrom, 2016), which we motivate by showing that it

fits the data well relative to extant models, and because it offers a straightforward

economic interpretation. In the model, the macro risk factors drive “good-type”

(positively skewed) and “bad-type” (negatively skewed) variance of the structural

demand and supply shocks. As the good-type variance increases, the distribution

for the shock becomes more positively skewed. Increases in bad-type variance may

pull skewness into negative territory.

The time-variation in the macro risks allows for the covariance between infla-

tion and real activity to potentially change through time. Theoretically, the sign

and magnitude of this covariance are important determinants of the risk pre-

mium for nominal bonds. When supply (demand) shocks dominate, real activity

and inflation are negatively (positively) correlated, and bonds are a poor (good)

hedge against macroeconomic fluctuations, presumably leading to relatively higher

(lower) nominal term and risk premiums. This economic intuition has surfaced

before (see, e.g., Fama, 1981; Piazzesi and Swanson, 2008; Campbell, Sunderam

and Viceira, 2017), but has not been empirically explored.

Our key results for macroeconomic data are as follows. First, we find that the

variance of supply shocks was high during the 1970s and again during the Great

Recession. Supply shocks tend to be distributed as nearly Gaussian. In contrast

macroeconomic variation in the 1980s and 1990s, particularly during recessions,

was more strongly dominated by demand shocks, which tend to be substantially

negatively skewed. Second, our analysis suggests that the Great Moderation - a

reduction in the volatility of many macroeconomic variables since the mid-1980s

- is attributed largely to a decrease in good-type demand variance. Meanwhile,

the bad-type variance risk factors for both supply and demand shocks have not

experienced any secular decline. As a result the frequency and severity of reces-

sions, which are associated with elevated bad-type volatility, have not changed

much over our sample. These results offer a refinement to the work of Jurado,
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Ludvigson and Ng (2015), who find a strong counter-cyclical component to ag-

gregate volatility.1 Third, we offer a characterization of the Great Recession of

2008-2009. Some researchers suggest that the Great Recession of 2008-2009 was

accompanied by a rather large negative aggregate demand shock (see, e.g., Bils,

Klenow, and Malin, 2012, or Mian and Sufi, 2014), but there is little consensus on

this issue (see, e.g., Ireland, 2011, or Mulligan, 2012, arguing for the importance

of supply shocks). We find that negative demand and supply shocks contributed

approximately equally to the Great Recession.

We also make contributions to the empirical asset pricing literature. Although

many asset pricing paradigms (e.g., habit of Buraschi and Jiltsov, 2007, long-run

risk of Bansal and Schaliastovich, 2013, or rare disasters of Gabaix, 2012) predict

that the bond risk premium should be a function of expected second and higher

order moments of macroeconomic fundamentals, the vast majority of the empir-

ical literature has surprisingly focused on explaining expected bond returns with

the expectations of the level of macroeconomic variables or, even more simply,

actual realized macroeconomic data (see, e.g., Ludvigson and Ng, 2009). Notable

exceptions are Wright (2011) and Bansal and Shaliastovich (2013). Wright (2011)

links term premiums to inflation uncertainty, whereas Bansal and Shaliastovich

(2013) link bond risk premiums to consumption and inflation volatility. Com-

pared to these papers, our contribution is twofold. First, we show the importance

of decomposing macroeconomic variation into components due to the variance of

supply and demand shocks, and into the good and bad types of variance. We find

that the time-variation in the macro risk factors for supply and demand implies

that the covariance between inflation and real activity changes through time and

sometimes switches sign. Our analysis links this time-variation to bond risk pre-

miums by showing that demand (supply) variance negatively (positively) predicts

bond excess returns. We also show that while overall the expected excess bond

1In particular, our macro uncertainty measures have a structural “demand” versus “supply”

interpretation and generate different higher order (> 2) moments depending on being primarily

“good” or “bad”.
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returns are counter-cyclical, an increase in demand (supply) variance is associated

with lower (higher) expected returns. However, these cyclicality results are statis-

tically weak. Second, we quantify the relative importance of first and higher order

macroeconomic moments for the standard term structure factors (level, slope and

curvature). Finally, our novel macro risk factors prove to be statistically signifi-

cant predictors of future realized bond return variances, and are relatively more

important predictors than are level macro factors and factors extracted from the

term structure.

The remainder of the paper is organized as follows. In section 2, we describe how

we theoretically identify aggregate supply and aggregate demand shocks and how

we model macro risk factors. Section 3 describes the econometric methodology

that we use to extract the structural shocks and the macro risk factors. In Section

4, we provide empirical estimates for the US economy from 1959 to 2015 and a

structural interpretation of the macro data using our identification scheme. In

Section 5, we link the macro risk factors to term structure data. We also assess

whether they have predictive power for excess bond returns and explain term

premium behavior. A final section summarizes our key results and sets out an

agenda for future research.

2 Modeling Macro-Risks

2.1 Aggregate supply and demand shocks in a simplified

model

Consider a bivariate system in real GDP Growth (gt) and inflation (πt):

gt = Et−1[gt] + ugt ,

πt = Et−1[πt] + uπt ,
(1)

where Et−1 denotes the conditional expectation operator. In a first departure from

standard macroeconomic modeling, the shocks to output growth and inflation are
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a function of two structural shocks, ust and udt :

uπt = −σπsust + σπdu
d
t ,

ugt = σgsu
s
t + σgdu

d
t ,

σπs > 0, σπd > 0, σgs > 0, σgd > 0,

Cov(udt , u
s
t) = 0, V ar(udt ) = V ar(ust) = 1.

(2)

The first fundamental economic shock, ust , is an aggregate supply shock, defined

so that it moves GDP growth and inflation in opposite directions, as happens,

for instance, in episodes of stagflation. The second fundamental shock, udt , is an

aggregate demand shock, defined so that it moves GDP growth and inflation in

the same direction as would be the case in a typical economic boom or recession.

Supply and demand shocks are assumed to be uncorrelated.

Note that the sample covariance matrix of the shocks from the bivariate system

in (1) only yields three unique moments, but we need to identify four coefficients

in equation (2) to extract the supply and demand shocks. Hence, absent ad-

ditional assumptions, a system with Gaussian shocks would be underidentified.

Fortunately, it has been well established that macroeconomic data exhibit sub-

stantial non-Gaussian features (see, e.g., Evans and Wachtel (1993) for inflation,

and Hamilton (1989) for GDP growth). Our second departure from standard

macroeconomic modeling is to assume that the demand and supply shocks are

potentially non-Gaussian in that they may have non-zero unconditional skewness

and excess kurtosis. For example, there are four available unconditional skewness

and co-skewness moments for GDP growth and inflation. These four moments, in

conjunction with the three available second moments, could in principle be used

to identify the four σπ/g,s/d parameters (and two requisite unconditional skewness

coefficients for the supply and demand shocks).

While econometrically it is clear that non-Gaussianity achieves identification, it is

useful to clarify the economic sources of identification. Co-skewness moments, for

example, are informative. Suppose that demand and supply shocks are negatively

skewed (if they are differentially skewed, that information also helps identification).

5



Consider first co-skewness moments, that is, for example in unscaled form, the

expectation of the inflation shock squared times the GDP growth shock or vice

versa. Such moments only depend on the shock sensitivities and the third moments

of supply and demand shocks and thus would be zero under Gaussianity. In

particular,

E[ugt (u
π
t )2] = σgdσ

2
πdE[(udt )

3] + σgsσ
2
πsE[(ust)

3],

E[(ugt )
2uπt ] = σ2

gdσπdE[(udt )
3]− σ2

gsσπsE[(ust)
3].

(3)

Suppose the skewness of demand and supply shocks is similar (and, recall, neg-

ative). In this case, the E[ugt (u
π
t )2)]-moment has a negative contribution coming

from both supply shocks (as the movements of inflation and GDP growth in op-

posite directions are cancelled) and demand shocks. However, the E[(ugt )
2uπt ]

moment retains its negative contribution from demand shocks but obtains a pos-

itive contribution from supply shocks (as the negative skewness is multiplied by

shock exposures of opposite sign). Therefore, skewed structural shocks should re-

sult in different magnitudes of these two co-skewness moments, with the inflation

squared moment much more negative than the GDP growth squared moment. The

exact relative magnitude of these two moments then reveals information about the

sensitivity of the macro shocks to the structural shocks.

A particularly intuitive case would be one where the supply shocks are relatively

Gaussian (zero skewness) and the demand shock relatively non-Gaussian (and neg-

atively skewed). Suppose for ease of exposition that the skewness of supply shocks

is literally zero (which, as we will see, is not far from the truth). Then, given the

value of demand skewness, the two co-skewness moments would admit identifica-

tion of σπd and σgd. If E[ugt (u
π
t )2], the “inflation squared” moment, is much more

negative than E[(ugt )
2uπt ], the “GDP growth squared” moment, inflation must be

more sensitive to demand shocks than are GDP growth shocks and vice versa.

Of course, the variance of demand and supply shocks is likely to be time-varying.

In this case, the model also implies that the conditional variance between inflation
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and GDP growth shocks is time-varying and can switch signs:

Covt−1[ugt , u
π
t ] = −σπsσgsV art−1u

s
t + σπdσgdV art−1u

d
t , (4)

where the subscripts on the Cov and V ar operators denote that they may vary

over time. Thus, when demand shocks dominate the covariance is positive but

when supply shocks dominate it is negative.

The main advantage of the supply and demand shocks definition above is that it

carries minimal theoretical restrictions (only a sign restriction)2. However, these

supply and demand shocks definitions do not necessarily correspond to demand

and supply shocks in, say, a New Keynesian framework (see e.g. Woodford, 2003)

or identified VARs in the Sims tradition (Sims, 1980).3 The classic Blanchard and

Quah (1989) paper famously identifies “demand like” shocks as those that affect

output only temporarily whereas supply disturbances have a permanent effect on

output, with neither having a long run effect on unemployment rate. However,

Blanchard (1989) notes that these short- and long-run effects of supply and de-

mand shocks are consistent with responses to shocks in the context of standard

Keynesian models. For instance, supply shocks include productivity shocks which

tend to have a longer run effect on output. We reverse the identification strategy

here, by first exploiting the sign restrictions to identify the shocks, and then ver-

ifying their long-run impact on inflation and real activity in subsequent analysis.

Furthermore, in this paper we abstract from further economic interpretation of

demand and supply shocks and their sources. Such analysis would be of great eco-

nomic interest, but would require an advanced general equilibrium model which

tends to be highly stylized and can not accommodate meaningful time variation

in higher order moments (see, e.g., van Binsbergen et.al., 2012).

2The idea to impose a minimal set of sign restrictions to achieve identification is reminiscent

of Uhlig’s (2005) identification scheme for monetary policy shocks.
3Furthermore, in some models the “supply” shocks might move real activity and inflation in

the same direction: see, for instance, news shocks in Cochrane (1994).
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2.2 Modeling Macro Risks

We define macro risk factors as the time-varying determinants of the second and

higher-order moments of supply and demand shocks. We parameterize the dis-

tribution of supply and demand shocks using a model that accommodates con-

ditionally non-Gaussian distributions, the Bad Environment-Good Environment

(BEGE) model (Bekaert and Engstrom, 2016).

2.2.1 Bad Environment - Good Environment Model

Following a BEGE structure, demand and supply shocks are component models

of two independent distributions:

ust = σspω
s
p,t − σsnωsn,t,

udt = σdpω
d
p,t − σdnωdn,t,

(5)

where t is a time index, and σsp, σ
s
n, σdp , and σdn are positive constants. We use the

notation:

ωdp,t+1 ∼ Γ̃(pdt , 1),

ωdn,t+1 ∼ Γ̃(ndt , 1),

ωsp,t+1 ∼ Γ̃(pst , 1),

ωsn,t+1 ∼ Γ̃(nst , 1),

(6)

to denote that ωdp,t follows a centered gamma distribution with shape parameter

pdt and a unit scale parameter. The corresponding probability density function,

φ(ωdp,t), is given by:

φ(ωdp,t+1) =
1

Γ(pdt )
(ωdp,t+1 + pdt )

pdt−1exp(−ωdp,t+1 − pdt ),

for ωdp,t+1 > −pdt ; with Γ(·) representing the gamma function. Similar definitions

apply to ωdn,t+1, ωsp,t+1, and ωsn,t+1. Unlike the standard gamma distribution, the

centered gamma distribution has mean zero. For such a distribution, the shape

parameter equals the variance of the random variable.
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The top panel of Figure 1 illustrates that the probability density function of σdpω
d
p,t

(the “good” component of the demand shock) is bounded from the left and has

a right tail. Similarly, the middle panel of Figure 1 shows that the probability

density function of −σdnωdn,t (the “bad” component) is bounded from the right and

has a left tail. Finally, the bottom panel of Figure 1 plots the component model of

these two components which has both tails. The components of ust have the same

distributional properties. Hence, we define a “good” (“bad”) shape parameter as

one associated with a ωp (ωn)-shock.

The good (pdt , p
s
t) and bad (ndt , n

s
t) shape parameters of our macro shocks are

assumed to vary through time in an autoregressive fashion as in Gourieroux and

Jasiak (2006):

pdt = p̄d(1− φdp) + φdpp
d
t−1 + σdpω

d
p,t,

pst = p̄d(1− φsp) + φspp
s
t−1 + σspω

s
p,t,

ndt = n̄d(1− φdn) + φdnn
d
t−1 + σdnω

d
n,t,

nst = s̄d(1− φsn) + φsnp
s
t−1 + σsnω

s
n,t.

(7)

Note that positive ωdp,t shocks drive up GDP growth, as do the ωsp,t shocks, and

those shocks are associated with an increase in both pdt and pst . We call this “good

volatility” because it induces more positive skewness in GDP growth. Conversely,

positive realizations of ωdn,t and ωsn,t shocks drive down GDP growth and they are

associated with an increase in “bad” volatility and more negative skewness. This

explains the “BEGE” moniker.

Using the demand shock as an example, Figure 2 illustrates possible conditional

distributions of demand shocks which could arise as a result of the time variation

in shape parameters in equation (7). In particular, the probability density function

in the top panel of Figure 2 characterizes the situation where good volatility is

relatively large and the component distribution has a pronounced right tail, while

the probability density function in the bottom panel of Figure 2 corresponds to

the case where bad volatility is relatively large and the component distribution

exhibits a pronounced left tail.
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2.2.2 Conditional Moments under the Bad Environment-Good Envi-

ronment Model

At this point, we have set out an economy with four shocks (ωdp,t, ω
d
n,t, ω

s
p,t, and

ωsn,t) and four state variables, which we collect in Xmr
t = [pst , n

s
t , p

d
t , n

d
t ]
′. These

four state variables summarize the macroeconomic risks in the economy. Using

the properties of the centered gamma distribution, we have, for example:

Et−1[ust ] = 0,

Et−1[(ust)
2] = (σsp)

2pst + (σsn)2nst ,

Et−1[(ust)
3] = 2(σsp)

3pst − 2(σsn)3nst ,

Et−1[(ust)
4]− 3(Et−1[(ust)

2])2 = 6(σsp)
4pst + 6(σsn)4nst .

(8)

And analogously for udt .

Thus, the BEGE structure implies that the conditional variance of inflation and

output vary through time, with the time-variation potentially coming from either

demand or supply shocks, and either bad or good volatility. In addition, the

distribution of inflation and output shocks is conditionally non-Gaussian, with

time variation in the higher order moments driven by variation in Xmr
t .

2.3 The Full Model

A model with only two macroeconomic variables such as the one presented above

would be too narrow for our purposes and our estimates of supply and demand

shocks are based on a more extensive model of the macroeconomy. First, we con-

sider a four variable macro model, rather than a two variable system, adding core

inflation and the unemployment gap. Core inflation, which strips out components

of overall inflation that are particularly volatile such as energy and food prices, is,

of course, a variable that is closely followed by monetary policy makers. Core in-

flation has been shown to be useful in forecasting future inflation. Ajello, Benzoni

and Chyhruk (2012) in fact claim that adding core inflation to a macro system
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results in inflation forecasts that are as accurate as forecasts based on survey data

(see Ang, Bekaert and Wei, 2007, for more on the accuracy of survey based infla-

tion forecasts). This is relevant, because we use quarterly data starting in 1962

and thus cannot easily use survey forecasts (for instance, the quarterly Survey of

Professional Forecasters started in 1969). Analogously, for many practitioners, the

unemployment rate gap is preferred to GDP growth as an indicator of economic

activity. Moreover, as Bauer and Rudebusch (2016) demonstrate, this variable is in

fact little correlated with GDP growth and contains useful alternative information

about real economic activity.

Because we want to identify shocks to these four variables, it is important that

we specify their conditional means carefully. Bond yields have well-established

predictive power for economic variables (see Harvey, 1988, and many others, for

the predictive ability of the term spread for GDP growth, for example) prompting

us to add yields to our set of state variables. Specifically, the vector Xt consists

of the 4 macro variables, and the one quarter and 10-year Treasury yields.

We use a VARMA model to extract AS/AD shocks from Xt:

Xt = B(L)Xt−1 + C(L)ut. (9)

Furthermore:

ut = Σumt + Ωet (10)

where umt = [ust , u
d
t ], the structural shocks, and Σ is a 6x2 matrix containing the

exposures of macroeconomic and yield shocks to AS/AD shocks. The vector et

represents shocks uncorrelated with ut, with mean zero, unit variance and zero

skewness and excess kurtosis and Ω is diagonal except for the interest rate block.4

It is necessary to add these uncorrelated innovations to the macro series to avoid

having a singularity in their covariance matrix. We assume that these orthogonal

shocks have zero skewness and excess kurtosis mostly for convenience, but this

4This interest rate block will only be relevant in the impulse response analysis described

below.
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assumption also aids in the identification of the supply and demand shocks. That

is, all the excess skewness and kurtosis among the macro variables must solely

arise from the structural shocks. Note that the orthogonal shocks may not just

represent measurement error (as, e.g., in Wilcox, 1992). They may also represent

important variation, not modeled in our framework, such as that arising from

monetary policy shocks, stressed, e.g., in Campbell, Pflueger and Viceira (2015).

3 Identifying Macro Risks in the US economy

While there are multiple ways to estimate the system in equations (2), (5), (7),

(9), and (10), the presence of the gamma distributed shocks makes the exercise

nontrivial. We therefore split the problem into three manageable steps. First,

we use standard techniques to estimate the VAR model and determine its order.

Second, we filter the demand and supply shocks from the system in equation (10)

by estimating a GMM system that includes higher-order unconditional moments

of the macroeconomic variables. The use of third- and fourth-order moments is

essential to achieve identification in our framework and has a strong economic

motivation as well. Third, once the demand and supply shocks are filtered, we

can estimate univariate BEGE systems on supply and demand shocks (exploiting

the identifying assumption that they are independent) using approximate maxi-

mum likelihood as in Bates (2006).5 Importantly, the three steps are internally

consistent. We begin by describing the data we use.

5A disadvantage of using a multi-step estimation process is that statistical inference is com-

plicated by the fact that all steps after the first one use pre-estimated coefficients or filtered

variables that are subject to sampling error. To account for these errors, we also execute the

entire multi-step estimation process using bootstrapped data. The bootstrap procedure is de-

scribed in Appendix A.
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3.1 Data

The data are quarterly from 1962:Q2 to 2016:Q4 (219 quarters). Potentially, we

could have included data back to 1947:Q1 (the starting date for GDP data). The

later start date is chosen to exclude a period when there was higher measurement

error in the GDP data (Bureau of Economic Analysis, 1993). Moreover, US long-

term rates were pegged by the Federal Reserve prior to the Treasury Accord of

1951. For inflation (core inflation) we use 100 times log changes in the headline

CPI index (CPI excluding food and energy) measured for the last month of each

quarter, from the Bureau of Labor Statistics (BLS). Real GDP growth is 100

times the log difference in real GDP (in chained 2009 dollars) from the Bureau

of Economic Analysis. The unemployment rate gap is the difference between the

unemployment rate (in percent) from the last month of each quarter from the

BLS, and the estimated level of the natural rate of unemployment published by

the Congressional Budget Office.

Interest rate data consists of yields, prices and returns for nominal U.S. Treasury

securities. For maturities of length 1 quarter and 1, 2, 3, 4 and 5 years, estimated

yields for zero-coupon securities are taken from the Fama-Bliss (1987) data set

(part of the CRSP). For yields of maturity 10 years, data from 1962:Q2 through

1971:Q1 are from the McCullough-Kwon (1993) data set. From 1971:Q1-2016:Q4,

data for 10-year yields are from Gürkaynak, Sack, and Wright (2010). Yields at

maturities other than those discussed above are estimated by linear interpolation.

We use continuously compounded yields, expressed as annualized percentages.

3.2 Estimating VAR(p) and VARMA (p, q) models

To estimate the time series model for Xt, including inflation, real GDP growth,

core inflation, the unemployment rate gap and short- and long-term interest rates,

we first de-mean the variables. We then choose from a set of time series mod-

els, in particular, VARMA(i,j) for i = 1, 2, 3 and j = 0, 1, 2, 3, using standard
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information criteria. We only consider diagonal (“own lag”) specifications for the

MA components. As emphasized, for instance, by Dufour and Pelletier (2014),

any identified VARMA model can be represented by using full (unrestricted) VAR

specifications together with a sufficient number of diagonal MA terms.

Because some of these models are heavily parameterized (the highest-order ones

have over 100 parameters), in our estimation we employ a two-step projection-

based procedure that was proposed by Hannan and Rissanen (1982) rather than

attempting to maximize a likelihood function. Specifically, we first estimate by

OLS a vector-autoregression with a large number of lags. We use 6 lags, but that

choice does not appear material for the results. We then recover the estimated

residuals from this step, ût. These residuals serve as a “plug-in” estimator of

lagged shocks for the VARMA model, and then we estimate the VARMA model

by OLS. We again recover the residuals from this step, providing new estimates of

ût. This procedure repeated until all of the estimated parameters of the VARMA

and all of the estimated residuals converge, which we define as changing by less

than 1e-6.

Model selection criteria are reported in Table 1. We use the standard Bayesian

information criterion (BIC), but the Akaike information criterion (AIC) is mod-

ified to correct for small sample biases (Sugiura, 1978; Burnham and Anderson,

2004). The AIC model identifies the VAR(2) model as optimal. The BIC criterion

identifies the VAR(1) model as optimal, but the VAR(2) comes in second place.

We proceed by using the VAR(2) specification to identify shocks to the macro

variables.

3.3 Identifying supply and demand shocks

3.3.1 Methodology

The VAR(2) model delivers time series observations on ut. Theoretically, it is

possible to estimate the system defined by equations (2), (5), (7), (9), and (10)
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in one step, but computationally this is a very tall order. There are 4 unobserved

state variables (the Xmr
t vector) which have non-Gaussian innovations. However,

note that if we can identify the coefficients in Σ in equation (10), we can filter

the supply and demand shocks from the original macro shocks ut. With these

structural shocks in hand, we can estimate univariate BEGE systems on each of

demand and supply shocks separately.

We use information in 2nd, 3rd and 4th order unconditional moments of the reduced-

form macroeconomic shocks to identify their loadings onto supply and demand

shocks in a classical minimum distance (CMD) estimation framework (see, e.g.,

Wooldridge, 2002, pp. 445-446). Specifically, we calculate 48 statistics using the

four macroeconomic shocks. These are the unconditional standard deviations (4),

correlations (6), univariate (scaled) skewness and excess kurtosis (8), selected co-

skewness (12), and selected co-excess kurtosis measures (18).6

To match these 48 moments, we will have many fewer parameters so that our sys-

tem is substantially overidentified, thus requiring a weighting matrix. To generate

a weighting matrix, we begin with the covariance matrix of the sampling error for

the statistics. To calculate the covariance matrix, we use a block bootstrapping

routine. Specifically, we sample, with replacement, blocks of length 20 quarters of

the 4 variable - vector of macroeconomic shocks, to build up a synthetic sample

of length equal to that of our data. We calculate the same set of 2nd, 3rd, and 4th

order statistics for each of 10,000 synthetic samples. We then calculate the covari-

ance matrix of these statistics across bootstrap samples. In principle, the inverse

of this covariance matrix should be a good candidate as a weighting matrix for

our CMD system. However, inspecting the bootstrapped covariance matrix, we

found that the sampling errors for some statistics are highly correlated, leading to

ill-conditioning of the covariance matrix. We therefore used a diagonal weighting

matrix with the inverses of the bootstrapped variances of the moments on the

6We exclude third and fourth order moments that involve more than two different shocks

such as E(x1 × x2 × x3).
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diagonal and zero elsewhere.7

Table 2 reports the higher-order moments we use in the estimation. Not surpris-

ingly, all volatility statistics are statistically significantly different from zero, but

so are the coefficients of excess kurtosis. However, among the skewness coeffi-

cients, only the positive skewness of shocks to the unemployment gap is statis-

tically significant while 4 of 12 co-skewness coefficients is significant. Over half

of the co-kurtosis measures are statistically significant. The p-value for the joint

significance of all the 3rd and 4th order moments is < 0.0001, which we interpret as

a strong rejection of the hypothesis that the data are distributed unconditionally

according to a multivariate Gaussian distribution.

We next use the information in these higher order moments to identify the loadings

on our supply and demand shocks. We estimate a total of 13 parameters using

our 48 estimated statistics. These can be grouped into three sets:

• The loadings of four macro shocks onto supply and demand shocks (8 pa-

rameters) in the matrix Σ in (10), imposing the sign restrictions described

above.

• The share of variation of the macro shocks that comes from idiosyncratic

variation or measurement error, that is the matrix Ω in (10)). We assume

this share is constant across the four variables (1 parameter). We do this to

impose a prior that all 4 series contribute (jointly) to demand and supply

shocks. If we do not impose this restriction, the system tends to drive

the variance of idiosyncratic factors to zero for the less noisy macro series,

in which case the noisier macro series (such as real GDP growth) do not

contribute much to the identification of supply and demand shocks.

• The skewness and kurtosis of the supply and demand shocks (4 parameters).

Note that we do not assume a parametric model for the distribution of supply

7We acknowledge that this weighting matrix is not asymptiotically efficient and that it also

does not reflect sampling error associated with the VAR(2) parameters that were used to identify

the macroeconomic shocks.
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and demand shocks at this stage: we simply estimate their skewness/kurtosis

coefficients as free parameters.

3.3.2 Economic intuition behind higher-order moments

The economic intuition behind using unconditional skewness moments was em-

phasized in Section 2. However, asymmetric co-kurtosis moments (e.g., the ex-

pectation of the inflation shock to the third power times the GDP growth shock

or the analogous reverse moment) are also very informative about the coefficients.

Under Gaussianity, these moments in scaled form only depend on the correlation

and therefore contain no new information about the distribution. Consequently,

we compute “excess” co-kurtosis which is zero under Gaussianity but non-zero

under a non-Gaussian distribution. In particular, in unscaled form:

E[ugt (u
π
t )3]− E[ugtu

π
t ]E[(uπt )2] = σgdσ

3
πd(E[(udt )

4]− 3)− σgsσ3
πs(E[(ust)

4]− 3),

E[(ugt )
3uπt ]− E[ugtu

π
t ]E[(ugt )

2] = σ3
gdσπd(E[(udt )

4]− 3)− σ3
gsσπs(E[(ust)

4]− 3),

(11)

where constants occur due to the expectations of the structural shocks’ second

moments being equal to 1. Because a large negative supply shock increases infla-

tion and decreases GDP growth, supply kurtosis decreases both the asymmetric

kurtosis moments, but demand kurtosis with inflation and GDP growth moving in

the same direction increases them. The relative magnitude of these two co-kurtosis

moments thus is very informative about the sensitivity of the macro shocks to the

structural shocks. Suppose the kurtosis in supply and demand shocks is similar,

then a relative high inflation sensitivity to supply shocks relative to its sensitivity

to demand shocks lowers E[ugt (u
π
t )3], the co-kurtosis moment with inflation to the

third power, much more than E[(ugt )
3uπt ], the moment with GDP growth to the

third power, and vice versa, all else equal. Since we have already established that

there are highly significant co-skewness and co-kurtosis moments, identification is

assured.
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3.3.3 Empirical results

Table 2 shows that our CMD estimation misses only one moment by more than

1.96 standard errors (the fitted value for real GDP growth skewness is negative,

whereas the sample value is positive, though not significantly so, a miss of 2.00

standard errors). Nevertheless, the test of the overidentifying restrictions does

reject at the 10 percent level (p-value of 8.63 percent), showing that higher order

moments indeed have statistical “bite”.

In Table 3, Panel A, we report the supply and demand loadings for the various

macro variables. These are generally quite precisely estimated. Our estimates

suggest that demand shocks contribute more to the unconditional variance of

inflation shocks than supply shocks. Real GDP growth, core inflation, and the

unemployment gap all load roughly evenly on supply and demand shocks. We

estimate the share of idiosyncratic variation for the four series to be relatively

high at 44 percent.

Based on these loadings, we invert the supply and demand shocks from the macro

shocks using a constant linear filter:

umt = Kut,

K = Σ′4×2(Σ4×2Σ′4×2 + Ω4×2Ω′4×2)−1,
(12)

where Σ is the 4×2 loading of the macro shocks onto the supply and demand

factors, and Ω is a diagonal 4×4 matrix of loadings onto the idiosyncratic shocks

(corresponding to the 4 top rows of the matrices Σ and Ω in equation (10)).

These loadings are what we would obtain under, for instance the Kalman filter,

which generates minimum RMSE estimates among linear filters with constant

gain. Table 3, Panel B, reports Kalman gain coefficients, which are all of the

intuitive sign.

In Panel C of Table 3, we show a variance decomposition illustrating how much of

the demand/supply shock variance is accounted for by the four macro variables.

That is, we compute, for example,
Cov(udt ,Kd,ππt)

V ar(udt )
, where Kd,π is the Kalman gain

coefficient on inflation for the demand shock. By construction, these variables add
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up to one. The results show that the four different series all contribute nontrivially

to the structural shocks. Inflation shocks contribute substantially more to the

identification of demand shocks than they do for supply shocks, with the other

reduced-form shocks contributing more evenly across supply and demand.

Finally, in Panel D of Table 3, we report the skewness and kurtosis of the filtered

supply and demand shocks. Both shocks are leptokurtic but the demand shock

is negatively skewed whereas the supply shock has essentially zero skewness. The

departure from the Gaussian distribution of the demand shocks is clearly more pro-

nounced than that of the supply shock. Yet, a standard (small sample corrected)

Jarque-Bera test rejects the null of normality with p-values 0.015 and < 0.001,

respectively for supply and demand shocks.

3.4 Estimating Macro Risk Factors

Note that the identification scheme for structural shocks described above is com-

pletely model-free, making our methodology applicable with any statistical model

which can accommodate non-Gaussian unconditional moments in the data. Given

the structural shocks, we are left to identify the BEGE model parameters. We

use an estimation and filtering apparatus due to Bates (2006). The methodology

is similar in spirit to that of the Kalman filter, but the Bates routine is able to

accommodate non-Gaussian shocks. The details of the estimation are in Appendix

C. Before describing the BEGE estimation results in detail, we compare the per-

formance of the BEGE model to that of more well-known stochastic processes

that can also generate unconditional distributions that exhibit departures from

Gaussianity.

3.4.1 Model Comparision

We tested the performance of the BEGE model to examine whether it fits the

estimated supply and demand shocks as well as more well-known models that also
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feature time-varying second- and higher-order moments. Specifically, we looked

at the performance of the BEGE model relative to regime-switching models of the

Hamilton (1989)-type, and a model of Gaussian stochastic volatility. To evaluate

the relative performance of the models, we used standard BIC and AIC (with the

usual small sample correction) criteria.8 These results are presented in Table 4.

As shown in the top panel, for the supply shock, the BEGE model performs worst

using either AIC or BIC criteria. However, for demand shocks, as reported in the

middle panel, the BEGE model outperforms both models on both criteria. When

examining the performance jointly across supply and demand shocks (recalling

that the two shocks are modeled as independent, so the joint log likelihood of

the bivariate process is just the sum of the two univariate log likelihoods), the

BEGE model outperforms the other two models using the AIC, but the stochastic

volatility model, which is very parsimonious, wins when using the BIC criterion.

We conclude that the BEGE model generally performs well in this competition,

and we carry forward its conditional estimates of good and bad volatility for the

subsequent analysis.

3.4.2 Parameter Estimates

The parameter estimates for the BEGE model are reported in Table 4. For the

demand shock, the parameters governing the “good environment” state variable,

pt, generate behavior similar to that of a Gaussian stochastic volatility model.

The unconditional mean of the process, p̄, hits an upper bound fixed at 20. Recall

that pt is the shape parameter for one of the two component gamma distributions

for demand shocks. With the shape parameter of over 10, the gamma distribution

appears nearly Gaussian and further increases in the shape parameter do not sub-

stantially change the shape of the distribution. Our filtered values for pdt do vary

substantially over time, but rarely does the process dip much below 10, suggesting

8Because the BEGE and the Gaussian stochastic volatility models are estimated using ap-

proximate maximum likelihood as in Bates (2006), the comparison of these models to the regime

switching models, which are estimated using exact maximum likelihood, is only informal.
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that good variance for supply is nearly always close to Gaussian. That said, there

is substantial variation in the level of the process over time and strong autocor-

relation, with a persistence parameter of nearly 0.99. The properties of the bad

environment state variable for demand shocks, nt, contrasts sharply with those of

pt. The unconditional mean of nt is just 0.34. This implies that the bad environ-

ment variable is very non-Gaussian. In particular, its unconditional skewness is

2√
n̄d

, or 3.45 and its kurtosis is 6
n̄d

or 17.86. (Recall that because demand shocks

load negatively onto the bad-environment shocks by construction, this generates

substantial negative skewness for demand shocks.) The bad environment shape

parameter is also less persistent than the good environment variable, therefore

capturing rather short-lived recessionary bursts (0.72 versus 0.94 autocorrelation).

The BEGE parameter estimates for supply shocks are broadly similar to those for

demand shocks. The mean of pt hits the upper bound of 20, and the filtered values

for the process rarely dip below 10, suggesting nearly Gaussian innovations, albeit

with substantial variation in volatility. The supply bad-environment distribution

is substantially non-Gaussian with the unconditional mean of the shape parameter

equal to 4.00. This implies unconditional skewness of 1.00. The shock has similar

persistence to the bad environment demand shock, suggesting that supply driven

recessions may have similar duration to demand driven recessions.9

4 Macro Risks in the US Economy

Having estimated macroeconomic dynamics, we can now use our model as a lense

to interpret the history of key U.S. macroeconomic data over the 1962-2015 period.

We begin by characterizing the long-run effects of supply and demand shocks; we

9The astute reader will notice that seven parameters are reported for the supply and demand

processes, but there are only six independent parameters required for the estimation, because

the unconditional variance of demand and supply shocks is restricted to equal 1. However, n̄-

parameters can be expressed as functions of the other model parameters. Their standard errors

are calculated using the delta method.
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subsequently analyze the nature of recessions within our framework, followed by

examining the time series and cyclical behavior of the macro risk factors them-

selves.

4.1 Impulse responses to aggregate supply and demand

shocks

Our identification of supply and demand shocks utilizes a set of minimal linear

sign restrictions and information in higher order moments. These sign restrictions

are present in other classic papers as well, such as Gali (1992) and Shapiro and

Watson (1988) but are typically accompanied by a set of additional economic

restrictions (e.g., that demand shocks have no long run effect on the level of GDP

as in the classic Blanchard and Quah (1989) paper) which we do not need. In

this section, we characterize the long run effects of the structural shocks using

standard impulse response analysis.

For the purposes of calculating impulse response functions for the macro data,

we use our estimated VAR(2) parameters. To compute the response of the four

macroeconomic series at various horizons to the supply and demand shocks, we

need the contemporaneous response of all the variables to supply and demand

shocks. For the four macroeconomic series, these responses are the row elements

of the Σ matrix corresponding to macro data in equation (10). For the two yield

variables, we extract the time series for reduced-form shocks from the VAR(2)-

estimation and simply regress these shocks onto the filtered supply and demand

shocks. The responses of the six endogenous variables to the two structural shocks,

supply and demand, of unit size at horizon h, are given by the expression:

IR(h) = (Ah1 + A
max(h−1,0)
2 )Σ, (13)

where A1 and A2 are lag 1 and 2 AR matrices from the VAR(2)-model. Note that

the standard error for the impulse response coefficients must account not only

for the estimation of the VAR(2) parameters but also for the error incurred in

22



identifying supply and demand shocks, which involves the higher order moments

of VAR residuals. To this end, we use a bootstrap procedure, which is described

in detail in Appendix A. As a robustness check, in Appendix B we also calculate

“model-free” impulse responses following Jorda (2005).

Table 6 contains the results, with the effects of demand (supply) shocks on the

left (right) (recall that these shocks have unit variance by construction). The

effects are consistent with the standard Keynesian interpretation. Demand shocks

have large short run effects on real GDP growth (with the initial shock being

0.40 percent) but their cumulative effect on output is small (0.09 percent) and

insignificantly different from zero. Supply shocks generate smaller short run GDP

growth effects but their cumulative effect is 0.52 percent which is significantly

different from zero. Demand and supply shocks have very different effects on the

price level, with the cumulative effects close to +2 percent in the case of demand

shocks, but the supply shock effect peters out to zero. In sum, our identification

scheme yields shocks whose long-run effects are consistent with a well-established

macroeconomic literature.

4.2 Characterizing recessions using aggregate supply and

demand shocks

Our identification of supply and demand shocks allows us to characterize reces-

sions as either supply or demand driven (or a combination of both). Figure 3

graphs the filtered demand and supply shocks with NBER recessions shaded: it is

apparent that many recessions are accompanied by a negative supply shock, but

this appears more prevalent in the seventies. A large negative demand shock is

very apparent for the Great Recession, but the recessions in the early eighties were

also accompanied by large negative demand shocks.

Table 7 quantifies the visual impression by simply adding up the (net) demand and

supply shocks over the recession period (that is, positive and negative shocks can

cancel each other out). The 1973-75 recession did not feature negative demand
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shocks but all the other recessions did, with the 1981-82 and Great Recession

featuring the largest negative demand shocks. All recessions featured negative

supply shocks, with the largest negative shocks occurring in the 1973-1975 reces-

sion and the Great Recession. For the 1981-82 recession, the cumulative supply

effect is quite small however. On a relative basis, the first three recessions were

predominantly supply driven whereas three of last four were more demand driven

(the exception being the 1990-91 recession). For the first five recessions, these

results are broadly consistent with Gali’s (1992) results, who also characterizes

the 1973-75 recession as mostly supply driven and the 1981-82 recession as mostly

demand driven. Our results for the Great Recession assign a perhaps surprisingly

large role to supply shocks, but this is not inconsistent with the results in Ireland

(2011) or Mulligan (2012), for example. At the same time, recent work by Bils,

Klenow and Malin (2012) and Mian and Sufi (2014) using micro data stresses lower

aggregate demand as the main cause of the steep drop in employment during the

Great Recession.

The Great Recession of 2008-2009 stimulated much research on the effects of

macroeconomic uncertainty on the economy (see, e.g., Ludvigson, Ma, and Ng,

2016; Carriero, Clark and Marcellino, 2016). The BEGE structure implies that

shocks to supply and demand are correlated with changes in the macroeconomic

risk factors. For example, the shocks to the bad volatility risk factor is perfectly

conditionally correlated with the bad demand shock (see equations (5) and (7)),

so that uncertainty shocks affect the levels of macroeconomic variables by assump-

tion. We therefore also investigate the behavior of the macroeconomic risk factors

during recessions. Our model implies that the total conditional variance of de-

mand and supply shocks are the sum of the good and bad components. These are

plotted in Figure 4. The good demand variance (see Panel A) was relatively high

in the 70s and the early 80s, and then decreased to low levels consistent with the

Great Moderation (a further discussion of the Great Moderation is below). The

bad demand variance shows much less pronounced low frequency variation but in-

creases in most recessions with notable peaks in the 1981-82, 2001, and the recent
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Great Recession. It also shows short-lived peaks twice in the decade between 2000

and the beginning of the Great Recession.

Panel B of Figure 4 performs the same exercise for supply variances. The level of

good variance does not show much time-variation but is more elevated up until

mid-1980s after which it appears to trend down. The bad supply variance appears

higher in the stagflationary episodes of the 1970s, but it peaks in most recessions.

Its increase in the Great Recession is extreme, starting towards the end of the

period and exceeding its unconditional average level of 0.46 until 2012Q1.10 The

secular decline that one might associate with the Great Moderation appears to

come from the good variances of both supply and demand shocks.

Panel C of Figure 4 plots together the conditional variances of demand and supply

shocks. Given that both supply and demand shocks have unit variance, the graph

immediately gives a sense of which variance dominates. In terms of “variance”

peaks, the 1981-82, and Great Recession are dominated by demand variances, the

other recessions by supply variance peaks.

One novel feature of our model is that it accommodates and provides estimates of

the non-Gaussian features of the shocks. In particular, in environments dominated

by elevated levels of bad supply variance, we would expect high-inflation scares

and positive inflation skewness, whereas in aggregate demand environments, we

may witness negative inflation skewness (deflation scares). For the real activity

variables, recessions, being riskier macro environments, should be naturally ac-

companied by negative skewness for real GDP growth and positive skewness for

the unemployment gap. Figure 5 graphs the (scaled) conditional skewness for our

4 macro variables. For real GDP growth and the unemployment gap, it is indeed

the case that in recessions, there generally is a local trough in the skewness of

GDP growth and a local peak in the skewness of the unemployment rate gap. The

movements are largest in the recent Great Recession. For the inflation variables,

positive spikes are less pronounced. Yet, core inflation exhibits small positive

10Campbell, Pflueger, and Viceira (2015) suggest that supply shock volatility decreases after

1980 but its decrease may have been masked by changes in monetary policy, at least until 2000.
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spikes in the first three recessions. Since then, the measures of inflation skewness

have generally remained negative and generally spike down during recessions.

4.3 Time variation in conditional macro variances and the

Great Moderation

Because our model generates time variation in the conditional variance of the

macro variables, it can potentially inform the debate on the Great Moderation.

The literature has mostly focused on output volatility and puts a “break point”

for output volatility in the first quarter of 1984 (see McConnell and Perez-Quiros,

2000; Stock, Watson, Gali and Hall, 2002). For inflation, Baele et. al. (2015)

suggest a later date, the first quarter of 1990. Whereas most of the discussion in

the literature has tried to attribute the decreased volatility to either good luck

or improvements in monetary policy (see e.g. Cogley and Sargent, 2005; Benati

and Surico, 2009; Sims and Zha, 2006, and Baele et. al., 2015, and the references

therein), our model offers an alternative perspective. First, Figure 4 Panel C shows

little visual evidence of a break in supply variances apart from a slight and slow

decline during the 80s. However, supply variances peak in recessions and so the

recession-intensive 70s and 80s naturally feature higher supply variances than the

period thereafter. While it is possible that monetary policy lowered the incidence

of recessions, it is not obvious how monetary policy would stave off the volatility

associated with supply shocks, and indeed does not appear to have done so in the

1990 and recent Great Recession. Second, for the demand variance, it is obvious

that the more benign “good” variance process shows a distinct break in the mid-

eighties, but the more pernicious “bad” variance continues to peak in recessions

as it did before. This result is reminiscent of a recent finding in Gadea, Gomez

Loscos and Prez-Quiros (2014), who, after examining a very long historical period,

also conclude that declines in output volatility are associated with expansionary

not recessionary periods.

We next test more formally whether inflation and real GDP growth have seen
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declines in volatility such as that suggested by the Great Moderation, and if so,

what variance types (good/bad, demand/supply) explain the shift. Table 8 reports

simple dummy regressions for inflation (Panel A) and GDP growth (Panel B). The

first three columns report the constant and slope of a regression of the conditional

variance of either inflation or GDP growth on a constant and a dummy. We use

conservative standard errors correcting for heteroscedasticity and serial correlation

using 20 Newey-West lags, but we do not account for sampling error in the filtered

macro risk factors.

The rest of the table then splits up the conditional variance in their demand and

supply components, and in their respective good and bad demand components. To

facilitate comparisons with the literature, we focus mainly on changes in volatil-

ity from and initial period spanning 1962 to 1990 compared to the later period

spanning from 1990 to 2000. For inflation, there is strong evidence of a decrease

in variance after 1990, with the variance decreasing by about 1/3 of its magni-

tude before the break and the break being statistically significant at the 1 percent

level. The additional tests reveal that the break is entirely due to decreases in

good variance of both demand and supply components, with most of the effect

attributable to a decline in the good demand variance. In other words, the Great

Moderation may not imply smaller inflation volatility in future recessions.

In Panel B of Table 7, the same analysis is performed for real GDP growth volatil-

ity. The GDP variance also decreases at the break point by about 25 percent

of its pre-break value, with the change significant at the 5 percent level. The

decomposition analysis is quite similar to the inflation case, with a slightly more

important role for the good supply variance. The decline in demand variance is

only significant at the 10% level.

Lengthening our sample period to the present could increase the power of our tests,

and also enables us to address a more recent question: “Is the Great Moderation

over?” Baele et. al. (2015) use a macro-regime switching model suggesting that

the Great Moderation for both inflation and output has ended, even before (for

inflation) or just with the onset (for output) of the Great Recession. However,
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Gadea, Gomez Loscos and Prez-Quiros (2015) argue, based on a pure statistical

analysis of GDP growth volatility, that the Great Moderation is alive and well,

despite the Great Recession experience. To test these claims using our estimates

of the conditional variance of inflation and output, we examine ending the sample

in the fourth quarter of 2006 (just before the Great Recession) or the final quarter

in 2015 (using the full sample).

For inflation, when the data from the Great Recession are ignored, the Great

Moderation result and its decomposition we documented before is maintained.

When we extend the sample to the end of 2015, the decline in the inflation variance

weakens slightly but is still statistically significant at the 5% level. It is still the

case though that the (good) demand variances become significantly lower post

1990. Clearly, if more non-recession data accumulate, we may well find that the

Great Moderation for inflation holds up. For real GDP growth, the results are

robust to extending the sample to both 2006 and 2015.

We conclude that there is evidence that the “good” demand and supply variances

have decreased over time, but there is no strong evidence that either “bad” de-

mand or supply variances have declined. Our analysis of the structural sources of

recessions suggest that we therefore should not expect them to be less variable in

the future than they were in the past.

4.4 Conditional Covariances between Macroeconomic Time

Series

From the perspective of theoretical asset pricing, an important implication of our

structural framework regards the covariance between inflation and real activity.

From Equation 4, it is evident that in an environment where demand (supply)

variances dominate, the conditional covariance between inflation and real activity

is positive (negative). To the extent that variances are persistent, changes in this

covariance may have important ramifications for term and bond return premiums,

which we examine in Section 5. Surprisingly, to our knowledge, sign-switching
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macro-correlations have so far only been documented for consumption growth and

aggregate inflation (Hasseltoft and Burkhardt, 2012, Ermolov, 2015, and Song,

2017).

Figure 6 graphs the conditional covariance between, respectively, inflation and real

GDP growth and also between core inflation and the unemployment gap (where

the aforementioned signs are reversed). Overall, the covariance is mostly positive

(over 90 percent of the time), which is driven by the important contribution of

(good) demand variances to all macro variables. For the inflation-GDP growth

covariance, there is substantial time variation, but the covariance rarely becomes

negative. Early in the Great Recession, demand shocks generate a local peak

in the covariance but subsequent large supply shocks then bring the covariance

down. A mirror image of this happens for the core inflation-unemployment gap

covariance. There, we see more frequent sign switches and the covariance remains

positive until 1975, in a supply shocks driven macro-environment.

An overall covariance of near zero can in fact hide some strong structural non-

zero sources of comovement from structural risk factors. To see this more clearly,

we also show the good and bad supply and demand covariance components of

the total covariance. For example, the near-zero correlation between real GDP

and inflation from 2000 up to the onset of the Great Recession (with occasional

peaks) is the sum of a sizable positive covariance driven by good and bad demand

shocks and a sizable negative covariance driven bysupply shocks. In the Great

Recession, the conditional bad variance of both kinds of shocks shoots up, with

the bad demand shock first ratcheting the covariance upwards, and bad supply

variance later bringing it down substantially. Similar movements happen for the

core inflation-unemployment covariance with the covariance actually switching

signs.
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5 Macro Risks and the Term Structure

In this section, we explore the interaction of macro factors with the term structure

of interest rates. In the preceding sections, we have identified four novel macro-risk

factors (pdt , ndt , p
s
t and nst). These variables can be interpreted as “good” or “bad”

conditional volatilities of demand and supply shocks, but their time variation

also changes the entire conditional distribution of these shocks. For comparison

with the existing literature on explaining bond yields and returns using macro

data, we also examine the performance of “level” macro factors, which include

expected inflation, expected core inflation and expected real GDP growth (we use

the previously described VAR(2) system to compute these expectations). We also

use the unemployment gap as a macro level factor. Thus, there are a total of 8

macro-factors we consider.

We address three questions. First, we ask whether macroeconomic factors help

explain the yield curve. Second, we investigate the predictive power of our new

macro risk factors for bond excess returns. Finally, we also explore how the macro

risk factors affect term premiums.

5.1 Macro Risks and the Yield Curve

We start by computing the classic yield curve financial factors. The “level” factor

is the equally weighted average of all yields (from the one year to the 10 year

maturity); the “slope” factor is the difference between the 10 year yield and one

quarter yield; and finally, the “curvature” factor subtracts twice the two-year rate

from the sum of the one quarter rate and the 10 year yield. Taken together, these

three factors span the overwhelming majority of variation in yields at all maturi-

ties. Thus, to operationalize our test of whether macro factors explain yields, we

test whether the macro factors explain variation in these three factors. To assess

whether macro factors are important determinants of these three financial factors,

Table 9 reports R2 statistics from regressions of the financial factors onto macro
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factors. Panel A reports results regarding the macro level factors and the macro

risk factors.

First, the explanatory power of the macro level factors alone for the financial fac-

tors is substantial, with the adjusted R2’s about 70, 60, and 30 percent respectively

for the level, slope, and curvature factors. Second, the macro risks contribute in a

statistically significant fashion to all factors11, but the statistical and economical

significance is much larger for the level (an adjusted R2 increase of 7.5%) and cur-

vature (an adjusted R2 increase of 12.5%) factors. As a robustness check, in Panel

B we check whether the boost in explanatory power due to the macro risk factors

survives the inclusion of a second set of contemporaneous macro level factors in

the regression, those constructed by Ang and Piazzesi (2003). The increase in R2’s

due to the macro risk factors is essentially unaffected, but becomes insignificant

for the slope factor. Appendix D reports the results using realizations (instead of

expectations) of macro level factors, in which case the relative contribution of the

macro risk factors is more substantive.

5.2 Macro Risks and Bond Return Predictability

The literature on bond return predictability is voluminous, but mostly focuses

on using information extracted from the yield curve to predict future holding pe-

riod returns (e.g. Cochrane and Piazzesi, 2005). Ludvigson and Ng (2009) find

that “real” and “inflation” factors, extracted from a large number of macroeco-

nomic time series, have significant forecasting power for future excess returns on

nominal bonds and that this predictability is above and beyond the predictive

power contained in forward rates and yield spreads. Also, the bond risk premia

implied by these regressions have a marked countercyclical component. Bansal

and Shaliastovich (2013) show that consumption growth and inflation volatility

predict excess bond returns. Cieslak and Pavola (2015) uncover short-lived pre-

dictability in bond returns by controlling for a persistent component in inflation

11We use the bootstrap test of Bauer and Hamilton (2016) to determine statistical significance.
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expectations. Barillas (2011) shows that the predictability due to macro factors

for excess bond returns is economically significant.

In Table 11, we explore the link between future bond returns and our macro fac-

tors. We focus on excess one-quarter holding period returns relative to the one

quarter yield. This avoids the use of overlapping data which can spuriously in-

crease R2’s in predictability regressions due to the high autocorrelation (Bauer

and Hamilton, 2016). Nonetheless, all standard errors are computed using the

small-sample bootstrap of Bauer and Hamilton (2016). To delve into the eco-

nomic mechanism by which macro risks forecast future bond returns, Table 10

presents the coefficients from forecasting regressions that include both level macro

and macro risk factors.12 Individually, there are few significant coefficients. Of

the macro level factors, expected core inflation enters with a positive sign, while

expected aggregate inflation enters with a negative significant coefficient of similar

magnitude, and is highly significant at all maturities. The significance of expected

inflation in such regressions is consistent with the results of Cieslak and Pavola

(2015) (but their regression also includes yields). Of the macro risk factors, the

bad demand variance has a negative significant coefficient and the bad supply vari-

ance a positive (albeit mostly insignificant) coefficient. Therefore, consistent with

intuition, being in a risky (that is volatile) demand environment, where bonds are

good hedges against general macroeconomic risks, reduces the risk premium on

bonds, and the reverse is true in the case of a supply environment. The effect

of bad demand variance is economically large: for example, for the 5 year ma-

turity a one standard deviation increase in the bad demand factor decreases the

expected annualized excess bond return by 3.38 percentage points (the risk fac-

tors were standardized to a unit variance). The corresponding coefficients increase

with bond maturity. The coefficients on the “good” demand risk factors are also

negative and significantly different from zero, with coefficients that are even larger

12Including financial factors (level, slope, and curvature) in the regressions does not materially

change macro factors and macro risks signs except that pst -signs switches from being insignifi-

cantly positive to being insignificantly negative.
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than for the bad demand variance factor.13

Table 11 shows that the adjusted R2’s produced by the financial factors alone

are significantly boosted by including both macro level factors and macro risk

factors. For maturities from 1 to 10 years, the R2’s from regressions including

only financial factors are around 7 percent. Macro level factors only increase R2

by 2 to 3% at short horizons with the increase only significant at the 10% level.

Macro risks further increase the R2s by about 4-5% for short maturities and by

about 3% at the longer maturities. Macro risks alone increase the adjusted R2 by

6-7% at short maturities and 3-4% at long maturities compared to the specification

where only financial factors are included. These increases in explanatory power

are statistically significant. Additionally, while macro risks significantly increase

explanatory power for the specification which includes financial and macro level

factors, the increase in adjusted R2 from macro level factors for the specification

which already includes financial factors and macro risks is economically small and

statistically insignificant. Appendix D reports the return predictability of our

macro level and risk factors over Ang-Piazzesi factors, showing thy increase the

adjusted R2’s by about 4%.

Given that previous studies have considered macroeconomic “level” and “risk”

factors in isolation and that factors measuring macroeconomic risk have received

scant attention in such investigations, the relative predictive power of risk factors

is of interest. Table 10 indicates that the adjusted R2 from macro level factors

alone in excess return regressions is around 4-5% with macro risk factors contribut-

ing an additional 2%. Ludvigson and Ng (2009) found the bond risk premiums

implied by their predictive regressions, which included both yield variables and

13To further elaborate on the risk premium intuition, we also added the contemporaneous

demand and supply shocks (udt+1 and ust+1) to the bond return regressions. In unreported

results, we find that the supply shocks carry positive but economically small and statically non-

significant coefficients and the demand shocks carry negative coefficients that are significant

at 5% (short maturities) and 1% (long maturities) level and become larger in magnitude with

maturity. That is, realized bond excess returns are high if a negative demand shock occurred

during the holding period.

33



macro-factors, to be counter-cyclical. It is not difficult to obtain counter-cyclical

real bond risk premiums in economic models, e.g., in habit models with counter-

cyclical prices of risk (see, e.g., Wachter, 2006). Our framework suggests that not

all recessions are equal in this respect. Our predictive regressions indicate that

risk premiums are, everything else equal, lower when the macro-environment is pri-

marily demand driven. To check on the cyclicality of bond risk premiums that are

implied by our regressions, we use the fitted values of the predictive regressions14

as an estimate of the risk premium and regress it on a NBER dummy, the ratio of

the aggregate demand variance, including the good and bad variances, to the cor-

responding aggregate supply variance, and the interaction of the two. We rescale

the demand/supply ratio variable to have a standard deviation of one. Table 12

reports the results. First, coefficients on the NBER dummy are positive and in-

crease with maturity. Economically, the effect is rather large: an NBER recession

increases the annualized expected excess return on a 10-year bond on average by

1.95 percentage points. However, the coefficients are not statistically significantly

different from zero, so we find only weak statistical evidence of counter-cyclical risk

premiums. Second, the demand/supply ratio is indeed negatively associated with

risk premiums, and especially so in recessions for the 5 and 10 year bonds. Again,

these effects are economically very large for the longer maturities and highly sta-

tistically significant. For example, for the 10 year bond, if the demand/supply

ratio were to increase by 1 standard deviation, the annualized bond risk premium

would not increase by 1.95 percentage points in a recession, but decrease by 1.86

(1.95-3.95+0.15) percentage points. Of course, it is important to recall that supply

variances spike up as well in most recessions.

14Including financial factors (level, slope, and curvature) to construct the expected excess

bond returns does not materially change any of the results.

34



5.3 Macro Risks and Term Premiums

As we indicated before, most of the literature examining the link between the

macroeconomy and bond risk premiums has focused on macro level factors.15 One

important exception is Wright (2011), who does not examine excess holding pe-

riod returns, but an important and closely related component of bond yields, the

term premium. Wright (2011) shows that term premiums are countercyclical and

strongly affected by inflation uncertainty in a panel of countries.16 We compute

term premiums for the 5 year and 10 year maturity as the yield for each maturity

minus the average of expected future short-term rates over the life of the bond.

To measure the expected average short yield, we use Blue Chip survey, which is

available semi-annually from 1986Q2.17

Results from this exercise are reported in Table 13. They are somewhat similar to

the results in Table 10 on excess holding period returns. Expected core inflation,

expected inflation and expected GDP growth significantly affect term premiums

with the same signs as in the excess holding period return regressions. Whereas the

bad demand variance risk factor negatively affects the term premium, consistent

with the idea that in such an environment bonds act as a good hedge, the effect

is statistically insignificant for the 5 year bond and marginally significant for 10

year bond. Instead, the good demand variance raises significantly decrease term

premiums. We also find that the good supply variance affects term premiums

positively. The adjusted R2 is 69 percent for the 5 and 10 year bonds. Macro risk

15 An exception is Wachter (2006), where the risk premium depends on the surplus ratio,

essentially a weighted average of past consumption shocks. However, the more recent theoret-

ical literature (e.g., Buraschi and Jiltsov, 2007; Gabaix 2012; Bansal and Shaliastovich, 2013)

suggests that focusing on second and higher order moments is more logical.
16Bauer, Rudebusch, and Wu (2014) re-examine Wright’s empirical evidence correcting for

small sample bias in the VAR he runs to compute the term premium, but his main empirical

conclusions remain robust.
17Our results are similar if we employ the expected average short yield computed using Bauer,

Rudebusch, and Wu (2014) small-sample adjusted VAR(1) including 1 quarter, 1 year, and 10

year yields as the state variables. The correlations between the survey and statistical term

premia are 0.7578 and 0.7964 for the 5 and 10 year term premia, respectively.
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factors addition to the explanatory power of the macro level variables is marginally

significant.

In Table 14, we examine the cyclicality of the term premiums. In line with Wright

(2011) and Bauer, Rudebusch, and Wu (2014), we find that the term premium

increases in recessions, by 0.55 percentage points (0.53 percentage points) for

the 5-year (10-year) bond. These numbers are economically significant but not

statistically significant. The term premium is smaller in demand environments,

but the effect is also not significant. The interaction effect with the NBER dummy

also has the negative sign but also fails to be significant. The demand environment

effects are substantive; a one standard deviation increase in the demand/supply

variance ratio decreases the term premium in a recession by about 56 basis points

for the 5 year bond and about 52 basis points for the 10-year bond. Therefore,

“demand effects” of this magnitude completely offset the usual counter-cyclical

term premium increase in recessions.

5.4 Macro Risks and the Bond Return Variance

Consider a model of the term structure of interest rates in which macroeconomic

factors help to determine the levels of bond yields (e.g., habit of Wachter, 2006,

rare disasters of Gabaix, 2012, or long-run risk of Bansal and Shaliastovich, 2013).

Then the conditional variance of the macroeconomic factors, which is captured by

our macroeconomic risk factors, should help to determine the conditional variance

of bond returns. In the context of a forecasting regression, the macro risk factors

should help forecast ex-post bond return variance. In Table 15, we present empir-

ical evidence that such a link between the variance of bond returns and the macro

risk factors is indeed present in the data. Specifically, we regress the quarterly

realized variance of returns for the 10-year bond18 on the lagged values of the

macro risk factors and/or as other controls. In panel A, we report the adjusted

18We compute the quarterly realized variances as the sum of squared daily returns inside the

quarter.
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R2 statistics from such regressions. By themselves, the macro risk factors span

about 35 percent of the variation in ex-post realized variance. In contrast, the

macro level factors span only about 19 percent, and the financial factors span

less than 14 percent. Further, the macro risk factors always significantly add to

the explanatory power of regressions which already use the macro level factors

or financial factors as explanatory variables. In contrast, the macro level factors

do no significantly add to the explanatory power of regressions that already use

the macro risk factors and financial factors as explanatory variables, nor do the

financial factors significantly add to the explanatory power of regressions that al-

ready use the macro risk factors and the macro level factors. We conclude that

the macro risk factors are quite powerful predictors of bond return variance.

Panel B shows the pattern of regression coefficients for one such regression that

includes macro level factors and macro risk factors as explanatory variables. The

most statistically significant explanatory variable is the bad variance component

of demand, which positively effects bond return variance, as expected. Moreover,

the coefficients for three out of the four macro risk factors are of the expected

positive sign. Among the macro level factors, the expected aggregate and core

inflation are significant at the 10 and 5 percent level, respectively.

Figure 7 shows the historical pattern of realized variance for bond returns, the

blue line, and the fitted values from two of the forecasting regressions described

above. The regression which uses the macro level factors and macro risk factors

shown by the red/circle symbols, captures some of the most prominent features of

realized variance, especially the high levels seen in the 1980s and during the 2008-

2009 financial crisis. As shown by the line with green/triangle symbols, adding

the financial factors to this regression does not significantly alter the patterns of

fitted return variance.
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6 Conclusion

In this article, we provide three main contributions. First, we develop a new

identification methodology to decompose macroeconomic shocks into “demand”

shocks which move inflation and GDP growth in the same direction and “sup-

ply shocks” which move inflation and GDP growth in opposite directions. The

identification relies on non-Gaussianities in the macro data. We find aggregate

demand shocks to be distinctly negatively skewed and leptokurtic, whereas supply

shocks unconditionally show little skewness but are also leptokurtic. Despite this

alternative identification, the long-run effects of the aggregate demand and supply

shocks conform to standard intuition as in the seminal work of Blanchard and

Quah (1989). Investigating the various recessions in our sample, we find the three

recessions in the and 1970s and 1980 to be predominantly supply driven, whereas

of the last four, three were more demand driven (the exception being the 1990-91

recession). The Great Recession featured both large negative demand and supply

shocks.

Second, we develop a new dynamic model for real economic activity and infla-

tion, where the shocks are drawn from a Bad Environment - Good Environment

model, which accommodates time-varying non-Gaussian features with “good” and

“bad” volatility. We extract four macro-risk factors, bad and good volatilities for

respectively aggregate demand and supply shocks. Until about the mid-seventies

conditional supply variances appear to dominate macroeconomic volatility, while

afterwards demand variances are more important until the mid-eighties: after-

ward there are roughly equal contributions of both. However, supply shocks vari-

ances invariably peak in recessions. The “good” demand variance has decreased

markedly over time, but there is no strong evidence that either “bad” demand

variances or supply variances have declined. Importantly, recessions continue to

be accompanied by temporarily high bad demand and supply variances. We also

provide new insights about the Great Moderation in that it appears to reflect pri-

marily a decline in good demand variance, with a small contribution of a secular
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decrease in good supply variance. Finally, we find that the conditional correla-

tion between inflation and real activity varies through time with occasional sign

switches, as the relative importance of demand and supply risk factors varies over

time.

Third, we link the macro factors extracted from the dynamic macro model, ex-

pected GDP growth, the unemployment gap, and expected (core) inflation and the

macro risk variables represented by the conditional variances (shape parameters)

of the demand and supply shocks, to the term structure. The macro variables

explain 79 percent of the variation in the levels of yields. While the contribution

of the macro risk factors to this R2 is modest, it is nonetheless statistically signif-

icant. When we run predictive regressions of excess bond returns onto the macro

variables, the R2 is around 6 percent, with the macro risk factors contributing

one third of the explanatory power. We find that increases in both good and bad

aggregate demand variance significantly reduce bond risk premiums, the former

also significantly decreases term premiums. Macro risks also significantly predict

realized bond return variances.

It would be useful to be elucidate how variation in risk premiums is accounted

for by the various macro risk factors and decompose risk premiums into real and

inflation components. To accomplish this, a term structure model is necessary. In

future work, we plan to build a term structure model in which the macro variables

(level and risk factors) feature as state variables. Despite the non-Gaussianities in

their dynamics, the BEGE structure has the advantage that bond prices nonethe-

less remain affine in the state variables.
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Appendix A - Bootstrapping standard errors for

the impulse responses

The VAR(2) parameters and the resulting reduced-form shocks are estimated with

error, and so are the higher-order moments of the reduced-form shocks (and their

covariance matrix). These sources of error affect the distribution of the sam-

pling error of the loadings of the endogenous variables onto supply and demand

shocks, the time series estimates of the supply and demand shocks, and the im-

pulse response functions. To account for all of these sources of error, we use a

bootstrapping routine.

We begin by sampling, with replacement, the reduced-form shocks from the esti-

mated VAR(2) model. We assemble synthetic samples using 22 randomly chosen

blocks of length 20 quarters. This results in synthetic samples of approximately

the same length as our data (220 for bootstraps, 225 for the data). We use these

shocks and the estimated VAR(2) parameters to build up synthetic samples of the

endogenous variables. Note that we do not need any estimates of the covariance

matrix of shocks to do this. Beginning from these synthetic samples, we follow

the same procedures for each bootstrap sample that we do for the actual sample

to calculate all the statistics of interest:

• Estimate VAR(2) parameters on the synthetic sample.

• Estimate higher-order moments of the reduced form shocks and their covari-

ance matrix

• Estimate loadings of the macro variables onto supply and demand using the

GMM procedure on the higher order moments

• Invert supply and demand shocks suing the Kalman filter procedure

• Estimate the loadings of the yield variables onto the supply and demand

shocks by OLS
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• Estimate the impulse responses
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Appendix B - Model-free Impulse Responses to

Aggregate Demand and Supply Shocks

Following Jorda (2005), we calculate the model-free impulse responses using OLS

regressions of the form:

Yt+h = β0 + β1Yt−1 + β2Yt−2 + β3û
supply
t−1 + β4û

demand
t−1 + εt+h,

where ûsupply and ûdemand are the inverted supply and demand shocks. Standard

errors are computed as described in Appendix A.

The results are as follows:

Cumulative (20 Quarters)

Demand Shock Supply Shock

Real GDP level 0.37% 0.81%

(0.46%) (0.42%)

Price level 2.15% -0.05%

(0.31%) (0.30%)
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Appendix C - Maximum likelihood estimation of

demand and supply shock dynamics

We restrict attention to the demand shock estimation, as the supply shock esti-

mation is identical. The system to estimate is:

udt+1 = σdpω
d
p,t+1 − σdnωdn,t+1,

ωdp,t+1 ∼ Γ(pdt , 1)− pdt ,

ωdn,t+1 ∼ Γ(ndt , 1)− ndt ,

pdt+1 = p̄d + ρdp(p
d
t − p̄d) + σdppω

d
p,t+1,

ndt+1 = n̄d + ρdn(ndt − n̄d) + σdnnω
d
n,t+1,

(14)

where only the time series of demand shock realizations, {udt }Tt=1 is observed.

The following notation is defined:

Ud
t ≡ {ud1, ..., udt } is the sequence of observations up to time t.

F (iφ, iψ1, iψ2|Ud
t ) ≡ E(eiφu

d
t+1+iψ1pdt+1+iψ2ndt+1|Ud

t ) is the next period’s joint condi-

tional characteristic function of the observation and the state variables.

Gt|s(iψ
1, iψ2) ≡ E(eiψ

1pdt+iψ2ndt |Ud
s ) is the characteristic function of the time t state

variables conditioned on observing data up to time s.

The estimation procedure is an application of Bates (2006)’s algorithm for the

component model of two gamma distributed variables and consists of the time

0 initialization and 3 steps repeated for each observation in {udt }Tt=1. At time

0, the characteristic function of the state variables G0|0(iψ1, iψ2) is initialized.

The distribution of pd0 and nd0 is approximated with gamma distributions. Note

that the unconditional mean and variance of pdt are E(pdt ) = p̄d and V ar(pdt ) =
σ2
pp

1−ρd2p
p̄d, respectively. The approximation by the gamma distribution with the

shape parameter k0 and the scale parameter σp0 is done by matching the first

two unconditional moments. Using the properties of the gamma distribution,

kp0 =
E2pdt

V ar(pdt )
and θp0 =

V ar(pdt )

E(pdt )
. Thus, pd0 is assumed to follow Γ(kp0, θ

p
0) and nd0

is assumed to follow Γ(kn0 , θ
n
0 ), where kn0 and θn0 are computed in the same way.
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Using the properties of the expectations of the gamma variables, G0|0(iψ1, iψ2) =

e−k
p
0 ln(1−θp0 iψ1)−kn0 ln(1−θn0 iψ2) . Given G0|0(iψ1, iψ2), computing the likelihood of Ud

T

is performed by repeating the steps 1-3 below for all subsequent values of t.

Step 1. Computing the next period’s joint conditional characteristic function of

the observation and the state variables:

F (iΦ, iψ1, iψ2|Udt ) = E(E(eiΦ(σdpω
d
p,t+1−σ

d
nω

d
n,t+1)+iψ1(p̄d+ρdpp

d
t+σdppω

d
p,t+1)+iψ2(n̄d(1−ρdn)+ρdnn

d
t+σdnnω

d
n,t+1)|Udt )

= E(eiψ
1p̄d(1−ρdp)+iψ2n̄d(1−ρdn)+(iψ1ρdp−ln(1−iΦσdp−iψ

1σdpp)−iΦσdp−iψ
1σdpp)pdt+(iψ2ρdn−ln(1+iΦσdn−iψ

2σdnn)+iΦσdn−iψ
2σdnn)ndt |Udt )

= eiψ
1p̄d(1−ρdp)+iψ2n̄d(1−ρdn)Gt|t(iψ

1ρdp − ln(1− iΦσdp − iψ1σdpp)− iΦσdp − iψ1σdpp, iψ
2ρdn − ln(1 + iΦσdn − iψ2σdnn) + iΦσdn − iψ2σdnn).

Step 2. Evaluating the conditional likelihood of the time t+ 1 observation:

p(udt+1|Ud
t ) =

1

2π

∫ ∞
−∞

F (iΦ, 0, 0|Ud
t )e−iΦu

d
t+1)dΦ,

where the function F is defined in step 1 and the integral is evaluated numerically.

Step 3. Computing the conditional characteristic function for the next period,

Gt+1|t+1(iψ1, iψ2):

Gt+1|t+1(iψ1, iψ2) =
1

2π

∫∞
−∞ F (iΦ, iψ1, iψ2|Ud

t )e−iΦu
d
t+1dΦ

p(udt+1|Ud
t )

.

As above, the function Gt+1|t+1(iψ1, iψ2) is also approximated with the gamma

distribution via matching the first two moments of the distribution. The mo-

ments are obtained by taking the first and second partial derivatives of the joint

characteristic function:

Et+1p
d
t+1 =

1

2πp(udt+1|Ud
t )

∫ ∞
−∞

Fψ1(iΦ, 0, 0|Ud
t )e−iΦu

d
t+1dΦ,

V art+1p
d
t+1 =

1

2πp(udt+1|Ud
t )

∫ ∞
−∞

Fψ1ψ1(iΦ, 0, 0|Ud
t )e−iΦu

d
t+1dΦ− E2

t+1p
d
t+1,

Et+1n
d
t+1 =

1

2πp(udt+1|Ud
t )

∫ ∞
−∞

Fψ2(iΦ, 0, 0|Ud
t )e−iΦu

d
t+1dΦ,

V art+1n
d
t+1 =

1

2πp(udt+1|Ud
t )

∫ ∞
−∞

Fψ2ψ2(iΦ, 0, 0|Ud
t )e−iΦu

d
t+1dΦ− E2

t+1n
d
t+1,

where Fψi denotes the derivative of F with respect to ψi. The expressions inside

the integral are obtained in closed form by derivating the function F (iΦ, iψ1, iψ2|Ud
t )
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in step 1, and integrals are evaluated numerically. Using the properties of the

gamma distribution, the values of the shape and the scale parameters are kpt+1 =
E2
t+1p

d
t+1

V art+1pdt+1
and θpt+1 =

V art+1pdt+1

Et+1pdt+1
, respectively. The expressions for knt+1 and θnt+1 are

similar.

The total likelihood of the time series is the sum of individual likelihoods from

step 2: L(YT ) = ln p(ud1|k
p
0, θ

p
0) +

∑T
t=2 ln p(udt+1|Ud

t ).
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Appendix D - Additional Results on Explanatory

Power of Macro Risks

Explanatory Power (Adjusted R2) of Macro Risk Factors for Yield Curve Factors over Realizations of Macroeco-

nomic Time Series. The sample is quarterly from 1962Q4 to 2016Q4. Macro level factors are real GDP growth,

aggregate and core inflation, and unemployment gap. Financial factors are the level, slope, and curvature factors.

The level factor is the average over 1-10 year yields. The slope factor is the 10 year yield minus the 1 quarter

yield. The curvature factor is 10 year yield plus 1 quarter yield minus 2 times the 2 year yield. The increase

in adjusted R2 significance, which is always tested over the specification in the previous row, is Bauer-Hamilton

(2016) adjusted significance using 5000 bootstrap runs. The asterisks, *, **, and *** correspond to statistical

significance at the 10, 5, and 1 percent levels, respectively.

Realizations of Macroeconomic Level Factors and Macro Risks

Level Slope Curvature

Realization of macroeconomic level factors 0.4795 0.5277 0.2168

Realization of macroeconomic level factors + macro risks 0.7151*** 0.5675* 0.4038***

Explanatory Power (Adjusted R2) of Macro Risk Factors for Quarterly Excess Bond Returns over Ang-Piazzesi

(2003) and Financial Factors. The sample is quarterly from 1962Q4 to 2016Q4. Ang-Piazzesi factors are lag 1-12

Ang and Piazzesi (2003) real and nominal factors. Macro level factors are expected real GDP growth, expected

aggregate and core inflation, and unemployment gap. Financial factors are the level, slope, and curvature factors.

The level factor is the average over 1-10 year yields. The slope factor is the 10 year yield minus the 1 quarter

yield. The curvature factor is the 10 year yield plus the 1 quarter yield minus 2 times the 2 year yield. The

increase in adjusted R2 significance, which is tested over the specification in the previous row, is Bauer-Hamilton

(2016) adjusted significance using 5000 bootstrap runs. The asterisks, *, **, and *** correspond to statistical

significance at the 10, 5, and 1 percent levels, respectively.

Predictors 1 year bond 2 year bond 5 year bond 10 year bond

3 financial factors 0.0663 0.0653 0.0638 0.0795

3 financial factors+Ang-Piazzesi 0.1549** 0.1415** 0.1325* 0.1295

3 financial factors+Ang-Piazzesi+macro level factors 0.1734 0.1537 0.1432 0.1471

3 financial factors+Ang-Piazzesi+macro level factors+macro risks 0.1903 0.1870** 0.1710* 0.1622
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Figure 1 – Components of Bad Environment - Good Environment Distribution.
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Figure 2 – Time-varying Shape Parameters of Bad Environment - Good Environ-

ment Distribution.
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Figure 3 – Filtered Quarterly Demand and Supply Shocks. Shading corresponds

to NBER Recessions.
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Figure 4 – Filtered Quarterly Demand and Supply Variances. Shading corresponds

to NBER Recessions.
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Figure 5 – Quarterly Conditional Skewness of Macroeconomic Variables. Shading

corresponds to NBER Recessions.
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Figure 6 – Quarterly Conditional Covariance between Macroeconomic Variables.

Shading corresponds to NBER Recessions.
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Figure 7 – Explaining Realized 10 Year Bond Return Variance with Macroeco-

nomic and Financial Factors. Realized variances are computed as the sums of

squared daily bond returns inside the quarter. The fit is from OLS regressions.

Financial factors are the level, slope, and curvature factors. The level factor is

the average over 1-10 year yields. The slope factor is the 10 year yield minus the

1 quarter yield. The curvature factor is 10 year yield plus 1 quarter yield minus

2 times the 2 year yield. The macroeconomic level factors are expected inflation,

expected core inflation, expected GDP growth and unemployment gap.
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Table 1 – Model Selection for Expectations of Macro Variables. The sample is

quarterly from 1962Q4 to 2016Q4. Dependent variables are the log-difference of

the CPI, log real GDP growth, the log difference of core CPI, and the unemploy-

ment rate gap. The predictive variables are the macro variables mentioned above

and the 90-day T-bill and the 10-year zero-coupon Treasury yield. AIC and BIC

are Akaike and Bayesian information criteria, respectively. The models are sorted

by AIC.

Model Number of parameters Log-likelihood AIC BIC

VAR(2) 93 -798.9 1801.8 2097.7

VAR(3) 129 -755.5 1802.8 2204.5

VARMA(2,2) 105 -785.9 1804.5 2136.3

VARMA(2,1) 99 -794.7 1807.6 2121.5

VARMA(3,1) 135 -752.9 1812.7 2231.4

VARMA(2,3) 111 -787.2 1821.5 2171.0

VARMA(3,2) 141 -749.9 1822.1 2257.7

VARMA(3,3) 147 -743.8 1825.5 2277.9

VARMA(1,3) 75 -856.8 1875.6 2116.8

VARMA(1,1) 63 -879.5 1893.8 2097.7

VAR(1) 57 -888.6 1898.4 2083.5

VARMA(1,2) 69 -875.7 1899.7 2122.3
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Table 2 – Higher Order Moments of Macroeconomic Shocks Used for Classical Minimum

Distance Estimation. ugt , u
π
t , uπcoret , and uut are the shocks to real GDP growth, aggregate

inflation, core inflation and unemployment gap, respectively. The data is quarterly from 1962Q4

to 2015Q2. The covariance matrix for moments is a diagonal matrix calculated via a block-

bootstrap with a block length of 20 quarters. Asterisks, *, **, and **** correspond to statistical

significance of individual moments at the 10, 5, and 1 percent levels, respectively.

Volatility

uπt u
g
t uπ

core

t uut

data 0.5655*** 0.7078*** 0.3252*** 0.2658***

standard error (0.0867) (0.0781) (0.0531) (0.0228)

fitted 0.5655 0.7078 0.3252 0.2658

Skewness

uπt u
g
t uπ

core

t uut

data -1.3570 0.4956 0.1144 0.3745**

standard error (1.0067) (0.3714) (0.3808) (0.1879)

fitted -0.4456 -0.2585 -0.2264 0.2308

Excess kurtosis

uπt u
g
t uπ

core

t uut

data 11.2751** 2.5052** 2.0640** 1.0528***

standard error (5.7197) (1.0656) (0.8233) (0.4056)

fitted 1.9051 1.1046 0.9798 1.0160

Correlations

uπt u
g
t uπt u

πcore

t uπt u
u
t u

g
t u
πcore

t u
g
t u
u
t u

πcoreuut
t

data 0.1392 0.5400*** -0.2058*** 0.0626 -0.5615*** -0.1630*

standard error (0.1197) (0.0726) (0.0733) (0.1281) (0.0534) (0.0969)

fitted 0.2415 0.5274 -0.2204 0.0604 -0.5587 -0.0372

Co-skewness

(uπt )2u
g
t (uπt )2uπ

core

t (uπt )2uut (u
g
t )2uπt (u

g
t )2uπ

core

t (u
g
t )2uut

data -0.9790* -0.4251 0.9978* -0.2876 -0.1337 -0.1683

standard error (0.5588) (0.3519) (0.5623) (0.3977) (0.2386) (0.3941)

fitted -0.3714 -0.3544 0.3579 -0.3144 -0.2514 0.2489

(uπ
core

t )2uπt (uπ
core

t )2u
g
t (uπ

core

t )2uut (uut )2uπt (uut )2u
g
t (uut )2uπ

core

t

data -0.0814 -0.2427 0.2308 -0.4526* -0.0987 -0.2621**

standard error (0.2620) (0.1813) (0.1901) (0.2513) (0.3258) (0.1180)

fitted -0.2826 -0.2311 0.2225 -0.2926 -0.2397 -0.2342

Excess co-kurtosis

(uπt )2(u
g
t )2 (uπt )2(uπ

core

t )2 (uπt )2(uut )2 (u
g
t )2(uπ

core

t )2 (u
g
t )2(uut )2 (uπ

core

t )2(uut )2

data 2.8288* 0.9001** 2.5459 0.8804*** 1.1683** 0.7172**

standard error (1.7353) (0.4307) (1.7067) (0.2841) (0.5452) (0.2931)

fitted 1.3899 1.2650 1.3041 1.0355 1.0571 0.9972

(uπt )3u
g
t (uπt )3uπ

core

t (uπt )3uut (u
g
t )3uπt (u

g
t )3uπ

core

t (u
g
t )3uut

data 5.4690* 2.3743 -5.3776* 1.6048* 0.9830 -1.6559*

standard error (3.3311) (1.6502) (3.1267) (0.9644) (0.7055) (0.6289)

fitted 1.5255 1.5383 -1.4667 0.9894 0.6839 -1.0801

(uπ
core

t )3uπt (uπ
core

t )3u
g
t (uπ

core

t )3uut (uut )3uπt (uut )3u
g
t (uut )3uπ

core

t

data 1.0483 0.5848 -0.7485** -1.1668 -0.9086* -0.3166

standard error (0.4346) (0.5241) (0.3655) (0.7724) (0.5445) (0.2325)

fitted 1.0780 0.5661 -0.5272 -0.8572 -1.0357 -0.5635

J-stat 29.6525

p-value (0.0819)

Joint significance

of 3rd and 4th or-

der moments

299.43

p-value (<0.0001)
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Table 3 – Loadings of Macroeconomic Shocks on Demand and Supply Shocks.

The coefficients are from Classical Minimum Distance estimation matching un-

conditional higher order moments of 4 macroeconomic shocks time series: real

GDP growth (ugt ), aggregate (uπt ) and core inflation (uπcoret ) and unemployment

gap (uut ). Standard errors in parentheses account for sampling error in the higher-

order moments and the VAR(2) parameters.

Panel A: Loadings of Macro Shocks on Supply and Demand Shocks

Shock Supply loading Demand Loading

uπt -0.1736 0.3856

(0.0555) (0.1012)

ugt 0.3414 0.4044

(0.0888) (0.0950)

uπ
core

t -0.1678 0.1760

(0.0438) (0.0678)

ugap -0.1344 -0.1464

(0.0334) (0.0264)

idiosyncratic variance share 0.4408

(0.0473)

Panel B: Kalman Gain of Macro Shocks for Supply and Demand

Shock uπt ugt uπ
core

t uut

Supply -0.4553 0.5069 -1.2790 -1.4202

(0.1744) (0.1038) (0.3453) (0.2772)

Demand 0.6758 0.4233 0.9561 -1.0825

(0.1312) (0.1066) (0.2000) (0.2848)

Panel C: Variance Decomposition for Demand and Supply Shocks

Shock uπt ugt uπ
core

t uut

Supply 12.02% 26.32% 32.64% 29.02%

Demand 34.35% 22.57% 22.18% 20.89%

Panel D: Unconditional moments of supply and demand

Shock Skewness Excess Kurtosis

Supply 0.0289 3.3186

(0.8770) (1.7417)

Demand -1.4030 8.6770

(0.9987) (4.8979)
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Table 4 – Model Comparision for Aggregate Demand and Aggregate Supply

Shocks. AIC refers to Akaike information criterion and BIC refers to Bayesian

information criterion. The models are sorted by AIC. Regime-switching model

refers to the 2 state regime-switching model. For both supply and demand shocks,

it is the best regime-switching model in terms of AIC among 1 state, 2 state, 3

state, and 4 state models. BEGE is the full BEGE (with both p- and n-tails be-

ing time-varying) for both demand and supply shocks. These are the best BEGE

models in terms of AIC.

Panel A: Supply Shock

Model Log-likelihood Number of parameters AIC BIC

Regime-switching -297.0011 5 604.0022 620.9476

Gaussian stochastic volatility -300.5985 2 605.1970 611.9751

BEGE -297.8910 6 607.7820 628.1164

Panel B: Demand Shock

Model Log-likelihood Number of parameters AIC BIC

BEGE -266.7475 6 545.4950 565.8294

Regime-switching -270.1899 5 550.3798 567.3252

Gaussian stochastic volatility -278.8772 2 561.7544 568.5325

Panel C: Demand and Supply Shocks

Model Log-likelihood Number of parameters AIC BIC

BEGE -564.6385 12 1153.2770 1193.9459

Regime-switching -567.1910 10 1154.3820 1188.2727

Gaussian stochastic volatility -579.4757 4 1166.9514 1180.5077
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Table 5 – Bad Environment - Good Environment Parameter Estimates for Demand

and Supply Processes. Parameter estimates are obtained using Bates (2006) ap-

proximate maximum likelihood methodology. Standard errors in parentheses are

approximate maximum likelihood asymptotic standard errors. As demand and

supply shocks are assumed to have variances exactly equal to 1, n̄-parameters can

be solved as functions of other model parameters, and their standard errors are

calculated using the delta method.

Supply shock Demand shock

p̄ 20.0000 20.0000

– –

n̄ 4.0030 0.3359

(7.1293) (0.2177)

σp 0.1644 0.1801

(0.0193) (0.0107)

σn 0.3389 1.0229

(0.2879) (0.3271)

ρp 0.9881 0.9392

(0.0177) (0.0279)

ρn 0.6737 0.7243

(0.2046) (0.1551)

σpp 0.5524 0.9834

(0.4162) (0.3434)

σnn 1.2502 0.5723

(1.1114) (0.3905)
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Table 6 – VAR(2) Impulse Responses of Real GDP and Aggregate Price Level to

One Standard Deviation Demand and Supply Shocks. The cumulative impulse

responses include the quarter 0 (where the shocks happened) responses. Standard

errors in parentheses are bootstrap standard errors.

Panel A: Contemporaneous (Quarter 0) Responses

Demand Shock Supply Shock

Real GDP level 0.40% 0.34%

(0.10%) (0.08%)

Price level 0.39% -0.17%

(0.10%) (0.06%)

Panel B: Cumulative (20 Quarters) Responses

Demand Shock Supply Shock

Real GDP level 0.09% 0.52%

(0.27%) (0.27%)

Price level 2.15% -0.05%

(0.66%) (0.54%)
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Table 7 – Decomposition of Real GDP Growth during NBER Recessions into

Demand and Supply Components. Aggregate demand component of the GDP

growth is computed as σgd multiplied by the sum of aggregate demand shocks

over the period of the recession. Aggregate supply component of the GDP growth

is computed as σgs multiplied by the sum of aggregate supply shocks over the

period of the recession.

NBER Recession GDP Growth: Demand Component GDP Growth: Supply Component

1969Q4-1970Q4 -0.46% -0.94%

1973Q4-1975Q1 0.23% -2.40%

1980Q1-1980Q2 -0.57% -0.99%

1981Q3-1982Q4 -2.85% -0.20%

1990Q3-1991Q1 -0.84% -1.10%

2001Q1-2001Q4 -1.04% -0.95%

2008Q1-2009Q2 -2.88% -2.09%
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Table 8 – Decomposing the Great Moderation into Changes in Demand and Supply Volatility.

Coefficients in Panel A are OLS regression coefficients from regressing the dependent variable

on a constant equal to 1 and a dummy variable which is 0 before 1990Q4 and 1 between 1991Q1

and 2000Q4 for the sample of 1962Q4-2000Q4 (specification Dummy-2000), 0 before 1990Q4

and 1 between 1991Q1 and 2006Q4 for the sample of 1962Q4-2006Q4 (specification Dummy-

2006) , and 0 before 1990Q4 and 1 between 1991Q1 and 2016Q4 for the sample of 1962Q4-

2016Q4 (specification Dummy-2016). Coefficients in Panel B are OLS regression coefficients from

regressing the dependent variable on a constant equal to 1 and a dummy variable which is 0 before

1983Q4 and 1 between 1984Q1 and 2000Q4 for the sample of 1962Q4-2000Q4 (specification

Dummy-2000), 0 before 1983Q4 and 1 between 1984Q1 and 2006Q4 for the sample of 1962Q4-

2006Q4 (specification Dummy-2006), and 0 before 1983Q4 and 1 between 1984Q1 and 2016Q4 for

the sample of 1962Q4-2016Q4 (specification Dummy-2016). Standard errors in parentheses are

Newey-West (1987) standard errors computed with 40 lags. The standard errors for the constant

are from the regression using only data up to 2000Q4. The standard errors for the constant

for samples spanning until 2006Q4 and 2016Q4 are slightly different, but these differences are

economically and statistically negligible. The asterisks, *, **, and *** correspond to statistical

significance at the 10, 5, and 1 percent levels, respectively.

Panel A: Aggregate Inflation

Dependent variable Constant Dummy-2000 Dummy-2006 Dummy-2016

Aggregate variance 0.3668*** -0.1243*** -0.1098** -0.0965**

(0.0442) (0.0450) (0.0444) (0.0457)

Supply variance 0.0364*** -0.0126*** -0.0127*** -0.0113***

(0.0029) (0.0033) (0.0031) (0.0035)

Good supply variance 0.0234*** -0.0104*** -0.0116*** -0.0130***

(0.0016) (0.0016) (0.0018) (0.0021)

Bad supply variance 0.0130*** -0.0022 -0.0011 0.0017

(0.0015) (0.0023) (0.0018) (0.0029)

Demand variance 0.1895*** -0.1117*** -0.0971** -0.0853*

(0.0426) (0.0431) (0.0428) (0.0437)

Good demand variance 0.1519*** -0.1098*** -0.1073*** -0.1108***

(0.0378) (0.0388) (0.0383) (0.0381)

Bad demand variance 0.0377*** -0.0019 0.0102 0.0254*

(0.0064) (0.0066) (0.0098) (0.0140)

Panel B: Real GDP Growth

Dependent variable Constant Dummy-2000 Dummy-2006 Dummy-2016

Aggregate variance 0.5907 -0.1479** -0.1485** -0.1425**

(0.0705) (0.0686) (0.0674) (0.0688)

Supply variance 0.1465*** -0.0418*** -0.0453*** -0.0439***

(0.0131) (0.0158) (0.0149) (0.0147)

Good supply variance 0.0939*** -0.0312*** -0.0377*** -0.0452***

(0.0072) (0.0103) (0.0101) (0.0102)

Bad supply variance 0.0526*** -0.0105 -0.0076 0.0013

(0.0054) (0.0078) (0.0076) (0.0107)

Demand variance 0.2233*** -0.1062* -0.1032* -0.0986

(0.0623) (0.0591) (0.0592) (0.0604)

Good demand variance 0.1800 -0.1004* -0.1072** -0.1173**

(0.0545) (0.0532) (0.0528) (0.0524)

Bad demand variance 0.0434*** -0.0058 0.0039 0.0187

(0.0101) (0.0105) (0.0142) (0.0186)
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Table 9 – Explanatory Power (Adjusted R2) of Macro Risk Factors for Yield Curve

Factors. The sample is quarterly from 1962Q4 to 2016Q4. Ang-Piazzesi factors are

contemporaneous Ang and Piazzesi (2003) real and nominal factors. Macro level

factors are expected real GDP growth, expected aggregate and core inflation, and

unemployment gap. Financial factors are the level, slope, and curvature factors.

The level factor is the average over 1-10 year yields. The slope factor is the

10 year yield minus the 1 quarter yield. The curvature factor is 10 year yield

plus 1 quarter yield minus 2 times the 2 year yield. The increase in adjusted R2

significance, which is always tested over the specification in the previous row, is

Bauer-Hamilton (2016) small-sample adjusted significance using 5000 bootstrap

runs. The asterisks, *, **, and ***, correspond to statistical significance at the

10, 5, and 1 percent levels, respectively.

Panel A: Macro Level Factors and Macro Risks

Level Slope Curvature

Macro level factors 0.7146 0.5713 0.2808

Macro level factors+macro risks 0.7902*** 0.5975* 0.4072***

Panel B: Ang-Piazzesi Factors, Macro Level Factors, and Macro Risks

Level Slope Curvature

Ang-Piazzesi (2003) factors 0.2555 0.3126 0.1229

Ang-Piazzesi (2003) factors + macro level factors 0.7122*** 0.5906*** 0.2918***

Ang-Piazzesi (2003) factors + macro level factors + macro risks 0.7974*** 0.6078 0.4086***
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Table 10 – Explaining Quarterly Excess Bond Returns with Macro Factors. The

sample is quarterly from 1962Q4 to 2016Q4. The excess returns are annualized

1 quarter holding period returns on zero coupon US Treasuries. Macro risks (pdt ,

ndt , p
s
t and nst) are scaled to have unit variance. The value in parentheses is the

proportion out of 5,000 Bauer-Hamilton (2016) bootstrap runs where the t-stat for

the coefficient is smaller than in data. The asterisks, * , **, and *** correspond

to statistical significance at the 10, 5, and 1 percent levels, respectively.

1 year bond 2 year bond 5 year bond 10 year bond

Constant 0.0533 0.7436 2.3547 5.1106

(0.0698) (0.3742) (0.5058) (0.5942)

Etπ
core
t+1 5.5115 11.6445 22.5331 38.2388

(0.6818) (0.6766) (0.7170) (0.7468)

Etπt+1 -5.1162*** -11.0131*** -21.7026*** -36.4865***

(0.0014) (0.0016) (0.0016) (0.0018)

Etgt+1 0.7092 0.9958 3.0505 7.5204

(0.6442) (0.5416) (0.5672) (0.5918)

ugapt 0.2131 0.5477 1.2754 2.1034

(0.6058) (0.6228) (0.7056) (0.6346)

pdt -0.8742*** -1.5057*** -3.1487*** -5.2105***

(0.0020) (0.0014) (0.0014) (0.0016)

ndt -0.2270*** -0.6327*** -1.6587*** -3.3794***

(0.0008) (0.0010) (0.0010) (0.0008)

pst 0.3998 0.5255 0.8686 0.7653

(0.8600) (0.6622) (0.5794) (0.3338)

nst 0.3359 0.6965 1.4538 2.9693*

(0.8668) (0.8844) (0.9296) (0.9514)

Adjusted R2 without macro risks 0.0416 0.0475 0.0471 0.0469

Adjusted R2 with macro risks 0.0604 0.0610 0.0613 0.0685
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Table 11 – Explanatory Power (Adjusted R2) of Macro Risk Factors for Quarterly

Excess Bond Returns over Macro Level and Financial Factors. The sample is

quarterly from 1962Q4 to 2016Q4. Macro level factors are expected real GDP

growth, expected aggregate and core inflation, and unemployment gap. Financial

factors are the level, slope, and curvature factors. Th level factor is the average

over 1-10 year yields. The slope factor is the 10 year yield minus the 1 quarter yield.

The curvature factor is the 10 year yield plus the 1 quarter yield minus 2 times

the 2 year yield. The increase in adjusted R2 significance, which is tested over

the specification without the last set of factors (e.g., “3 financial factors+macro

level factors+macro risks” row tests the incremental contribution of macro risks

for the specification already including 3 financial factors and macro level factors),

is Bauer-Hamilton (2016) adjusted significance using 5000 bootstrap runs. The

asterisks, *, **, and ***, correspond to statistical significance at the 10, 5, and 1

percent levels, respectively.

1 year bond 2 year bond 5 year bond 10 year bond

3 financial factors 0.0666 0.0657 0.0708 0.0796

3 financial factors+macro level factors 0.0962* 0.0932* 0.0774 0.0749

3 financial factors+macro risks 0.1338*** 0.1292*** 0.1101** 0.1164*

3 financial factors+macro level factors+macro risks 0.1429** 0.1370** 0.1065* 0.1051*

3 financial factors+macro risks+macro level factors 0.1429 0.1370 0.1065 0.1051
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Table 12 – Cyclicality of Expected Excess Bond Returns. The sample is quarterly

1962Q4-2016Q4. The dependent variable is the expected annualized quarterly

excess return computed from the OLS regressions of realized annualized quarterly

excess returns on 4 macro level factors (expected aggregate and core inflations,

expected real GDP growth, and unemployment gap) and 3 macro risks (good and

bad demand variance and bad supply variance). NBER recession is a dummy equal

to 1 if there is a recession in that quarter. Demand/supply-ratio is the ratio of

aggregate demand variance (good+bad) to aggregate supply variance (good+bad).

Demand/supply-ratio is scaled to have the standard deviation of 1. Standard

errors are Newey-West standard errors computed with 20 lags.

1 year bond 5 year bond 10 year bond

constant 1.1468*** 5.2244*** 9.4250***

(0.2923) (1.6030) (2.9254)

NBER-dummy 0.1436 1.3425 1.9486

(0.3594) (2.0213) (3.4851)

demand-supply ratio -0.5601*** -2.2523*** -3.9519***

(0.1389) (0.7079) (1.2366)

NBER-dummy × demand-supply ratio 0.2666 0.4973 0.1476

(0.1816) (0.7413) (1.2374)

Adjusted R2 0.3600 0.2909 0.2933
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Table 13 – Explanatory Power (AdjustedR2) of Macro Factors for Term Premiums.

The dependent variable is annualized term premium computed as the observed US

Treasury long yield minus the expected 1 quarter US Treasury yield over the life

of the long yield. The expectations of 1 quarter yield over the life of the long

yield are from Blue Chip survey and are available semi-annually. The sample is

1986Q2-2016Q4. The standard deviation of each macro risk factor is scaled to 1.

The value in parentheses is the proportion out of 5,000 Bauer-Hamilton (2016)

bootstrap runs where the t-stat for the coefficient is smaller than in data. The

significance of the increase in adjusted R2 is computed using 5,000 bootstrap runs

of Bauer and Hamilton (2016) bootstrap. The asterisks, * , **, and *** correspond

to statistical significance at the 10, 5, and 1 percent levels, respectively.

5 year bond 10 year bond

constant 0.1852 0.5254*

(0.9370) (0.9604)

Etπ
core
t+1 6.7811*** 8.0065***

(0.9978) (0.9994)

Etπt+1 -5.0956*** -6.5618***

(0.0026) (0.0008)

Etgt+1 0.8876* 1.0378*

(0.9720) (0.9608)

ugapt 0.0769 0.1164

(0.5100) (0.6018)

pdt -0.0236* -0.1107**

(0.0412) (0.0206)

ndt -0.0121 -0.0887*

(0.2678) (0.0318)

pst 0.5720*** 0.6415***

(0.9998) (0.9996)

nst -0.2629 -0.1723

(0.2614) (0.2928)

Adjusted R2 without macro risks 0.6513 0.6543

Adjusted R2 with macro risks 0.6914* 0.6941*
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Table 14 – Cyclicality of the Term Premium. The dependent variable is annual-

ized term premium computed as the observed US Treasury long yield minus the

expected 1 quarter US Treasury yield over the life of the long yield. The expecta-

tions of 1 quarter yield over the life of the long yield are from Blue Chip survey and

are available semi-annually. The sample is 1986Q2-2016Q4. NBER recession is a

dummy equal to 1 if there is a recession in that quarter. Demand/supply-ratio is

the ratio of aggregate demand variance (good+bad) to aggregate supply variance

(good+bad). Demand/supply- ratio is scaled to have the standard deviation of

1. Standard errors are Newey-West standard errors computed with 20 lags. The

asterisks, *, **, and *** correspond to statistical significance at the 10, 5, and 1

percent levels, respectively.

5 year 10 year

constant 0.5171 1.1815*

(0.6445) (0.6211)

NBER-dummy 0.5473 0.5262

(0.5155) (0.4156)

Demand-supply ratio -0.1508 -0.2368

(0.2394) (0.2229)

NBER-dummy×demand-supply ratio -0.4121 -0.2855

(0.3979) (0.3398)

Adjusted R2 0.0228 0.0267

73



Table 15 – Explanatory Power of Macro Factors for Realized 10 Year Bond Return

Variances. The sample is quarterly from 1962Q4 to 2016Q4. Realized variances

are computed as the sums of squared daily bond returns inside the quarter. The

standard deviation of each macro risk factor is scaled to 1. Financial factors are

the level, slope, and curvature factors. The level factor is the average over 1-10

year yields. The slope factor is the 10 year yield minus the 1 quarter yield. The

curvature factor is 10 year yield plus 1 quarter yield minus 2 times the 2 year yield.

The signs in Panel B are from the OLS regression. The value in parentheses is the

proportion out of 5,000 Bauer-Hamilton (2016) bootstrap runs where the t-stat

for the coefficient is smaller than in data. The increase in adjusted R2 signifi-

cance, which is tested over the specification without the last set of factors (e.g., “3

financial factors+macro level factors+macro risks” row tests the incremental con-

tribution of macro risks for the specification already including 3 financial factors

and macro level factors), is Bauer-Hamilton (2016) small-sample adjusted signif-

icance using 5000 bootstrap runs. The asterisks, * , **, and *** correspond to

statistical significance at the 10, 5, and 1 percent levels, respectively.

Panel A: Adjusted R2’s

Macro risks 0.3473

Macro level factors 0.1890

3 financial factors 0.1390

Macro level factors + macro risks 0.4200***

3 financial factors +macro risks 0.4267***

3 financial factors+macro level factors 0.2937***

3 financial factors+macro level factors+macro risks 0.4408***

3 financial factors+macro risks+macro level factors 0.4408

macro risks+macro level factors+financial factors 0.4408

Panel B: Regression coefficients

constant 0.0015*

(0.9574)

Etπ
core
t+1 0.0026**

(0.9822)

Etπt+1 -0.0016*

(0.0348)

Etgt+1 3.14E-05

(0.5970)

ugapt 1.61E-04

(0.8098)

pdt 8.48E-05

(0.6284)

ndt 4.92E-04***

(0.9998)

pst -3.50E-04*

(0.9592)

nst 3.15E-05

(0.5452)
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