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Abstract

Rate curves for overnight loans between bank pairs, as functions of loan values, can

be used to infer valuation of reserves by banks. The inferred valuation can be used to

interpret shifts in rate curves between bank pairs, for example, in response to a financial

crisis. This paper proposes a model of lending by a small bank to a large monopolistic bank

to generate a tractable rate curve. An explicit calibration procedure for model parameters

is developed and applied to a dataset from Mexico around the 2008 financial crisis. During

the crisis, relatively small banks were lending to large banks at lower rates than usual, and

the calibration suggests that a broad decline in valuation of reserves is responsible for this

outcome, rather than a general increase in the supply of lending or compositional effects.
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1 Introduction

Banks lend and borrow central bank reserves overnight. An empirical pairwise rate curve,

as a function of loan value, between a lender and a borrower can be constructed from repeated

transactions over time. Having a framework to interpret such a curve is useful, as it contains

information beyond simple mean rates and volumes. In particular, the shape of a rate curve

gives information on the implicit private valuation of reserves by each bank pair, as shown by

this paper. The value or incentive for holding reserves drives money market transactions, so

having a tool for mapping reserve valuation into observable trades is useful in understanding

money markets and broader financial markets.

Interpreting a rate curve requires a model generating a relationship between loan rates

and values. In this paper, this is simply achieved by modelling the interaction between a

bank pair as a price-differentiation problem between a large monopolistic bank and a small

bank, in which the large bank offers a rate curve as a function of loan value to the small

bank. The uncertainty in reserve holdings and the decreasing marginal value of reserves

jointly determine the rate curve in the model. This relationship can be inverted to infer the

implicit marginal value of reserves from an observed rate curve.

The model is motivated by a transaction-level database from Mexican interbank call

money market. The large bank in the model acts as a monopolist, which is a simplifying

assumption, but is reasonable in the case of Mexican interbank call money market for three

reasons. First, a few of the largest banks participated in most of the trades in the database,

plausibly granting them significant market power. Second, each of the remaining banks was

mostly seen as trading prominently (though not exclusively) with one of those largest banks.

Lastly, the choice of a trading counterparty did not seem to be driven by a search for the

best rate, evidenced by the general lack of any strong correlation between trade volumes

and rates across counterparties. These three observations are described in more detail in the

next section.

It is difficult to directly estimate the parameters of the model, as they map into observable

moments in a highly non-linear way, making off-the-shelf optimizers unreliable. However,

this paper develops an alternative calibration procedure, mostly based on matching sample

moments with their model counterparts, which can be followed with ease, and with clear

understanding of how data map into parameters (as opposed to a black-box approach).

This calibration is applied to the data around 2008 financial crisis. Near the peak of the

crisis, small banks lending to large banks experienced worse trading conditions than usual,

receiving lower interest rates. The model interprets this as the outcome of a broad decrease

in the marginal value of reserves across small banks, which shifted rate curves lower. This
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interpretation is consistent with multiple explanations, such as increased risk in investment

opportunities or increased risk aversion by small banks. At the same time, the calibration

shows that the lower rates were not driven by a general increase in the supply of reserves

lending or compositional effects.

In addition, the model-generated rate curve implies a positive correlation between loan

values and rates, which is consistent with the data.1 Also, calibrated model parameters have

reasonable magnitudes.

The validity of the model depends on the market power held by a small number of large

banks. Three features consistent with such market power have been described for Mexico,

but they are not unique and have been documented in other countries as well. For instance,

concentration of activity in large banks was observed by Furfine (1999) and Bech and Atalay

(2008) for the US, by Cocco et al. (2009) for Portugal, Akram and Christophersen (2010)

for Norway, and Sokolov et al. (2012) for Autralia. Also, larger banks getting advantageous

rates over smaller banks were observed in the US, for example, by Furfine (2001) and Afonso

et al. (2011). Therefore, the model and its calibration can be potentially applied to data

from countries other than Mexico.

The model and its calibration allow a quantitave interpretation of the rate curve between

a pair of banks, which is a novel addition to existing frameworks such as Ho and Saunders

(1985), Coleman II et al. (1996), Allen et al. (2012), Gofman (2013) and Afonso and Lagos

(2015). Also, the calibration of model parameters around the peak of the 2008 financial

crisis complements previous empirical studes on how interbank markets respond to financial

crises, such as Furfine (2002) and Afonso et al. (2011) on the US and Acharya and Merrouche

(2010) on the UK.

Section 2 describes the Mexican interbank market and presents empirical observations

that motivate the model. Section 3 develops the model and discusses its implications. Section

4 tests implications of the model, proposes a calibration procedure for model parameters

using the Mexican data, and discusses the impact of the 2008 financial crisis on the Mexican

banking sector through the lens of the model. Section 5 concludes.

2 Mexican Overnight Interbank Market

This section describes features of Mexican overnight interbank market that motivate the

model.

1This result holds for loans that small banks lend to large banks. This particular market segment
accounts for a large part of meaningful variations in rates in the data, as explained in the following sections.
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2.1 Data Description

The dataset contains all transactions in the interbank call money market in Mexico,

which is an important source of overnight loans for Mexican banks. A call money operation

is an unsecured loan that can be recalled by the lender before it is due. If a lender recalled a

loan, it would receive back the principal immediately but earn zero interest. It is not known

precisely how frequent recalls are, but they are generally known to be rare.2 Therefore, these

loans are treated as simple unsecured loans in this paper.

Call money operations can have a tenor of 1, 2, or 3 banking days, but almost all of them

are overnight. More generally, overnight call money operations constitute most of unsecured

interbank loans in Mexico, in both transacation number and volume.

The call money market is over-the-counter (OTC) with no centralized exchange, and thus,

rates vary across individual trades, depending on the identity of lenders and borrowers.3 All

subsequent empirical analyses are based on overnight call money operations only.

The time span of the dataset is two years, 2008 and 2009.4 The total number of trans-

actions is 21,451, with 44 per day on average. The number of banks with at least one

transaction during this period is 38. However, nine of them have various data issues, and are

dropped in some of the analyses, which results in less than 3% loss in transaction volume in

the data.5

The mean principal value of a loan is 536 million Mexican pesos, which was roughly 40

million US dollars based on exchange rates that prevailed in 2008 and 2009. The cross-

sectional intraday standard deviation of interest rates is 12 basis points in annualized terms,

on average (all rates appear as annualized rates in this paper).

2.2 Interest Rate and Bank Size

Interest rates vary little between some of the largest banks in the system. Figure 1

shows the mean distance between individual rates and the central bank target rate, for loans

between the n largest banks, in terms of total assets, for n increasing from 2 to 36.6 The

target rate is used as the base to control for changes in rates over time. The figure shows

2A lender has an incentive to plan its lending properly so that it does not have to recall a loan, as recalled
loans earn zero interest. Also, the lack of a register for recalls indirectly suggests their insignificance.

3There is no good documentation on why this market has not been centralized. One reason may be
that the number of transactions is small, so there is not a strong incentive to establish an exchange. More
generally, many financial assets are traded outside exchanges.

4More precisely, it is from 01/21/2008 to 12/31/2009. The dataset starts on 01/21/2008, not on
01/01/2008, because there was a significant change in the monetary policy implementation framework on
01/21/2008.

5Mostly due to limited data availability.
6Two of the banks without available balance sheet information are dropped from all subsequent analyses.
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Figure 1: Variation in Interest Rates within Different Subgroups of Banks.

that for n ≤ 4, rates are very close to the target with little variation, with mean distance

close to 0.1 bp or smaller. As n grows beyond 4, however, the standard deviation tends to

increase with n.

In line with this observation, the four largest banks are defined as ‘large banks’ and

the remaining banks as ‘small banks.’ This definition is used throughout this paper unless

explicitly stated otherwise.

Under this definition, it turns out that most loans (in terms of volume) are either between

two large banks, or between a large bank and a small bank. The mean rates (minus the

target rate) for different subsets of loans are shown in table 1, based on the size of lenders

and borrowers. Large banks lend to other large banks at rates practically identical to the

target rate, on average. When small banks borrow from large banks, they pay rates above

the target rate, and when small banks lend to large banks, they pay rates below the target

rate, on average.7 Small banks apparently face a disadvantage trading with large banks,

which is consistent with the findings from Cocco et al. (2009) and Furfine (2001).

Small banks lending to large banks mostly receive rates lower than the target rate. Figure

2 plots the distribution of rates on two subsets of loans: Large banks lending to other large

banks, and small banks lending to large banks. The green line, which is the observed rate

7Small banks mostly lend to large banks, rather than borrow from them. Both averages are statistically
significant.
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Borrower is:
Large Small

Lender is:
Large

0.000 0.015
(0.028) (0.114)

Small
-0.153 -0.010
(0.129) (0.111)

Note: Numbers in () are standard deviations,
not standard errors of the mean.

Table 1: Mean Spreads to the Target Rate for Different Bank Size.

−1.5 −1 −0.5 0 0.5 1 1.5
0

Density

Interest rate

(relative to the target rate)

Vertical values for each line have been normalized separately so that the

lines have comparable heights.

BLUE line represents loans between two large banks.

GREEN line represents loans that small banks lend to large banks.

Figure 2: Densities of Interest Rates.

distribution for small banks lending, is almost entirely located to the left of the blue line,

which is the observed rate distribution for large banks lending.

2.3 Counterparty Choice of Small Banks

Small banks mostly trade with large banks rather than with other small banks. This

observation is consistent with the findings from Bech and Atalay (2008) and Furfine (1999).

Figure 3 shows the volume of loans between all banks except n largest banks, divided

by total volume. The ratio decreases rapidly as n grows from two to four. It decreases

much more slowly as the number continues to grow beyond four. The four largest banks act

as counterparties to many other banks, and the other banks trade mostly with these four

largest banks: 47.9 percent of loans are between large banks and 43.6 percent of loans are

between a large bank and a small bank. Loans between two small banks only account for
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Figure 3: Volume of Loans between Small Banks.

8.5 percent.

A small bank typically trades mostly with one of the large banks. For each small bank,

it is easy to identify which large bank it principally trades with because the difference in

volume between the most frequently traded large bank and the second most is substantial.

On average, 61.8 percent of a small bank’s loans with large banks are concentrated on a

single large bank. In contrast, the second most frequently traded large bank accounts for

only 19.7 percent.

3 Model

3.1 Empirical Observations and Model Assumptions

The model represents the interaction between a large bank and a small bank, in isolation

from all the other banks. The large bank acts as a monopolist and offers its profit-maximizing

rate curve as a function of loan value to the small bank.

This section mostly describes cases in which the small bank has excess reserves to lend,

but the description can be easily extended to allow both lending and borrowing. This

simplifies the exposition, and is enough for the calibration exercise which uses only loans

that small banks lend to large banks.8

8The total volume of borrowing by small banks from large banks is less than 10 percent of the total
volume of lending in the data. The model can be extended with little effort into cases where small banks
borrow from large banks or switch sides depending on the realization of random variables. Especially, given
the assumptions on the form of marginal value for reserves, the cases in which small banks lent could be
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Faced with an excess or a deficit of reserves, both the large bank and the small bank

assign the same constant marginal value to reserves, excluding the cost of ‘handling’ it.

However, by assumption, the large bank can handle it costlessly, while the small bank faces

some cost (‘liquidity cost’), increasing with the size of the excess or deficit. Due to this cost,

the small bank with excess reserves assigns a lower marginal value to a unit of reserves than

the large bank. This cost, in practice, can be interepreted as differential access to potential

investment opportunities.

If the model had two large banks, instead of a large bank and a small bank, they would

assign the same constant marginal value to a unit of reserves and lend and borrow at a

single constant rate. This is indeed observed with the Mexican database, and empirically,

the almost constant rates between large banks are practically identical to the central bank

target rate. Based on this observation, the target rate is used as the marginal value of

reserves to large banks in empirical applications of the model.

These assumptions also rationalize the observation that small banks lend at lower rates

and borrow at higher rates than large banks, described in the last section. Especially, the

small bank must lend at below the target rate, which is observed from the data.

In the data, a small bank typically has a single large bank with which it trades a majority

of loans, and thus the assumption that the large bank acts as a monopolist toward the small

bank in the model is a reasonable simplification. In addition, the rate that the most frequent

large bank counterparty offers to a small bank is not better than what other banks offer in

the data, further supporting the presence of market power.

3.2 Formal Setup

There are two banks, a large bank (bank L) and a small bank (bank S). The model

describes events over a banking day. First, a random variable x is realized, which denotes

the amount of excess reserves that the small bank holds before trading. Then, the two banks

meet once and determine l, the amount of reserves that the small bank lends to the large

bank. x < 0 means that the small bank has −x amount of reserve deficit and l < 0 means

that the small bank borrows −l from the large bank.

If l = 0, the small bank’s profit πS is

πS =

x∫
0

(p− c(y))dy. (1)

considered independently from the cases in which small banks borrowed, even if both lending and borrowing
were possible as probabilistic outcomes.
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p−c(y) is the marginal value of reserves, where p is a constant and c(y) is a strictly increasing

function such that c(0) = 0. p is the constant marginal value of reserves in the absense of

liquidity cost and c(y) is the marginal liquidity cost. c(y) represents a cost in the sense that

for any x,
∞∫
0

(p− c(y))dy < px. (2)

c(y) always reduces the profit because it has the same sign as y.

With l 6= 0, the small bank lends l reserves, and its profit is

πS =

x−l∫
0

(p− c(y))dy + rl. (3)

r is the interest rate on the loan of value |l|. Compared to equation 1, reserve position

changes from x to x− l because it transfers l units of reserves to the large bank. In return,

the small bank receives interest payment rl.

The large bank’s profit function πL has the same form as πS, except that it does not have

the cost term, c(y):

πL =

l∫
0

pdy − rl = pl − rl. (4)

The large bank may have its own excess or deficit of reserves at the beginning, but it is

irrelevant to trading decisions. Since the marginal value of reserves is constant, the starting

reserve position does not matter in determining r and l.

This setup can be interpreted as the large bank absorbing some of excess or deficit in

reserves from the small bank, and handling it at a lower cost.

3.3 Trading Mechanism

x, the initial reserve position of the small bank, is a random variable. The small bank

knows its exact value, but the large bank only knows its probability distribution. The large

bank’s problem is to offer a curve, or a menu, of rates as a function of the loan value to

maximize its expected profit, taking into account the fact that the small bank would choose

a point on the curve that maximized its own profit.

Formally, let r(y) be the rate curve and l be the loan value, which can be either positive
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or negative. The problem of the small bank is to maximize its own profit given x and r(y):

max
l

x−l∫
0

(p− c(y))dy + r(l)l. (5)

Since the choice of l is determined by x and r(y), l can be written as l(x|r(y)).

With this new notation, the expected-profit-maximization problem of the large bank is

max
r(y)

∫ ∞
−∞

[p− r(l(x|r(y)))]l(x|r(y))f(x)dx, (6)

where f(x) is the probability density function of x.

3.4 Characterization of the Solution

From this point, x is assumed to be a positive continuous random variable and r(y) is

treated as a function defined only over y ≥ 0. This does not result in any loss of generality

because in solving the large bank’s problem, the region x > 0 can be solved separately from

x < 0. The reason is that the large bank would choose r ≤ p for l > 0 and r ≥ p for l < 0

to avoid making a loss. Then, given the increasing marginal cost c(y), the small bank has

no incentive to choose l < 0 when x > 0 or to choose l > 0 when x < 0.9

Given any r(y), l(x|r(y)) ≥ l(x′|r(y)) if x > x′. Since the marginal cost c(x) is increasing

in x, the small bank benefits more from increasing its lending when its reserve position x is

larger. Therefore, l is a weakly increasing function of x, for any given r(y).

Furthermore, for l(x) to be chosen by the small bank, the small bank must be indifferent

between lending l(x) at rate r(l(x)) and lending l(x+ dx) at rate r(l(x+ dx)):

l′(x)[r(l(x)) + r′(l(x))l(x)− p+ c(x− l(x))] = 0. (IC) (7)

A first-order condition for maximizing the large bank’s objective function is also needed.

Roughly speaking, the first-order condition represents a balance between the extra profit from

increasing l(x) and r(l(x)) while leaving the small bank’s pointwise profit at x unchanged,

and the cost of increasing r(y) for all y > l(x) to conserve the incentive compatibility

9A further separation result is that for every x ≥ 0, an optimal solution implies l ≤ x. Therefore, there
is no need to specify the form of c(y) for y ≤ 0, except the assumptions that c(y) is increasing in y and
c(0) = 0. This is not explicitly proved in the paper because this result is not used anywhere. Roughly, at
the smallest x such that l > x, both l and r(l) can be reduced to leave bank S at x indifferent, without
violating incentive compatibility for bank S with other x.
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condition for the small bank. The resulting expression is:

f(x)c(x− l(x))− (1− F (x))c′(x− l(x)) + λ(x) = 0, (FOC) (8)

where F (x) is the cumulative distribution function of x and λ(x) is a shadow cost of the

constraints that l(0) = 0, and that l(x) is a weakly increasing function of x.

Proposition 1. Suppose that f(x) > 0 for every x ≥ 0. The solution to the banks’ opti-

mization problems is characterized by the following two equations:

l′(x)[r(l(x)) + r′(l(x))l(x)− p+ c(x− l(x))] = 0. (IC) (9)

f(x)c(x− l(x))− (1− F (x))c′(x− l(x)) + λ(x) = 0, (FOC) (10)

subject to l(0) = 0 and l′(x) ≥ 0. λ(x) represents a shadow cost of these two constraints on

l(x). The proof is in the appendix. �

The solutions r(y) and l(x) depend on c(y) and the distribution of x. However, there is a

general tendency for the interest rate to increase as l increases, at least for large values of l,

as long as the distribution of x does not have a ‘heavy’ tail, in the particular sense that either

the support of x is bounded or the inverse of hazard function (1−F (x))/f(x) becomes small

for large x. Under such an assumption, the first-order condition (FOC) implies that x− l(x)

should be close to 0 for large x. Intuitively, if the distribution of x were bounded or did not

have a heavy tail, the large bank would want to lend as much as possible for large values

of x. The reason is that the cost to conserve the incentive compatibility of the small bank,

(1−F (x))c′(x−l(x)), would become small relative to the profit from lending more, for large x.

Then, as c(x−l(x)) became small for large values of x, r′(l(x)) = (p−c(x−l(x))−r(l(x)))/l(x)

would tend to be positive, given equation (IC).

3.5 Additional Assumptions

Additional assumptions are introduced to simplify solutions. The marginal liquidity cost,

c(y), is assumed to be a power function: c(y) = αyθ, for positive constants α and θ. The two

parameters α and θ can be roughly mapped into the level and the slope of the rate curve

through the model.

If the hazard rate of x, f(x)/(1 − F (x)), is monotonically weakly increasing in x, the

solution to the optimization problems has a relatively simple form:10

10Weibull distribution is an example of such a distribution, which will be used in parameter calibration. A
normal distribution, a uniform distribution and an exponential distribution also have monotonically weakly
increasing hazard rates.
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Proposition 2. Suppose that f(x) > 0 for all x ≥ 0, the hazard rate of x is weakly increasing,

and c(y) = αyθ for some positive α and θ. Then, the solution l(x) to the optimization

problems has the following simple form:

l(x) = [x− θ1− F (x)

f(x)
]+, (11)

where the notation [·]+ denotes the maximum of the expression inside the brackets and 0.

Also, there exists a unique x0 > 0 such that l(x) > 0 if and only if x > x0.

For any x > x0, condition (IC) can be rewritten as:

r(l(x)) + r′(l(x))l(x)− p+ α(x− l(x))θ = 0, (12)

or more conveniently,

r(l) = p− 1

l

l∫
0

α(θ
1− F (l−1(z))

f(l−1(z))
)θdz, (13)

where l denotes both loan value as an argument in r(l) and loan value l(x) as a function of

x at the same time. l−1(z) is a proper function because l(x) is strictly increasing for x ≥ x0.

The proof is in the appendix. �

Since (1−F (x))/f(x) is monotonically decreasing in x, r(l) is a monotonically increasing

function of l. Figure 4 shows the solutions for some chosen values of θ and distributions of

x.11

3.6 Discussion

The large bank determines the optimal rate curve, subject to the small bank’s own

optimizing behavior. This problem is known as a price differentiation problem, but it had

not been previously applied to the study of overnight interbank loan markets.

The model does not take into account any default risk in the borrower. For a risk-neutral

lender, the additive premium on the interest rate due to default risk would approximately

equal default probability. However, default risk is mitigated if a lender can recall a loan,

as in Mexico. Also, when a large bank is borrowing from a small bank, the default risk is

typically very small, because large banks tend to be relatively safe and can often rely on

11Liquidity cost functions c(y) = αyθ with α = 0.3 and varying θ are used. Weibull(λ, k) refers to
a distribution with cumulative distribution function F (x) = 1 − exp(−(x/λ)k). Uniform(a, b) refers to a
uniform distribution over (a, b).
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emergency funding from the government or the central bank.12

4 Empirical Application of the Model

Linear regression models are estimated with the data to study how the interest rate

depends on loan value and the identities of lenders and borrowers. A significantly positive

correlation is found between rate and value, which is consistent with the model. For clarity,

each observation is indexed by a unique (ordered) triple (i, j, t), where i is the index for the

lender, j is the index for the borrower and t is the index for the date on which the loan is

made. This indexing is valid because there is at most a single loan between a given pair

of banks on most dates.13 Also, it conforms to the model, which allows only a single loan

12For example, for the four largest banks in Mexico, their most recent ratings by Moody’s as of December
2014 were P-2. The historical default probability within three months for corporations rated in that caterogy
was 0.00 percent. Therefore, annualized, the contribution to the interest rate from default risk would be less
than 1 basis point.

13In principle, a triple (i, j, t) does not indentify a unique observation because there can be multiple
transactions between banks i and j on date t. In practice, there is at most a single loan between a given
pair of banks on most dates. Even when there are more than one loans, the interest rates on those multiple
loans tend to identical. If there are multiple transactions corresponding to a single triple (i, j, t), these loans
are consolidated to produce a single observation. For the new consolidated observation, the loan value is the
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between two banks.

Additional linear regression models including dummies for a crisis period shows that

rate curves between bank pairs shifted to lower levels during the crisis. To systematically

interpret these shifts, the model is calibrated with the data allowing for parameter changes

during the crisis. A parameter calibration procedure, which is similar to the generalized

method of moments (GMM), is introduced.

4.1 Linear Models

The following model tests for a positive relationship between interest rates and loan

values, controlling for the identity of the lender and the borrower:

rijt − pt = αi + βj + γ · log(V alueijt) + εijt (14)

where r is the interest rate, p is the target rate, αi is the lender fixed effect, βj is the

borrower fixed effect, and V alueijt is the principal value of the loan. An expanded model

allows different coefficients on the loans that small banks lend to large banks (γ + γA), and

on the loans that small banks lend to their principal large bank counterparties (γ + γB):

rijt − pt = (Intercepts) + [γ + γAIA(i, j, t) + γBIB(i, j, t)] · log(V alueijt) + ηijt (15)

where IA(i, j, t) is 1 if bank i is small and j is large, and is 0 otherwise, and IB(i, j, t) is 1

if bank i is small and j is the ‘principal’ counterparty of i, and is 0 otherwise.14 Intercepts

also change with IA and IB:

(Intercepts) = αi + αA(i)IA(i, j, t) + αB(i)IB(i, j, t) + βj + βA(j)IA(i, j, t) + βB(j)IB(i, j, t).

(16)

In addition, the two linear models are estimated with γ, γA and γB as normal random

coefficients at the level of lender-borrower pairs, (i, j). Table 2 reports estimated coefficients

of these models.

A positive relationship between rates and loan values is found under every specification,

which is significant both statistically and economically. In the expanded models (models

3 and 4 in table 2), γ is much smaller than γA, suggesting that the positive relationship

sum of individual loan values, and the interest rate is the average of individual interest rates, weighted by
the value of individual loans.

14The principal counterparty of a small bank is defined as the large bank counterparty with the largest
trade volume with the small bank.
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Model (1) (2) (3) (4)

γ(×100)
1.538∗ 0.996∗ 0.470∗ 0.474∗

(0.186) (0.153) (0.163) (0.150)

γA(×100) · · 2.213∗ 1.866∗

(0.480) (0.423)

γB(×100) · · 0.600 0.500
(0.669) (0.642)

Random Coefficients No Yes No Yes

Number of (i, j) Groups 418 418 418 418

R2 0.482 · 0.546 ·

Number of obs. 18679 18679 18679 18679

∗ denotes significance at 5%.
1 Standard errors are clusted for each (i, j).

Table 2: Linear Models of the Relationship between the Loan Size and the Interest Rate.
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Figure 5: Relationship between Bank Size Rank and Interest Rate.

between interest rates and loan values is much more pronounced when small banks lend to

large banks. Small banks receive a 2.5 bp higher rate on a 170 percent larger loan on average,

which is substantial relative to 12 bps of intraday cross-sectional standard deviation. This

is consistent with the model’s implication that the small bank receives a higher interest rate

from the large bank when it lends more.

Figure 5 is a plot of lender fixed effects (αi) and borrower fixed effects (βj) from the

simple linear model (model 1 in table 2), relative to the largest bank.15 Larger banks tend to

get better interest rates than smaller banks, both when lending and when borrowing. This is

broadly consistent with the model’s assumption that the large bank faces no liquidity cost.

Finally, to ensure that the positive relationship between rates and loan values is not

driven by trends over time or other factors not captured by bank fixed effects, a linear model

is separately estimated on many subsets of the data. Specifically, a linear regression model

of the following form is estimated on the loans between small banks and their principal

counterparties, separately for each small bank and for each 60-business-day window:

rt − pt = α + γ · log(V aluet) + εt. (17)

γ is positive in 82% of the 5,656 subsamples generated in this way.

4.2 Mexican Interbank Market during the 2008 Financial Crisis

Casual observations indicate that near the peak of the 2008 financial crisis, the interest

rate ‘discount’ (the target rate minus interest rates) on the loans that small banks lent to

15The estimated coefficients αi and βj are replaced by quadratic polynomials of the bank size rank that
are closest to them under the L1-norm. The polynomial is a good representation of actual fixed effect
coefficients, and the choice of L1-norm over L2 helps it by giving less weight to a few outliers.
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Figure 6: Behavior of the Interbank Market during the Crisis.

large banks increased. The peak of the crisis is defined using VIMEX, an implied stock

market volatility index for Mexico.16 This peak will be simply refered to as the crisis period

in the remainder of the paper.

Notably, total volume of loans seems to have increased around the peak, with no sign of

market disruption. This is consistent with earlier studies showing that overnight interbank

markets have been functioning smoothly through crises in the US, for example.17 Figure 6

shows interbank volume and rate discounts faced by small banks during the crisis, and figure

7 shows the time-series of the implied stock market volatility index.

Linear models with a time dummy for the crisis period are estimated to formally doc-

ument changes to the interbank market. In this section, the dataset is narrowed down to

include only (i, j, t) triples with small banks lending to their principal large bank counter-

parties.

First, there is an increase in loan values during the crisis, but it is not significant. This

16Implied stock market volatility is defined, for example, in Bollerslev et al. (2009). The crisis period is
defined as the continuous block of dates around the peak of the implied stock market volatility index over
which the daily closing level of the index stayed above half of the peak value. This definition results in 87
business days of crisis.

17Furfine (2002)) documents that the Federal Funds Market worked well during the Russian debt crisis,
and Afonso et al. (2011) documents that there was at most a small drop in the total value of loans traded
in the Federal Funds Market after the default of Lehman Brothers in 2008.
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result comes from estimating the following linear model:

log(V alueit) = αi + βIC(t) + εit (18)

where V alueit is the principal value of the loan that small bank i lends to its principal

lcounterparty on date t. αi represents the lender fixed effect (borrower fixed effect is not

necessary because i determines the identity of the borrower as well) and IC(t) takes the value

of 1 if t is within the crisis period and 0 otherwise.

Next, there is a significant negative shift to rate curves, or equivalently, a significant

increase in the rate discounts that small banks faced. To show this, the preceding linear

model in equation 18 is estimated with rit − pt as the dependent variable.

Finally, a significant positive relationship between loan values and rates exist (as shown

already), and there is no significant change in their correlation during the crisis. To show

this, the following linear model is estimated:

rit − pt = αi + βiIC(t) + [γ + δIC(t)] · log(V alueit) + ηit (19)

Table 3 presents estimated coefficients from these models. In addition, random-slope

models in which coefficients of interest (β for equation 18, and γ and δ for 19) are normal

random coefficients at the level of individual small banks are estimated.

18



Model (1) (2) (3) (4) (5) (6)

Dependent
Log Value Log Value Rate Rate Rate Rate

Variable

β: Level Change 0.1130 0.0379 −0.0633∗ −0.0549∗ · ·
during the Crisis (0.1020) (0.1017) (0.0117) (0.0089)

γ: Slope on · · · · 0.0350∗ 0.0305∗

Log Value (0.0052) (0.0051)

δ: Slope Change · · · · −0.0034 −0.0016
during the Crisis (0.0053) (0.0053)

Random
No Yes No Yes No Yes

Coefficients

R2 0.504 · 0.518 · 0.618 ·

Number of Obs. 3736 3736 3736 3736 3736 3736

∗ denotes significance at 5%
1 Standard errors are clusted for each i.

Table 3: Linear Models of the Impact of the Crisis.

19



Models 1 and 2 show that the value of loans that small banks lent to large banks increased

by 11.3% and 3.8%, respectively, on average, during the crisis. However, the increase in loan

values is not statistically significant due to relatively large day-to-day fluctuations and an

apparent increasing trend toward the end of the data period.

Models 3 and 4 show that the interest rates that the small banks received were signifi-

cantly lower during the crisis, by about 5 to 6 basis points. Models 5 and 6 show that the

slope of rate curves decreased only a little, with no statistical significance.

The linear models show that interest rate discounts faced by small banks increased during

the crisis. The small banks’ increased need to lend might have weakened their bargaining

power against the large banks. Alternatively, worse outside options during the crisis other

than directly lending to large banks could have increased rate discounts.

4.3 Mapping the Effects of the Crisis onto the Model

Changes in loan values and shifts in rate curves can be accounted by changes in model

parameters. In this section, two forms of parameter changes are discussed, given c(y) = αyθ:

A change in α (cost shift), and a change in the distribution of x, representing a change in

the pattern of reserve holdings by the small bank.

Generally, an increase in the liquidity cost, represented by c(y) = Cαyθ for C > 1, shifts

the rate curve downward and makes it steeper. Similarly, an increase in reserve holdings,

represented by a change in the distribution of reserves from x to Cx for C > 1, shifts the rate

curve downward and makes it steeper. The magnitude of these changes is partly determined

by the shape parameter of the cost function, θ.

Proposition 3. Suppose that the liquidity cost function is c(y) = αyθ and the small bank’s

reserve holdings x has cumulative distribution function F (x). Also, suppose that (r(l), l(x))

is a solution to the two banks’ optimization problems. Then,

(i) With liquidity cost function c(y) = Cαyθ for some C > 0, (rc(l), l(x)) is an optimal

solution, where

rc(l) = p− C(p− r(l)). (20)

(ii) With the original c(y) = αyθ and the level of reserves following the distribution of

Cx, so that its cumulative distribution function is F (x/C), (rx(l), Cl(x/C)) is an optimal

solution, where

rx(l) = p− Cθ(p− r( l
C

)). (21)

The proof is in the appendix. �
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4.4 Parameter Calibration

Parameters of the model are calibrated to account for shifts in rate curves during the

crisis. Roughly speaking, the change in the shape of the distribution of x can be measured

by comparing loan values during the crisis with those outside the crisis. If this change in

distribution cannot explain all of the observed shifts in rate curves, the residual shift can be

attributed to a shift in the cost function.

Parameters of the model are calibrated following a clearly defined procedure. They are

mostly chosen to set the values of certain moments at zero. Therefore, the calibration is

conceptually close to GMM. Indeed, it is likely to dominate a GMM estimator obtained by

brute force, resulting in a much smaller objective function.18

For calibration, the distribution of x, the small bank’s reserve holdings, is assumed to

follow Weibull distribution, with the scale parameter λ > 0 and the shape parameter k ≥ 1.

Therefore, x has the following cumulative probability distribution function F (x):

F (x) = 1− exp(−(
x

λ
)k). (22)

With k ≥ 1, the hazard rate is weakly increasing.

The model is characterized by four parameters, (θ, k, λ, α), where θ and α characterize

the liquidity cost function c(y) = αyθ. Two additional parameters, C > 0 and α′ ≥ 0, are

introduced to capture changes to loan values and rate curves during the crisis. C shifts

the distribution of x to Cx, implying that the cumulative distribution function for x is

F (x) = 1− exp(−(x/(Cλ))k) during the crisis. α′ characterizes the liquidity cost during the

crisis, c(y) = α′yθ.

Bringing the model to the data, each individual small bank is characterized by five pa-

rameters, (k, λ, C, α, α′), during both normal times and the crisis. θ is treated as a structural

parameter applying to all banks at all times. For given θ and for each bank, the five param-

eters are chosen to satisfy the following four conditions on sample moments. For each bank,

individual observations are indexed by date t, and lt and rt denote the volume and the rate

of the bank’s lending to its principal large bank counterparty on date t, respectively. Dt is

the dummy variable for the crisis period.19 E denotes sample mean over t for which a trade

is observed, lt > 0:

18The nonlinear objective function does not work well with off-the-shelf optimizers for finding a GMM
estimator. It is hard to reduce the objective function by a meaningful amount, using the calibrated parame-
ters as the starting value. The appendix describes how the calibration can be technically treated as a GMM
problem.

19Dt = 1 if t is within the crisis period and Dt = 0 if t is outside the crisis period.
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E[(lt − EN [l|l > 0])(1−Dt)] = 0. (MC1)

E[(lt − EC [l|l > 0])Dt] = 0. (MC2)

E[(rt − rN(lt))(1−Dt)] = 0. (MC3)

E[(rt − rC(lt))Dt] = 0. (MC4)

In the first condition, (MC1), EN denotes model-expected-value outside the crisis, which

is matched to its sample counterpart. For any given (θ, k), there exists unique λ satisfying

the condition. In the second condition, (MC2), EC denotes model-expected-value during

the crisis, generated by using Cλ as the scale parameter for the Weibull distribution for x,

and by using c(y) = α′yθ. The condition matches the model-expected-value to its sample

counterpart. For any given (θ, k, λ), there is unique C satisfying the condition. C represents

roughly the ratio of the average loan value during the crisis to that outside the crisis.

In the last two conditions, (MC3) and (MC4), rN(l) and rC(l) are the interest rates on

the loan of value l implied by the model, outside and during the crisis, respectively. Their

means are matched to those of their sample counterparts. For any given (θ, k, λ, C), these

two conditions uniquely determine α and α′. These two parameters roughly represent the

distance of the rate curve from the target rate, p.

The four conditions just described thus uniquely determines (λ,C, α, α′) for any given

(θ, k). To determine k, the sample second moment of lt is matched with its theoretical

counterpart:

E[l2t − EN [l2|l > 0](1−Dt)− EC [l2|l > 0]Dt] = 0. (MC5)

(MC5) can be satisfied only if

E(l2t ) ≤ 2[E(1−Dt)E(lt|Dt = 0)2 + EDtE(lt|Dt = 1)2], (23)

which roughly means that the sample variance of lt needs to be smaller than the square of

its sample mean. This condition is satisfied for 18 of the 25 small banks. For the other seven

banks, k is chosen to minimize the absolute value of the left-hand side of (MC5), which is

achieved by maximizing EN [l2|l > 0] while still satisfying (MC1) and (MC2).20

Finally, θ is chosen to minimize the sum of the square distance between observed interest

rates and model-implied interest rates across all the banks. Mathematically, it minimizes

20It turns out that maximizing EN [l2|l > 0] is equivalent to maximizing EC [l2|l > 0]. This is shown in
the proof of proposition 4 in the appendix.

22



the sum of the following expression across all small banks:

∑
t,lt>0

[rt − rN(lt)(1−Dt)− rC(lt)Dt]
2. (24)

The following proposition summarizes the calibration procedure:

Proposition 4. Suppose that

E(l2t ) ≤ 2[E(1−Dt)E(lt|Dt = 0)2 + EDtE(lt|Dt = 1)2]. (25)

For any given θ > 0, there exists a vector of parameters (k, λ, C, α, α′) such that the following

moment conditions are satisfied:

E[(lt − EN [l|l > 0])(1−Dt)] = 0. (MC1)

E[(lt − EC [l|l > 0])Dt] = 0. (MC2)

E[(rt − rN(lt))(1−Dt)] = 0. (MC3)

E[(rt − rC(lt))Dt] = 0. (MC4)

E[l2t − EN [l2|l > 0](1−Dt)− EC [l2|l > 0]Dt] = 0. (MC5)

If the initial inequality does not hold, there exists a vector of parameters (k, λ, C, α, α′)

minimizing the absolute value of the left-hand side of (MC5) while satisfying (MC1), (MC2),

(MC3) and (MC4).

Given (θ, k), the parameters (λ,C, α, α′) are unique and easy to compute, as described in

the proof of the proposition.

The proof of proposition 4 relies on following analytic expressions:

Proposition 5. Suppose that x follows Weibull distribution with the scale parameter λ and

the shape parameter k ≥ 1, and c(y) = αyθ. Then,

l = [x− θλk

kxk−1
]+. (26)

E[l|l > 0] = θx0 + λ(1− θ)exp(θ
k

)Γ(1 +
1

k
,
θ

k
). (27)

Γ(a, z) ≡
∫∞
z
wa−1e−wdw is the upper incomplete gamma function and x0 ≡ λ(θ/k)1/k is the

maximum value of x such that l = 0.

The rate curve, r − p, has the following expression:
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r − p = −αx
kθ
0

l
[

1

1 + θ − θk
(x1+θ−θk − x1+θ−θk0 )− xk0

1 + θ
(x(1−k)(1+θ) − x(1−k)(1+θ)0 )]. (28)

The proofs of propositions 4 and 5 are in the appendix.

4.5 Calibration Results

The calibrated value of θ is 0.79, which implies marginal cost function of the form c(y) =

αy0.79. The speed of growth in the marginal cost lies somewhere between square root and

linear.

The ratio of α′ to α, measured for each bank, has a median of 1.40, first quartile of 1.01

and third quartile of 2.78. Also, the ratio is greater than one for 19 of the 25 banks. This

result shows that at the peak of the crisis, small banks valued reserve holdings at relatively

low levels. This is consistent with multiple hypotheses, such as increased perception of risk

in investment opportunities or increased risk aversion reducing attractiveness of investment

opportunities.

The parameter C represents a change in the average value of loans for individual banks.

Its median across the banks is 0.91, first quartile is 0.72, and third quartile is 1.31. There is

a large variation across individual banks on how the size of their loans changed during the

crisis, with no clear common direction. This result is consistent with what was found with

linear models, which found only an insignificant change in loan values during the crisis.

These calibrated parameters imply that changes in loan volumes account for only 1.0 bp

of the observed 6.7 bp increase in the average rate discount that small banks faced while

lending to large banks.21 As expected from the mixed directions of changes in C and the

generally higher level of α′ relative to α, most of the increase in rate discounts can be

attributed to a broad decrease in profitability from reserve holdings.22

21The averages reported here weigh each individual loan equally. The contribution of C is computed by the
average change in model-implied rates resulting from replacing λ by Cλ. The contribution is calculated in two
ways, either with the normal cost function characterized by α, or with the crisis cost function characterized
by α′. The reported contribution is the average of the two numbers.

22However, using a value-weighted average to compute the change in discount substantially increases the
contribution of C, even though it is still smaller than that of α′: C contributes 2.6 bps of 6.5 bps increase
in discount.
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5 Conclusion

This paper has developed a model of trading between a pair of banks in the overnight

interbank market. The model generates the rate curve between a pair of banks as a function

of loan values. The shape of the rate curve is primarily determined by the shape of decreasing

marginal returns to reserve holdings.

The model can explain some prominent features of Mexican interbank market, including

the general positive relationship between the interest rate and the loan value, controlling for

bank fixed effects. Also, the parameters of the model are calibrated for a time period around

the 2008 financial crisis to observe the crisis’ impact on model parameters. The calibrated

parameters point to a general decline in profitability from reserve holdings experienced by

small banks.

Even though the model’s solutions are in relatively complicated non-linear forms, the

paper has developed a straightforward calibration procedure with clear interpretation as

matching moments of data with those of the model. Therefore, the model can be easily

applied to interbank loan data from other countries and markets.
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6 Appendix

6.1 Proof of Proposition 1

The optimization problem is a variant of the standard price-differentiation problem. The

proof broadly follows the steps outlined in Tadelis and Segal (2005).

x is a positive real random variable.

Bank L’s problem is

max
r(y)

∫ ∞
0

[p− r(l(x|r(y)))]l(x|r(y))f(x)dx, (29)

subject to the condition that the function l(y) is an optimal response to the following prob-

lem, given the function r(y):

max
l

x−l∫
0

(p− c(y))dy + r(l)l. (30)

l(y) ≥ 0 because bank S borrowing from bank L always results in a loss for at least one

of the two banks. Also, l(0) ≤ 0 because l(0) > 0 is possible only with r(l(0)) > p, which

results in a loss to bank L. Therefore, l(0) = 0.

The problem can be transformed into the following equivalent form:

max
l(y),R(y)

∫ ∞
0

[pl(x)−R(x)]f(x)dx, (31)

subject to l(0) = R(0) = 0 and the truth-telling constraint, which states that z = x is an

optimal response to the following problem for every x > 0, given the function R(y):

max
z

x−l(z)∫
0

(p− c(y))dy +R(z). (32)

This transformation is achieved by replacing r(l(y))l(y) by R(y). The transformation is

valid if (i) for any y1 and y2 such that l(y1) = l(y2), R(y1) = R(y2); and (ii) for any y

such that l(y) = 0, R(y) = 0. These conditions make sure that R(y) found by solving

the maximization problem can indeed be written as r(y)l(y). It will be shown later that

a solution (l(y), R(y)) to this transformed problem satisfies these conditions. Participation

constraint is automatically satisfied by l(0) = R(0) = 0.

In solving the maximization problem, l(y) and R(y) are assumed to be continuous and
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piecewise continuously differentiable. This assumption is not strictly necessary, but simplifies

the proof.23 Indeed, it is easy to show that l(y) and R(y) need to be continuous by showing

that any jump in the solution is not optimal.

The truth-telling constraint implies that for any x1 < x2, l(x1) ≤ l(x2). Suppose that

there exists x1 < x2 such that l(x1) > l(x2). Then, [
x2−l(x1)∫

0

(p−c(y))dy+R(x1)]− [
x2−l(x2)∫

0

(p−

c(y))dy+R(x2)] = −
x2−l(x2)∫
x2−l(x1)

(p− c(y))dy+R(x1)−R(x2) > −
x1−l(x2)∫
x1−l(x1)

(p− c(y))dy+R(x1)−

R(x2) = [
x1−l(x1)∫

0

(p− c(y))dy +R(x1)]− [
x1−l(x2)∫

0

(p− c(y))dy +R(x2)] ≥ 0. This violates the

truth-telling constraint. Therefore, l′(y) ≥ 0 except on X0, where X0 is the union of the sets

of discontinuities in l(y) and R(y), which is countable. The qualifier ‘except on X0’ will be

generally omitted when it is not important.

Wherever l(x) and R(x) are differentiable, the following first-order condition for the

truth-telling constraint needs to be satisfied:

l′(x)[
∂

∂l

x−l∫
0

(p− c(y))dy]l=l(x) +R′(x) = −(p− c(x− l(x)))l′(x) +R′(x) = 0. (33)

Therefore, the truth-telling constraint implies that for every x, l′(x) ≥ 0 and −(p − c(x −
l(x)))l′(x) +R′(x) = 0.

These two conditions are also sufficient for the truth-telling constraint to hold. For every

x1 6= x2, the type x1 agent can pretend to be of type x2 and receive

x1−l(x2)∫
0

(p− c(y))dy +R(x2) =

x1−l(x1)∫
0

(p− c(y))dy +R(x1) +

x1−l(x2)∫
x1−l(x1)

(p− c(y))dy

+

x2∫
x1

R′(x)dx

=

x1−l(x1)∫
0

(p− c(y))dy +R(x1)

+

x2∫
x1

[−(p− c(x1 − l(x)))l′(x) +R′(x)]dx. (34)

23See Tadelis and Segal (2005) for a discussion.
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l′(x) ≥ 0 and increasing c imply that the expression inside the second integral, −(p− c(x1−
l(x)))l′(x) + R′(x), is weakly smaller than −(p − c(x − l(x)))l′(x) + R′(x) = 0 if x1 < x.

Similarly, the expression is weakly greater than 0 if x1 > x. Therefore, the last integral is

always nonpositive, and thus,

x1−l(x2)∫
0

(p− c(y))dy +R(x2) =

x1−l(x1)∫
0

(p− c(y))dy +R(x1) +

x2∫
x1

[−(p− c(x1 − l(x)))l′(x)

+R′(x)]dx ≤
x1−l(x1)∫

0

(p− c(y))dy +R(x1). (35)

This proves sufficiency. Therefore, the truth-telling constraint can be replaced by the two

conditions, l′(x) ≥ 0 and −(p− c(x− l(x)))l′(x) +R′(x) = 0.

Also, these two conditions imply that for any x1 < x2 such that l(x1) = l(x2), l
′(x) = 0

between x1 and x2. Therefore, R′(x) = 0 between x1 and x2 and thus, R(x1) = R(x2). Also,

l(x) = 0 implies that l′(y) = 0 for any y in (0, x), and thus R′(y) = 0, which implies that

R(x) = 0. This shows that a solution to the optimization problem satisfies the necessary

conditions for the initial transformation of the problem to be valid.

The maximand of bank L’s maximization problem is
∫∞
0

[pl(x) − R(x)]f(x)dx. It is

convenient to remove R(x) from the expression by using the differential equation −(p −
c(x− l(x)))l′(x) +R′(x) = 0:

R(x) =

x∫
0

(p− c(y − l(y)))l′(y)dy

= pl(x) +

x∫
0

c(y − l(y))(1− l′(y))dy −
x∫

0

c(y − l(y))dy

= pl(x) +

x−l(x)∫
0

c(y)dy −
x∫

0

c(y − l(y))dy. (36)

Therefore, the maximand is

∞∫
0

(pl(x)−R(x))f(x)dx =

∞∫
0

[−
x−l(x)∫
0

c(y)dy +

x∫
0

c(y − l(y))dy]f(x)dx. (37)
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Applying integration by parts to
∫∞
0

∫ x
0
c(y − l(y))dyf(x)dx with respect to x yields:

∞∫
0

x∫
0

c(y − l(y))dyf(x)dx = [

x∫
0

c(y − l(y))dyF (x)]x=∞x=0 −
∞∫
0

c(x− l(x))F (x)dx

=

∞∫
0

c(x− l(x))dx−
∞∫
0

c(x− l(x))F (x)dx

=

∞∫
0

c(x− l(x))
1− F (x)

f(x)
f(x)dx. (38)

Therefore, the original optimization problem can be written as follows:

max
l(y),R(y)

[

∞∫
0

[−
x−l(x)∫
0

c(y)dy + c(x− l(x))
1− F (x)

f(x)
]f(x)dx], (39)

subject to

l′(x) ≥ 0, (40)

−(p− c(x− l(x)))l′(x) +R′(x) = 0, (41)

l(0) = R(0) = 0. (42)

This is an optimization problem with R′(x) as the control variable and l(x) as the state

variable. Note that R(x) only appears in the form of R′(x), except for the boundary condition

R(0) = 0.

Ignoring the contraint l′(x) ≥ 0 and replacing R′(x) by u(x) for notational convenience,

the Hamiltonian for this optimization problem is:24

H = [−
x−l(x)∫
0

c(y)dy + c(x− l(x))
1− F (x)

f(x)
]f(x) + λ

u(x)

p− c(x− l(x))
. (43)

For optimality, it is necessary that (i) Hu = 0, (ii) λ′ = −Hl, and (iii) lim
x→∞

λ(x) = 0.

Condition (i) implies λ = 0, so condition (ii) can be simply written as :

Hl = f(x)c(x− l(x))− (1− F (x))c′(x− l(x)) = 0. (44)

24Generally following the formulation in Kamien and Schwartz (1991).
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Therefore, with l′(x) ≥ 0 not binding, the solution to the optimization problem is character-

ized by the following two equations:

−(p− c(x− l(x)))l′(x) +R′(x) = 0. (45)

f(x)c(x− l(x))− (1− F (x))c′(x− l(x)) = 0. (46)

The image of l(x) is an interval of the form [0, a) or [0, a] for some a > 0 or a =∞. For l in the

image, r(l) can be defined by choosing any x such that l = l(x) and setting r(l) = R(x)/l(x).

As described earlier in the proof, this definition is valid. If a <∞, for any l ≥ a, r(l) can be

simply set at a level that bank S will never choose. For example, r(l) = (a/l) limy→a−0R(y)

for any l ≥ a. Replacing R(x) by r(l(x))l(x) proves the proposition.

If the pair of constraints l(0) = 0 and l′(x) ≥ 0 bind at some x, the equation f(x)c(x−
l(x)) − (1 − F (x))c′(x − l(x)) = 0 will not hold for x, and it is necessary to introduce a

shadow cost µ(x). µ(x) = 0 at any x for which the constraints do not bind. Additional

assumptions in proposition 2 results in a very simple form of µ, as will be shown in its proof.

Under additional assumptions, it is possible to characterize µ(x), as discussed in Tadelis and

Segal (2005).

6.2 Proof of Proposition 2

Using the assumption c(y) = αyθ, (FOC) in proposition 1 is

f(x)α(x− l(x))θ − (1− F (x))αθ(x− l(x))θ−1 = 0. (47)

∴ l(x) = x− θ1− F (x)

f(x)
. (48)

This function l(x) cannot be used because it violates the constraints l(0) = 0 and l′(x) ≥
0. Since (1−F (x))/f(x) is weakly decreasing in x, x−θ(1−F (x))/f(x) is a strictly increasing

function of x. Also, at x = 0, the expression has a negative value. Therefore, there exists

x0 > 0 such that x− θ(1− F (x))/f(x) < 0 if and only if x < x0.

For any x < x0, f(x)α(x − l)θ − (1 − F (x))αθ(x − l)θ−1 < 0 for any 0 ≤ l ≤ x. Recall

from the proof of proposition 1 that this expression is the derivative of the profit of bank L

when bank S is of type x. Therefore, to maximize bank L’s pointwise profit, l(x) = 0 needs

to hold. At the same time, increasing l(x) above zero will make the constraints l′(x) ≥ 0

more binding. Therefore, it is optimal to set l(x) = 0 for x < x0.

For x ≥ x0, x− θ(1− F (x))/f(x) is nonnegative and strictly increasing, so the optimal
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l(x) = x− θ(1− F (x))/f(x). Therefore, for all x ≥ 0,

l(x) = [x− θ1− F (x)

f(x)
]+ (49)

is the optimal solution, where [·]+ denotes the maximum between the expression inside the

brackets and 0.

(IC) constraint is

l′(x)[r(l) + r′(l)l − p+ c(x− l)] = 0. (50)

For x ≤ x0, (IC) contraint trivially holds because l′(x) = 0. For x > x0,

r(l) + r′(l)l − p+ c(x− l) = 0. (51)

Since r(l) + r′(l)l = d
dl

(r(l)l),

d

dl
(r(l)l) = p− c(x− l) = p− α(θ

1− F (l−1(l))

f(l−1(l))
)θ. (52)

l−1 is well defined inside the region x ≥ x0 because l′(x) > 0.

Integrating from 0 to l yields

r(l)l = pl −
∫ l

0

α(θ
1− F (l−1(l))

f(l−1(l))
)θdl. (53)

∴ r(l) = p− 1

l

∫ l

0

α(θ
1− F (l−1(l))

f(l−1(l))
)θdl. (54)

6.3 Proof of Proposition 3

By assumption, (r(l), l(x)) is an optimal solution under cost function c(y). Let d(y) =

C · c(y).

Under d(y), (rc(l), l(x)) satisfies bank S’s optimization problem. Recall that bank S’s

problem is

max
l

x−l∫
0

(p− d(y))dy + rc(l)l. (55)

Note that the maximand can be rewritten as follows:

x−l∫
0

(p− d(y))dy + rc(l)l = (1− C)x+ C[

x−l∫
0

(p− c(y))dy + r(l)l]. (56)
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Therefore, (rc(l), l(x)) solves bank S’s optimization problem.

Bank L’s expected profit is

∞∫
0

(p− rc(l(x)))l(x)f(x)dx = C

∞∫
0

(p− r(l(x)))l(x)f(x)dx. (57)

Suppose that (rc(l), l(x)) is not optimal for bank L. Then, there exists (r2(l), l2(x))

that satisfies bank S’s problem and generates a higher profit for bank L than C
∫∞
0

(p −
r(l(x)))l(x)f(x)dx. Let r2c(l) = p − (1/C)(p − r2(l)). Then, using preceding argu-

ments, it can be shown that (r2c, l2(x)) solves bank S’s optimization problem under

cost function c(y). Moreover, bank L’s profit under (r2c, l2(x)) and c(y) is greater than

(1/C) · C
∞∫
0

(p − r(l(x)))l(x)f(x)dx =
∞∫
0

(p − r(l(x)))l(x)f(x)dx. This contradicts the as-

sumption that (r(l), l(x)) is optimal under c(y). Therefore, (rc(l), l(x)) is optimal under

d(y) = C · c(y). This proves part (i) of the proposition.

Under the original cost function c(y), (rx(l), Cl(x/C)) solves bank S’s optimization prob-

lem. The objective function of bank S can be transformed as follows:

x−l∫
0

(p− c(y))dy + rx(l)l = (1− Cθ)pl +

x−l∫
0

(p− c(y))dy + Cθr(
l

C
)l

= (1− Cθ)px+ Cθ[

x−l∫
0

(p− c( y
C

))dy + r(
l

C
)l]

= (1− Cθ)px+ Cθ+1[

x−l∫
0

(p− c( y
C

))
dy

C
+ r(

l

C
)
l

C
]

= (1− Cθ)px+ Cθ+1[

x
C
− l

C∫
0

(p− c(y))dy + r(
l

C
)
l

C
]. (58)

Therefore, l is optimal if l/C is an optimal choice for x/C in the original problem of choosing

l given r(l). Therefore, Cl(x/C) solves bank S’s problem.

Note that with x having cumulative distribution function of F (x/C), its probability
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density function is f(x/C)/C. Bank L’s expected profit under (rx(l), Cl(x/C)) is

∞∫
0

(p− rx(Cl(
x

C
)))Cl(

x

C
)
f( x

C
)

C
dx = Cθ+1

∞∫
0

(p− r(l( x
C

)))l(
x

C
)f(

x

C
)
dx

C

= Cθ+1

∞∫
0

(p− r(x))l(x)f(x)dx. (59)

This form of the expected profit allows applying the argument used to prove part (i) to show

that (rx(l), Cl(x/C)) is optimal for bank L. This proves part (ii) of the proposition.

6.4 Proof of Proposition 4

First, it is shown that for any given (θ, k), there exists a unique (λ,C, α, α′) satisfying

the following four moment conditions, for each bank:

E[(lt − EN [l|l > 0])(1−Dt)] = 0. (M1)

E[(lt − EC [l|l > 0])Dt] = 0. (M2)

E[(rt − rN(lt))(1−Dt)] = 0. (M3)

E[(rt − rC(lt))Dt] = 0. (M4)

Proposition 5 shows that EN [l|l > 0] = λg1(k, θ), with g1(k, θ) ≡ θ(θ/k)1/k + (1 −
θ)exp(θ/k)Γ(1 + (1/k), θ/k). Therefore, the following λ is the solution to equation (M1):

λ =
E[lt(1−Dt)]

g1(k, θ)E(1−Dt)
. (60)

Similarly, the following C is the solution to equation (M2):

λC =
E[ltDt]

g1(k, θ)EDt

. (61)

Given the analytic forms of λ and C, it is easy to calculate them numerically.

Proposition 5 also shows that rN(lt)− pt = −αg2(lt, λ, k, θ) for some function g2. There-

fore, the following α is the solution to equation (M3):

α =
E[(rt − pt)(1−Dt)]

E[−g2(lt, λ, k, θ)(1−Dt)]
. (62)

Similarly, rC(lt)−pt = −α′g2(lt, λC, k, θ), and the following α′ is the solution to equation
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(M4):

α′ =
E[(rt − pt)Dt]

E[−g2(lt, λC, k, θ)Dt]
. (63)

According to proposition 5, g2 has an analytic form in xt, λ, k and θ. Transforming lt to

xt is easy because lt is a strictly increasing and strictly concave function of xt, which implies

that xt can easily be computed from lt using a derivative-based method such as Newton’s

method.

For given θ, let h(k) ≡ EN [l2|l > 0]/(EN [l|l > 0])2. This quantity is known to be not

smaller than 1 (recall that variance is nonnegative). Recall from the proof of propostion 5:

EN [l|l > 0] = exp(
θ

k
)

∞∫
(θ/k)

[λw1/k − λθ

k
w−1+(1/k)]exp(−w)dw. (64)

Following the steps in the proof of proposition 5, it can be shown that

EN [l2|l > 0] = exp(
θ

k
)

∞∫
(θ/k)

[λw1/k − λθ

k
w−1+(1/k)]2exp(−w)dw. (65)

Therefore, h(k) depends only on parameters k and θ:

h(k) = exp(−θ
k

)

∞∫
(θ/k)

[w1/k − θ
k
w−1+(1/k)]2exp(−w)dw

[
∞∫

(θ/k)

[w1/k − θ
k
w−1+(1/k)]exp(−w)dw]2

. (66)

Since h(k) does not depend on λ, h(k) = EN [l2|l > 0]/(EN [l|l > 0])2 = EC [l2|l > 0]/(EC [l|l >
0])2.

By direct calculation, h(1) = 2. Also, replacing (1/k) by 0 and calculating the resulting

formula shows that h(k)→ 1 as k →∞.

Moment condition (M5) can be transformed as follows:

0 = E[l2t − EN [l2|l > 0](1−Dt)− EC [l2|l > 0]Dt]

= E[l2t ]− h(k)[EN [l|l > 0]2E[1−Dt] + EC [l|l > 0]2EDt]

= E[l2t ]− h(k)[E[lt|Dt = 0]2E[1−Dt] + E[lt|Dt = 1]2E[Dt]]. (67)

Note that E[l2t ] = E[l2t |Dt = 0]E[1−Dt] +E[l2t |Dt = 1]E[Dt] ≥ E[lt|Dt = 0]2E[1−Dt] +

E[lt|Dt = 1]2E[Dt]. Therefore, if E[l2t ] ≤ 2[E[lt|Dt = 0]2E[1 − Dt] + E[lt|Dt = 1]2E[Dt]],
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there exists k ≥ 1 such that

h(k) =
E[l2t ]

E[lt|Dt = 0]2E[1−Dt] + E[lt|Dt = 1]2E[Dt]
. (68)

If the ratio E[l2t ]/(E[lt|Dt = 0]2E[1 − Dt] + E[lt|Dt = 1]2E[Dt]) is greater than 2, the

left-hand side of (M5), E[l2t −EN [l2|l > 0](1−Dt)−EC [l2|l > 0]Dt] = E[l2t ]−h(k)[E[lt|Dt =

0]2E[1 −Dt] + E[lt|Dt = 1]2E[Dt]], is positive and is minimized if h(k) takes its maximum

value of 2 with k = 1.

Since it is not clear whether h(k) is monotonic, it can be difficult to compute k numer-

ically, in principle. However, with the Mexican data, it seems that h(k) is monotonic, at

least over a large range relevant for parameter calibration.

6.5 Proof of Proposition 5

Proposition 5 can be proved by just applying proposition 1. Still, a proof is provided to

illustrate the computational steps. Recall that x has cumulative distribution function F (x) =

1−exp(−(x/λ)k) and probability distribution function f(x) = kxk−1λ−kexp(−(x/λ)k). Also,

the following definition of the upper incomplete gamma function will be used repeatedly:

Γ(a, z) =

∞∫
z

wa−1e−wdw. (69)

The inverse hazard rate of x is

1− F (x)

f(x)
=

λk

kxk−1
. (70)

This inverse hazard rate is monotonically weakly decreasing in x. Therefore, proposition

1 can be used to compute l:

l = [x− θ1− F (x)

f(x)
]+ = [x− θλk

kxk−1
]+. (71)

x0 is the unique positive solution to x0 − (θλk)/(kxk−10 ) = 0, which implies

x0 = λ(
θ

k
)1/k. (72)
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E[l|l > 0] can be calculated as follows:

E[l|l > 0] =
1

1− F (x0)

∞∫
x0

lf(x)dx

= exp((
x0
k

)k)

∞∫
x0

[x− θλk

kxk−1
]
kxk−1

λk
exp(−(

x

λ
)k)dx. (73)

Note that (x0/λ)k = θ/k. Changing the variable of integral from x to w ≡ (x/λ)k, which

implies dw = kxk−1λ−kdx and x = λw1/k,

E[l|l > 0] = exp(
θ

k
)

∞∫
(θ/k)

[λw1/k − λθ

k
w−1+(1/k)]exp(−w)dw. (74)

Using integration by parts, the second term in the integrand can be transformed as

follows:

∞∫
(θ/k)

−λθ
k
w−1+(1/k)exp(−w) = [−λθw1/kexp(−w)dw]∞(θ/k) +

∞∫
(θ/k)

−λθw1/kexp(−w)dw

= θx0exp(−
θ

k
) +

∞∫
(θ/k)

−λθw1/kexp(−w)dw. (75)

Therefore,

E[l|l > 0] = exp(
θ

k
)[θx0exp(−

θ

k
) + λ(1− θ)

∞∫
(θ/k)

w1/kexp(−w)dw]

= θx0 + λ(1− θ)exp(θ
k

)Γ(1 +
1

k
,
θ

k
). (76)

According to proposition 1,

r − p = −1

l

l∫
0

α(θ
1− F (l−1(z))

f(l−1(z))
)θdz. (77)
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Changing the variable of integration from z to y ≡ l−1(z) gives

r − p = −1

l

x∫
x0

α(θ
1− F (y)

f(y)
)θ
dz

dy
dy. (78)

dz/dy is simly l′(y). Therefore,

r − p = −αx
kθ
0

l

x∫
x0

1

ykθ−θ
(1− (1− k)xk0

yk
)dy

= −αx
kθ
0

l
[

1

1 + θ − θk
(x1+θ−θk − x1+θ−θk0 )− xk0

1 + θ
(x(1−k)(1+θ) − x(1−k)(1+θ)0 )]. (79)

This expression is not valid if 1 + θ− θk = 0. In that case, the first two terms should be

changed to logarithms:

r − p = −αx
kθ
0

l
[log(

x

x0
)− xk0

1 + θ
(x(1−k)(1+θ) − x(1−k)(1+θ)0 )]. (80)

6.6 Calibration and GMM estimation

The calibration procedure relies mostly on choosing parameters to match values of certain

empirical moments with their theoretical counterparts. With 25 banks, parameters are

chosen to numerically satisfy the following four moment conditions for each bank:

E[(lt − EN [l|l > 0])(1−Dt)] = 0. (81)

E[(lt − EC [l|l > 0])Dt] = 0. (82)

E[(rt − rN(lt))(1−Dt)] = 0. (83)

E[(rt − rC(lt))Dt] = 0. (84)

The parameters are chosen also to satisfy the following moment condition, which is possible

for 18 banks. For the remaining banks, the parameters are chosen to move the disparity

between empirical and theoretical moments as close to zero as possible, while satisfying the

preceding four moment conditions:

E[l2t − EN [l2|l > 0](1−Dt)− EC [l2|l > 0]Dt] = 0. (85)
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So far, the calibration represents a non-optimal solution to a GMM problem involving 25×5 =

125 moment conditions. The final step is to choose θ to minimize∑
t,lt>0

[rt − rN(lt)(1−Dt)− rC(lt)Dt]
2. (86)

This is not an explicit moment condition. However, it can be turned into multiple moment

conditions, at most 126, by differentiating the objective function to be minimized by each of

the 126 parameters:

v(θ,Θ) · ui(θ,Θ) = 0, (87)

where v is the vector of rt − rN(lt)(1−Dt)− rC(lt)Dt across all t and all individual banks,

and ui is the partial derivative of v with respect to parameter i, 1 ≤ i ≤ 126. For given

observations, v and u can be regarded as functions of the parameters. For convenience, let

θ be the first parameter, i = 1, and let Θ denote the rest of the parameters.

The calibration step to determine θ can be expressed as a single moment condition. Given

observations and a value for θ, the calibration procedure prior to the final step determines

the value of 125 parameters, which can be represented by a 125-dimensional function h(θ),

with the parameters in the same order as in ui, for 2 ≤ i ≤ 126. Then, the final step of

square distance minimization is equivalent to finding the solution θ to the following equation:
v(θ, h(θ)) · u1(θ, h(θ))

v(θ, h(θ)) · u2(θ, h(θ))
...

v(θ, h(θ)) · u126(θ, h(θ))

 ·
[

1
dh
dθ

(θ)

]
= 0. (88)

Considering the calibration procedure as a moment-matching problem with this equation

added to the previous 125 moment conditions, calibrated parameters satisfy 119 of the 126

moment conditions.

The objective function to the minimization problem, as a function of θ, is not guaranteed

to be well-behaved. However, at least with the Mexican data, it seems so, as the plot of the

objective function versus θ in figure 8 shows.
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Figure 8: Total Square Distance as a Function of θ.
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