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Abstract

We study how banks manage their default risk to optimally negotiate quantities and
prices of contracts in over-the-counter markets. We show that costly actions exerted by
banks to reduce their default probabilities are inefficient. Negative externalities due to
counterparty concentration may lead banks to reduce their default probabilities even
below the social optimum. The model provides new implications which are supported
by empirical evidence: (i) intermediation is done by low-risk banks with medium ini-
tial exposure; (ii) the risk-sharing capacity of the market is impaired, even when the
trade size limit is not binding; and (iii) intermediaries play the fundamental role of
diversifying the idiosyncratic risk in CDS contracts, besides increasing the risk-sharing
capacity of the market.
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1 Introduction

Counterparty risk is one of the most prominent sources of risk faced by market participants
and financial institutions in over-the-counter (OTC) markets. During the global financial
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crisis of 2007–2008, roughly two thirds of credit related losses were attributed to the market
price of counterparty credit risk, and only about one third to actual default events; see Bank
for International Settlements (2011). We develop a framework to investigate the implications
of risk management on trading decisions, characteristics of the intermediaries, and structure
of OTC markets.

We show that an inefficiency arises when each bank manages its default risk through
costly actions to maximize its private certainty equivalent. Because the system-wide benefits
of risk reduction are only partially reflected in bilaterally negotiated prices, banks’ decisions
on their default probabilities may deviate from the social optimum. Surprisingly, when banks
are restricted by a trade size limit and subject to low risk management costs, they may act
conservatively (e.g., implement stricter risk management strategies), and reduce their default
risk below the socially optimal level. These actions entail opportunity costs for forsaken
business activities deemed too risky. Thus, through the choice of default probabilities, banks
face a tradeoff between conservative strategies entailing these opportunity costs and high-risk
behavior decreasing earnings from trading in the OTC market.

Our theoretical findings highlight the critical role played by counterparty risk in shaping
the structure of OTC markets. We show that low-risk banks with medium initial exposure
endogenously emerge as intermediaries, profiting from price dispersion, and providing inter-
mediation services to banks with high or low initial exposures. These intermediaries have the
least need to trade for their own risk management as their pre-trade exposure is close to the
equilibrium post-trade exposure, and they also command a small counterparty risk. Using a
proprietary data set of bilateral exposures from the market of credit default swaps (CDSs),
we highlight the prominent role played by five banks acting as the main intermediaries (see
the network graph in Figure 2).

In our model, all banks engage in risk sharing through OTC contracts. However, high-risk
banks with low initial exposure impair the risk-sharing capacity of the market. Because they
are not guaranteed to fulfil the obligations towards their counterparties, they do not sell as
much insurance as they would if they were riskless. Intermediaries increase the participation
rate of the high-risk banks by diversifying counterparty risk. As a consequence of partial
risk sharing, post-trade exposures are closer together than initial exposures. In particular,
safe banks have the same post-trade exposure if the trade size limit is big enough, whereas
risky banks maintain diverse post-trade exposures. Safer banks maintain a higher post-trade
exposure in riskier markets because riskier banks prefer to buy protection from them to avoid
excessive exposure to counterparty risk.

Our paper contributes to the post-financial-crisis discussion on the role played by coun-
terparty risk in the network of OTC derivative transactions. Derivatives account for more
than two thirds of the banks’ most prominent USD asset classes.1 The OTC market for
credit derivatives has been identified as the one that has contributed the most to the onset
and transmission of systemic risk during the global financial crisis.2 Stulz (2010) highlights

1A breakdown of the amounts allocated by banks to different asset classes is presented by the Market
Participants Group on Reforming Interest Rate Benchmarks. In its final report released on March 17, 2014,
Figure 1 of the USD currency section highlights that the largest interbanking exposure on the US market is
through OTC derivative trading (69 percent), while bilateral corporate loans and syndicated loans account
for only 2 percent of the key asset classes that reference USD-LIBOR and T-bill rates.

2The most prominent solution proposed for reducing counterparty risk is the central clearing of OTC
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that counterparty credit risk is the highest in CDS markets. This is because the event of
a joint default of the underlying reference credit and protection seller, unique to the class
of OTC credit derivatives, cannot be anticipated. Hence, collateralizing the contract at all
times to cover the full claim would require posting large amount of excess collateral, which
would be too costly and economically unfeasible (see also Giglio (2014) for further details).

Our framework is as follows. Before engaging into trading, each bank may choose to
reduce its default probability from a target regulatory level. Such an action is costly, depends
on the decisions made by other banks in equilibrium, and takes the subsequent trading
decisions into consideration. Once the default risk profile has been determined in equilibrium,
all banks are granted access to the same technology to trade contracts resembling CDSs. As
in Atkeson et al. (2015), each bank is a coalition of many risk-averse agents, called traders;
banks have heterogeneous initial exposures to a nontradable risky loan portfolio, which
creates heterogeneous exposures to an aggregate risk factor and determines the profitability
of the trade. The trading process consists of two stages. First, banks’ traders are paired
uniformly, and each pair negotiates over the terms of the contract subject to a uniform trade
size limit. The resulting prices and quantities are endogenous and depend on the risk profile
of market participants, the heterogeneity in their initial exposures, and the dispersion in
their marginal valuations. When a trader of a bank purchases a contract from a trader of
another bank, it pays a bilaterally agreed-upon fee upfront and receives the contractually
agreed-upon payment if the credit event occurs, provided the bank of its trading counterparty
does not default. In case of the counterparty’s default, the received payment is reduced by
an exogenously specified loss rate. Second, each bank consolidates the swaps signed by its
traders and executes the contracts. Because banks are risk averse, they value the risk of
not receiving the full payment from a defaulted counterparty more than the potential gain
obtained when they are protection sellers and default.

Our normative analysis identifies an inefficiency in the banks’ risk management decisions.
Because traders rely on their banks’ profitability, the value of a trader’s credit protection
decreases as other traders from the same bank purchase protection from the same counter-
party. This is because the purchasing bank increases the concentration of its exposure to the
selling bank. The decreased value of credit protection caused by counterparty concentration
is analogous to the snob effect in the consumption of luxury goods, which lose value because
of the reduced prestige when more people own them. Analogously to the snob effect, the de-
mand curve becomes less elastic. A decrease in the selling bank’s default probability reduces
the size of the negative effect caused by counterparty concentration, and in turn, makes the
demand curve more elastic. However, a more elastic demand curve means a smaller buyers’
surplus, which corresponds to the trade benefit for the protection buyers. The buyers’ sur-
plus is accounted for by the social planner, but not in the individual optimizations of the
protection sellers. Thus, the protection selling banks neglect the decrease in buyers’ surplus,
and as a result may find it optimal to lower their default probabilities below the socially
optimal level. Hence, an externality arises because sellers are only partially compensated for
their contribution to the system-wide risk reduction.

derivatives. The Dodd-Frank Wall Street Reform and Consumer Protection Act in the United States and the
European Market Infrastructure in Europe have mandated central clearing for standardized OTC derivatives,
including CDSs. The centrally cleared CDS market currently captures only approximately 55 percent of the
entire U.S. CDS market, as measured by gross notional.
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Our findings have direct policy implications: alignment of private incentives with social
efficiency can be achieved by collecting a tax from CDS buyers and using it to compensate
CDS sellers for their contribution in reducing the system-wide risk exposure. The degree of
overinvestment in risk management is higher if the banks’ bargaining power is large when
they sell insurance. A policy maker can remedy this inefficiency by reducing the bargaining
power of the seller relative to that of the buyer, for example, by reducing concentration in
the provision of credit insurance. This is especially important for the CDS market, in which
the sell side is twice as much concentrated as the buy side; see Siriwardane (2018).3 Our
findings suggest that merging safe banks with low initial exposure is not welfare-enhancing.
Because these banks are likely to be protection sellers, there would be a higher misalignment
between individually and socially optimal trading decisions.

The rest of paper is organized as follows. We review related literature in Section 2.
We develop the model in Section 3. We study the equilibrium trading decisions of banks
in Section 4. We study the normative implications of our model in Section 5. Section 6
concludes. Proofs of all results are delegated to the Appendix.

2 Literature Review

Our main contribution to the literature is the development of a tractable framework to study
counterparty risk in OTC markets, along with its implications on banks’ risk management
and bilateral trading decisions.

In our model, CDSs are used by banks to hedge against the default risk of a nontradable
loan portfolios. Oehmke and Zawadowski (2017) provide empirical evidence consistent with
this view. They show that banks with a high notional of outstanding bonds also have large
outstanding notional of CDS contracts. They also examine trading volumes in the bond and
CDS markets and observe a similar pattern — that is, hedging motives are associated with
comparable amounts of trading volume in the bond and CDS markets.

Our model implication that high-risk banks engage in imperfect risk sharing is supported
by empirical evidence provided by Du et al. (2016). They develop a statistical multinomial
logit model for the counterparty choice of buyers in the CDS market. They find that market
participants are more likely to trade with counterparties whose credit quality is high. Our
model predictions are also consistent with the empirical results of Arora et al. (2012), who
find a significant negative relation between the credit risk of the dealer and the prices at
which the dealer sells credit protection.

Our framework is based on that developed by Atkeson et al. (2015). The main deviation
from their setting is that the sellers of insurance might default without delivering the full
contracted amount. While Atkeson et al. (2015) focus on the effect of entry and exit decisions
of a continuum of banks on the structure of OTC markets, we consider a fixed finite number
of banks and allow them to decide on the level of their credit riskiness. The second, albeit
minor, difference is our specification of the aggregate risk factor. Unlike Atkeson et al.
(2015), who consider it to be a generic random variable, we model the aggregate risk factor

3The top five sellers of the CDS market account for nearly half of all net selling, and 50% of net selling is
in the hands of less than 0.1 percent of the total number of CDS traders net selling is handled by less than
0.1% of the total number of CDS traders.
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using a binary random variable. Through this specification, we can parsimoniously capture
the joint default risk of the protection seller and the underlying reference credit. Relevant
for the valuation of the CDS contract is the seller’s default risk conditioned on the default
of the underlying reference credit. Our model accounts directly for this conditional default
risk, which has been shown by Giglio (2014) to be significantly different from the marginal
default risk. As in Atkeson et al. (2015), we also find that banks with medium initial
exposure endogenously emerge as intermediaries. However, the counterparty risk friction in
our model has important ramifications with regard to the market structure: First, bilateral
trading positions are unique in equilibrium because the counterparty risk of the sellers makes
the traded contracts imperfect substitutes. Second, the risk-sharing capacity of the market
is impaired, even when the trade size limit is not binding. Finally, intermediaries play the
additional role of diversifying the idiosyncratic risk in CDS contracts sold by banks, besides
increasing the risk-sharing capacity of the market.

The classical setup used to study OTC markets is the search-and-bargaining framework
proposed by Duffie et al. (2005), which models the trading friction characteristics typical of
these markets. Their model was generalized along several dimensions, including the relax-
ation of the constraint of zero-one units of assets holdings (see Lagos and Rocheteau (2009)),
the entry of dealers (see Lagos and Rocheteau (2007)), and investors’ valuations drawn from
an arbitrary distribution as opposed to being binary (see Hugonnier et al. (2018)). All these
studies do not allow for the inclusion of counterparty risk, mainly because the framework
cannot keep track of the identities of the counterparties for the continuum of traders.

The interactions between counterparty risk and derivatives activities are also studied by
Thompson (2010) and Biais et al. (2016). Thompson (2010) shows that a moral hazard
problem for the protection seller, whose type is exogenously given, causes the protection
buyer to be exposed to excessive counterparty risk. In turn, this mitigates the classical
adverse selection problem because the protection buyer is incentivized to reveal superior
information that it may have relative to the seller. In Biais et al. (2016), risk-averse protection
buyers insure against a common exposure to risk by contacting protection sellers. Differently
from our model, the protection buyers are risk neutral and avoid costly risk-prevention effort
by choosing weaker internal risk controls. It is precisely the failure of protection sellers to
exert risk-prevention effort that creates counterparty risk for protection buyers in our model.

Our paper is also related to the emerging literature on endogenous OTC networks. Wang
(2018) shows that the trading network which emerges endogenously in OTC markets is of the
core-periphery type. In his model, intermediaries exploit their central position to balance
inventory risk, while in our model they help diversify counterparty risk in the network. Gof-
man (2014) provides a network model to study the intermediation friction in OTC markets.
As in our model, trading decisions and bilateral prices are jointly determined in equilibrium.
Traders can only transact if they have a trading relationship and extract a surplus which
depends both on the private value of the buyer and on the resale opportunities of the asset.
While the focus of his study is on welfare losses due to intermediation frictions, we study
the negative externality originating from counterparty concentration. Babus and Hu (2017)
consider an infinite-horizon model of endogenous intermediation and analyze two important
frictions of OTC markets. The first is the limited commitment of market participants who
can renege on due payments, and the second is the opaqueness of OTC markets in which
participants have incomplete information on the past behavior of others.
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A related branch of literature has studied the incentives behind the formation of interbank
loan networks.4 Farboodi (2017) proposes a model of financial intermediation where profit-
maximizing institutions strategically decide on borrowing and lending activities. Her model
predicts that banks which make risky investments voluntarily expose themselves to excessive
counterparty risk, while banks that mainly provide funding establish connections with a
small number of counterparties in the network. A related study by Acemoglu et al. (2014-b)
analyzes the endogenous formation of interbanking loan networks. In their model, banks
borrow to finance risky investments, charging an interest rate that is increasing in the risk-
taking behavior of the borrower. They find that banks may overlend in equilibrium and
do not spread their lending among a sufficiently large number of potential borrowers, thus
creating insufficiently connected financial networks prone to defaults. Different from their
settings, our framework captures stylized features of derivatives trading in OTC markets,
as opposed to markets for interbanking loans. Meetings between traders are random, and
the equilibrium trading patterns are the outcome of bilateral bargaining that accounts for
counterparty risk.

3 The Model

There is a unit continuum of traders, that are risk-averse agents. They have constant absolute
risk aversion with parameter η. The traders are organized into M banks, which are coalitions
of traders. All banks are granted access to the same technology to trade swaps.

The banks are heterogeneous in two dimensions: their initial exposures and their sizes.
They are exposed to an aggregate risk factor D, taking binary values 0 (no default) and 1
(default), with P [D = 1] = q. We denote by si > 0 the size of bank i and by ωi the initial
exposure per trader of bank i to the aggregate risk factor. The traders are paired uniformly
across the different banks. Therefore, the frequency at which a trader of bank j 6= i is paired
with a trader of bank i is proportional to si, and we normalize it to be equal to si. Both
the initial exposure ωi and the size si of bank i are exogenously specified and observable to
the traders. Because the size does not play a crucial role in our main results, we restrict the
main body of the paper to the case si = 1. For completeness, we present the results and
their proofs in the Appendix for any si.

Before trading begins, each bank manages its default risk at an exogenously specified
cost. We assume that given a realization D = 1 of the aggregate risk factor, bank i’s
default probability has a maximal value of p̄i. This value can be thought of as the default
probability of bank i if it meets the imposed regulatory standards, and does not engage in
risk management or hedging procedures to further reduce its default risk. To become a more
attractive trading counterparty in the OTC market, bank i can decrease its probability to
pi ∈ [0, p̄i] at a cost C(pi). Therefore, depending on its initial exposure, each bank i needs
to decide before trading starts how much it is willing to pay (cost C(pi)) in order to reduce
its default probability to pi. These decisions also take into consideration the subsequent

4Another branch of literature has studied counterparty risk in an exogenously specified network of financial
liabilities. The focus of these studies is on how the topology of the network affects the amplification of an
initial shock through the network. Relevant contributions in this direction include Eisenberg and Noe (2011),
Elliott et al. (2013), and Acemoglu et al. (2014-a).
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trading transactions that banks will establish and that are uniquely specified in terms of
bilateral prices and quantities (see Theorem 4.3 for details). For a bank i, we denote by Ai
the event that the bank defaults with P [Ai|D = 1] = pi. Because banks will trade contracts
of CDS type on the aggregate risk factor D, only the conditional default event Ai|D = 1
of bank i and not the unconditional default event Ai matters to the trading counterparties
of bank i. Therefore, it is precisely the conditional default probability pi to determine the
attractiveness of bank i on the OTC market. We assume that the conditional events Ai|D = 1
are independent but do not impose that the banks’ defaults themselves are independent. In
particular, each bank can have different default probabilities depending on the realization of
the aggregate risk factor. This setting allows for a dependence structure among the banks’
defaults. A special role will be taken by banks that choose pi = 0. We call such banks safe,
while banks with pi > 0 are referred to as risky.

When a trader from bank i meets a trader from bank n, they bargain a contract similar
to a CDS. They agree that the trader of bank i sells γi,n contracts to the trader of bank n. If
γi,n > 0, bank n makes an immediate payment of γi,nRi,n, and at the end of the period, bank i
makes a payment of γi,nD to bank n if bank i has not defaulted by then; if it has defaulted,
the payment is reduced to rγi,nRi,n. In summary, the payment at the end of the period is
γi,nD(1A{

i
+r1Ai) from bank i to bank n if γi,n > 0. For the case γi,n < 0, the roles of i and n

are interchanged. Therefore, the bilateral constraint γi,n = −γn,i holds. We further assume
that there is a trade size constraint per trader so that −k ≤ γi,n ≤ k for some constant k > 0.
We call a set of contracts (γi,n)i,n=1,...,M feasible if both the bilateral constraint γi,n = −γn,i
and the trade size constraint −k ≤ γi,n ≤ k hold for all i, n = 1, . . . ,M . For notational
convenience, we will use the abbreviation γi := (γi,1, . . . , γi,M) to denote the collection of
contracts that bank i has with the other banks.

At the end of the trading period, traders of every bank come together and consolidate all
their long and short positions. The consolidated per-capita wealth of bank i with contracts
γi,1, . . . , γi,M is

Xi = ωi(1−D) +
∑
n 6=i

γi,n
(
Ri,n −D(1A{

n
+ r1An)1γi,n<0 −D(1A{

i
+ r1Ai)1γi,n>0

)
,

where

• ωi(1−D) is the per-capita payout associated with the initial exposure.

•
∑

n 6=i γi,nRi,n is the aggregate net payment received (if positive) or made (if negative)
during trading, corresponding to the CDS protection fees.

• −Dγi,n(1A{
n

+ r1An)1γi,n<0 is the per-capita payment that bank i will receive from
bank n. This payment will be executed only if the realization of the aggregate risk
factor is D = 1 and bank i net bought protection from bank n (γi,n < 0). In this case,
bank i will receive −γi,n if bank n does not default

(
event A{

n, namely, the complement
of the default event An

)
or −rγi,n if bank n defaults (event An).

• Dγi,n(1A{
i

+ r1Ai)1γi,n>0 is the per-capita payment that bank i will make to bank n.

This payment will be executed only if the realization of the aggregate risk factor is
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D = 1 and bank i net sold protection to bank n (γi,n > 0). In this case, bank i will
pay γi,n if it does not default

(
event A{

i

)
or rγi,n if it defaults (event Ai)

We calculate the certainty equivalent xi of Xi by solving U(xi) = E[U(Xi)], which yields

xi = ωi +
∑
n 6=i

γi,nRi,n − Γi(γi,1, . . . , γi,M), (1)

where

Γi(y1, . . . , yM) =
1

η
logE

[
exp

(
ηD
(
ωi+

∑
n6=i

yn
(
(1A{

i
+r1Ai)1yn>0 +(1A{

n
+r1An)1yn<0

)))]
.

The following result gives an explicit formula for Γi.

Lemma 3.1. We have

Γi(y1, . . . , yM) =
1

η
log
(

1− q + qeηωi+ηf(
∑
n:yn≥0 yn,pi)+η

∑
n:yn<0 f(yn,pn)

)
,

where

f(y, p) =
1

η
log
(
(1− p)eηy + peηry

)
. (2)

For p > 0, the functions

y 7→ Ξ(y) :=
1

η
log(1− q + qeηy) and y 7→ f(y, p)

are strictly increasing and strictly convex so that the function Γi(y1, . . . , yM) is strictly in-
creasing and convex. If pn > 0, then the function Γi, viewed as a function of yn, is strictly
convex on (−∞, 0). Moreover, the function f satisfies

f(y1, p1) + f(y2, p2) > f(y1 + y3, p1) + f(y2 − y3, p2) (3)

for all y1 < y2, y3 ∈
(
0, y2−y1

2

]
and p1 ≥ p2.

The value f(y, p) quantifies how the exposure of bank i to the aggregate risk factor D
changes when it sells y (or buys y if y < 0) contracts to (from) bank n, where p is the default
probability of the bank selling the contracts. If the bank that sells the contracts is safe
(p = 0), then f(y, p) = y as the increase in exposure corresponds to the number of traded
contracts in this case. However, if the bank that is selling the contracts is risky (p > 0), the
increase in exposure is smaller given that

1

η
log
(
(1− p)eηy + peηry

){< 1
η

log
(
(1− p)eηy + peηy

)
= y if y > 0

> 1
η

log
(
(1− p)eηy + peηy

)
= y if y < 0.

(4)

The inequality (3) has a very intuitive interpretation. Suppose a bank buys CDS protection
from banks 1 and 2 with default probabilities p1 > p2. If the bank were to buy additional
protection from bank 1, its certainty equivalent would be lower with respect to the case in
which it makes balanced purchases from the two banks.
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Remark 3.2. By analyzing the structure of (4), we observe that counterparty risk is ac-
counted for asymmetrically in the contract valuation. Assume that bank i is selling contracts
to bank n. Bank n takes the default risk of bank i into account by applying a credit valuation
adjustment (CVA) to the contract. The CVA is defined as the adjustment to the default-free
contract valuation made by bank n in the amount of the difference between (i) the value of
the contract if its counterparty bank i were safe and (ii) the actual contract value which ac-
counts for bank i’s default risk. Because of the CVA, the actual exposure of bank n to the
aggregate risk factor is reduced by less than the total volume purchased from bank i. The
reason for this smaller reduction is that bank i is risky and may not deliver the promised
payment to bank n if it defaults. Analogously to the CVA, the debit valuation adjustment
(DVA) is the adjustment made to the default-free contract valuation by bank i to account for
its own default risk. Because bank i may default and not deliver the payment promised to
bank n, its actual exposure is increases less than the nominal amount.

CVA and DVA are generally accepted principles for fair-value accounting (see also Duffie
and Huang (1996) and Capponi (2013)). Because of risk aversion, DVA and CVA are not
symmetric, i.e., DVA 6= −CVA. The loss incurred by the buyer for not receiving the payment
at default of the seller is higher than the gain of the seller for not making the promised
payment to the protection buyer. In the limiting case of risk-neutral investors, we recover
symmetry with DVA = −CVA.

The extent to which the change in exposure is reduced by trading CDS contracts depends
on the default probability p of the protection seller and its recovery rate r. Because of the
bank’s risk aversion, the change in exposure after trading is always smaller for a buyer (and
higher for a seller) compared with the case where investors are risk neutral. This asymmetry
means that risk-averse investors value their counterparty risk benefit (DVA) less than risk-
neutral investors when they are selling and value their counterparty risk cost (CVA) more
than risk-neutral investors when they are buying protection. Mathematically,

1

η
log
(
(1− p)eηy + peηry

)
>

1

η
log
(
e(1−p)ηy+pηry

)
= y − (1− r)py,

using the strict convexity of the exponential function. For a buyer (y < 0), this means that
the negative quantity 1

η
log
(
(1−p)eηy+peηry

)
is smaller in absolute value than y− (1−r)py.

4 Market Equilibrium Conditional on Banks’ Default

Risk

This section studies the market equilibrium, fixing the default risk profile of the banks in
the system. In Section 4.1, we establish the existence of such an equilibrium. In Section
4.2, we study the implications of counterparty risk on the banks’ post-trade exposures. In
Section 4.3, we analyze which banks emerge as intermediaries and how this depends on their
relative initial exposures and default risks.
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4.1 Market Equilibrium Existence and Properties

Suppose that the default probability of bank i is pi. Because traders are assumed to be small
relative to their banks, they only have a marginal effect. When bank i sells protection to
bank n, the cost of risk bearing increases by γi,nΓiyn(γi) for bank i and decreases by γi,nΓnyi(γn)
for bank n, where Γnyi(γn) denotes the partial derivative of Γn(γn) with respect to the i-th
component. Therefore, when traders of banks i and n bargain, their trading surplus is given
by

γi,n
(
Γnyi(γn)− Γiyn(γi)

)
.

This trading surplus is maximized by

γi,n


= k if Γiyn(γi) < Γnyi(γn),

∈ [−k, k] if Γiyn(γi) = Γnyi(γn), 5

= −k if Γiyn(γi) > Γnyi(γn),

(5)

which is the traded quantity when two traders of banks i and n meet. The unit price Ri,n of
a CDS is decided via bargaining between a protection seller with bargaining power ν ∈ [0, 1]
and a protection buyer with bargaining power 1− ν. Hence,

Ri,n = ν max
{

Γiyn(γi),Γ
n
yi

(γn)
}

+ (1− ν) min
{

Γiyn(γi),Γ
n
yi

(γn)
}
. (6)

If bank i sells contracts to bank n, it receives a fraction ν of the trading surplus. Indeed,
bank i’s cost of risk bearing increases by γi,nΓiyn(γi), but it receives a payment γi,nRi,n so
that the net effect on bank i is

− γi,nΓiyn(γi) + γi,nRi,n

= γi,n
(
ν max

{
Γiyn(γi),Γ

n
yi

(γn)
}︸ ︷︷ ︸

= Γnyi (γn) by (5)

+(1− ν) min
{

Γiyn(γi),Γ
n
yi

(γn)
}︸ ︷︷ ︸

= Γiyn (γi) by (5)

−Γiyn(γi)
)

= ν γi,n
(
Γnyi(γn)− Γiyn(γi)

)︸ ︷︷ ︸
trading surplus

.

Because of the translation invariance property of the exponential utility, the relative bar-
gaining power between buyers and sellers does not affect how traded quantities are chosen in
equilibrium. However, it has an effect on how banks choose their default probabilities before
trading starts, as we will see in Section 5.

Definition 4.1. Feasible contracts (γi,n)i,n=1,...,M build a market equilibrium if they are
optimal in the sense that they satisfy (5).

The following result shows that finding a market equilibrium is equivalent to solving a
planning problem.

5For γi,n = 0 where Γi is not differentiable with respect to yn, both one-sided partial derivatives must
match, i.e., limγi,n↘0 Γiyn(γi) = limγn,i↗0 Γnyi(γn) and limγi,n↗0 Γiyn(γi) = limγn,i↘0 Γnyi(γn), as γi,n = 0
needs to be optimal with respect to both positive and negative changes.
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Theorem 4.2. Feasible contracts (γi,n)i,n=1,...,M are a market equilibrium if and only if they
solve the optimization problem

minimize
M∑
i=1

Γi(γi) over γ subject to γi,n = −γn,i and −k ≤ γi,n ≤ k. (7)

This result follows from the fact that certainty equivalents are quasi-linear so that feasible
contracts are a solution to the planning problem if and only if they are Pareto optimal for
the banks. Based on the quasi-linearity of certainty equivalents, Atkeson et al. (2015) find
that, conditional on entry decisions, the pairwise traded contracts are socially optimal.

In our model, a market equilibrium on the level of the individual traders is thus equivalent
to a Pareto optimal allocation for the banks. However, this holds only for given banks’ default
probabilities, and Pareto optimality for banks is only a statement about quantities and does
not characterize prices. In our model, prices are determined in each meeting between two
traders, as is standard in OTC market models.

Theorem 4.3. There exists a market equilibrium (γi,n)i,n=1,...,M . The γi,n’s are unique for
pn > 0 and γi,n < 0, or pi > 0 and γi,n > 0. For every i, the value of

∑
γi,n is unique

in equilibrium, where the sum is over n such that pn = 0 and γi,n < 0, or pi = 0 and
γi,n > 0. In particular, the values of Γ(γn)’s are uniquely determined for a market equilibrium
(γi,n)i,n=1,...,M .

Theorem 4.3 establishes the existence of a market equilibrium, and states that quantities
bilaterally traded with risky protection sellers are unique in equilibrium. This uniqueness
result contrasts with Theorem 1 of Atkeson et al. (2015), where bilaterally traded volumes
are not unique. As soon as counterparty risk is involved in a trade, bilaterally traded
volumes are uniquely pinned down in equilibrium. The reason is that counterparty risk
makes CDS contracts purchased from traders of different banks imperfect substitutes. Even
if banks have the same default probability, CDSs purchased from them cannot be perfectly
substituted due to counterparty concentration: because of risk aversion, if a trader buys two
CDS contracts, he/she prefers to choose the two trading counterparties from different banks,
rather than purchasing both contracts from traders of the same bank. However, if the seller
of protection is a safe bank, there is an indifference to increasing or decreasing the trading
volume as long as it can be balanced by other trades not involving counterparty risk. For
example, trades between three safe banks A, B and C could be increased without changing
the planning problem (7) if A buys n additional CDS contracts from B, B buys n additional
CDS contracts from C, and C buys n additional CDS contracts from A.

4.2 Post-trade Exposures

Suppose that each bank has decided on its default risk pi at cost C(pi), and denote by
(γi,n)i,n=1,...,M a market equilibrium from Theorem 4.3. We define the per-capita post-trade
exposure of bank i by

Ωi := ωi + f

( ∑
n:γi,n≥0

γi,n, pi

)
+

∑
n:γi,n<0

f(γi,n, pn), (8)
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where f is defined in Lemma 3.1. Note that Ωi accounts for counterparty risk: if bank i and
all its counterparties are safe, then Ωi simplifies to ωi+

∑
n6=i γi,n, as in Atkeson et al. (2015).

Observe also that Ωi is uniquely determined by Theorem 4.3. If bank i buys −γi,n contracts
on average from each trader of a risky bank n, the exposure of bank i is effectively reduced
by less than γi,n — namely by f(γi,n, pn) — to adjust for counterparty risk, taking the bank’s
risk aversion into consideration. Similarly, if bank i is risky and sells γi,n contracts to each
trader of bank n, then its effective increase in exposure is less than γi,n due to its own default
risk (DVA), as discussed in Remark 3.2.

The next result says that the post-trade exposures are increasing and closer together
than initial exposures. This result generalizes the first part of Proposition 1 of Atkeson et
al. (2015) to our counterparty risk setting, while we will see in our Proposition 4.5 below
that the second part of Proposition 1 of Atkeson et al. (2015) takes a quite different form in
our model.

Proposition 4.4. Assume that

pi = pj or pi ≤ 1/2 or pj ≤ 1/2.6 (9)

We then have the following relations between initial and post-trade exposures:

1. If ωi ≥ ωj and pi ≤ pj, then Ωi ≥ Ωj.

2. If ωi > ωj and pi ≥ pj, then ωi − ωj > Ωi − Ωj.

Under condition (9), Proposition 4.4 states that

1. The banks’ order in post-trade exposures is the same as that in the initial exposures,
provided that their default probabilities are ordered in the opposite direction.

2. Post-trade exposures are closer together than initial exposures if the bank with larger
initial exposure is at least as risky as the bank with smaller initial exposure.

To see why conditions on the default risks of the banks need to be imposed, consider two
banks i and j whose initial exposures ωi > ωj are smaller than the average initial exposure.
Because both banks have initial exposures below the average, they are interested in selling
protection and earning the CDS protection fee. These trading motives imply that their
post-trade exposures Ωi and Ωj are bigger than ωi and ωj, respectively. However, if bank i
is safer than bank j, it is likely that the other banks will buy a higher amount of protection
from bank i so that Ωi − ωi > Ωj − ωj. This inequality stands in contrast with that in the
second statement of Proposition 4.4, noting that pi ≥ pj does not hold, either. Yet if bank j
is safer than bank i, it is likely that the other banks will buy a larger amount of protection
from bank j, leading to Ωj > Ωi even though the initial exposures had the reverse order. We
will graphically demonstrate later in Figure 1 that both of these cases can indeed happen
so that conditions on the default probabilities in Proposition 4.4 are needed. Building on
Proposition 4.4, we next analyze which banks engage in full risk sharing if the trade size
limit is big enough.

6The condition p ≤ 1/2 is essentially used to avoid that the probability-weighted CDS protection payment
in the seller’s default event, rp, is higher than 1 − p, which is the probability-weighted payment if the
protection seller does not default.
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Proposition 4.5. Assume that the trade size limit is not binding and that there are at least
two safe banks.7 Then

1. All safe banks have the same post-trade exposure, say, Ω̄.

2. Risky banks with initial exposure above some threshold α also have the same post-trade
exposure Ω̄. The threshold α depends only on the distribution of initial exposures and
not on the banks’ default probabilities.

3. Risky banks with initial exposure below α will have post-trade exposures strictly smaller
than Ω̄.

The first part of the proposition is consistent with Proposition 3 in Atkeson et al. (2015):
if the trade size limit is big enough, safe banks perfectly share their risk to the aggregate
risk factor so that they all end up with the same post-trade exposure. Risky banks with
large initial exposures are active as buyers on the OTC market. Hence, their default risk
does not matter to traders of other banks and they have the same post-trade exposure as the
safe banks, as stated by the second part of the proposition. By contrast, risky banks with
small initial exposures would like to sell credit protection, but they are not very attractive as
trading counterparties because they bear high default risk. Consequently, they will have a
lower post-trade exposure than the safe banks, as stated in the third part of the proposition.

To highlight these findings, we construct a parametric example of 30 banks and show the
resulting post-trade exposures in Figure 1. Note that the dashed and dotted curves hit the
blue line at the same point, which means that the initial exposure needed to guarantee that
risky banks have the same post-trade exposure does not depend on their default probabilities.
This observation is a consequence of Proposition 4.5, and follows from the fact that the
threshold α in Proposition 4.5 does not depend on the banks’ default probabilities. This
is because when the bank’s initial exposure becomes sufficiently high, the bank will trade
in only one direction, buying (and not selling) protection against the aggregate risk factor.
As the protection fee is paid upfront, the default risk of the bank does not matter to the
seller. Proposition 4.5 implies that the post-trade exposure of safe banks is higher than their
average initial exposure, and this is visually confirmed in Figure 1.

An immediate consequence of Proposition 4.5 is the sensitivity of the post-trade exposures
to the banks’ default probabilities.

Corollary 4.6. If the trade size limit is big enough, the post-trade exposures of banks with
sufficiently high initial exposure are not sensitive to their default probabilities, while the post-
trade exposures of banks with small initial exposures are sensitive to their default probabilities.

The statement in Corollary 4.6 is intuitive. If the risk bearing capacity of the market is not
impaired by the presence of trade size limits, banks with sufficiently large initial exposures
are protection buyers and thus their own default probabilities do not matter. However, banks
with low initial exposures are protection sellers, so their default probabilities matter when
other banks decide to trade with them.

7For risk sharing, we need at least two banks. Because perfect risk sharing is done by safe banks, we
consider in the proposition a market environment with at least two safe banks.
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Figure 1: A market model consisting of 30 banks: for each initial exposure 1, 2, . . . , 10, we
consider three banks, respectively with default probabilities p = 0, p = 0.1 and p = 0.2.
For large enough k, all safe banks and all risky banks with big initial exposures have the
same post-trade exposure. The corresponding value 6.19 is higher than the average initial
exposure of the safe banks, 5.5 (= (1 + 2 + · · · + 10)/10). Risky banks with small initial
exposures have a smaller post-trade exposure than safe banks. Risky banks with p = 0.2
(dotted curve) have a smaller post-trade exposure than risky banks with p = 0.1 (dashed
curve). We set the risk aversion parameter η = 1, the recovery rate r = 0, the default
probability of the aggregate risk factor q = 0.1, and the trade size limit k = 2.

4.3 Intermediation Volume

We study which banks endogenously emerge as intermediaries. These banks participate
on both sides of the CDS market, as opposed to taking large net positions, either long or
short. We consider per-capita gross numbers of sold or purchased contracts, accounting for
counterparty risk similarly to the post-trade exposure in (8). For a trader of bank i, these
quantities are given by

G+
i = f

( ∑
n:γi,n≥0

γi,n, pi

)
and G−i = −

∑
n:γi,n<0

f(γi,n, pn).

If bank i is safe (pi = 0), then G+
i =

∑
n6=i max{γi,n, 0}. Similarly, we have G−i =∑

n 6=i max{−γi,n, 0} if all its counterparties n are safe. In general, however, the actual

exposure is obtained by adjusting for DVA and CVA so that G+
i ≤

∑
n6=i max{γi,n, 0} and

G−i ≤
∑

n 6=i max{−γi,n, 0}; see Remark 3.2. The per-capita intermediation volume of bank

i is defined as Ii = min{G+
i , G

−
i }. By Theorem 4.3, G+

i and G−i and thus the intermediation
volume Ii are uniquely determined if all pn’s are strictly positive. Hence, we work under this
assumption in this section. We analyze separately the effects of banks’ initial exposures and
default probabilities on their intermediation volume.
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Proposition 4.7. If the trade size limit k is small enough and there are at least three banks
with different initial exposures ωi’s, then the intermediation volume Ii as a function of ωi is
a hump-shaped curve, taking its maximum at or next to the median initial exposure.

Additionally, if (9) holds and two banks i and j have the same initial exposure, then
Ii ≤ Ij for pi ≥ pj.

The most prominent implication of Proposition 4.7 is that banks with intermediate expo-
sures and small default probabilities are the main intermediaries. This prediction is consis-
tent with empirical data from the bilateral CDS market, as shown in Figure 2. We describe
the data set and the procedure followed to generate the intermediation plots in Appendix B.
As it appears from the figure, most of the traded CDS volume is either between two inter-
mediaries or between an intermediary and a non-intermediary. The volume of traded CDS
contracts between intermediaries is high, but each intermediary has large trading positions
with only a few, and not all, other intermediaries. There is high heterogeneity in the volume
of traded CDS contracts for the banks that are not intermediaries: some banks (mainly
those with very small initial exposures) trade a very small volume of CDSs, while others
are either large buyers or large sellers of CDSs. Figure 3 further highlights that the main
intermediaries are the banks with medium initial exposures and low default probabilities,
relative to all banks in the data set.

Figure 2: Network of banks’ bilateral CDS exposures. Each node corresponds to a bank.
The inner nodes are the 5 intermediaries, while the remaining 76 banks are arranged as
nodes on an outside circle. Both in the inner area and the outside circle, the nodes are
ordered by their initial exposures, which correspond to the sizes of the nodes. The darker a
node is, the higher is the default probability of the corresponding bank. The widths of the
edges are proportional to the banks’ bilateral net CDS volume. We use blue for the CDS
volume between two intermediaries; gray for CDS volume between two non-intermediaries;
light red for CDS protection sold by an intermediary to a non-intermediary; dark red for
CDS protection sold by a non-intermediary to an intermediary.
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Figure 3: Intermediation volume as a function of initial exposures, measured in trillion
USD ($ T), and default probabilities: each point denotes a bank. The higher the default
probability of a bank, the darker the color of the corresponding point.

5 Private versus Socially Optimal Default Risk Levels

In this section, we compare the banks’ decisions on their default probabilities with the socially
optimal levels. Recall that each bank i manages its risk by choosing the conditional default
probability pi ∈ [0, p̄i], where p̄i is the given maximal value. Bank i can lower its conditional
default probability to pi at a cost C(pi). We assume that C : [0, p̄i]→ [0,∞) is a decreasing,
convex, and continuous function. Let pi ∈ [0, p̄i] be the decision of bank i. Theorem 4.3
yields that for given p1, . . . , pM , there exists a market equilibrium (γi,n)i,n=1,...,M . As we focus
in this section on the choice of p1, . . . , pM , we write

xi(p1, . . . , pM) = ωi +
∑
n 6=i

γi,nRi,n − Γi(γi) (10)

to denote bank i’s per-capita certainty equivalent (1) in a market equilibrium.

Lemma 5.1. The value of xi(p1, . . . , pM) is uniquely determined.

Because each bank chooses individually its default risk, we are looking for a Nash equi-
librium.

Definition 5.2. A choice of p1 ∈ [0, p̄1], . . . , pM ∈ [0, p̄M ] is an equilibrium if

xi(p1, . . . , pM)− C(pi) ≥ xi
(
p1, . . . , pi−1, p̃i, pi+1, . . . , pM

)
− C(p̃i)

for all i and p̃i ∈ [0, p̄i].
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Proposition 5.3. If the cost function C is such that

arg max
pi∈[0,p̄i]

(
xi(p1, . . . , pM)− C(pi)

)
(11)

is a convex set for each i, then there exists an equilibrium p1, . . . , pM .

The assumption that (11) is a convex set means that if p̂i and p∗i are maximizers of
xi(p1, . . . , pM) − C(pi), then so is any convex combination of p̂i and p∗i . Note that, in
particular, this assumption is satisfied if there is a unique maximizer.

We consider a social planner who chooses the banks’ default probabilities p1, . . . , pM
and the quantities of traded contracts (γi,n)i,n=1,...,M so to maximize the banks’ aggregate
certainty equivalent minus the risk management costs. The planner maximizes the objective
function

M∑
i=1

xi(p1, . . . , pM)−
M∑
i=1

C(pi) (12)

over p1 ∈ [0, p̄1], . . . , pM ∈ [0, p̄M ] and (γi,n)i,n=1,...,M subject to γi,n = −γn,i and−k ≤ γi,n ≤ k,
where

•
∑M

i=1 xi(p1, . . . , pM) is the aggregate certainty equivalent of the banks with default
probabilities p1, . . . , pM .

•
∑M

i=1 C(pi) is the sum of the costs incurred to reduce the default risk probabilities to
the levels p1, . . . , pM .

It follows from γi,n = −γn,i and Ri,n = Rn,i that
∑M

i=1 xi(p1, . . . , pM) =
∑M

i=1 ωi−
∑M

i=1 Γi(γi).
Therefore, the social planner’s optimization problem (12) is equivalent to minimize

M∑
i=1

Γi(γi) +
M∑
i=1

C(pi)

over the same optimization variables p1 ∈ [0, p̄1], . . . , pM ∈ [0, p̄M ] and (γi,n)i,n=1,...,M . Hence,
the social planner minimizes the aggregate cost of pre-trade default reduction and the level
of post-trade risk.

Proposition 5.4. The social planner’s optimization problem has a solution.

We will next analyze when and how a solution chosen by the individual banks differs
from the social optimum. The difference between individual and social optimization prob-
lems comes from the buyers’ surplus, which corresponds to the trade benefit of the banks
purchasing CDS protection. This surplus is reflected in the social welfare, but is not taken
into account in the individual optimization problems of the CDS selling banks. As we will
demonstrate, this surplus depends on the banks’ default probabilities, and thus leads to
different choices of individually and socially optimal default probabilities, giving rise to an
externality. The buyers’ surplus is equal to the portion of the trading benefit that the CDS
buyer receives. When the trade size limit is binding, this portion depends on the seller
bargaining power ν. To highlight the primary economic forces, we first consider the case
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where sellers have full bargaining power (i.e., ν = 1), and we discuss later how the size of
this externality depends on ν. When the trade size limit is binding, the buyers’ surplus
changes only because the elasticity of the demand curve varies, while traded quantities re-
main constant at the trade size limit. This is also illustrated in Figure 4, where it can be
seen that the buyers’ surplus decreases when the default probability decreases. This can be
explained by the fact that, below the trade size limit, the demand curve is more elastic when
the default probability of the protection seller decreases. This is because a higher credit
quality of protection sellers mitigates the risk due to counterparty concentration. We recall
here that counterparty concentration reduces the elasticity of the demand curve because
each additionally purchased CDS contract carries less value for the protection buyer. These
intuitions are formalized in the following lemma.

Figure 4: The dependence of the buyers’ surplus on default probabilities. The protection
seller has full bargaining power, and a trade size limit k = 2 is imposed. Interestingly, the
buyers’ surplus for bank 2 is higher when bank 1 has default probability 0.2 (area A) than
when it has default probability 0.05 (area B). We choose the risk aversion parameter η = 1,
the recovery rate r = 0, the default probability of the aggregate risk factor q = 0.1, and the
initial exposures of banks 1 and 2 to ω1 = 0, and ω2 = 100, respectively.

Lemma 5.5. For large enough q, the demand curve for CDSs by traders of the same bank
becomes more elastic on the short end, if the default probability of the protection seller de-
creases.

A more elastic demand curve, combined with a binding trade size limit, means that the
buyers’ surplus decreases, as shown in Figure 4. Because of the decreasing buyers’ surplus
(reflected in the social welfare), the socially optimal default probabilities may be higher
than those individually chosen by each bank. The following result shows that a policy maker
may mitigate the inefficiency in the banks’ risk management decisions and enhance welfare
through a suitably designed tax and subsidy system.
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Theorem 5.6. A solution to the social planner’s optimization satisfies the first-order con-
ditions of an equilibrium if bank i receives a subsidy equal to S = S1 + k(1− ν)S2 with

S1 := −
∑
n6=i

(
γi,nΓnyi(γn, p) + Γn(γn, p)

)
, S2 :=

∑
n6=i

(
Γnyi(γn, p)− Γiyn(γi, p)

)
,

where we highlighted the dependence on p = (p1, . . . , pM) in the above expressions.
Assuming a small enough trade size limit, we have ∂S1

∂pi
> 0 and ∂S2

∂pi
< 0 for small

enough pi and large enough q. In this case, the privately chosen pi’s are lower than the
socially optimal ones if sellers have full bargaining power. The difference between the socially
and individually optimal choices of pi increases as a function of the seller bargaining power.

To induce optimal risk management, a policy maker needs to give a subsidy to some
banks and collect a tax from other banks in the amount of the difference between marginal
social and marginal private value. The tax would be collected from CDS buyers maximal
to the amount of the buyers’ surplus and given as a subsidy to CDS sellers to compensate
them for their social contribution in reducing exposure to the aggregate risk factor. Such a
tax would depend on the volume of traded CDS contracts and on the default probabilities
of the CDS sellers, which in turn depend on their initial exposures.

The first part of Theorem 5.6 states that the subsidy can be decomposed into a part (S1)
that is independent of the bargaining power and a part (k(1−ν)S2) that depends linearly on
the bargaining power. The second part of Theorem 5.6 relates the banks’ optimal choice of
default probabilities to the socially optimal choice. As the seller bargaining power increases,
a phase transition may occur: the banks’ choice of default probabilities may switch from
being above the socially optimal level to falling below it. This phenomenon can be explained
as follows. When the buyers have high bargaining power, their trade benefit may increase
if the sellers’ default probabilities are reduced. By contrast, if the buyers’ bargaining power
is low, the benefits of bargaining are more than offset by the reduced surplus resulting from
the increased elasticity of the demand curve.

The threshold on the seller bargaining power at which a phase transition occurs depends
crucially on the banks’ initial exposures. This dependence is graphically illustrated in the
left panel of Figure 5 for a market consisting of three banks. Bank 1 has zero initial exposure,
ω1 = 0, and acts as a CDS seller. It chooses a smaller default probability than bank 2, which
has medium initial exposure, ω2 = 2, and intermediates between banks 1 and 3. Bank 3
has the highest initial exposure, ω3 = 10, and thus chooses to purchase CDS protection.
Being a protection buyer, bank 3 does not reduce its default probability from the maximal
level p̄3 = 0.2. It can be seen from Figure 5 that a higher level of bargaining power is
necessary for bank 1 (ν ≥ 0.30) to reduce its default probability below the social optimum,
as compared with bank 2 (ν ≥ 0.22). The phase transitions occur at different levels because
the individually chosen default probabilities of banks 1 and 2 are closer together than their
socially optimal ones; see the left panel of Figure 5. Targeting the aggregated certainty
equivalents, the social planner chooses a lower default probability for bank 1 than for bank 2,
because a default of bank 1 affects the two other banks (banks 2 and 3), while a default of
bank 2 affects only bank 3. On an individual level, bank 1 will also reduce its default
probability more than bank 2. However, the difference in default probabilities resulting from
the banks’ equilibrium choices is smaller than what would be socially optimal. The right
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Figure 5: Left panel: individually and socially optimal choices of default probabilities. Right
panel: subsidy and tax required to make individual choices efficient. The bank with the
lowest initial exposure (Bank 1), acting as a CDS seller, chooses the lowest default probability
and receives the highest subsidy. The bank with the highest initial exposure (Bank 3), acting
as a CDS buyer, is the primary tax payer. The bank with the medium initial exposure (Bank
2), which intermediates between banks 1 and 3, receives a subsidy for acting as CDS seller
to bank 3 and pays a tax for being a CDS buyer from bank 1, resulting in the net subsidy
displayed on the right panel. We set the risk aversion parameter η = 1, the recovery rate
r = 0, the default probability of the risk factor q = 0.1, the trade size limit k = 0.5, the cost
function C(p) = 1/p0.05, and the maximal values of default probabilities p̄1 = p̄2 = p̄3 = 0.2.
The banks’ initial exposures are ω1 = 0, ω2 = 2 and ω3 = 10.

panel of Figure 5 shows that a subsidy-tax policy that achieves efficiency would subsidize
bank 1 with the highest amount, as it acts on the sell side for both banks 2 and 3, and
impose the highest tax on bank 3. Bank 2, acting as an intermediary, would benefit from the
net effect of subsidies received for selling CDS contracts to bank 2 and tax paid for buying
CDS contracts from bank 1. Bank 2’s subsidy is much smaller than that of bank 1, but its
individually chosen default probability deviates more from the social optimum, relative to
that of bank 1. This is seemingly puzzling observation can be understood as follows: as an
intermediary, the choice of bank 2’s default probability is more sensitive to subsidies and
taxes than that of the protection selling bank 2.

6 Conclusion

How do participants of OTC markets account for counterparty risk when they negotiate
prices and quantities of traded contracts? Do they manage their own default risk to be
more attractive trading counterparties? Do market participants diversify counterparty risk
in OTC markets? If so, how can they achieve this? Answering these questions is of critical
importance to understand the structure of OTC markets, the risk management decisions of
their participants, and the social implications of their trading patterns.

In this paper, we study the incentives behind the choices of banks’ default probabilities,
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along with the role played by counterparty risk in influencing trading decisions and the
resulting structure of OTC markets. We show that banks’ trading and risk management
decisions arising in equilibrium are inefficient. Negative externalities arise because protection
selling banks are not exactly compensated for their contribution in reducing the system-wide
risk exposure. Our results show that banks may reduce their default probabilities below what
is socially optimal to benefit from higher fees. These decisions depend on the banks’ initial
exposures to an aggregate risk factor and on their bargaining power as sellers. Intermediaries
contribute to social welfare by reducing the frictions caused by the trade size limit, and
more importantly, counterparty risk. Our model predicts that the main intermediaries have
medium initial exposure and low default risk, and that banks engage in less risk-sharing in
a market with higher counterparty risk.

Our framework can be extended along several directions. A first extension is to construct
a model that can capture the dynamic formation of interbank trading relations, taking
counterparty risk into consideration. Secondly, it can be generalized to include a role for
the real economy. In such a model extension, banks might have obligations to the private
sector and, additionally, fees charged as a result of a CDS trade affect the lending activities
of the banks to the real economy. A third extension is to compare trading decisions when
market participants have the choice between bilateral OTC trading, which exposes them to
counterparty risk, and centralized trading. In the latter case, the clearinghouse insulates
banks from counterparty risk, but they would be required to additionally pay clearing fees.
A recent work by Dugast et al. (2018) studies the welfare implications of central clearing,
building on the framework of Atkeson et al. (2015). Their main focus is on the trading
capacity and costs of joining the centralized clearing platform. Our proposed work would
complement theirs by accounting for the netting and counterparty risk reduction benefits of
a clearinghouse.

A Results and their Proofs

This section contains the proofs of our results done for arbitrary sizes si of the banks. When
the formulation of the statement is different from that in the case si = 1, we restate the
result.

A.1 Proof of Lemma 3.1

Using P [D = 1] = q, we compute

Γi(y1, . . . , yM) =
1

η
logE

[
exp

(
ηD
(
ωi +

∑
n6=i

yn
(
(1A{

i
+ r1Ai)1yn>0 + (1A{

n
+ r1An)1yn<0

)))]
=

1

η
log

(
1− q + qE

[
exp

(
ηωi + η

∑
n6=i

yn
(
(1A{

i
+ r1Ai)1yn>0 + (1A{

n
+ r1An)1yn<0

)))])
=

1

η
log

(
1− q + qeηωiE

[
exp

(
η(1A{

i
+ r1Ai)

∑
n6=i: yn>0

yn

)] ∏
n6=i: yn<0

E
[

exp
(
η(1A{

n
+ r1An)yn

)])
.
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Using that pi = P [Ai], we obtain

Γi(y1, . . . , yM) =
1

η
log

(
1− q + qeηωi

(
(1− pi)eη

∑
n: yn>0 yn + pie

ηr
∑
n: yn>0 yn

)
×

∏
n6=i: yn<0

(
(1− pn)eηyn + pneηryn

))
,

which can be brought into the form Γi(y1, . . . , yM) written in the statement of Lemma 3.1.
To show the additional properties of Γi(y1, . . . , yM), we first note that the function Ξ

given by

Ξ(y) =
1

η
log
(
1− q + qeηy

)
(13)

is strictly increasing and strictly convex. Indeed, we can calculate

Ξ′(y) =
qeηy

1− q + qeηy
> 0, Ξ′′(y) =

(1− q)qηeηy

(1− q + qeηy)2
> 0.

Next, we consider

f(y, p) =
1

η
log
(
(1− p)eηy + peηry

)
for p > 0 and calculate

fy(y, p) =
(1− p)eηy + rpeηry

(1− p)eηy + peηry
> 0, (14)

fyy(y, p) = η
((1− p)eηy + peηry)((1− p)eηy + r2peηry)− ((1− p)eηy + rpeηry)2

((1− p)eηy + peηry)2

= η
p(1− p)(1− r)2eη(1+r)y

((1− p)eηy + peηry)2
> 0. (15)

These inequalities show that the function y 7→ f(y, p) is strictly increasing and strictly convex
for p > 0. Because f(y, p) either equals y (if p = 0) or is strictly increasing and strictly convex
(if p > 0), we see that Γi(y1, . . . , yM) is strictly increasing, and the statements on convexity
of Γi(y1, . . . , yM) now follow from the fact that convexity is maintained under sums and
compositions with a convex, nondecreasing function.

Finally, to prove (3), let y1 < y2, y3 ∈
(
0, y2−y1

2

]
and p1 ≥ p2. We first note that (3) is

equivalent to(
(1− p1)eηy1 + p1eηry1

)(
(1− p2)eηy2 + p2eηry2

)
>
(
(1− p1)eη(y1+y3) + p1eηr(y1+y3)

)(
(1− p2)eη(y2−y3) + p2eηr(y2−y3)

)
,

which can be further simplified to

(1−p1)p2eη(y1+ry2)+(1−p2)p1eη(y2+ry1) > (1−p1)p2eη(y1+ry2+y3(1−r))+(1−p2)p1eη(y2+ry1−y3(1−r)).

This inequality follows from

aex1 + bex2 > aex1+x3 + bex2−x3 (16)
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for all a ≤ b, x1 < x2 and x3 ∈
(
0, x2−x1

2

]
by choosing

a = (1− p1)p2, b = (1− p2)p1, x1 = η(y1 + ry2), x2 = η(y2 + ry1), x3 = ηy3(1− r),

where we note that p1 ≥ p2, y1 < y2, and y3 ∈
(
0, y2−y1

2

]
imply a ≤ b, x1 < x2, and

x3 ∈
(
0, x2−x1

2

]
. The inequality (16) can be seen from the convexity of the exponential

function or checked directly by calculating the partial derivative

∂

∂z
(aex1+z + bex2−z) = aex1+z − bex2−z ≤ bex1+z − bex2−z < 0

for all z ∈
[
0, x2−x1

2

)
.

A.2 Results of Section 4.1 and their Proofs

Theorem A.1 (Theorem 4.2). Feasible contracts (γi,n)i,n=1,...,M are a market equilibrium if
and only if they solve the optimization problem

minimize
M∑
i=1

siΓ
i(γis) over γ subject to γi,n = −γn,i and −k ≤ γi,n ≤ k, (17)

where γis := (γi,1s1, . . . , γi,MsM).

Proof. The Lagrangian function corresponding to (17) is

M∑
i=1

siΓ
i(γis)−

M∑
i,n=1

sisnαi,n(γi,n + γn,i)−
M∑

i,n=1

sisnβi,n(k − γi,n)−
M∑

i,n=1

sisnβi,n(k + γi,n).

The optimality conditions are

Γiyn(γis) = αi,n + αn,i − βi,n + βi,n, β
i,n
≥ 0, βi,n ≥ 0,

β
i,n

(k − γi,n) = 0, βi,n(k + γi,n) = 0.
(18)

All of them are satisfied for

β
n,i

= βi,n =
1

2
max

{
Γiyn(γis)− Γnyi(γns), 0

}
, αi,n + αn,i =

1

2

(
Γiyn(γis) + Γnyi(γns)

)
if γ satisfies (5) and γi,n = −γn,i. This means that if γ is a market equilibrium, it is a
solution to (17). Conversely, if γ is a solution to (17), then (18) implies

Γiyn(γis)(k
2 − γ2

i,n) = (αi,n + αn,i)(k
2 − γ2

i,n) = (αn,i + αi,n)(k2 − γ2
n,i) = Γnyi(γns)(k

2 − γ2
n,i).

This equation shows that if γi,n 6= ±k, we need Γiyn(γis) = Γnyi(γns). In turn, Γiyn(γis) 6=
Γnyi(γns) implies γi,n = ±k. Consider the case Γiyn(γis) < Γnyi(γns) and assume γi,n = −k,

then γn,i = k; it follows from (18) that β
i,n

= 0, βn,i = 0 and

Γiyn(γis) = αi,n + αn,i + βi,n ≥ αi,n + αn,i ≥ αn,i + αi,n − βi,n = Γnyi(γns),

which is a contradiction to Γiyn(γis) < Γnyi(γns). Therefore, Γiyn(γis) < Γnyi(γns) implies
γi,n = k. By symmetry, Γiyn(γis) > Γnyi(γns) implies γi,n = −k. This shows that a solution
to (17) satisfies (5) and thus is a market equilibrium.
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Theorem A.2 (Theorem 4.3). There exists a market equilibrium (γi,n)i,n=1,...,M . The γi,n
are unique for pn > 0 and γi,n < 0, or pi > 0 and γi,n > 0. For every i, the value is the same
for
∑
γi,nsn where the sum is over n such that pn = 0 and γi,n < 0, or pi = 0 and γi,n > 0.

In particular, Γ(γn) are uniquely determined for a market equilibrium (γi,n)i,n=1,...,M .

Proof. We prove first the existence of a market equilibrium. To this end, we will apply
Kakutani’s fixed-point theorem (see, for example, Corollary 15.3 in Border (1985)). Fix k,
set S = [−k, k]M(M−1)/2, and define a mapping Φ : S → 2S as follows, where 2S denotes the
power set of S, i.e., the set of all subsets of S. Each element in S corresponds to the lower
triangular matrix of (γi,n)i,n=1,...,M , where we set the diagonal elements γii equal to zero and
the upper diagonal elements are defined by γi,n = −γn,i. Let Φ(γ) consist of all (γ̃i,n)i,n=1,...,M

that satisfy γ̃i,n = −γ̃n,i, −k ≤ γ̃i,n ≤ k, and

γ̃i,n


= k if Γiyn(γis) < Γnyi(γns),

∈ [−k, k] if Γiyn(γis) = Γnyi(γns),

= −k if Γiyn(γis) > Γnyi(γns).

Note that these “if” conditions depend on γ and not on γ̃. We can see that Φ(γ) is nonempty,
compact and convex. To show that Φ has a closed graph, consider a sequence

(
γ(m), γ̃(m)

)
converging to (γ, γ̃) with γ̃(m) ∈ Φ

(
γ(m)

)
for all m. Because γ̃(m) → γ̃ and γ̃(m) ∈ Φ

(
γ(m)

)
,

we have γ̃i,n = −γ̃n,i and −k ≤ γ̃i,n ≤ k. Moreover, if Γiyn(γis) < Γnyi(γns), we have

Γiyn
(
γ

(m)
i s

)
< Γnyi

(
γ

(m)
n s

)
for all m big enough, as γ(m) → γ. This yields γ̃

(m)
i,n = k for all m

big enough; hence, γ̃i,n = k. Similarly, Γiyn(γis) > Γnyi(γns) implies γ̃i,n = −k. The condition
is also satisfied for the last case Γiyn(γis) = Γnyi(γns), as we have already shown −k ≤ γ̃i,n ≤ k.
Therefore, there exists γ with Φ(γ) = γ by Kakutani’s fixed-point theorem; hence, there is
a market equilibrium.

To prove uniqueness, we first apply Theorem 4.2, which says that finding a market
equilibrium is equivalent to solving (17). We then write the objective function in (17) as

M∑
i=1

siΓ
i(γis) =

M∑
i=1

siΞ

(
ωi + f

( ∑
n:γi,nsn≥0

γi,nsn, pi

)
+

∑
n:γi,nsn<0

f(γi,nsn, pn)

)
,

where the function Ξ is given in Lemma 3.1. The uniqueness statements now follow from
the statements on convexity in Lemma 3.1.

A.3 Results of Section 4.2 and their Proofs

Proposition A.3 (Proposition 4.4). Assume that at least one of the following conditions
holds:

(a) pi = pj, or

(b) pi ≤ 1/2 and
∑

`:γi,`≥0 γi,`s` ≥ si max` γi,`, or

(c) pj ≤ 1/2 and
∑

`:γj,`≥0 γj,`s` ≥ sj max` γj,`.
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We then have the following relations between initial and post-trade exposures:

1. If ωi ≥ ωj, pi ≤ pj, and si ≤ sj, then Ωi ≥ Ωj.

2. If ωi > ωj, pi ≥ pj, and si ≥ sj, then ωi − ωj > Ωi − Ωj.

Proof. We first note that, for general sizes, the post-trade exposure is given by

Ωi := ωi + f

( ∑
n:γi,n≥0

γi,nsn, pi

)
+

∑
n:γi,n<0

f(γi,nsn, pn).

We split the proof in several steps, starting with some preparation.
Claim 1a. For two banks i and j, we have

Ωj > Ωi =⇒ γj,i < 0. (C1a)

Proof of Claim 1a. From Lemma 3.1, it follows that

Γjyi(γjs) =

{
Ξ′(Ωj)ηfy

(∑
n:γj,n≥0 γj,nsn, pj

)
if γj,i > 0,

Ξ′(Ωj)ηfy(γj,isi, pi) if γj,i < 0,
(19)

with an analogous expression for Γiyj(γis). If γj,i > 0 (and thus γi,j < 0), we obtain

Γjyi(γjs) = Ξ′(Ωj)ηfy

( ∑
n:γj,n≥0

γj,nsn, pj

)
> Ξ′(Ωi)ηfy

( ∑
n:γj,n≥0

γj,nsn, pj

)
≥ Ξ′(Ωi)ηfy(γi,jsj, pj)

= Γiyj(γis)

by strict convexity of Ξ and convexity of f(., pj) from Lemma 3.1. However, this implies
γj,i = −k by (5) in contradiction to the assumption γj,i > 0. Similarly, we obtain a contra-
diction for γj,i = 0, using Footnote 5, which concludes the proof of (C1a).

Claim 1b. For two banks i and j, we have

Ωj > Ωi =⇒ γj,n < γi,n or γj,n = −k for all n with Ωn < Ωj. (C1b)

Proof of Claim 1b. We distinguish the following three cases:

• If Ωn ∈ (Ωi,Ωj), we have γj,n < 0 and γi,n > 0 by (C1a) so that γj,n < γi,n holds.

• If Ωn < Ωi, we have γj,n < 0 and γi,n < 0 by (C1a); thus,

Γjyn(γjs) = Ξ′(Ωj)ηfy(γj,nsn, pn), (20)

Γiyn(γis) = Ξ′(Ωi)ηfy(γi,nsn, pn), (21)
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Γnyj(γns) = Ξ′(Ωn)ηfy

( ∑
`:γn,`≥0

γn,`s`, pn

)
= Γnyi(γns). (22)

Assume that γj,n 6= −k, which implies

Γjyn(γjs) = Γnyj(γns) = Γnyi(γns) ≤ Γiyn(γis)

by (5) and (22); thus,

1 <
Ξ′(Ωj)

Ξ′(Ωi)
≤ fy(γi,nsn, pn)

fy(γj,nsn, pn)

by (20) and (21). This is only possible if γj,n < γi,n.

• If Ωn = Ωi, we argue as in the first item if γi,n ≥ 0, or as in the second item if γi,n < 0.

Note that (C1b) holds regardless of the default risks of banks i and j. This is because we
are considering banks n with smaller post-trade exposures; thus, banks that are seller of
protection by (C1a) so that the same counterparty risk pn applies to trades with i and j.

Claim 1c. For two banks i and j, we have

Ωj > Ωi =⇒
fy
(∑

`:γj,`≥0 γj,`s`, pj
)

fy
(∑

`:γi,`≥0 γi,`s`, pi
) < fy(γn,jsj, pj)

fy(γn,isi, pi)
or γn,i = −k for all n with Ωn > Ωj.

(C1c)
Proof of Claim 1c. Ωn > Ωj implies γj,n > 0 by (C1a), and thus Γjyn(γjs) ≤ Γnyj(γns). If

γn,i 6= −k, it follows that Γiyn(γis) ≥ Γnyi(γns); hence,

Γnyj(γns) ≥ Γjyn(γjs) = Ξ′(Ωj)ηfy

( ∑
`:γj,`≥0

γj,`s`, pj

)
> Ξ′(Ωi)ηfy

( ∑
`:γj,`≥0

γj,`s`, pj

)

= Γiyn(γis)
fy
(∑

`:γj,`≥0 γj,`s`, pj
)

fy
(∑

`:γi,`≥0 γi,`s`, pi
) ≥ Γnyi(γns)

fy
(∑

`:γj,`≥0 γj,`s`, pj
)

fy
(∑

`:γi,`≥0 γi,`s`, pi
) ,

which shows (C1c), as Γnyi(γns) = Ξ′(Ωn)ηfy(γn,isi, pi) and Γnyj(γns) = Ξ′(Ωn)ηfy(γn,jsj, pj).
Claim 1d. For three banks i, j, and n, we have

Ωi < Ωj = Ωn =⇒ γj,n ≤ γi,n or (C1c) holds. (C1d)

Proof of Claim 1d. If γj,n ≤ 0, we obtain γj,n ≤ γi,n, as γi,n > 0 by (C1a). If γj,n > 0, we
can argue as (C1c).

We can summarize (C1a)–(C1d) as

Ωj > Ωi =⇒

{
γj,n ≤ γi,n for all γj,n ≤ 0,

(C1c) holds for all γj,n > 0.
(C1)

Claim 2. For two banks i and j, we have

ωi ≥ ωj, pj ≥ pi, sj ≥ si, and (a), (b) or (c) of the proposition holds =⇒ Ωi ≥ Ωj. (C2)
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Proof of Claim 2. We prove the claim by contradiction and assume that Ωi < Ωj. This
implies γj,n ≤ γi,n for all γj,n ≤ 0 by (C1); hence,

f

( ∑
`:γj,`≥0

γj,`s`, pj

)
= Ωj − ωj −

∑
n:γj,n<0

f(γj,nsn, pn)

> Ωi − ωi −
∑

n:γi,n<0

f(γi,nsn, pn)

= f

( ∑
`:γi,`≥0

γi,`s`, pi

)

≥ f

( ∑
`:γi,`≥0

γi,`s`, pj

)
,

using (8), pj ≥ pi, and that f(y, p) is decreasing in p for y ≥ 0 because, using the definition
(2),

fp(y, p) =
∂

∂p

1

η
log
(
(1− p)eηy + peηry

)
=

−eηy + eηry

η((1− p)eηy + peηry)
< 0 for y ≥ 0. (23)

This yields
∑

`:γj,`≥0 γj,`s` >
∑

`:γi,`≥0 γi,`s`, as y 7→ f(y, pj) is strictly increasing by Lemma 3.1.
This implies that there exists n with γj,n > γi,n ≥ 0; thus,

γn,j < γn,i ≤ 0 and γn,jsj < γn,isi (24)

because sj ≥ si by assumption. Moreover, γj,n > 0 implies Ωn ≥ Ωj by (C1a). On the other
hand, Ωi < Ωj implies by (C1c) and (C1d) that γn,i = −k (which stands in contradiction to
(24) because γn,j ≥ −k) or γj,n ≤ γi,n (also a contradiction to (24)) or

fy
(∑

`:γi,`≥0 γi,`s`, pi
)

fy(γn,isi, pi)
>
fy
(∑

`:γj,`≥0 γj,`s`, pj
)

fy(γn,jsj, pj)
. (25)

We will show that (25) contradicts

pj ≥ pi,
∑

`:γj,`≥0

γj,`s` >
∑

`:γi,`≥0

γi,`s` and γn,jsj < γn,isi (26)

if one of the conditions (a)–(c) of the proposition holds.

As an auxiliary step, we next analyze the function p 7→ fy(y1,p)

fy(y2,p)
and show that

∂

∂p

fy(y1, p)

fy(y2, p)
≥ 0 for all p ∈ [0, 1/2] and y1 ≥ −y2 ≥ 0. (27)

Indeed, we use (14) and

fyp(y, p) =
∂

∂p

(1− p)eηy + rpeηry

(1− p)eηy + peηry
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=
((1− p)eηy + peηry)(−eηy + reηry)− ((1− p)eηy + rpeηry)(−eηy + eηry)

((1− p)eηy + peηry)2

=
(r − 1)eη(1+r)y

((1− p)eηy + peηry)2

to deduce that

∂

∂p

fy(y1, p)

fy(y2, p)
=
fy(y2, p)fyp(y1, p)− fyp(y2, p)fy(y1, p)

(fy(y2, p))2

=

(1−p)eηy2+rpeηry2

(1−p)eηy2+peηry2
(r−1)eη(1+r)y1

((1−p)eηy1+peηry1 )2
− (r−1)eη(1+r)y2

((1−p)eηy2+peηry2 )2
(1−p)eηy1+rpeηry1

(1−p)eηy1+peηry1

(fy(y2, p))2

=
(r − 1)eη(1+r)y1

(
(1− p)eηy2 + rpeηry2

)(
(1− p)eηy2 + peηry2

)
((1− p)eηy1 + peηry1)2((1− p)eηy2 + peηry2)2(fy(y2, p))2

−
(r − 1)eη(1+r)y2

(
(1− p)eηy1 + rpeηry1

)(
(1− p)eηy1 + peηry1

)
((1− p)eηy1 + peηry1)2((1− p)eηy2 + peηry2)2(fy(y2, p))2

=
(1− r)eη(1+r)(y1+y2)

((1− p)eηy1 + peηry1)2((1− p)eηy2 + peηry2)2(fy(y2, p))2

×
((

(1− p)eη(1−r)y1 + rp
)(

1− p+ pe−η(1−r)y1
)

−
(
(1− p)eη(1−r)y2 + rp

)(
1− p+ pe−η(1−r)y2

))
.

From this, we obtain ∂
∂p

fy(y1,p)

fy(y2,p)
≥ 0 because(

(1− p)eη(1−r)y1 + rp
)(

1− p+ pe−η(1−r)y1
)
−
(
(1− p)eη(1−r)y2 + rp

)(
1− p+ pe−η(1−r)y2

)
= (1− p)2eη(1−r)y1 + rp2e−η(1−r)y1 − (1− p)2eη(1−r)y2 − rp2e−η(1−r)y2

≥ rp2
(
eη(1−r)y1 + e−η(1−r)y1 − eη(1−r)y2 − e−η(1−r)y2

)
≥ 0,

using (1 − p)2 ≥ rp2 for p ≤ 1/2 and y1 ≥ y2 for the second last inequality, and eη(1−r)y1 +
e−η(1−r)y1 ≥ eη(1−r)y2 + e−η(1−r)y2 for |y1| ≥ |y2| for the last inequality. This concludes the
proof of (27).

We now consider each of the three conditions (a)–(c) of the proposition.
Condition (a). From (26), we deduce

fy
(∑

`:γj,`≥0 γj,`s`, pj
)

fy(γn,jsj, pj)
≥
fy
(∑

`:γi,`≥0 γi,`s`, pj
)

fy(γn,isi, pj)
=
fy
(∑

`:γi,`≥0 γi,`s`, pi
)

fy(γn,isi, pi)
,

using the convexity of y 7→ f(y, pj) by Lemma 3.1 and pi = pj in condition (a).
Condition (b). We apply (27) choosing p = pi, y1 =

∑
`:γi,`≥0 γi,`s`, and y2 = γn,isi. This

implies

fy
(∑

`:γi,`≥0 γi,`s`, pi
)

fy(γn,isi, pi)
≤
fy
(∑

`:γi,`≥0 γi,`s`, pj
)

fy(γn,isi, pj)
≤
fy
(∑

`:γj,`≥0 γj,`s`, pj
)

fy(γn,jsj, pj)
,
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where we use (26) and the convexity of y 7→ f(y, pj) for the second inequality.
Condition (c). This time, we apply (27) choosing p = pj, y1 =

∑
`:γj,`≥0 γj,`s`, and

y2 = γn,jsj. We obtain

fy
(∑

`:γj,`≥0 γj,`s`, pj
)

fy(γn,jsj, pj)
≥
fy
(∑

`:γj,`≥0 γj,`s`, pi
)

fy(γn,jsj, pi)
≥
fy
(∑

`:γi,`≥0 γi,`s`, pi
)

fy(γn,isi, pi)
,

where we again use (26) and the convexity of y 7→ f(y, pi) for the second inequality.
Under each of the three conditions (a)–(c), we obtain a contradiction to (25). Hence,

Ωi < Ωj cannot hold, which concludes the proof of (C2).
Claim 3. For two banks i and j, we have

ωi > ωj, pj ≤ pi, sj ≤ si =⇒ Ωi − ωi < Ωj − ωj.

Proof of Claim 3. We proceed similarly to the proof of (C2). We prove the claim by
contradiction and assume that Ωi − ωi ≥ Ωj − ωj. This implies Ωi > Ωj; hence, γi,n ≤ γj,n
for all γi,n ≤ 0 by (C1) and γi,j < 0 < γj,i by (C1a), and thus

f

( ∑
`:γj,`≥0

γj,`s`, pj

)
= Ωj − ωj −

∑
n:γj,n<0

f(γj,nsn, pn)

< Ωi − ωi −
∑

n:γi,n<0

f(γi,nsn, pn)

= f

( ∑
`:γi,`≥0

γi,`s`, pi

)

≤ f

( ∑
`:γi,`≥0

γi,`s`, pj

)
using pj ≤ pi and (23), which yields

∑
`:γj,`≥0 γj,`s` <

∑
`:γi,`≥0 γi,`s` because y 7→ f(y, pj) is

strictly increasing by Lemma 3.1. We conclude the proof in the same way as the proof of
(C2) after (24), with i and j interchanged.

Proposition A.4 (Proposition 4.5). Assume that the trade size limit is not binding and that
there are at least two safe banks. Then

1. All safe banks have the same post-trade exposure, say, Ω̄.

2. Risky banks with initial exposure above some level α also have the same post-trade
exposure Ω̄. The level α depends only on the distribution of initial exposures and sizes,
but not on the banks’ default probabilities.

3. Risky banks with initial exposure below α will have post-trade exposures strictly smaller
than Ω̄.

Proof. We define k̄1 by

k̄1 = inf
{
k > 0 : Ωi = Ωj for all i, j with pi = pj = 0

}
. (28)
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We can prove that 0 < k̄1 <∞ and that the infimum in (28) is attained along the same lines
as on page 2273 of Atkeson et al. (2015), restricting their arguments to the safe banks. We
choose k̄ as the smallest number k ≥ k̄1 such that

Ωi ≤ Ωj (29)

for all i, j with pi > 0 and pj = 0. We next show that k̄ is well defined. If (29) holds for
k = k̄1, we set k̄ = k̄1. Moreover, (29) always holds for k big enough. Indeed, let i be with
pi > 0 and, working towards a contradiction, assume that

Ωi > Ωj (30)

for some j with pj = 0. From (C1a) and (C1) in the proof of Proposition 4.4 with pj = 0, it
follows that γi,j < 0 and γi,n ≤ γj,n for all n; hence,

Γjyi(γjs) = Ξ′(Ωj)ηfy

( ∑
n:γj,n≥0

γj,nsn, pj

)
= Ξ′(Ωj)η

< Ξ′(Ωi)η = Ξ′(Ωi)ηfy(γi,jsj, pj) = Γiyj(γis)

using that fy(y, pj) = 1 because pj = 0, Ξ is strictly increasing and Ωi > Ωj. Then γi,j = −k
follows from Γjyi(γjs) < Γiyj(γis) by (5), and thus

Ωj = ωj + f

( ∑
n:γj,n≥0

γj,nsn, pj

)
+

∑
n:γj,n<0

f(γj,nsn, pn)

≥ ksi + ωj + f

( ∑
n:γi,n≥0

γi,nsn, pi

)
+

∑
n:γi,n<0

f(γi,nsn, pn)

= ksi + ωj − ωi + Ωi.

However, for k ≥ (ωi − ωj)/si, this gives Ωj ≥ Ωi in contradiction to (30). Hence, we have
(29) for k big enough. By a compactness argument similar to page 2273 of Atkeson et al.
(2015), we deduce that (29) holds for k = k̄. By definition of k̄, for k < k̄, there exist i and
j with pj = 0 such that Ωi > Ωj.

We now consider k ≥ k̄ and

β(p, s) = max
i:pi=p,si=s

Ωi, ī(p, s) =

arg max
i:pi=p,si=s

Ωi if β(p, s) = Ωj for j with pj = 0,

∅ otherwise.

δ(p, s) = min
i∈ī(p,s)

ωi, δ(p, s) = max
{i:pi=p,si=s}\̄i(p,s)

ωi

for p ∈ {p1, . . . , pM} and s ∈ {s1, . . . , sM} where the minimum (and maximum) over an
empty set equals +∞ and −∞ by the usual convention. Several pj and sj for different j can
take the same values, and thus ī(p, s) can be a set with several entries because the maximum
does not need to be attained at a unique i. We can choose a function ᾱ : (0, 1]×[0, 1]→ [0,∞)
for all s such that δ(p, s) < ᾱ(p, s) ≤ δ(p, s) for all p ∈ {p1, . . . , pM} and s ∈ {s1, . . . , sM}.
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Note that ᾱ(p, s) may depend here on both arguments p and s, but in the next paragraph,
we will show that ᾱ can be chosen independently of p. From ᾱ(p, s) ≤ δ(p, s), it follows that
A(ᾱ) defined by

A(ᾱ) = {i : ωi ≥ ᾱ(si, pi) or pi = 0}
contains all i with Ωi = Ωj for j with pj = 0. To show that A(ᾱ) contains only such i,
assume that there exists i ∈ A(ᾱ) with Ωi < Ωj for j with pj = 0. This implies

ωi ≥ ᾱ(pi, si) > δ(pi, si);

hence, ωi > ω` for all ω` with Ω` < Ωj, which contradicts Ωi < Ωj. Therefore, all banks
i ∈ A(ᾱ) have the same post-trade exposure Ωi while banks i /∈ A(ᾱ) have a strictly smaller
post-trade exposure. Thus, we can set Ω̄ = Ωi for some i ∈ A(ᾱ).

Finally, we show that ᾱ can be chosen independently of p, consider k ≥ k̄ and i with
pi > 0 and Ωi = Ωj for j with pj = 0. Because of k ≥ k̄, we have Ωi ≥ Ω` for all `, using (29).
In the case Ωi > Ω`, we obtain γi,` < 0 by (C1a). In the case Ωi = Ω`, we argue similarly
to the proof of (C1a) to show γi,` ≤ 0. Indeed, to derive a contradiction, we assume that
γi,` > 0 and Ωi = Ω`, which implies

Γiy`(γis) = Ξ′(Ωi)ηfy

( ∑
n:γi,n≥0

γi,nsn, pi

)
= Ξ′(Ω`)ηfy

( ∑
n:γi,n≥0

γi,nsn, pi

)
> Ξ′(Ω`)ηfy(γ`,isi, pi)

= Γ`yi(γ`s)

by strict convexity of f(., pi) from Lemma 3.1, using that pi > 0. However, this implies
γi,` = −k by (5) in contradiction to the assumption γi,` > 0. Hence, we have γi,` ≤ 0, and
pi does not matter for the trading of bank i. Indeed, Lemma 3.1 shows then that, for all `,
Γ`(γ`s) does not depend on pi if γi,` ≤ 0, and thus the objective function

∑M
`=1 s`Γ

`(γ`s)
in (17) does not depend on pi in the optimum. Therefore, ᾱ can be chosen independently
of p.

A.4 Proposition 4.7 and its Proof

For general sizes si, the per-capita gross numbers of sold or purchased contracts are given
by

G+
i = f

( ∑
n:γi,n≥0

γi,nsn, pi

)
and G−i = −

∑
n:γi,n<0

f(γi,nsn, pn).

Proposition A.5 (Proposition 4.7). 1. If the trade size limit k is small enough and there
are at least three banks with different initial exposures ωi, then the intermediation volume Ii
as a function of ωi is a hump-shaped curve, taking its maximum at or next to the median
initial exposure.

2. Assume that at least one of the conditions (a)–(c) of Proposition A.3 holds. If two
banks i and j have the same initial exposure, then Ii ≤ Ij for pi ≥ pj and si ≥ sj.
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Proof. 1. If k is small enough, then ωi < ωj implies Ωi < Ωj and γi,n equals ±k for all i and
n with ωi 6= ωn; hence,

γi,n


= k ωi < ωn

= −k ωi > ωn

∈ [k,−k] ωi = ωn

by (C1a) and (5). This yields

G+
i = f

(
k
∑

n:ωn>ωi

sn +
∑

n: ωn = ωi,
γi,n > 0

snγi,n, pi

)
,

G−i = −
∑

n:ωn<ωi

f(−ksn, pn)−
∑

n: ωn = ωi,
γi,n < 0

f(snγi,n, pn).

As a function of ωi, G
+
i is decreasing with zero at the largest value of ωi and G−i is increasing

with zero at the smallest value of ωi so that Ii = min{G+
i , G

−
i } is a hump-shaped curve. If

we order the banks by their initial exposures such that ω1 ≤ ω2 ≤ · · · ≤ ωM and use the
values of G+

i to determine the order when ωi = ωj, then the intermediation volume Ii takes
its maximum at ωi∗ or the next bigger ωi where G+

i∗ ≥ G−i∗ .
2. If two banks i and j have the same initial exposure, then pi ≥ pj and si ≥ sj imply

Ωi ≤ Ωj by Proposition 4.4. Working towards a contradiction, we assume that

f

( ∑
`:γj,`≥0

γj,`s`, pj

)
< f

( ∑
`:γi,`≥0

γi,`s`, pi

)
. (31)

Together with Ωi ≤ Ωj and ωi = ωj, this implies∑
n:γi,n<0

f(γi,nsn, pn) <
∑

n:γj,n<0

f(γj,nsn, pn)

by (8) so that there exists n with γi,n < γj,n ≤ 0 because fy > 0 by (14); in particular,
γj,n > −k. From (5) and (19), we thus obtain

Ξ′(Ωj)ηfy(γj,nsn, pn) = Ξ′(Ωn)ηfy

( ∑
`:γn,`≥0

γn,`s`, pn

)
,

Ξ′(Ωi)ηfy(γi,nsn, pn) ≥ Ξ′(Ωn)ηfy

( ∑
`:γn,`≥0

γn,`s`, pn

)
,

and hence
Ξ′(Ωj)

Ξ′(Ωi)
≤ fy(γi,nsn, pn)

fy(γj,nsn, pn)
.

However, this leads to a contradiction because Ωi ≤ Ωj implies
Ξ′(Ωj)
Ξ′(Ωi)

≥ 1 by (13) and

γi,n < γj,n gives
fy(γi,nsn,pn)

fy(γj,nsn,pn)
< 1 because fyy > 0 by (15). Therefore, (31) does not hold,

which implies G+
j ≥ G+

i . Next, we assume directly that there exists n with γi,n < γj,n ≤ 0,
which leads to a contradiction by the above arguments. Therefore, we deduce G−j ≥ G−i and
thus Ij ≥ Ii.
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A.5 Results of Section 5 and their Proofs

Lemma A.6 (Lemma 5.1). For given s1, . . . , sM , the value of xi(p1, . . . , pM) is uniquely
determined.

Proof. For general si, (10) becomes

xi(p1, . . . , pM) = ωi +
∑
n 6=i

γi,nsnRi,n − Γi(γis).

Using the definition (6) of Ri,n and (5), we can write

xi(p1, . . . , pM) = ωi − Γi(γis) +
∑

n:γi,n>0

γi,nsn
(
νΓnyi(γns) + (1− ν)Γiyn(γis)

)
+

∑
n:γi,n<0

γi,nsn
(
νΓiyn(γis) + (1− ν)Γnyi(γns)

)
= ωi − Γi(γis) + ν

∑
n:γi,n>0

γi,nsn
(
Γnyi(γns)− Γiyn(γis)

)
+ (1− ν)

∑
n:γi,n<0

γi,nsn
(
Γnyi(γns)− Γiyn(γis)

)
+
∑
n6=i

γi,nsnΓiyn(γis)

= ωi − Γi(γis) + νk
∑

n:γi,n>0

sn
(
Γnyi(γns)− Γiyn(γis)

)
− (1− ν)k

∑
n:γi,n<0

sn
(
Γnyi(γns)− Γiyn(γis)

)
+

∑
pn > 0, γi,n < 0, or
pi > 0, γi,n > 0

γi,nsnΓiyn(γis)

+ Γ
i
(γis)

∑
pn = 0, γi,n < 0, or
pi = 0, γi,n > 0

γi,nsn,

where

Γ
i
(y):=Γiyn(y) =

qeηωi+ηf(
∑
n:yn≥0 yn,pi)+η

∑
n:yn<0 f(yn,pn)

1− q + qeηωi+ηf(
∑
n:yn≥0 yn,pi)+η

∑
n:yn<0 f(yn,pn)

does not depend on the specific n for all n with pn = 0 and γi,n < 0, or pi = 0 and γi,n > 0.
This means that Γiyn is the same for all banks n that are (I) default-free protection sellers to
i, or (II) protection buyers from i, and i is default-free. All these pairwise transactions do not
bear any counterparty risk. Uniqueness of xi(p1, . . . , pM) now follows from Theorem A.2.

Proof of Proposition 5.3. We first note that the mapping pi 7→ xi(p1, . . . , pM) is continu-
ous. This follows from the Envelope theorem using that Γi and its partial derivatives are
differentiable. For p−i = (pj)j 6=i, we define set-valued functions

ri(p−i) = arg max
pi∈[0,p̄i]

(
xi(p1, . . . , pM)− C(pi)

)
, r(p) =

(
r1(p−1), . . . , rM(p−M)

)
so that r is a mapping from [0, p̄1] × · · · × [0, p̄m] onto its power set. It has the following
properties:
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• [0, p̄1]× · · · × [0, p̄m] is compact, convex, and nonempty.

• For each p, r(p) is nonempty because a continuous function over a compact set has
always a maximizer.

• r(p) is convex by assumption.

• It follows from Berge’s maximum theorem that r(p) has a closed graph.

Thanks to these properties, Kakutani’s fixed point theorem implies that there exists a fixed
point of the mapping r, which means that there exists an equilibrium.

Proof of Proposition 5.4. Because the function

M∑
i=1

siΓ
i(γis, p) +

M∑
i=1

siC(pi) (32)

is continuous over the compact set [0, p̄1] × · · · × [0, p̄M ], it has a maximum, which shows
the statement of the proposition, using that the social planner’s optimization problem over
(γi,n)i,n=1,...,M conditional on the choice of the default probabilities has a solution by Theo-
rems 4.2 and 4.3.

Proof of Lemma 5.5. The demand of bank n on CDS contracts to bank i is given by the curve
−yi 7→ Γnyi(y, p) for yi < 0 because the marginal cost of risk bearing decreases by Γnyi(y, p)
per unit purchased CDS. The slope of the demand curve is obtained by taking the negative
yi-partial derivative of the demand curve, resulting in −Γnyi,yi(y, p). Hence, the demand curve
becomes flatter for decreased pi if −Γnyi,yi,pi(y, p) < 0, or equivalently, Γnyi,yi,pi(y, p) > 0. We
show Γnyi,yi,pi(y, p) > 0 for small enough pi and big enough q.

By Lemma 3.1, we have

Γn(y, p) =
1

η
log
(

1− q + qeηωn+ηf(
∑
`:y`≥0 y`,pn)+η

∑
`:y`<0 f(y`,p`)

)
=

1

η
log
(

1− q + a(1− pi)eηyi + apie
ηryi
)

for yi < 0, where we use the abbreviation a = qeηωn+ηf(
∑
`:y`≥0 y`,pn)+η

∑
` 6=i:y`<0 f(y`,p`) in this

proof. Because Γn(y, p) is a smooth function, the order of taking partial derivatives does not
matter. For simplicity, we start with the pi-partial derivative, which equals

Γnpi(y, p) =
1

η

−aeηyi + aeηryi

1− q + a(1− pi)eηyi + apieηryi
=

1

η

eηryi − eηyi

b+ (1− pi)eηyi + pieηryi
, (33)

using the abbreviation b = (1− q)/a. Next, we compute

Γnyi,pi(y, p) =
(b+ (1− pi)eηyi + pie

ηryi)(reηryi − eηyi)− (eηryi − eηyi)((1− pi)eηyi + rpie
ηryi)

(b+ (1− pi)eηyi + pieηryi)2

=
b(reηryi − eηyi) + (r − rpi − pi)eη(1+r)yi − (1− pi)e2ηyi + rpie

2ηryi

(b+ (1− pi)eηyi + pieηryi)2
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− (1− rpi − pi)eη(1+r)yi − (1− pi)e2ηyi + rpie
2ηryi

(b+ (1− pi)eηyi + pieηryi)2

=
b(reηryi − eηyi) + (r − 1)eη(1+r)yi

(b+ (1− pi)eηyi + pieηryi)2
. (34)

Finally, we determine the third-order partial derivative

Γnyi,yi,pi(y, p) = η
(b+ (1− pi)eηyi + pie

ηryi)2(b(r2eηryi − eηyi) + (r2 − 1)eη(1+r)yi)

(b+ (1− pi)eηyi + pieηryi)4

− η2((1− pi)eηyi + rpie
ηryi)(b(reηryi − eηyi) + (r − 1)eη(1+r)yi)

(b+ (1− pi)eηyi + pieηryi)3

= η
(b+ (1− pi)eηyi + pie

ηryi)(b(r2eηryi − eηyi) + (r2 − 1)eη(1+r)yi)

(b+ (1− pi)eηyi + pieηryi)3

− η2((1− pi)eηyi + rpie
ηryi)(b(reηryi − eηyi) + (r − 1)eη(1+r)yi)

(b+ (1− pi)eηyi + pieηryi)3
.

For pi = 0 and q = 1, we have

Γnyi,yi,pi(y, p) = η(r − 1)2eη(−1+r)yi > 0,

and hence, Γnyi,yi,pi(y, p) > 0 for small enough pi and big enough q by continuity of Γnyi,yi,pi .

Theorem A.7 (Theorem 5.6). The social planner’s optimization satisfies the first-order
conditions of an equilibrium if bank i receives a per-trader subsidy equal to S = S1+k(1−ν)S2

with

S1 := −
∑
n6=i

sn

(
γi,nΓnyi(γns, p) +

1

si
Γn(γns, p)

)
, S2 :=

∑
n 6=i

sn
(
Γnyi(γn, p)−Γiyn(γi, p)

)
. (35)

Assuming a small enough trade size limit, we have ∂S1

∂pi
> 0 and ∂S2

∂pi
< 0 for small enough

pi and large enough q. In this case, privately chosen pi’s are lower than the socially optimal
level if sellers have full bargaining power. The difference between the socially and individually
optimal choices of pi increases as a function of the seller bargaining power.

Proof. For the first part of the theorem, we compare the marginal social value MSVi, de-
fined as the partial derivative of the social planner’s objective function with respect to the
default probability pi of bank i assuming that banks trade optimally, with the corresponding
marginal private value MPVi. To do so, we highlight the dependence on the banks’ de-
fault probabilities p = (pi)i=1,...,M by using notations such as Γi(γis, p) and Ri,n(γis, p). For
arbitrary bank sizes, (12) becomes

M∑
i=1

sixi(p1, . . . , pM)−
M∑
i=1

siC(pi) (36)

so that the MSVi, given as its pi-partial derivative, equals

MSVi =
M∑
n=1

sn
∂xn
∂pi

(p1, . . . , pM)− siC ′(pi) = −
M∑
n=1

sn
∂Γn

∂pi
(γns, p)− siC ′(pi),

35



where we have used the equivalence between (32) and (36). The marginal private value MPVi
is the partial derivative of the bank i’s certainty equivalent (10) minus its risk-management
costs, with respect to its default probability pi — namely,

MPVi = −siC ′(pi)− si
∂Γi

∂pi
(γis, p) + si

∑
n6=i

γi,nsn
∂Ri,n

∂pi
(γis, γns, p).

The difference between marginal private and social value for bank i is

MPVi −MSVi =
∑
n 6=i

sn

(
siγi,n

∂Ri,n

∂pi
(γis, γns, p) +

∂Γn

∂pi
(γns, p)

)
If γi,n ≤ 0, then we obtain from (6) that

Ri,n(γis, γns, p) = νΓiyn(γis, p) + (1− ν)Γnyi(γns, p).

We then have that ∂Γn

∂pi
(γns, p) = 0 and

∂Ri,n
∂pi

(γis, γns, p) = 0 because Γn(γns, p), Γiyn(γis, p),

and Ri,n(γis, γns, p) do not depend on pi for γi,n ≤ 0; if traders of bank i are buying CDSs
from bank n, the default probability of bank i does not affect the terms of trade between
traders of banks i and n. For γi,n > 0, we find

Ri,n(γis, γns, p) = νΓnyi(γns, p) + (1− ν)Γiyn(γis, p)

by (5) and (6) so that

MPVi −MSVi =
∑

n:γi,n>0

sn

(
siγi,n

∂Ri,n

∂pi
(γis, γns, p) +

∂Γn

∂pi
(γns, p)

)
=

∑
n:γi,n>0

sn

(
siγi,n

∂Γnyi
∂pi

(γns, p) +
∂Γn

∂pi
(γns, p)

)

+
∑

n:γi,n>0

snsiγi,n(1− ν)

(
∂Γiyn
∂pi

(γis, p)−
∂Γnyi
∂pi

(γns, p)

)
=

∂

∂pi

∑
n6=i

sn
(
siγi,nΓnyi(γns, p) + Γn(γns, p)

)
+

∂

∂pi

∑
n 6=i

snsik(1− ν)
(
Γiyn(γis, p)− Γnyi(γns, p)

)
,

using for the last equality that ∂Γn

∂pi
(γns, p) = 0,

∂Γnyi
∂pi

(γns, p) = 0 and
∂Γiyn
∂pi

(γis, p) = 0 for

γi,n ≤ 0 and Γiyn(γis, p) = Γnyi(γns, p) for γi,n ∈ (−k, k).
We next prove the second part of Theorem A.7. By Lemma 5.5, we have Γnyi,yi,pi(y, p) > 0

for small enough pi and big enough q. This implies

Γnyi,pi(γns, p) < Γnyi,pi(((γ`,ns`)` 6=i, yi), p) (37)
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for all yi ∈ (γn,isi, 0) where ((γ`,ns`) 6̀=i, yi) := (γ1,ns1, . . . , γi−1,nsi−1, yi, γi+1,nsi+1, . . . , γM,nsM).
From Γnpi(((γ`,ns`) 6̀=i, 0), p) = 0 by (33), we deduce

∂

∂pi

(
siγi,nΓnyi(γns, p) + Γn(γns, p)

)
= siγi,nΓnyi,pi(γns, p)−

∫ 0

γn,isn

Γnyi,pi(((γ`,ns`)` 6=i, yi), p) dyi

=

∫ 0

γn,isn

(
Γnyi,pi(γns, p)− Γnyi,pi(((γ`,ns`)`6=i, yi), p)

)
dyi

< 0,

using (37). Hence, we obtain ∂S1

∂pi
> 0 by the definition (35) of S1. To show ∂S2

∂pi
< 0 for small

enough pi and big enough q, we compare Γnyi,pi(γn, p) and Γiyn,pi(γi, p). We first note that
Γnyi,pi(γn, p) = 0 and Γiyn,pi(γi, p) = 0 for γn,i = −γi,n ≥ 0. For pi = 0 and q = 1, we obtain
from (34) that

Γnyi,pi(y, p)
∣∣
pi=0,q=1

=
b(reηryi − eηyi) + (r − 1)eη(1+r)yi

(b+ (1− pi)eηyi + pieηryi)2

∣∣∣∣
pi=0,q=1

= (r − 1)eη(r−1)yi

for yi < 0. A calculation similar to (34) gives

Γiyn,pi(y, p)
∣∣
pi=0,q=1

=
b̃(reηr

∑
`:y`≥0 y` − eη

∑
`:y`≥0 y`) + (r − 1)eη(1+r)

∑
`:y`≥0 y`

(b̃+ (1− pi)eη
∑
`:y`≥0 y` + pie

ηr
∑
`:y`≥0 y`)2

∣∣∣∣
pi=0,q=1

= (r − 1)eη(r−1)
∑
`:y`≥0 y`

for yn > 0, where b̃ = (1 − q)/
(
qeηωi+η

∑
`:y`<0 f(y`,p`)

)
. Therefore, for γn,i = −γi,n < 0, we

obtain
Γnyi,pi(γns, p)

∣∣
pi=0,q=1

< Γiyn,pi(γis, p)
∣∣
pi=0,q=1

and thus ∂S2

∂pi
< 0 in this case. Using that the cost function C is convex, it follows from ∂S

∂pi
=

MSVi −MPVi that the individual choice of pi is lower than socially optimal if ∂S
∂pi

> 0.

B Description of Data and Plot Generation Procedure

In this section, we test the empirical predictions of our model conditional on banks’ default
risk choices. We use different data sources for the bilateral exposures in the CDS market,
the initial exposures of banks, and their default probabilities.

CDS volume. CDS data come from the confidential Trade Information Warehouse
of the DTCC. We use position data from December 31, 2011. This data set allows for a
post-crisis analysis in which a large part of CDS trades were not yet centrally cleared.8 We
eliminate from our data set the following transactions:

8Distortion on the CDS market due to the “London Whale” (large unauthorized trading activities in
JPMorgan’s Chief Investment Office) occurred only after December 31, 2011 and, thus, does not affect our
analysis.
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• All swaps with governments, states, or sovereigns as reference entities. We eliminate
these transactions because we expect the default risk profile of corporate reference
entities to have stronger dependence on the risk stemming from banks’ exposures than
on that of sovereign entities.

• All swaps with reference entities that are considered systemically important financial
institutions. By doing so, we avoid problems related to specific wrong-way risk, where
the seller of the transaction also happens to be the reference entity.

• All transactions done by nonbanking institutions. For nonbanking institutions, there is
no consistent way to measure initial exposures, which are needed in our analysis. While
we consider only banks, we adjust their initial exposures by including CDS trades done
with nonbanks. This procedure is consistent with our model and means that initial
exposures of banks are determined after they have traded with nonbanks.

• The transactions done by two small private banks for which there were no data available
on their initial exposures. Because these two banks are small players, the conclusions
of our analysis are not affected by their exclusion.

Other than these four restrictions, we do not make any further adjustments. In particular,
our data set also includes settlement locations outside of the United States, which allows
for a more complete coverage of CDS trades and, importantly, guarantees symmetry in the
inclusion of CDS trades (the transactions of both buyers and sellers are accounted for). The
resulting set consists of CDS data for 81 banks.

Initial exposure. For each of these 81 banks, we compute its initial exposure by using
2011 data from the Federal Financial Institutions Examination Council (FFIEC) form 031
(“call report”), as in Begenau et al. (2015). We compute the initial exposure of each bank
as the discounted valuation of its securities and loan portfolio, including CDSs traded with
nonbanks as explained above. For large banks that book their assets mainly in holding
companies, we use securities and loan portfolios at the bank holding company level. We
group the securities and loans into three categories and use a specific discount factor for
each group: less than one year (using the six-month U.S. Treasury rate to discount), one to
five years (using the two-year U.S. Treasury rate to discount), and more than five years (using
the seven-year U.S. Treasury rate to discount). Given the low interest rate environment in
2011, the precise choice of the discounting date and rate does not have a significant effect on
our results. For foreign banks that do not report to the FFIEC, we analyze individual annual
reports from 2011 to find the maturity profile of their securities and loans. Most of these
annual reports are dated December 31, 2011, making them consistent with the domestic
bank data. Some of them were released in March, June, or October of 2011, in line with the
respective country’s regulatory guidelines.

Default probabilities. The banks’ default probabilities are calculated using CDS
spread data from IHS Markit Ltd. (2018) via Wharton Research Data Services (WRDS).
Because the default probabilities that are relevant for the analysis are those around the time
of the transaction, we fix January 3, 2011 as the proxy date for CDS transactions and use the
spread on this date to infer the default probability. We use the average five-year spread for
Senior Unsecured Debt (Corporate/Financial) and Foreign Currency Sovereign Debt (Gov-
ernment) (SNRFOR). We compute the default probabilities from the CDS spreads applying
standard techniques (credit triangle relation), assuming a recovery rate of 40 percent. For
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19 among the 81 banks, CDS spread data were not available. For each of these banks, we
instead use Moody’s credit rating as of January 2011 for its Senior Unsecured Debt, and re-
late the ratings to default probabilities by using corporate default rates over the 1982–2010
period from Moody’s.

Intermediation volume. We compute the intermediation volume without taking the
counterparty risk into account. Table 1 shows that applying (4.3) with different values for
the risk-aversion parameter only has a minor effect on the results.

η = 0.1 η = 1 η = 10

total change 0.08 % 0.07 % 0.04 %
biggest change across banks 0.29 % 0.27 % 0.16 %

Table 1: Variation in intermediation volume for different levels of risk aversion.

Intermediaries. We define an intermediary to be a bank that provides at least 5 percent
of the total intermediation volume. Using this definition, we obtain 5 intermediaries among
the 81 banks. The selection of these 5 banks is not sensitive to the chosen threshold level
of intermediation volume. Indeed, it is evident in Figure 3 that 5 banks account for the
majority of the intermediation volume while the contributions of all other banks are small.
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