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Abstract

Using a model with bilateral trades, we explain why agents prefer to rent the goods
they can afford to buy. Absent bilateral trading frictions, renting has no role even
with uncertainty about future valuations. With pairwise meetings, agents prefer to
sell (or buy) durable goods whenever they have little doubt on the future value of the
good. As uncertainty grows, renting becomes more prevalent. Pairwise matching alone
is sufficient to explain why agents prefer to rent, and there is no need to introduce

random matching, information asymmetries, or other market frictions.

Keywords: Rent, repo, security lending, over-the-counter market, bargaining,
bilateral matching, directed search
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1. Introduction

Most of us have already experienced the bitter feeling of purchasing an object that we thought
we would use but sits forgotten in our basement. For some it is the pair of crampons used

to conquer Denali, for others the chainsaw to put down the old cherry tree. Several months
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or even years later, this lone object with the description “barely used” will be the subject
of haggling in a spring garage sale. And when the first lowball offer comes, we really wish
we had rented it at the time. This bitterness must also be common in the corporate world.
Purchasing managers resort more often than not to the leasing of durable goods (see, for
example Gavazza 2011, for aircraft leasing). Human resources managers use staffing agencies
to increase their workforce temporarily. Even financial traders “rent” financial assets through
repurchase agreements (repo), although they could buy the assets they need. The general
view is that these managers are financially constrained (see Eisfeldt & Rampini 2009), but it
is not necessarily the case: after all, the human resources manager will have to pay the wage
bill to the staffing agencies and therefore must have the means to hire the extra personnel.
The weakness of this general view is even clearer with a repo, a spot purchase of an asset
combined with a forward contract that promises the repurchase of the asset at a later date.
The use of repos begs the question: If we can buy the good or asset, why, and in which
situations, do we prefer to rent it?

A plausible explanation is that the seller has private information on the quality of the
good for sale that makes it less liquid (see, for example Madison 2016). But most goods for
rent are either new or of brands that are well known for their reliability. Also, most financial
repos involve highly liquid securities, such as Treasury bills, that are unlikely to be subject
to private information. So, the question remains: Why rent when you can buy?

In this paper, we build on the fact that most durable goods or securities are traded
over-the-counter and not in a centralized frictionless market. We present a parsimonious
environment with bilateral trades where the agents’ utilities of holding an asset or a good
are stochastic. We assume the goods/assets do not depreciate and that there is a fixed
stock, thus allowing us to abstract from issues of production. We show that agents trading
in frictionless markets would find selling and renting redundant and thus remains the question
“Why rent when you can buy?”

We then introduce frictions in the form of pairwise meeting and trading, which prevent
the emergence of a Walrasian market outcome.! Unlike a Walrasian environment, in pairwise
trading the price of the goods is a function of the sellers’ identity, who they meet, their asset
holdings, and the asset holdings of others. Thus, agents prefer to own some durable goods,
even though they know they may not need these goods in the (near) future. Uncertainty

about the future implies that agents prefer to own rather than to rent. If agents do not need

'More generally, we assume that agents are unable to trade within a group with an aggregate valuation
identical to the Walrasian market valuation.



the durables in one period, they just rent them out. While agents could sell the durables,
they prefer not to do so, as they recognize the existence of a hold-up problem inherent to
bilateral trades: When the time comes to buy some of the durables back, their next trading
partner could exploit their urge to consume and charge them a high price. As a result, agents
are not indifferent between renting and selling, and they optimally combine both forms of
trades. This argument is robust to different fiscal treatments: If there is a tax or subsidy on
rentals, they are still useful as long as the tax or the subsidy is not too large.

Although we present a search environment, our results are not driven by random
matching. In fact, we consider both random and directed matching, following Corbae,
Temzelides & Wright (2003). With directed matching, we impose a matching rule that,
in equilibrium, maximizes the possible surplus from trade. Although agents have a good
idea of whom they will meet in the future, they still find renting goods more useful than
buying them. In addition, under this matching rule we show that, with two valuation types,
an invariant distribution for the ownership of durable goods has a two-point support—that
is, there is one level of ownership for each valuation types. The difference between these two
levels increases with the persistence of the valuation types: As they become more persistent,
agents’ levels of ownership diverge. Inversely, as switching between the two valuation shocks
becomes more likely, agents tend to hold the same amount of the goods and rent more.

Our results are not due to the inability of agents to find a trading partner. In contrast
to other studies in the related literature, agents in our model always meet somebody with
whom they can trade. The key friction in this model lies in the assumption of bilateral
trading with an inefficient distribution of bargaining power.

Still, some degree of randomness is necessary. Using a simple example, we show that
renting becomes redundant if an agent can be matched with the right individual on and
off the equilibrium path. Therefore, renting is essential to achieve the efficient allocation
whenever a trader who bought more than the advisable level (relative to the equilibrium)
from a seller is unable to trade with the same seller in the future. For example, it could be
that this seller changed type, or that he committed to doing another trade in the meantime.
These examples show the extent to which there are search frictions in our environment.

Using our simple environment, we can analyze the effect of the rental market on sales.
Specifically, one might wonder if asset sales and rentals are two substitute activities, in which
case we should expect rentals and sales to co-move negatively. We find that the sales volume
is a hump-shaped function of the degree of persistence in agents’ valuation of the durable

goods. As valuations become more persistent, there are two margins. First, we find an



intensive margin: As persistence increases, the support of the distribution of asset holdings
also increases. Agents who just switched their valuation from high to low are matched
with agents who switched from low to high. Therefore, as the difference in their level of
ownership grows, so do the gains from trade, and they trade more goods. Second, there is
also an extensive margin: Because shocks are more persistent, fewer agents switch types.
Therefore, total sales can either increase or decrease. As the extensive and intensive margins
go against each other, sales are hump-shaped. However, we find that rentals are always
decreasing with persistence. As switching types becomes more likely, agents are unwilling to
alter their positions through asset sales, but they are willing to rent. Therefore, total rentals
are decreasing with persistence and are higher than total sales when the uncertainty is high,
or persistence is low.

Related literature Leasing by corporate firms has attracted some attention and our
paper relates to the literature on leasing capital goods. Gavazza (2011) studies the leasing
and secondary markets for aircrafts and empirically confirms that operators facing more
volatile productivity shocks are more likely to lease aircrafts than those facing less volatile
shocks. Similarly, we find that the rental volume is a decreasing function in the degree of
shock persistence. However, our model differs substantially from Gavazza (2011) in which
the frictions are monitoring and transaction costs. In contrast, the only friction in our
model is that agents meet in pairs. Our model is also related to the literature on leasing by
financially constrained firms (for example, Eisfeldt & Rampini 2009). However, agents that
are not financially constrained in our model still prefer to rent rather than to buy in some
cases.

The empirical literature on the repo market is large, but only a few papers explain the
usefulness of repo markets. As Parlatore Siritto (2015) shows, private information on the
quality of assets can be a concern, and the very fact that the seller is willing to repurchase the
asset is a guarantee that the asset is of good quality. In an environment with no commitment,
Mills & Reed (2008) argue that repos are useful to cover counterparty risk. However, it
is not clear why agents do not sell the collateral to obtain funding, especially as lenders
generally apply haircuts to the collateral.? Maurin, Monnet & Gottardi (2016) emphasize
the uncertainty in the asset payoff. Tomura (2013) uses the mechanism we propose to analyze
investment through dealers.

Our paper builds on several strands of the literature. First and foremost, our paper is

2See Lacker (2001) and Kehoe & Levine (2006) for models of collateralized debt. See Ewerhart & Tapking
(2008) for a model with repo contracts and endogenous choice of collateral.



related to the literature on over-the-counter markets initiated by Duffie, Garleanu & Pedersen
(2005) and generalized by Lagos & Rocheteau (2009). An important difference is that we
do not introduce matching frictions: Our agents meet with certainty, but they only meet
in pairs. This setup lets us characterize an equilibrium distribution of asset holdings, even
when holdings are arbitrary. We then obtain results on the distribution of assets. Lagos &
Rocheteau (2009) find that more severe search frictions are associated with less dispersion in
the equilibrium asset distribution. We find that, as it becomes more likely that agents will
have to readjust their portfolios, because of increased uncertainty about future valuation,
the distribution of asset holdings also becomes less dispersed.

The rest of the paper proceeds as follows. Section 2 describes the environment. Section
3 characterizes the Walrasian allocations in the benchmark case. Section 4 provides two
examples to illustrate the importance of pairwise matching and uncertainty about future
valuation for the coexistence of sales and rentals. Section 5 describes general allocations
attainable under pairwise meeting and bargaining. Section 6 solves for the equilibrium with
directed matching and solve for the equilibrium distribution and volumes in general. Section

7 concludes.

2. Environment

Time is discrete and the horizon is infinite. There is a continuum of anonymous agents. In
each period, there is a measure 1/2 of two types of agents, type h and type ¢. To be concise,
we will refer to agents of type h as agents h and to agents of type ¢ as agents ¢. At the
start of each period, the type of an agent may change. It stays the same with probability
m € [1/2,1], and it changes with probability 1 — 7 € [0,1/2]. We appeal to the law of large
numbers to guarantee that there is the same measure of each type in each period.

There is a durable good (durable(s), for short) or asset in positive fixed supply A. There
is another good (the numeraire, for short) that all agents can produce. Agents ¢ € {h,(}
derive utility u;(a) + x from consuming a units of the durable or the asset’s fruits and

from a (net) amount z of the numeraire — where x is negative if the agent produces.®> The

3 The amount a could also be seen as the quality of the good that is consumed. In the case of the asset,
we associate it with a Lucas tree: One unit of the asset yields one unit of some fruit, and agents derive utility
u(a) from consuming a units of the asset’s fruits. See Lagos & Rocheteau (2009) or Duffie et al. (2005) for

different interpretations of these preferences.



numeraire is used to settle trades so that settlement does not generate any net utility gains.

For simplicity, we impose the following condition,
Assumption 1. uj(a) > uy(a) for all a.

Therefore, for a given amount of durables, agents h have a higher marginal utility than
agents ¢, so agents h desire to consume more of the durables than agents /.

Agents can agree to trade durables. In this case, the seller trades some of the durables for
some of the numeraire, and the buyer gains ownership of these durables for the next period.
Or, agents can agree only to rent the durable: Then the lessor transfers some of the durable
this period but retains ownership over it next period. The renter gives the durable back to
the lessor after enjoying the benefits of holding it this period.* We assume that renters can
commit to giving back the good they rent, and we analyze the case with limited commitment

at the end of section 4.

3. Walrasian benchmark

We first consider the case where the trading stage is a Walrasian market. We denote by p”
the rental price for the durable and by p® the sales price for the durable. We consider only a
stationary equilibrium so that these prices are the same in each period. An agent i € {h, (¢}

holding durable a has a value W;(a), defined recursively as

Wi(a) = maxu(c;) —d+ BxWi(a)) + (1 —7)W_i(al)],
q; 97
st. p'q +p°q <d,
c=a+q +q,

r_ s
ai_a+Qi7

where d is the total amount of numeraire spent on renting and purchasing the durables. We

also use the usual convention that i # —i € {h,¢}. The agent decides to rent ¢/ and to buy

4Here, trade and settlement takes place the same time. Koeppl, Monnet & Temzelides (2012) model
delayed settlement more precisely. Notice that we model the surplus from trade as originating from
reallocating the durable from agents with low to high valuation for the asset. Alternatively, the surplus
from trade could originate from reallocating the numeraire, in which case the agent with a high value for
the numeraire will compensate the other agent. Also, notice that one interpretation of the model is that the
lessor agrees to a repurchase agreement in which the buyer buys an asset at date ¢ using a spot contract,
keeps the fruit that the asset yields at date ¢, and commits to selling the asset back to the seller at the start
of date ¢ 4+ 1 using a forward contract.



q;. Therefore, his current consumption ¢; may differ from his holding of durables for the next
period a}. Naturally, the rented amount ¢ does not enter into the continuation valuation

but only in the momentary utility w;(.). The first-order and envelope conditions yield

wi(er) + B [7Wi(a) + (1= m)W.(a)] = p°
ui(c;) = p',
Wi/(a) = p° (1)

Notice from (1) that all agents value an additional unit of the durable in the same way
when they enter the Walrasian market, independent of their type and of their holdings of the
durable. There are two reasons for this outcome: First, the utility is linear in the numeraire
such that there is no wealth effect, and, second, agents are playing against their budget

constraint. The equilibrium prices and quantities satisfy

(1-p8)p* = o,
up,(cn) = wy(ce) = p,

chL+c = 2A.

The first equation is a no-arbitrage condition: Agents have to be indifferent between renting,
in which case they have to pay the price p", and buying some durable at price p* and reselling
it in the next period at price Sp®. These two schemes are payoff equivalent and so should
be their cost. As a consequence, anything goes for renting, and, in particular, ¢; = ¢; = 0.
In other words, in a Walrasian market, there is no difference between renting or buying and
selling the asset: Rentals and outright purchases are perfect substitutes. Therefore, absent
any additional frictions, the Walrasian benchmark cannot explain why the rental market
exists. In the following sections, we depart from the Walrasian benchmark by assuming that

agents trade bilaterally (or over-the-counter), in which case they bargain over the allocation.

4. Two-period examples

In the first example, we illustrate the main mechanism at work in the general setup by
showing how future pairwise matching can explain a mix of renting and sales today, even

though (1) agents trade on a Walrasian market today and (2) agents know who they will



meet tomorrow.

We consider a two-period economy, where agents are endowed with some durables A in
the first period. Also in the first period, agents have access to a Walrasian market where
they can both sell and rent durables. An agent i € {h,¢} derives utility from consuming

durables in both periods and producing the numeraire according to the utility
Ui(c',d', ¢, d*) = u(c") — d" + Br [ui(¢®) — &°] + (1 — 7) [u_y(¢®) — ],

where uy(c) and uy(c) satisfy Assumption 1. Because the world ends at date 2, there is no
difference between rentals and sales at that date, as only the consumption of the durable
matters. However, we will show that pairwise matching at date 2 can explain the mix of
rentals and sales in the Walrasian market at date 1.

Let us first consider the problem of an agent ¢ with durables A in the first period when
the Walrasian sales price is p® and the rental price p”. Then, denoting the expected value

for the agent i of holding a; durable at date 2 by V;(a}), the problem of the agent i is

maXgs g Ui (Czl) —d' + BVi(a;),
st p'q +p°¢® < d,
i= AT+

t=A+ ¢

Using the first-order conditions for the two types, we obtain ¢} = ¢} and a} = a} fori € {h, (},

where

up(cp) = up(cp), (2)
Vilah) = Vi(ap), (3)

where the resource constraint is ¢; + ¢ = aj +a; = 2A. Prices satisfy p® = p" + 8V/(a}) and
p" = ui(c}). As the utility functions are concave, there is a unique pair (¢}, ¢;) that satisfies
(2) and the resource constraint. Similarly, if V; is concave, there is a unique pair (a}, a}) that
satisfies (3) and the resource constraint. Notice that the rental market is active whenever
af # ¢f. This result is what we will show below by solving for the functions V;(a).

In period 2, agents trade bilaterally. The matching rule specifies that each agent h is

matched with an agent ¢ and agents who switched types are matched together. Given that



the distribution of durables has a two-point support at the end of period 1, this matching
rule implies that agent ¢ holding durables a will be matched with an agent —i # ¢ holding
durables 2A — a. Therefore, in the equilibrium agents know exactly the type and holdings of
the agent they will meet. We assume that the agents h and ¢ bargain over the terms of trade
so that the consumption levels ¢7, ¢, and the payment d are the solutions to the following
bargaining problem at ¢t = 2:

0 1-60
MaXez 2 .a,00d |[Un(Ch) — d° —un(an)]” [ue(cf) +d® —ue(ar)]

s.t. ci ¢ =ap+a; =24,

where 6 denotes the bargaining power of the agent h. Let us emphasize that a; is not
necessarily equal to aj: Indeed, some agents ¢ holding a; may change type so that in period
2 some agents h are holding a; (and some agents ¢ are holding a}). Still, the matching is

such that in equilibrium aj, 4+ a, = 2A for all pairs. The first-order conditions give us

uy,(cr,) = uy(cy),
where ¢} + ¢; = 2A and d? satisfies

d* = (1= 0) [un(c;,) — un(an)] + 0 [ue(c) — uela)].

Therefore, the consumption of agents ¢ in period 2 is efficient, as in period 1. Using these
first-order conditions, we obtain the usual expression for the payoff of an agent of type 7
holding a units of the asset, v;(a) for i € {h,{(}:

vp(a) = up(a) +60S(a,ar), (4)
v(a) = u(a)+ (1 —0)S(ap,a), (5)

so that agents split the surplus S(ap, ar) = up(c;) +ue(c;) —un(an) —ue(ap) according to their
bargaining power. Notice that, contrary to the case with a frictionless market, the payoff is
not linear in the amount of durables held, but naturally depends on both agents’ holdings of
durables. In particular, a quick inspection of (4) and (5) and the bargaining problem reveals
that the agents’ outside options affect the marginal payoffs in period 2. While this effect
is well known, it is worth pointing out, because it explains why agents prefer to rent when

they could instead buy more durables.



We can now write the expected value for agent ¢ of holding durables a; at date 2 as,
V;(Cll) = m}i(ai) + (1 — ’/T)'U_i(ai).

Clearly, the marginal payoffs are sensitive to the holdings of durables because V" (a) < 0,
which confirms our initial guess that (3) was giving a two-point support distribution for
durables holdings at the end of the Walrasian market. Using (4) and (5), we can see that
V!(a) is a scaled weighted average of the marginal utility of each type, that is

Vi(a) = uj(c)) + m(1 = 0;) [wj(a) — wi(c])] + (1 = m); [u”(a) — ui(c])] , (6)

with the natural conventions 0, = 6 and 6, = 1 — . To derive (6) we assume that an agent
7 holding an amount of durables that does not belong to the equilibrium support of the
holdings distribution is almost surely matched with any agents of type —i who just changed

type. If # < 1, then (1) and (6) evaluated at a = ¢ imply
Vi () > uilcp) = up(c) > Vi(cq), (7)

so that at (cj,c;) there is a wedge between the value of present and future durables
consumption.® A quick inspection of (6) reveals why this is so: If an ¢ agent holds ¢},
he may switch to being a high type with probability 1 — 7. In this case, he holds too little
durables, in which case his marginal utility is higher. A similar intuition holds for agents h.

As the marginal continuation utilities V}/(.) across the two types are not equated at the
optimal consumption levels ¢} and ¢}, the current marginal utility u;(.) cannot be the same
at the optimal holdings a} and aj. Therefore, af cannot equate ¢f for ¢ € {h, ¢}, and both
the rental and the sales markets are active at t = 1. If 7 = 1, there is no wedge in the sense
that V/(cF) = ul(cf), and in this case af = ¢}: The rental market is inactive.

Notice that we could also obtain that rentals are not essential, i.e., V/(cf) = ul(c}),

by defining the bargaining power appropriately as a function of both agents’ holdings of
durables. Therefore, one could reinterpret our result in terms of bargaining power: Agents
rent, as they could later be matched with agents with too much bargaining power.

Figure 1 illustrates the choice of ¢; and ¢; as well as why the rental market is active
whenever the inequalities in (7) hold. On the left, figure 1 shows the intratemporal

indifference curves for u;(a) — d; for the two types of agents, where in equilibrium d, = —dj,.

5The wedge equals (1 — m)0;[u)(c}) — uj(c})], and it is negative for agents h and positive for agents /.
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These indifference curves are tangential at the equilibrium consumption level (¢}, ¢}), where
¢ +c; = 2A (the axis for d is reversed). On the right, figure 1 superimposes the intertemporal
indifference curves V;(c)—d;. As (7) holds, the intratemporal indifference curve of the agent h
is steeper than its intertemporal indifference curve. Inversely, the intertemporal indifference
curve of the agent ¢ is steeper than its intratemporal indifference curve. Therefore, and as
illustrated in figure 1, the intertemporal indifference curves for both agents will be tangent
at a point northwest of (¢j,c)). The difference between intertemporal and intratemporal
indifference curves explains why renting is useful: Asset sales alone are leaving unexploited
gains from trade.

This example shows the importance of an agent’s outside option to bargaining: It is
this outside option that determines the marginal value of holding durables. Holding too
little durables would give a bad outside option, and, as V;’(a) < 0, holding too much may
cost too much relative to the additional benefits. This problem explains why agents do not
want to take extreme positions where they would rent or sell everything. Also, this example
illustrates that it is the hold-up problem from pairwise trading which matters for the result,
as well as the random matching off equilibrium. Below, we will show that this result holds
true in the more general set-up.

Finally, how does the sales market react to a shock to the rental market? Suppose that
the rental market shuts down in the first period so that agents can only buy or sell durables.
In appendix 8.1., we show that agents h will purchase more than a;, as they want to get
closer to ¢; today, and because they will not be able to do so by renting, the sales volume
will increase. However, agents h will not buy as much as ¢, as they may face a hold-up
problem tomorrow. Therefore, agents will buy some amount between a; and cj. The spot
price with no rental market will then be p* = wj(as) + BV} (as) for some a, € [a},c]. It
is difficult to say how the sales price will move, however, as there are two countervailing
effects: First, more durables is desirable, as agents are able to consume more today and
this increased sale volume tends to increase the sales price. At the same time there is a
second effect in play. The hold-up problem is more severe than with rentals, as agents have
to keep any asset they buy, and this effect tends to decrease the sales price. Which effect
dominates depends on the curvature of the utility function. In the case of the CRRA utility
function with up(a) = aue(a), we find that the sales price is lower when the rental market is

inoperative, for all possible levels of persistence.
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Security deposit In the case of small- (and sometimes large-) ticket items, the lessor can
require a security deposit that can be substantial and even as large as the sales price. In
the context of this two-period example, we want to show how a security deposit can arise.
We first need to introduce the notion of security deposit s per unit of durables. When the
rental price includes a security deposit, the effective rental price is p” + s and the lessor rents
some durables at price p” in the first period with the promise to return the security deposit
d when the renter returns the durables. To have a notion of default risk, we suppose that a
fraction ¢ of agents h or ¢ (but not both) can choose to keep the durables they are renting.
Therefore, the security deposit must guarantee that all agents execute the second leg of their
rental agreement.

In the Walrasian market, agents of type ¢ solve the following problem:

maxg g wi () — (" +8) ¢ —p° - ¢*++B8{s ¢ +Vila)},
s.t. c=A+q¢+q",
a, = A+ ¢°.

7

The solutions to both problems imply
P+ s — Bs = uy(cp) = ulcy)

and
p° = w(ch) + BVi(a) = wi(cq) + BV (ap),

where V/(a) is given in (6). The security deposit is set such that no agent defaults. As the

marginal benefit is higher for agents h, they do not default whenever
sh = vh(ap) = (L= 6n) - wjp(ap) + On - wj(ch).

In the case where the renter can default, the lessor, the agent ¢, will apply such a high
security deposit that the overall transfer in a rental agreement is higher than the sales price.

That is, the security deposit satisfies
p* =y (cp) + BVi(an) < up(cp) + Bup(an) = (" + 50— B - sn) + Bsp = p" + s

In the second case, where the lessor, the agent ¢, can default and fail to return the deposit,

12



the security deposit should induce the lessor to reclaim even the very last rented unit, or
se = vylag) = Op - uplag) + (1 — 6h) - ().

Then the agent ¢ receives p” 4+ s units per each unit of durables rented rents to the agent h,

and there is a small and even negative security deposit, as
p* = uy(cy) + BV/(a7) > wy(cy) + Bg(ay) = (p" + 8¢ — B~ s¢) + Bse =p" + se.

When the security deposit is negative, the lessor is paid when the rented durables are
returned.

Note that in both cases, the (positive or negative) security deposit is independent of the
probability of possible default §. But the deposit is a function of the type persistence, 7, and
the value of durables for different types.® In both cases, the security deposit is increasing in
our measures of uncertainty: as m decreases to 1/2, or as agents become more risk averse, the
ratio of security deposit to sales price increases, as shown in figure 2. The intuition is that,
as m — 1, agent i’s expected marginal value of holding the good is very close to his marginal
value in the second period, that is, V/(a}) is close to vi(a}) for i € {h,¢}. Therefore, the
sales price that accounts for the expected marginal value has to be close to the rental price,
which accounts for the marginal value in the second period. Symmetrically, as 7 — 1/2,
the difference between the expected and the realized marginal values, and thus the security

deposit, increases.

5. Pairwise meeting and bargaining in infinite horizon

In this section we return to the infinite horizon setup for our analysis. We assume that
each agent h is matched with exactly one agent ¢ when trading. We describe the matching
technology later. We consider allocations that are the solution to a bargaining game between
both agents. We will consider a generic meeting between an agent h holding a generic amount
of durables a;, and an agent ¢ holding a generic amount of durables a,. An allocation is a
triple {¢*(an, ar), ¢" (an, as), d(an, as)}, where ¢° denotes the quantity of durables that agent
h buys from agent ¢ (sells if negative), ¢" is the quantity of durables that agent h rents from

agent ¢, and d is the numeraire transfer that agent h makes to agent ¢ (receives if negative).

6For financial assets, this finding is as in Krishnamurthy, Nagel & Orlov (2014), who find that haircuts
(akin to security deposit for financial assets) do not depend on the risk characteristics of borrowers.
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We focus only on stationary and symmetric allocations. An allocation is feasible if

qs(ah) af) € [_aha a’@])

qr(ahaaf) +qs<ah>a€) € [_ahagﬁ]'

Notice that we do not allow short selling. We will denote by (g%, ", d) the feasible allocations
for all possible matches such that (q° q",d) defines invariant distributions of durables
holdings for agents h and ¢. We denote these distributions by p;(a) for i € {h, ¢}, where we
have dropped the reference to the allocation for convenience. If they exist, a property of any

pair of invariant distributions is that

%/ad#h(a) +%/adue(a) = 4.

Then we can define recursively the expected value for agent i € {h, ¢} of holding durables a

before trading, V;(a), as

Vi(a) = W/[uh(ch(a, ap)) — d(a,ap) + BVi(a + ¢°(a, ar))]dpe(ay) (8)

+ (I—m) /[W(CZ(% a)) + d(an, a) + BVi(a — ¢*(an, a))]dpn(an),

where ¢ (a,a;) = a+ ¢*(a,ap) + ¢"(a,ap) is the durables consumption of a type h endowed
with a units of durables matched with a type ¢ holding an amount a, of durables. Similarly,
colan,a) = a — ¢*(ap,a) — ¢"(ap, a) is the durables consumption of a type ¢ endowed with
a units of durables matched with a type A holding a; units of durables. With probability
m, an agent h maintains his type. Then he meets an agent ¢ with durables a, according
to the distribution p,. Because he remains an agent h, he enjoys instant utility u(.) from
consuming a + ¢°(a, a;) + q"(a, a;). However, he only carries a + ¢*(a, ay) to the next period
with a value 5V},(a+ ¢*(a, as)), and he rents the difference. With probability 1 — 7, an agent
h becomes an agent ¢. In this case, he meets an agent h according to the distribution uy
and he enjoys instant utility u,(.) from consuming a — ¢*(an,a) — ¢"(an,a). He values his

ownership according to SV;(a — ¢*(ap,a)). Similarly for agents ¢,
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Via) = = / fuecr(an, @) + d(an, @) + BVi(a — ¢*(an, a))]djun(an) (9)

+ (1—m) /[uh(ch(a, ag) — d(a, ar) + BVi(a + ¢*(a, ap))]dpe(ag).

We assume that agents cannot commit to ex-ante participation, and an allocation (q°, q", d)
is individually rational if all agents prefer the allocation to being in autarky this period.
That is, for any endowment a, an agent h matched with an agent ¢ with an endowment a,

prefers the allocation to not trading today, that is,

up(cp(a,ap)) — d(a, ap) + BVi(a + ¢*(a, ap)) > up(a) + BVi(a),

and similarly for an agent ¢ matched with an agent h with endowment ay,
we(co(ap, a)) + d(ap, a) + BVi(a — ¢°(an, a)) > we(a) + BVi(a).

With general Nash bargaining, where agents h have bargaining power 6 € [0, 1], the
allocation of an agent h with endowment a; matched with an agent ¢ with endowment a,

solves the following problem:

q@%ﬂ[uh(ch) —d+ BVi(an + ¢°) — un(an) — SVa(an)]’

x[ue(ce) +d + BVy(ar — ¢°) — ue(ar) — BVi(ar)) ",

subject to the allocation being feasible. The first-order conditions for an interior solution
7

are
Vilan +¢°) = V/(ae —q°), (10)
uy(cn) = uylee), (11)
d(an, ar) = (1= 0)[un(cn) — un(an) + BVi(an + ¢°) — BVi(an)] (12)
—0[ue(ce) — uelae) + BVilae — ¢°) — BVi(ar)).
Equations (10) and (11) characterize the allocations ¢°(an,a;) and q"(ap,ar) = co —

"In the case of a corner solution where ¢* = ay, (10) becomes V}/(a +¢°) > V/(a; — ¢%), while in the case
where ¢° 4+ ¢" = as, (11) becomes u} (an, + ag) > u}(0).
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lae + ¢*(ap,ap)]. Inspecting (10) and (11), we see that agents rent whenever ¢, # an + ¢°
and ¢, # a; — ¢°. In addition, notice that (11) together with ¢, + ¢, = a5, + ap uniquely
define ¢, and ¢,. The transfer d(ay,as) redistributes the surplus from trade according to
the bargaining weights. Finally, notice that the allocation depends on the distributions of
durables p; fori € {h, £}, as they affect the value functions V;. Therefore, to fully characterize
the equilibrium with an invariant distribution, we need to specify how agents are matched. In
the next section, we assume that agents direct their search, and we study random matching

in appendix 8.5.

6. Directed search

We now describe a rather sophisticated matching technology. Following Corbae et al. (2003),
we use a directed search: The matching function specifies that agents who switched types
are matched together. Therefore a “new” agent h will be matched with a “new” agent /,
while an “old” agent h is matched with an “old” agent £.® Below we verify that this matching
function is an equilibrium matching rule (where such a term is precisely defined). We devote

the rest of this section to the following result.

Proposition 2. With a directed search, there is an equilibrium characterized by a degenerate
distribution of durables for each type at some level a; for i € {h,{} with ¢°*(an,as) = 0,
¢*(ag,ap) = ap, — ag, and ¢"(ap, ar) = q"(ae, ap) = q" where q" solves uy (ap +q") > uy(ar—q")
(with equality if ¢" < ay).

In other words, each agent i € {h, ¢} is holding a specific amount of durables, either a,
or ay, for agent h and £, respectively. Agents who did not switch type just rent. Agents who
switched type adjust their holdings of durables to their type’s level. Then they rent as if
they did not change type. Loosely speaking, agents first access the sales market to adjust
their holdings of durables and then rent if they want to consume more or less.

Suppose that there is a pair (ap,a,) such that the functions ¢" and ¢° specified in
Proposition 2 satisfy conditions (10) and (11). To verify that this pair forms an equilibrium,

we first need to verify that an agent would not prefer to be matched with a different agent

8Thus, matching only depends on an agent’s type and whether an agent just changed type. It turns
out that in equilibrium this matching function will maximize the gains from trade in each match, so that if
agents could choose, they would actually want to be matched in this way.
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than the one he is assigned to and that no other agents would prefer to interact with that
agent rather than trading with their assigned agents. In the terminology of Corbae et al.
(2003), the proposed matching rule is an equilibrium matching if no coalition consisting of
one or two agents can do better (in the sense that the discounted lifetime utility of all agents
in the coalition increases) by deviating in the following ways. An individual can deviate by
matching with himself (i.e., being in autarky this period) rather than as prescribed by the
matching rule, and a pair can deviate by matching with each other rather than as prescribed
by the matching rule. It should be clear that the bargaining solution is always weakly better
than autarky. Hence, we only have to consider a deviation by two agents. However the
matching rule maximizes the gains from trade for those agents who just switched, so these
agents would be worse off if they were matched differently. It follows that the matching rule
is an equilibrium matching rule.

We now show that given the functions ¢" and ¢° specified in Proposition 2, there exists
an equilibrium support {ay, a,} for the distribution of assets. We first consider the terms of
trade for renting and selling the asset. The rental price is d(ay, as), the transfer between an
agent h holding a, and an agent ¢ holding a,. Indeed, there are no sales in this match, as
agents h and ¢ keep the same amount of durables through the next period. The rental-sales
price is d(ay, ay), as agents h and ¢ now rent but also change their holdings of durables. In

appendix 8.3., we show that

d(an,ar) = (1 —0)[un(en) —un(an)] + Oue(ae) — ue(ce)l,
d(ag, an) = d(an,ae) +u+ B(1 = 0)[Vi(an) — Vi(ae)] + BO[Vi(an) — Vi(ar)],

where

U= (1 — 0)[uh(dh) — uh(dg)] + Q[Ug(dh) — Ug(dg)].

As expected, d(ay, ap) > d(ap,ar), and the combined rental-sales price is composed of the
rental price, plus the weighted present and discounted lifetime gains of switching holdings
for agents h and /.

The directed matching technology specifies that an agent h with a, meets an agent ¢ with
an and an agent h with a;, meets an agent ¢ with a,. Given ¢°(ay,a;) = 0, ¢°(ag, an) = an—ay

and ¢"(an, ag) = q"(ag, ap) = q", we obtain the following value functions:

Vi(an) = wlun(en) — d(an, ae) + BVi(an)] + (1 — m){ue(ce) + d(ae, an) + BVe(ae)),
Vi(ae) = wlue(er) + d(an, ae) + BVi(ar)] + (1 — m)[un(Cn) — d(ae, an) + BVi(an)].
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Notice that we need to specify the value of the outside option in order to solve for the
bargaining solution in equilibrium, i.e., Vj,(a,) and V;(ay,). Because the matching technology
pairs agents who just changed type, an agent h holding a, (respectively, a;) will be paired
with an agent ¢ holding @, (respectively, a,), irrespective of their trading history.® Therefore,

we obtain

Vi(ae) = wlup(cn) — d(ae, an) + BVi(an)] + (1 — m)[ue(Cr) + d(an, ae) + BVi(ar)],
Vi(an) = wlue(er) + d(ae, an) + BVi(ar)] + (1 — m)[un(cn) — d(an, ae) + BVi(an)].

Using these value functions, we find

d(ag,an) = d(ap, a
(@, ap) = d(an, ar) + -3
so that the value of selling durables is just u/(1 — ), the lifetime discounted surplus from
adjusting one’s holdings. Notice that a, converges to a, as m — 1/2, so that « — 0 and
selling durables has no value. In appendix 8.3., we characterize the bargaining solution with

directed matching ¢, a, and a,.

Proposition 3. The degenerate supports ay and a, of the two distributions with bargaining

are fully characterized by the following equations:

up(@n) = (@),
u(G) = [T — (27 — 1)B)[0u)(ar) — (1 — O)uj(an)] — (1 — m)[0uj(an) — (1 — 9)%(@)]7

(2r = D(1-B)(20— 1)

Cch+ ¢ = ap+ap=2A.

These equations imply that agents A and ¢ hold the same amount of durables, a, =
ap = A, when types are not persistent, 7 = 1/2. In this case agents only rent and never
conduct any sales, ¢° = 0 and ¢" > 0. This result is intuitive: When an agent’s type today
is unrelated to his type tomorrow, all agents have the same future value of owning durables,
irrespective of their current types, and so they equate their holdings. The reverse holds in
the case with full persistence, m = 1. Then agents neither rent, buy, or sell: ¢" = ¢°* = 0 and
the distribution of durables satisfies uj(a;) = uj,(ay). Again, this is intuitive: When types are

permanent, agents know that they always value durables the same way. Therefore, they just

9Notice that in equilibrium, there is always trade unless 7 = 1 in which case agents never switch type so
this ad-hoc rule is never used.
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hold the amount they need and they never trade. We can then vary the degree of persistence

to obtain market volumes as a function of persistence, as shown in figure 5.

Corollary 4. a; — ay, > 0 is increasing in w. The sales volume is hump-shaped in 7, while

the rentals volume is strictly decreasing in .

With 7 = 1/2 we know there are no sales, and agents h just rent durables from agents ¢.
Types are more persistent when 7 increases. An agent h’s valuation for durables increases,
and starting from a;, = a, = A, there are now gains from trade between agents h and ¢. There
is an intensive margin: As 7 increases, the difference in the equilibrium ownership level of
durables between agents h and ¢ increases. Therefore, agents who just changed their type to
h buy more from agents £. However, there is also an extensive margin: As 7 increases, fewer
agents switch types and so fewer pairs of agents trade. The combination of the extensive
and intensive margins explains why asset sales are hump-shaped in 7. In contrast, the rental
volume is always decreasing with persistence. As 7 increases agents adjust their position
to the optimal quantity of durables they would like to hold absent any future uncertainty.
Therefore, they need to rent less to achieve the efficient level of consumption as 7 increases.
As a result, the total rental volume is decreasing with 7 and is higher than the total sales
volume when 7 = 1/2. Finally, when 7 = 1, agents know their type for sure. Hence, in
equilibrium, all gains from trades (sales and rentals) are extinguished and there are neither
sales nor rentals.

Additionally, we can find the rental and sales prices.

Corollary 5. Let p" be the rental price and p® the sales price. Then

o= (1 = 0)[un(eh) — un(Cn — q")] + Olue(Cr + ¢") — (@)
q ’
po= L= —a7) —wn(e+ a7+ Ofue(en = 0') — wele + )]
(1= B)(a@n — a) .

We find these prices by using the definition of the payments d(ay,as;). Because agents
who did not switch types only rent, we infer that d(ay,a,) = p"q". Therefore,

pq" = (1= 0)[un(cn) — un(@n)] + Oue(ar) — we(er)].

A pair of agents that switched conducts both a sale ¢° to adjust their position, and then

a rental ¢", so the transfer includes both transactions d(as, an) = p"q¢" + p°¢®. And, as
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d(ag,ap) = d(ay,ap) +u/(1 — ), we obtain that

U

=13

S .S

pbyq

Using the expression for @, with ¢° = a, — a,, we get the result.

Figure 3 shows how aj, (red curve) and a, (blue curve) evolve as 7 varies from 1/2 to 1.
The parameters chosen are § = 0.5, A = 0.1,0 = 2,5 = 0.9, and A = 50. Interestingly, the
rate of divergence increases as types become more persistent. Hence, as m becomes large,
we should expect some movements in prices and quantities. This intuition is confirmed by
figure 4, which shows rental and sales prices.

Similarly, the total rental volume ¢" and total sales volume (1—m)¢® display very different
patterns, as illustrated in figure 5. At © = 0.9, the total rental volume is approximately 20
percent of the stock of durables, while total sales are only 1 percent. Finally, the coefficient

of risk aversion ¢ has the largest effect on volumes and prices.

7. Conclusion

What should one do with the pair of crampons used to conquer Denali, or the chainsaw
used to put down the old cherry tree? Omne could sell these barely used items, accepting
the low-ball offer, or just rent them. The possibility of renting will affect the price at
which one is willing to sell or buy these items. In other words, the rental market for some
durables can have important consequence for sales. Many shops, for example Home Depot
and car dealers, have long recognized the interaction between rentals or leases and sales by
offering both options to their customers. In this paper, we analyzed this interaction using
an environment with trading frictions where agents can rent and buy. The model is simple
and concentrates on the simple idea that trading frictions are enough to explain why agents
could prefer to rent a good when they can afford to buy.

Our model has several implications that we list here. (1) Absent the possibility to rent,
more severe trading frictions imply a drop in sales volume and an increase in sales price. (2)
Adding a rental market to our model predicts a decline in sales and an increase in the sales
price, and some agents will now rent. (3) In an increasingly uncertain environment (where
valuation becomes less persistent), our theory predicts an increase in rentals. Sales, however,
could go both ways (see figure 5), but the theory predicts a decrease in the sales price. (4)

Finally, we expect there will be more rentals and fewer sales as the hold-up problem induced
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by bilateral trading becomes more prevalent: Our theory predicts an increase in rental volume
as the bargaining power distribution becomes more skewed.

In appendix II, we offer many extensions to better understand this basic trade-off. First,
we analyze the effects of patience. We may expect rentals to become less useful when agents
become more patient: As future trades become more important, the current losses from the
hold-up problem are less important relative to the future benefits of holding the right amount
of durables. Second, we consider whether agents’ ability to trade often once they receive a
shock affects renting. Again, trading often should reduce the hold-up problem, as agents get
closer to a Walrasian market, where they can buy from a large pool of sellers. Therefore,
we expect the rental volume to decline with agents’ ability to trade often. Nevertheless,
rental volumes remain positive, because even with highly frequent bilateral trades, the
outcome of these trades still depends on the level of ownership and the bargaining power
of the participating agents. Third, we also analyze a different option for future trades: We
assume that agents have the option to trade on a Walrasian market from next period on.
This assumption weakens the hold-up problem today as tomorrow’s option becomes better.
Fourth, we study the effect of a wedge between the cost of renting and selling, such as a
rental tax. We show that renting is robust to such a tax. Finally, in our framework, agents
switch from being borrowers or lenders as they switch types. This assumption may appear
unrealistic, as some market participants are always on the same side of the rental market.
So we study a slightly modified version of the model that agents have ex-ante heterogeneous
valuations for the asset and face preference shocks. Agents still prefer to adjust their holdings
temporarily, thus, the model accounts for the fact that some market participants are always
a renter or lessor.

Of course, our set-up does not fit a particular market exactly but aims at capturing the
important features of markets where agents could buy the item but choose to rent it instead.
Some rentals markets, such as housing, do not satisfy this assumption: Ordinary people
can hardly buy a home with cash. But our environment makes clear that uncertainty and
trading frictions are key to explaining rentals in markets for other (maybe) smaller-ticket
items — although what is a small-ticket item for one can be a large-ticket item for another.
While our model has some implications, they are necessarily quite general and may not fit
one particular case. To understand the rentals market for a specific good, one will need to
focus on the specifics of that market (for example, see Gavazza, Lizzeri & Roketskiy (2014)),
but this specifity is beyond the scope of this paper, which aimed to highlight a basic trade-off

between renting and selling.
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8. Appendix I

8.1. Shut down of the rental market

In a two period example of an economy, with Walrasian markets in the first period and
bilateral trade in the second period, the competitive price for the outright sales market, as

a function of persistent 7, is given by

P = )+ [ (aq) + (1 ()]

= )+ [maa) + (1= )]

where ¢ and o are efficient consumption and ownership of durables for type i € {h, (}.
Now assume that only the sales market is active and agents cannot rent to adjust their

consumption in the first period. In this case, ¢; = a;, and the sales price will be given by

pi(m) = uM(an) + 5 [mu™ (an) + (1 — m)u”(a,)]

= u”(ay) + g [mu(ag) + (1 — m)u™(ay)] ,

where a; is the consumption and ownership of durables of type i € {h,¢}. Note that for

7 € (3,1] we have
g<a<a, <A< a,<a,<cgc, (13)

with the equality holding for 7 = 1, in which case p*(1) = p*(1).

If we assume that u"(c) = a - u‘(c) = a - u(c), for a given o > 1, then we can show that

e e A TA i Ry
and
o R it i 14 B R
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If u(-) is CRRA and o = 72/,/((5))'6, using the fact that a, + @, = aj, + a; = 2A, we have

> B (ap)"7 = (a;)'°
o~ gl 2A ’
dﬁs B 6 (&h)l_a_(df>1_a
i L 2A

Hence, if 0 > 1 then p® and p° are both decreasing in 7, and for 0 < 1 they are increasing in
7. Moreover, given (13) for both cases of ¢ > 1 and < 1, we have p* < p*.1% In other words,

the possibility of renting increases the sales price of durables.

8.2. Proof of Proposition 2

We show that no two agents benefit from being matched with each other more than their
prescribed partner. It should be clear that the bargaining solution is always better than
autarky, even though not necessarily in a strict sense. Therefore, we only need to check
deviations by a coalition of two agents. An agent ¢ with a; could decide to form a coalition
with an agent ¢ with a, or an agent h with a;. It is a property of the bargaining solution that
an agent ¢ will obtain a lower payoff being matched with an agent h with a higher amount of
durables. Indeed, the agent ¢ can extract less from a relatively rich agent h, as the marginal
utility of obtaining more durables is lower for this agent. Hence, an agent ¢ with a; prefers
to be matched with an agent h with a,. Also, it is a property of the bargaining solution that,
given he has to meet an agent holding a, an agent ¢ prefers to be matched with the agent
with the highest marginal utility, who will be an agent h.

We now turn to agents h. An agent h with a, could decide to form a coalition with an
agent h with @, or an agent ¢ with a,. As above, however, it is a property of the bargaining
solution that the payoff of agent h matched with an agent ¢ is higher whenever the agent ¢ is
holding more durables. Hence, agent h will not want to be matched with an agent ¢ holding
as. Also, an agent h with a,, prefers to be matched with the agent holding a, with the lowest
marginal utility, that is, with an agent ¢. Therefore, there is no coalition of two agents where
both agents would do better than under the prescribed matching technology. This result,

combined with the distribution over {a, a,}, shows that we have an equilibrium.

0Tf ¢ = 1, i.e., agents have a log utility, then p® and p° are equal and independent of .
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8.3. Proof of Proposition 3

The value functions are

Vi(an) = mlup(an +q") — d(an, ag) + BVi(an)] + (1 — 7)[ue(@e — q") + d(ae, an) + BVi(ar)],
Vi(ae) = mlue(@a —q") +d(an, ar) + BVe(ae)| + (1 — m)[un(@n + ¢") — d(ar, an) + 8Vi(an)).

Adding the above equations, we obtain

up(an +q") 4+ ug(ay — q")

Vi(an) + Vi(ae) = 1-3

Vi(ae) = wlun(an +q") — d(ag, an) + BVi(an)] + (1 — m)[we(ae — ¢7) + d(an, ar) + BVi(ae)),
Vi(an) = wlue(ae —q") + d(ae, an) + BVi(ar)] + (1 — m)[un(an + ¢") — d(an, ar) + BVi(an)).

Adding the above two equations, we obtain
Vi(ag) + Vi(an) = Vi(an) + Vi(ae). (15)
From the first order conditions of the bargaining problem, we then can compute d(ay, ay) as
d(an, ag) = (1= 0)[un(an+q") — un(@n)] — Olue(ar — q") — we(a)), (16)

where we have used (14) and (15) and the fact that ¢°*(ay,a,) = 0. Therefore, using (16) we

obtain

up(an, + q") — d(an, ao) + BVi(an)
= up(an) + BVi(an) + 0un(an + q") +we(ae — q") — un(@n) — ue(a)].

Also

we(ap — ") + d(an, ae) + BVe(ar)
= w(ae) + BVi(ag) + (1 = O)[un(an + q") +we(ae — q") — un(an) — ue(ae)].
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In a similar fashion, using ¢*(ay, a,) = a, — a,, we can rewrite d(ay, a) as
d(ae,an) = d(an,ar) +u+ B(1 = 0)[Va(an) — Valae)] + BO[Vi(an) — Ve(ap)],

where
u=(1—0)[un(an) — un(ae)] + Olue(an) — we(ae)).

Therefore, using (15) and (17) and simplifying we obtain

ug(ap — q") + d(ay, ar) + BVi(ae)
= w(an) + BVe(an) + (1 — 0)[un(an + q") + we(@r — ¢") — un(ar) — we(an)).

Similarly

up(an + q") — d(ag, an) + BVi(an)
= up(ay) + BVilae) + Oun(an + q") +we(ae — q") — un(@e) — we(an)].

Hence, combining all these expressions, we obtain

Vi(an) = wlun(an) + BVi(an)] + (1 — m)ue(an) + BVe(an)] + 70S + (1 — w)(1 — 6)S
Vi(ay) = nlue(@e) + BVi(ae)] + (1 — m)[un(@y) + BVi(ae)] + 7(1 — 6)S + (1 — )85,
Vi(ae) = mlun(@e) + BVi(ae)) + (1 — m)[ue(ae) + BVe(ar)] + (1 — 7)(1 — 0)S + 765,
Vi(an) = wlug(@n) + BVi(an)] + (1 — o) [un(@n) + Vi(@n)] + (1 — 7)8S + (1 — 6)S

Solving for Vj,(ay), we obtain

(1 = m)[ue(@n) + (1 = 6)S] + [r — (27 — 1)B[un(@n) + 6]
1—2r—1)p

(1= B)Valan) =
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And taking the derivative, we have

up(an)(1—7) + [m — (27 — D) (@) + (1 — 7)(1 — 0) 25 + 022 (7 — (27 — 1)

Using the first order condition for ¢", we obtain after some simplifications

(1= B)(1 - 2n = B)Vilan) = (a1 — )+ (@)1 - O)fr — (2x — 1)
+uj,(ap +¢")[1 — 7+ (2 — 1)(1 — B)0].

Since (14) holds, we use the first order condition for ¢" and simplify to obtain

(1=8)1—-@2r-1B)V/(a) = wla—q")[r—2r—1)B+1-pB)0)]+ (1 —m)(1—0)ua)
+0[r — (2 — 1) Bluy(ay).

The first order condition for ¢* imposes that V/(ay) = V/(as). Using the fact that uj(a,—q") =

uy,(an, + ¢") and simplifying, we obtain

[ — (27 = DB][0us @) = (1 = O (@0)] — (1 = m)[Buy(an) — (1 = O)uf(an)]

w,(@n+4q") = 2r—1)(1—-p)(20 — 1)

Together with the first order condition on asset sales and the feasibility constraint, this

completes the proof.

8.4. Proof of Corollary 4

The equilibrium allocation is given by

u,(n) = uy(ce),
d () = [ — (2m — 1)B][0u}(@e) — (1 — 0)uly(@n)] — (1 — 7)[0uj(an) — (1 — O)u, @)]7

(2r = D)(1 - B)(20 — 1)

Gh+C = an+a =2A.

Let




and

1—m
“@lm) =07
then o) (1) = a4(m) = (%’%)2 < 0. And we can rewrite (18) as

up(en)(1 = B)(20 — 1) = on () [Ouy(ae) — (1 — O)uj,(@n)] — aa(m)[Buy(an) — (1 — O)uy, ().

Notice that ¢, is not a function of 7, so that using a, + a, = A and the implicit function

theorem, we have

0 = af(m)[Buylae) — (1 — O)uj(an)ldr + a (m)[—0uf (A — an) — (1 — O)uj (an)ldan
—ap(m)[Buy(an) — (1 = O)uj(ar)ldm — as(m)[buy (@n) + (1 = O)up (A — a@n))day,

which we can simplify as

day, o () {0 [uy(ae) = wy(an)] + (1 = 0) [uy,(@r) — wj(an)]}

dr ()0l (A —ap) + (1 — 0)u(an)] + ca(m)[0udl(an) + (1 — O)ul (A — ap)]

Since w}(ag) > w}(ay) for both ¢ and of(7) < 0, the numerator is negative. Concavity of the
utility function implies that the denominator is also negative. Therefore we have day /dr > 0.

Given m, the rental volume in this economy is given by ¢", because all agents rent, while
the volume of asset sales is given by (1 —7)¢* = (1 —7)(a — as). Clearly, the sales volume is
hump-shaped as when 7 = 1/2, we have a; = a, so that ¢° = 0, while when 7 =1, ¢°* =0 as
well. However, (1 — 7)¢® > 0 for all other values of 7. Because, the problem is continuous,
sales volume is hump-shaped. Also, the fact that ¢, = a;, + ¢" is a constant implies that
total rental volume (i.e., ¢" because all agents rent) is declining in 7. Agents do not rents

when 7 = 1, therefore, the rental volume is declining to zero with 7.

8.5. Random matching: special cases

Here we study two extreme cases with either 7 = 1/2 or # = 1 when an agent h is randomly
matched with an agent ¢. In the case with m = 1/2, preference shocks have no persistence
and current preferences do not give any information on future preferences. In the case with
m = 1, preference shocks are fully persistent as they are fixed forever.

With no persistence and random matching, we obtain the following result.

Proposition 6. With random matching and m = 1/2, there is a unique invariant equilibrium
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characterized by a distribution of durables ownership levels for each type that are degenerate

at some level a = A with ¢°(a,a) =0, and q"(a,a) > 0.

In the case without persistence, (8) and (9) imply that Vj,(a) = Vi(a) for all a, such that
agents h and ¢ enjoy the same value of holding durables. In this case, (10) implies that
an + ¢*(an, ag) = ag — ¢*(an, ap) with ¢*(apn,ap) > 0, if and only if a; > a;, and ¢*(an, ap) <0
otherwise. That is, agents leave the match holding the same quantity of durables. Hence, the
unique invariant equilibrium is one where the distribution of durables holdings is degenerate
at a = A and ¢°(a,a) = 0. This is very intuitive: Because all agents give the same value to
future returns, they extinguish all surplus from trading durables by averaging their holdings
(i.e., once an agent holding a; trade with an agent holding ay, they both end up with
(an + ag)/2) and in equilibrium they hold the same amount of durables. Then (11) together
with Assumption 1 imply that ¢"(a,a) > 0: While agents value future durable consumption
the same way, they differ in their valuation of current consumption. Therefore, there is a
benefit from renting.

With full persistence, however, there is an equilibrium with neither sales nor rentals in

equilibrium.

Proposition 7. With random matching and m = 1, there is an equilibrium with a degenerate
distribution of durables holdings for each type at some level ay and a, with a, > ay, where

¢*(an,ap) =0 and q"(an,a;) = 0.

We will first verify that the proposed allocation is an equilibrium. Because ¢*(ay,a,) = 0
and ¢"(ay,a;) = 0, equation (12) implies that d(ay,a,) = 0. Using (8) and (9), we then have
for i € {h,(}

e

Vi) — 1@'(_‘_“5), (19)

and (10) and (11) imply that a; and a, are uniquely given by

with a, = 2A — a,. This verifies that there is no sales or rentals in the equilibrium. Also,
combining the last equation with Assumption 1, we can verify that a; > a,. This equilibrium
is unique whenever endowments are symmetric across all agents (and no constraint binds

— which may happen if some agents ¢ are endowed with too much durables in the first
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place) so that all agents ¢ hold the same amount a, and all agents h holds a;. To see this
point note that if an agent h endowed with a; meets an agent ¢ endowed with a,, then the
bargaining solution imposes that they trade so that (11) holds. But the unique solution is
ap + ¢*(ap, ap) = ap and ay — ¢*(an, a;) = ap. Because aj, + ay = 2A, such a ¢° exists and
takes the agents directly to the equilibrium distribution of durables holdings.

For general levels of persistence 7 € (0,1) and random matching, we are unable to
determine analytically the total sales and rentals volumes, as we cannot solve analytically
for the invariant equilibrium distribution of durables holdings.!! We suspect that as an agent
¢ is better endowed, he will sell more to agent h, and as agent h is less endowed, he will buy
more from agent ¢. This would hint to more trade as agents valuations differ and we would
expect that the distributions of asset holdings become more spiked around their respective
mean aj and ay as 7 increases, where the means are diverging as 7 increases. However, since
agents can switch randomly from one type to the other, it is difficult to fully characterize

the equilibrium without resorting to numerical simulations.

1This is a usual problem in models with pairwise trade and arbitrary holdings. Agents in Kiyotaki &
Wright (1989) or Duffie et al. (2005) trade an indivisible asset with a unit upper bound. Lagos & Wright
(2005) introduces a Walrasian market with quasi-linear preferences so that agents can level their asset
holdings, thus giving a degenerate distribution of assets. In a Lagos & Wright (2005) environment, there is
no role for rentals.
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9. Appendix II - Some variations on the model

In this section we consider several extensions to the basic framework.

Renting is useful because of a hold-up problem, thus, it is natural to ask about the
consequences of weakening (or strengthening) the hold-up problem on rentals. We consider
several ways to affect the severity of the hold-up problem. First, we analyze the effects of
patience. We may expect renting to become less useful when agents become more patient:
as future trades become more important, the current losses from the hold-up problem are
less important relative to the future benefits of holding the right amount of durables.

Second, we consider whether agents’ ability to trade often once they receive a shock
affects the existence of renting. Again, trading often should reduce the hold-up problem, as
agents gets closer to a Walrasian market where they can buy from a large pool of sellers. So
we expect repos to decline with agents’ ability to trade often.

Third, we also analyze a different option for future trades: we assume that agents have
the option to trade on a Walrasian market from next period on. This weakens the hold-up
problem today as tomorrow’s option becomes better.

Fourth, we study the effect of a wedge between the cost of renting and the one for an
outright purchase, such as a tax on rentals. We show that renting is robust to such a tax.

Finally, in our framework, agents switch from being borrowers or lenders as they switch
types. This may appear unrealistic as some market participants are always on the same side
of the rental market. So we study a slightly modified version of the model which accounts

for the fact that some market participants are always renter or lessor.

9.1. Patience

In general prices in Corollary 5 are different from their Walrasian equivalents, and in
particular that (1 — )p® is different from p". However, an interesting case to consider is
when agents become very patient. Then it is legitimate to guess that the allocation will
converge to the Walrasian one, as it is in some sense equivalent to agents trading with each
other very frequently. However, it is also as if agents were also changing type very often and
although we have the illusion that they can trade very fast when 3 converges to one, they are
also bargaining a lot to readjust their ownership of durables so this friction remains. Indeed,

as ( tends to one, the solution to the bargaining problem is characterized by ay,a, — A, so
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that sales converge to zero. Hence, we obtain

lim(1 — B)p° = (1 — ), (A) + Gul(A).

B—1

However, in the limit ¢" satisfies u),(A +¢") = uj(A —¢") and Assumption 1 guarantees that

q" > 0 is bounded away from zero. Because ¢" > 0 and u;(.) is concave

qu,(A+q") < un(A+4q") —up(A) < ¢"uj(A),
qup(A) < up(A) —u(A—q") < quy(A—q"),

and in general p” # (1 — 3)p°. For illustration, we use the following utility function: up(a) =
1

¢ and wug(a) = Auy(a), where A € (0,1). Then we obtain

1—0o
o )\_iag —ay
T+ A7
so that
— \-1 2A da , 2A
ap, q = co——and ay — ¢ = ——7.
A7 1+ A\

Figure 6 shows how rentals volume moves along the (5, 7)-dimensions.

As we have argued above, a, and ay tends to A, whenever 8 — 1. Therefore, in this case

Im(1—-8)p°=(1—-60+1)A7,

B—1
while
o (A1) 1 . A1) T ()
PP = 1A— o <(1 - Ai>> 2= (v 1>1 AR ()\210 _) A (Ai<+ 1>?U

With A = 0.1 and ¢ = 2, we plot the ratio limg_,;(1 — 8)p®/limg_,; p" as a function of
6 € [0,0.4]. As figure 7 shows, limg_,;(1 — B)p® > limg_,; p" for low values of 6, and the
inequality is reversed otherwise. In the next subsection we correct for the frequency with

which agents change type as they can trade more often.
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9.2. Frequent trades

In this subsection we study the consequences of agents meeting more frequently. More
specifically, what are the consequences of reducing the time until the next meeting from one
to A < 17 And, what happens when A — 0 ? If § denotes discounting over a period of unit
length, and 7w denotes the probability of maintaining the same type over a period of unit
length, we assume agents discount future at rate 5o = 1 — A(1 — /) and the probability of
maintaining the same type is 1o = 1 — A(1 — 7) over a period of A < 1 length. Clearly the
level of consumption by agents h and agents ¢ will remain the same, however, the share of
renting and sales changes. We denote the repo level when A < 1 units of time elapses until

the next meeting by ¢, and we show in section 9.7.:
Proposition 8. For any A <1, we have ¢y < q". Also, as A — 0, ¢ decreases to g} > 0.

That is even with very frequent trades agents rent. Although agents can trade more often
they still face the friction that trading has to be bilateral and this gives a role for renting

some of the durables.

9.3. Outside option

An intuitive explanation for our results, reminiscent of the intuition from our earlier example,
is that agents may prefer renting over buying, because they do not want to lock in a position
that may be difficult to undo later at an agreeable price. When they rent, agents are not
locked into a position. To make this intuition more precise, we modify the environment
slightly and assume that agents’ outside option is to access a Walrasian market from next
period onward. Then the outside option for an agent i endowed with durables a is u;(a) +
BWi(a), where Wi(a) = nWi(a) + (1 — m)W_;(a) and W (a) has been defined in section 3.
The possibility to trade on a Walrasian market would make the lock-in problem a little less
severe, as agents could sell (some of) their durables on the Walrasian market next period.
Therefore, we would expect a decrease in rentals relative to the economy where agents do not
have the option to unload their durables on a Walrasian market. Still, agents are locked-in
for one period and we would still expect renting to have a role. Indeed, let ¢" be the rent
amount in equilibrium when agents have the option to trade at Walrasian prices in the next
period, and let ¢" be the rent amount when they do not have this option. Then in the section

9.7. we show:
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Proposition 9. With directed search and bargaining, there is an equilibrium where ¢~ >

7 > 0.

The equilibrium with the option to trade on a Walrasian market displays the same features
as the one in our original set-up. That is, whether agents switch types or not, they always
rent ¢". In addition, those agents who have switched types trade ¢° = a;, — ay, and zero
otherwise, where a; and a, are given by some equilibrium conditions. The important result
is that, although agent’s outside option is the Walrasian price (in the next period), agents
will still rent, but less so than if they did not have the option to trade at the Walrasian
price in the following period. Therefore, the volume of rentals declines as agents have better

outside options, thus, alleviating the hold-up problem.

9.4. Transaction wedge

For financial repos, Duffie (1996) introduces transaction costs to model the need for special
repo. It is indeed fair to argue that renting may be preferred if they are treated differently
from, for example, a fiscal perspective. Therefore, in this subsection, we study the robustness
of our results when there is a wedge — positive or negative — between the transactions costs
of rentals and sales.

More specifically, we assume that agents are matched bilaterally in two markets: a sales
and a rentals market. They first meet in the sales market and trade their assets in bilateral
matches. In the rentals market, agents rent/lend durables bilaterally for one period. In both
markets, agents pay with the numeraire. However, there is a wedge between the production
cost and consumption benefit when settling the terms of a sale, while there is no wedge when
agents settle a rental agreement. When an agent h owning a;, is matched in the sales market

with an agent ¢ owning ay, they solve the following problem.

max Wi (ap+¢°) —w-d°> = W) (ah)]es W/ (ag —q¢°)+d° =W/ (ag)]l_gs . (20)

dS’qS

where W/ (a) is the value of going to the rentals market with a durables for an agent i € {h, ¢}.
In the rentals market, an agent h owning aj, meets an agent ¢ owning a;, and they solve the

following problem.

max [ () + ) = & — un (@) fue (0 — )+ & —we ()] (21)
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Note that we are also allowing for different bargaining powers in the rentals and sales markets.
The reason is that we are not necessarily assuming that agents are trading with the same

counterparty in both markets. When agents rent, we have

Wi (a) = up(ay, +q") —d"+ B{m- Wy (a,) + (1 — ) - W (az) },
Wilap) = welay—q")+d +p{m- Wi (ap) + (1 —m) Wi (ap)},

where

Wi (an) = Wylan+q°) —w-d°,
Wilae) = W/ (ar—¢q°)+d°

In the equilibrium we have W}’ (a}) = w - W}’ (a}). In section 9.7. we use this equation as
well as a; = 2A —aj, to solve for a; and a;. We find that an increase in the wedge w decreases
ay and increases a;. In other words, when adjusting their consumption of durables via sales
becomes more costly, agents rent more. Figure 8 shows a numerical example of how the
share of rentals changes with respect to changes in the sales cost wedge w and persistence 7.

Note that as the sales cost wedge w rises, the shares of rentals in the consumption of
durables increases up to a level where all change in consumption is done through renting
durables. The opposite holds as well. If selling become much cheaper than renting, then
all changes in consumption would be conducted via sales. For the intermediate levels of the

wedge w, sales coexist with rentals.

9.5. Ex-ante Asymmetric Agents

It is common for agents renting to be always on one side of the rentals market, participating
only as lessor or as renters. In this subsection we study a case of ex-ante asymmetric agents
to show that renting is essential to achieve the efficient allocation even if agents always
participate on one side of the rentals market. More specifically, assume there is an equal
measure of two types of agents denoted by B and L. Each type receives a non-persistent
i.i.d preference shock h or ¢, such that in every period a fraction 7w of type B agents have h
preference shock and a fraction 7 of type L agents have ¢ preference shock. Denoting the
utility from durables consumption of type B agents with h and ¢ preferences by up(-) and
up(-), and for type L agents with h and ¢ preferences by ur () and uy (-), we assume that

upy(a) > up (a) > up ,(a) > u} (a). Moreover, the efficient allocation is described by the
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consumption levels ¢} ,, ci 4, €} 1, and ¢} , that satisfy

ulB,h(CE,h) = ulB,E(C*B,E) = ulL,h(Cz,h) = UlL,e(CZe)a (22)
for
2A = cpt Ly
= C*B,E + Cz,ha

where A is the average endowment of durables in the economy. We assume that agents with
opposite types meet bilaterally via directed search after realization of their shocks in every
period. Terms of trade are set with bargaining power 6 and 1 — 6 for type B and L. In

section 9.7., we show that asset sales alone cannot achieve the efficient allocation.

Proposition 10. With two types of agents who are subject to preference shocks, only asset
sales in bilateral trade cannot implement the efficient allocation, even as the preference shock

becomes unlikely.

Finally, it is straightforward to show that given (22), there exists an efficient equilibrium
where agents rent. In particular, if all type B agents hold ¢ , units and type L agents hold
c1.,, units of asset, we attain the efficient allocation when type B agents with h shock rent
Cpn— Cpy = Cry— Cpy from type L agents with £ shock. Note that in this equilibrium type

B agents always rent, while type L agents always lend.

9.6. More on directed search: the case with no rentals

In the context of a lending relationship, we usually understand counterparty risk as the
risk that a borrower fails to repay his debt. In the paper, we illustrate another type of
counterparty risk: The risk that the next counterparty does not hold the right amount of
durables. To show this, we re-consider our simple two-period example. In this section, we
assume that, in addition to being matched with the right type (h or £), an agent endowed
with a is always being matched with an agent holding 24 — a. To make sure that this is
always feasible, we have to modify the environment slightly by adding noise traders. These
traders do not hold the equilibrium amount of durables and an agent who deviates from the
equilibrium strategy and holds a # a* can always be matched with a noise trader holding

2A — a. This is how this example differs from our earlier one.
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Under this assumption the first order conditions on the Walrasian market at ¢ = 1 are
still given by (2) and (3). Prices still satisfy p* = p"+ V! (a}) and p" = u}(c}). Moreover, the
value of endowment a for a type i at the start of the bargaining game is still given by v;(a)
for i € {h, ¢} as described in (4) and (5) with the added requirement that a_; = 24 — q;, or

vp(a) = up(a) +60S(a,2A —a), (23)
ve(a) = wla)+ (1 —0)S(2A —a,a), (24)

where S(apn, ar) = up(cy) + ue(cy) — un(an) — we(ar) is again the match surplus from trade.
Notice that contrary to our earlier example, an agent’s payoff only depends on his durables
ownership, as in a Walrasian market. Loosely speaking, agents now have better control over
the optimum amount of durables. With the new matching technology, ¢; + ¢, = 2A so
that dcy,/day, = —dcg/day,. We can then compute the marginal expected value for agent i of
holding a; at date 2 as

Vi(a) = 7{(1—=0)ui(a)+0u ;2A—a)}+(1—m){(1—-06-)u ;(a)+0_uj(2A—a)},

1

where ), = 0 and 6, = 1 — 0. Hence, evaluating at a = ¢ and ¢ for V;| and V} respectively,

we obtain
Vi(er) = m{(1 = O)uy,(cp) + Ouy(cy)} + (1 — m) {Oug(cp) + (1 — O)uj ()}

and
Vi(cp) = m{0uy(cy) + (1 = O)uy(cp)} + (1 — ) {(1 = O)uj(c)) + Ouy(c)},

so that V/(c;) = V/(c;). Because uj(c;) = uy(c;), there is no wedge at (¢}, ¢;) between the
value of present and future consumption. As a consequence agents do not rent and only the

sales market is active at ¢t = 1.

9.7. Proofs

Proof of Proposition 8

Given the time to the next meeting is A < 1, we denote the ownership of durables and the

rental amount by a, A, apa and ¢i. Using this notation, we have ¢; = ay — ¢" = aga — qx
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and ¢ = a + ¢" = apa + ¢x. Using the equilibrium condition of Proposition 3, we get

(20 — 1)uy,(cj,)
[m — 2m = D][0u(c; +q") — (1 = O)uj(cj — ¢")] = (1 = m)[ui(cy — ¢") — (1 = O)uj (¢} + ¢")]
2 =11 -7)
[ra — (2ma — V)Ball0uy(c; + qa)) — (1 = O)uj (¢, — qp)]
(2ma — 1)(1 — Ba)
(1 — ma)[Oup(ch — gp) — (1 = O)up(cf + qp))]
(2ma = 1)(1 = Ba) ’

which is equivalent to

L) + (g ) (B~ RH()
= 1865+ (g ) (BHA) ~ RHG), (25)
where
LH(q") = Ouy(c+4q") — (1 = 0)w,(c; —q")
and

RH(q") = Buy(ch —q") = (1 = O)up(c; + ).
For g < (cp* — ¢/*) /2, we have
uy(ch — q) < ug(cj +q) < uylcp) = up(c) < wy(c, —q) < (e +q).

Therefore, we have LH(q) > RH(q). Moreover, concavity of u;, and u, implies

d d
ZLH ZRH(q).
a0 (q) <0< dqR (q)

Notice that for A < 1

(1—7TA) _ (1—71')
(1=2(1 —ma))(1 = Ba) (1 =241 —m))(1 = p)
3 (1-m)

(1=2(1—-m)1-p)
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Thus, (25) implies ¢4 < ¢" for A < 1. Notice that, as A — 0, the share of change in

consumption due to renting decreases to g > 0, which is determined by

(1—m)

(LH(gp) — RH(qp)) -
This completes the proof.

Proof of Proposition 9

We still assume that agents who did not switch are matched together, while those agents
who just switched are matched with each other. With Nash bargaining, the allocation of an
agent h with endowment a;, matched with an agent ¢ with endowment a, solves the following

problem.

ma%j[uh(ah + ¢ +q") —d+ BVi(an + ¢°) — un(an) — BWi(an)]’

q°,9",

X[we(ag — ¢ — ¢") +d+ BVi(ag — ¢°) — wi(ar) — ﬁVVz(az)]H,
which has the first order conditions

Vilan +¢°) = V/(ae —¢°),
uan+¢*+4q") = wlan—q°—q"),
d(ap,a0) = (1—=0)[un(an +¢° + ¢") + BValan + ¢°) — un(an) — BWa(an)]
—Olug(ar — ¢° — q") + BVilar — ¢°) — ue(ar) — BWe(ar)].

We still assume that agents who did not switch types are matched together while those
agents who just switched are matched together. We first solve for Wi(a). By definition,
Wi(a) = 7Wi(a) + (1 — 7)W;(a), with i # j € {h, £}, and where W; denotes the value
of participating in the Walrasian market as a type 7. From the problem of agents in the
Walrasian market, it follows that W;(a) = pa + W;(0), where W;(0) is given by

Wi(0) = wui(ai") — pai’ + BEwWi(ai")
= wi(aj’) —pai’ + BE;Wi(0),
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where a}’ is the solution to uj(a}’) = p" and u},(a}) = uy(ay) with a}f +a}’ = 2A. Solving for
W;(0) we have

Wi(0) = wnlay) —p'ay + BrW,(0) + B(1 — m)W,(0),

Wi(0) = wlay) —p'ay + BrW,(0) + B(1 — m)W(0).
Thus

(1= B)Wi(0) = afun(ay) — p"a] + (1 — a)[ue(ay’) — p"ay],
where a = ﬁ € [0, 1]. Similarly,

(1= B)We(0) = afue(ay) — p"ag] + (1 — a)[un(ay) — p"ay].

Therefore,

(1= B)Wi(0) = m(1—B)W,(0)+ (1 —m)(1 — B)W(0)

= wu(ay) —pay + [7 +a = 2ral[uay’) — p'ay’ — un(ay) + p"ay],
and

(1= B)We(0) = (1—=m)(1—B)Wa(0) + (1 — B)We(0)
= u(ay) —p'ai + |7+ a = 2ra]lun(ay) — p"aj) — ulay) + pag’].

Notice that
u(ay) — p"ay + u(ay) — pray

1—-p

In this environment, the first order condition of the bargaining problem gives us

Wh(0) + W, (0) =

wy(an +q") = wylag — q").
Thus

ah+qr = a?}};’

= T w
ag—q = a;.
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The value functions are

Vi(an) = wlup(an +q") — d(@n, ar) + BVi(an)] + (1 — m)[ue(ae — q") + d(ae, an) + Ve(ae)l,
Vi(ae) = wlue(ae —q") + d(an, ar) + 8Ve(ae)] + (1 — m)[un(an + q") — d(ae, an) + Vi(an)]-

Adding both equations, we obtain

Vi(an) + Vi(ay) — @t qu)_*;”(“@ —9) W) + Wila). (26)

From the bargaining first order condition, we obtain

d(an,ae) = (1 —0)[un(an +¢° +q") —un(an) + BVi(an + ¢°) — 5Wh(ah)]
—0lug(ae — ¢° — q") — uglag) + BVilar — ¢°) — BWi(ay)).

Thus, using the fact that ¢*(as, a,) = 0, the transfer d(ay, a,) is given by

d(dh, a_g> = (1 — 9)[uh(ah + qr) — Uh<C_Lh) + ﬂVh(C_Lh) — 5Wh(c‘zh)]
—0[ue(ae — q") — ue(ar) + BVi(ar) — BWe(ay)).

Therefore, using the relation between a; and a}’ as well as equation (26), we obtain:

un(@n + q") — d(@n, o) + BVi(an) = wn(@n) + BWi(an)
+6 {un(an + q") + ue(ae — ¢") — we(@r) — un(an)} -

Also,

wp(ae — q") + d(an, ag) + BVi(ar) = we(ag) + BW(ay)
+(1 = 0) {un(an + q") +ue(ae — q") — we(ar) — un(an)} -

In a similar fashion, using ¢*(a, a,) = a, — as, we obtain

d(ag,an) = (1= 0)[un(@n+q") — un(ar) + BVi(an) — BWi(ay)]
—6[ue(ar — q") — we(an) + BVi(ae) — BWi(a)).
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Therefore,

w(ae — q") + d(ag, ap) + BVi(as) = we(ar) + BWe(an)
+(1 = 0)[un(an +q") + ue(ar — q") — un(ar) — ue(an)],

and similarly

un(an +q") — d(ag, an) + BVi(an) = up(ae) + BWy(ae)
—i—@[uh(dh + qr) + Ug(C_Lg — qT) — uh(C_Lg> — ’U,g(dhﬂ.

Using the above calculations, we obtain

Vian) = wlun(@n) + BWa(an)] + (1 — m)[uear) + BWe(an)] + 0xS + (1 — 0)(1 — 7) S,
Vilay) = wlue(ae) + BWe(ae)] + (1 — 7)[un(ae) + 8Wa(ae)] + 7(1 — 6)S + (1 — )65,

S = Uh(C_Lh + qT) + UZ(C_LZ — qT) — uh(éh) — UE(C_LE),
S = un(@n +q") +ue(ae — q") — up(ac) — uean).

And taking the derivatives, we have

Vian) = wlup(an) + Bp] + (1 = m)[uy(@n) + Bp] + (1 —7)(1 - 9)3—; + 97?59—;,

and, using the first order condition for ¢", we obtain

Vian) = Bp+ (1 —m)uy(an) + muy(as)
+(1 = m)(1 = 0)[up(an +q") — uy(an)]
+07[uy,(@n + ¢") — u(an)).

Also, using the first order condition for ¢", we obtain

Vi(a) = Bp+mupan) + (1 - muj(a)
+m(1 = O)[wy(ar — ¢") — wl@n)] + (1 — m)blui(@r — ") — wy(@r)]-
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The first condition for ¢* imposes that V}/(a,) = V/(a,). Using the fact that uj(a, — ¢") =

uj,(ap + ¢") and simplifying, we obtain

mOuy(ae) + (1 — m)(1 — Q)uj,(ar) — (1 — m)0uy(an) — m(1 — O)uj (ap)
(1 —27)(1— 26) ’

up(an +q") =
Therefore, the equilibrium is given by

uy(an+q") = wuylae—q"),
ap+a, = 2A,
muy(ae) + (1 — m)(1 — Q)uj,(ar) — (1 — m)0uj(an) — m(1 — O)u) (ap)
(1 —2m)(1—20) '

uy(ap +q") =

Notice that # does not impact the equilibrium allocation.

Also, suppose that ¢" = 0 is an equilibrium. Then wu} (@) = uj(a,) and
up(@n)(1 = 20) = (1 — O)uy,(ae) — Oug(an),

0 lug(an) — up(an)] = (1 = 0) [uj,(ar) — up(an)] -

However, because a, < aj, the RHS is positive, while the LHS is negative by assumption.
Therefore, ¢" = 0 cannot be an equilibrium.

Now we show that the rented amount is actually lower under this arrangement. The
equilibrium allocations under the benchmark and the Walrasian outside-option can be

summarized by

(1= 2m)(1 = B)(1 — 20)uj,(cp)
= (1= B)[Buy(c; + ") — (1 = O)uj(ch, — 7]
—(1=m)(1 = B) [fug(ch — q") = (1 = O)up(cf + )],

where uj,(c;) = uy(c;) with ¢ + ¢, = 2A and ¢ and ¢* being the rented amounts under the

benchmark and the Walrasian outside-option respectively. Define

LH(q") = Ouyc;+q") = (1= O)up(ch, —q),
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and
RH() = 0u(c; — ') — (1 — )y (c; + ).
Note that for ¢" < (¢;* — ¢*) /2, we have
iyl — 7)< s +q7) < wle) = () < u(ch — @) < (i + ).
Therefore, we have LH(q") > RH(q"), which implies for all ¢"
(1= §) + (1= m)8) LH(¢") — (1 — M RH(¢") > (1 — B)LH(¢") — (1 - m)(1 — ARH().

Finally, concavity of u;, and u, implies

d

d
G P <0< SoRH()

dq-

Hence, [(1— §) + (1 — )] LH(q") — (1 — m)RH(q") and m(1 — §)LH(q") — (1 — m)(1 -
B)RH(q") are both decreasing in ¢". This means we have

(1 =2m)(1 = B)(1 — 20)uj,(cp)

= [r(1=8)+ (1 =m)B] [Bug(c; +¢™) — (1 = O)u(ch — ¢")]
—(L=m) [Buy(cy, — q") = (1 = O)up(cf + )]

> w1 = B) [Ouylc; +¢) = (1 = O)uy(c, — ¢")]
—(L=m) (1= B) [uy(ch — q") = (L= O)uj(cj + )] -

Therefore, ¢"* > ¢". Note that the change in § does not affect ¢", but as § approaches zero,
then ¢"* — q".

Wedge

The solution for (21) implies

up (an +47) = up(ap—q)

d" = (1=0,)[un (@) +q") — un (ay)] + Oy [ue (ap) — e (ap — ¢")].
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Hence,

Wi (an) = O fun (ay + ") + ue (ap — ¢+ [(1 = Or)un (a3,) — Orug (ap)]
+84{m - Wi (@) + (1 —7) - W7 (az,)}

Wiap) = (1=0) [un (ah + ") + e (ag = ¢")] = [(1 = O )un (ah) — Orug (ap)]
+B8{m - Wy (ap) + (1 —7) - Wi (ap)}-

The solution for (20) implies

Wi (an+q°) = w- W' (a0 — )
@ = A= ) W (- 07) — W ()] — b [ (e — 4°) — WY ()]}

Wi (an) = 0s[Wy (an + ¢°) + wWy (a0 — ¢°)] + [(1 = 0)Wy (an) — w0 W7 (ar)],

S B IV G 0°) + 00 (e — )] — — [(1 = W, () — w377 ()]

Therefore,

Wian) = O fun (@, +¢") +ue (ap — q")] + [(1 = 0r)un (az,) — Orue (ap)]
+07{0: Wy (), + ¢°) + wWi (0 — ¢°)] + [(1 = 0) Wy (a) — wb V] (a7)]}

#8008 I 6+ )+ W7 (65— ) -
W7 (af) = (U 0) i a 7) e — )] = (00— B () — B ()]

iy {£(1 —0,) (W} (a), + ¢°) + wW] (a), — ¢°)] — é (1= 0,)W;, (a3,) — w0 W (ay)]

+B(1 =) {0 [Wy (ap + ¢°) + W] (a7 — ¢°)] + [(1 — 0) Wy (ap) — wb W7 (ap)]}

where in the equilibrium sales market an agent h holding ), is matched with an agent ¢ with
ay, an agent h holding aj is matched with an agent ¢ holding aj, and an agent ¢ holding a),
is matched with an agent h with a}.

Assuming that by a marginal change in durables the counterparty’s holding of durables

remains constant, and also applying of the Envelope theorem for the effects on ¢" and ¢°*, we
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obtain

Wi'(a) = 0w, (ah + ") + (1= 0:)uy (ap,)
+8m{0,Wy (@), + ¢°) + (1 = 0) Wy (a3,)}
+8(1 = m) {1 = 0.)W," (@), — ¢°) + 0. W (a})}
Wi (ay) = (1=0,)ug(ay — q") + Oruy (ap)
+Bm{(1 = 0)W{" (ap — ¢°) + 6 W, ()}
+8(1 = m) {0 W} (ap + ¢°) + (1 — 0,)Wy" (ap)} -

In the equilibrium agents h would adjust their durables level to aj and agents ¢ would adjust

theirs to aj after realizing their types, where a; 4+ a; = 24 and W}' (a}) = w - W' (a}).

Hence, ¢°(a},, a;) = 0 and ¢°(a;, ay,) = aj,
up, (cr) = uy (2A —

W' (a)
+5m {0

Wew (az)
+0r{(1 -

Wi’ (az)

+5m {0, W,
Wi (a;) = (1-
+p7 {(1 -

where ¢"(aj,a}) and ¢"(aj, a},) are set such that uj, (a; + ¢"(a},a}))

cr) = uy (¢;). Therefore,

0,1, (c3) + (1
Wi (ap) + (1
+8(1 —m) {(1 -
(1 —6,)uy () + 0,uy (a))

O)W]' (a;) + 0 W] (a
+8(1 = ) {0, 9

O,uy, (ay +q"(ag, ap)) + (1 —
y (ar,) + (1
+8(1 —m) {(1 -
0, )uy (aj, —
)W) (a;) + 0 W] (a
+B(1 — ) {0, W} (a3,)

* r ok *\ %
—aj. Moreover, we have ¢"(a}, a;) = ¢},

we have

— 0, )uy, (ay)

— 0)W} (aj)}

0 )W, (az) + 0 W, (a3)}

)}

Wi (ay) + (1 = 0)W; (a7)}
1—0,)u, (az)

— 0)W}" (a7)}

O)W]' (a;) + 0 W] (a

¢ (ay, ay)) + Oruy (ap)

9
+ (1= 0)Wy (aj,

g

)}

= u (4]

*
—aj,, where

—q"(aj, a;)) and

uy, (ap, + ¢"(ay,ar)) = uy (a;, — q"(a;,ap)). Note that in the equilibrium type ¢ agents would

enter the rentals market holding af for ¢ € {h, ¢}, therefore, when a type i agent shows up in

the rentals market holding a*

—17
*
—

a
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This arrangement implies

(1= pm) - Wy (a3)

(1= pm)- Wi (a7) =

(1= Br(1=0,) Wy (a7)

(1= Brbs) - Wy (ap) =

Hence,

= Oy (a7 +q"(aj, ap))

0,up, (c,) + (1 = 0n)uy, (a3)

+B(1 = m) {(1 = 05)W," (az) + O W] (a},)}
(1= 6,)u, (c3) + 0,1, (ab)

+8(1 — ) {0 W} (aj,) + (1 — 0)W," (a7)}
+ (1 —0,)uj, (a7)
+Bm0,Wy (ay) + B(1 — )W, (a7)

(1= 0, )uy (ay, — q"(ap,, ap)) + O,y (az,)
+Bm(L = O)W;" (a7) + B(1 — M)Wy (aj) -

(1= Bm)- Wi (a) = {6ruj, () + (1 = Or)uj, (az) }
+8(1 = m)(1 = 0,)W" (a7)

6(1 —W)HS I Tk ok .
+m {(1 = 0,)uy (ay, — q"(ay, ap,)) + Orug (ay)}

/8(1 . rl a* - T/ a*
+<1_ﬁ ){5 m(1—0)W;" (ap) + B(1 — M)W} (ap)}

(1= pm) - Wi (az) = {(1-

up (¢7) + Oruiy (az) }

+8(1 — W;{' (ax)
(1 ( ) , -
_|_( 1=0,) {0,uy, (a7 +¢"(ay,a;)) + (1 = 0. )uy, (ay)}
(1 — 7r)(1 0s) - _ W (o
A Br gy PO (an) + A= mW ap)}
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which means

Bl —m)B(1 —7)bs
(1 — pros)

{a-om- b )

60 =m0 {1+ 2 LW @) = {6 () + (1= 00, (03)
ﬁ<]‘ _ 7T>03 1ok ok
+m(1 — 0. )uy (ay, — q"(ay, ay))
ST )

(1 — prbs)

{-pm - EZREE DA
o= {1 P bW ) = (0= 0 )+ B )
gi}2$j£§&%«ﬁ+¢mg%»
AT (= ) )

In turn

(1= pm)(1 = Bl )Wy (a})
—B(1 = 7)B(1 — m)0. W} (aj)
=B =m) A = 0)W" (a7) = (1= prbs) {bruy, (i) + (1 = 0p)uy, (aj,)
+B(1 = m)0s {(1 = 0r)uy (a}, — ¢"(a}, ai)) + Orvg (a)}

and

(1 - Bm)(1 = Br(L - 0.)W} (a})
—BL - m)BL - 7)(1— 6] (a}).,
—B0 =MW (@) = (1= (1= 6)) {1 — 0. (c}) + Oty (a})}
FB(L = m)(1 = 0) {0,11) (a} + " (aF, 07)) + (1 — 0.t (a)}

In the equilibrium, we have W}’ (a}) = w- W}" (a}), a}, and aj are given by a} = 2A —aj and
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(1= Bm(1 = 0)) {(1 = Or)ug (c) + Oruy (af) }
+8(1 = m) (L —0,) {0ruy, (a7 + ¢" (a7, a7)) + (1 — 0r)uj, (af)}
{(1=pm)(1 = pr(l =0,) = (1 =m)B(L = m)(1 = 0:)} = f(1 =)0 - w

(1= Bm0s) {0ruy, (i) + (1 = Or)up, (a)}
+A(1 = m)0:{(1 = )y (a}, — (a3, a3)) + Oruy ()}
{(1=pm)(1 = pnb,) — B —m)B(L = m)0s} - w — B —7)(1 = b,)

(27)

As w increases, the denominator of the left side of equation (27) decreases and the
denominator of the right side increases. The equality is maintained by the increase in the
numerator of the left side and decrease in the numerator of the right side. Hence, by the

concavity of u(-), an increase in the wedge w decreases a;, and increases aj.

Proof of Proposition 10

When agents cannot rent, they will start the next period with the amount of durables that
they consumed in the current period. Hence, the value of holding a durables for a type B

agent with shock A is given by

Ven(a) = uppla+q’)—d+3-Vp(a+q°),

where Vg(a) =7 - Vpu(a) + (1 —m) - Vpe(a) and the terms of trade, ¢° and d, are set as the

solution for the following bargaining problem.

maf [UB,h<aB,h + qs) —d+p- VB(GB,h + qs) - uB,h(aB,h) -3 VB(aB,h)]e (28>

X [ure(are —¢*)+d+5-Vi(ape — ¢°) —upelare) — B - VL(CLL,@)]PG

st. ¢’ €[—apn,ary.

The value functions Vg (-), Vor(+), Vie(+), and Vi (-) are defined similarly.

The solution for the bargaining problem (28) and the similar problem for the bargaining
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between (B, ) and (L, h) agents imply that

Up ), (apn+ q;i,z) + 6 Vi (apn + QZ,O = up, (are— QZ,O + 8-V (are — CIZ,e) , (29)
Up, (@B,E + qg,h) + 8- Vg (aB,é + qzh) = up, (CLL,h - qZh) +6-V; (aL,h — q;,h) :

If the equilibrium allocation is efficient then the distribution of type B agents’ holdings of
durables should have two mass points on ¢}, and ¢}, with probabilities 7 and 1 — 7, and
the distribution of type L agents’ holdings of durables should have two mass points on ¢} ,
and cj, , with probabilities 1 — 7 and 7, where ¢}, ;,, ci 4, ¢ 1, and ¢} , are defined by (22). In
this efficient equilibrium, (B, h) agents with durables cj; , do not trade. But a (B,h) agent
holding durables ¢} , search and match with a (L, ) agent holding durables ¢y, and they

adjust their holdings to c¢j , and ¢}, ,. Hence, in the equilibrium we have

Ven(cpe) = ulcpe+q)+ BV(cge +q) — d(cpes con),

where

d = (1 - G)SB,h(CB,Za CL,h) - QSL,E(CB,e, CL,h)
= (1—=0)|upn(cpe+q)+ BVe(cpe+q) —upn(cne) — BVa(ce)]
—G[UL,e(CL,h - Q) + 5VL(CL,h - Q) - UL,Z(CL,h> - 5VL(CL,h)]-

Therefore, we obtain

Vl/%,h(C*B n) = ujB,h(C*B,h) + 8- vé(C*B,h>>
Vin(cpey) = 0 [U,B,h<c*B,h) +5- Vé(CE,h)] + (1 —-0) [ulB,h(C*B,Z) +5- Vl,%(C*B,Z)] :
Viicpe) = upy(chy) +B8-Vilcs,),

)

= 0 [U%,e(cg,z) + 8- Vé(C*B,e)} +(1-10) [UIB,Z(C*B,h) + 8- Vé(C*B,h)] ;

which implies

Vi(cpn) = m-upy(cpy) + (1 —=m)0-up,(cp,) + (1 —m)(1—0)-up,(ck,)
+B(r+ (L =m)(1 =0)) - Vi(cpy) + B(L—m)0 - Vi(ch,)- (30)
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Similarly, for type L we have

VL/<C*L,Z) = T U/L,z(cz,e) +(1-m)(1-0)- UlL,h(Cz,h) + (1 —m)o - U/L,h(C*L,e)
+B(m+ (L =m)0) - Vi(cL,) + B(1 —m)(1=0) - Vi(cpp)- (31)

Using (22) and the bargaining solutions (29) in the equilibrium we have

Vé(C*B,h> = VL/(Cz,e)a
Vi(cpe) = Vilepn)-

Therefore, subtracting (30) from (31) we should have

0 [UIL,h(CE,z) + U%,e(CE,hﬂ

= (20-1) [U/B,ACE,E) + up(cpp) + 6 {Vé(cg,z) - Vé(CE,h)}} :

Note that for 6 < % the left hand of the above equality is positive, while the right hand of it
is not. Hence, it cannot hold. This result holds for any 7 € [0, 1].

o4



Figure 6:

limg_1 (1-B) p°

limg 1 p"
14f

12+

0.80

Repo volume in the (8, 7)-space.

1.0
0.8 |

06|

0.1

0.2

0.3

o4

Figure 7: Ratio of repo and purchase prices
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Figure 8: The effect of sale cost wedge w on repos volume
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