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1 Introduction

The optimal delegation problem in monetary policy studies how a central bank can best serve the inter-

ests of society when the optimal state-contingent plan derived under the true social objective function

is time-inconsistent. Starting with Rogoff (1985), several authors have shown that assigning the central

bank an objective that differs from the true social objective can lead to better normative outcomes under

discretionary policymaking than otherwise.1

One such central bank objective is the speed limit policy under which, according to Walsh (2003),

the policymaker focuses on stabilizing inflation and the change in the output gap. We show that in

the discretionary Markov equilibrium, the speed limit policy framework consistently outperforms flexible

inflation targeting and often performs better than flexible price level targeting in a set of New Keynesian

models (NKM) ranging from the purely forward-looking textbook version of the NKM and its extensions

to the medium-scale DSGE model in Christiano, Eichenbaum, and Evans (2005) as implemented and

estimated in Smets and Wouters (2007) (CEE/SW model).2

The speed limit policy performs strongly in the discretionary Markov equilibrium as it captures a robust

feature of the optimal monetary policy under commitment (henceforth, optimal commitment policy) in

NKMs: The policymaker promises to keep future monetary policy tight in response to shocks that drive

up inflation, such as a positive price markup shock, as evidenced by a slow closing of the negative output

gap under the optimal commitment policy. The persistent rise in the policy interest rate deters excessive

price and wage adjustments by the private sector in the impact period and reduces overall movements in

inflation under the optimal commitment policy. Importantly, the price level is not necessarily stationary

under the optimal commitment policy. The speed with and the extent to which nominally rigid prices

and wages return to their long-run trend paths depend on the degree of price and wage indexation to past

inflation.

As the speed limit policy interprets the idea of stabilizing the real economy as preventing large changes

in the output gap as opposed to deviations of the output gap from zero, the policymaker prefers delaying the

closing of the negative output gap after the inflationary shock by construction and keeps future monetary

policy tight regardless of the policymaker’s ability to commit. If the private sector understands this

behavior of the central bank, the rise in inflation is kept small while the price level rises permanently by a

small amount. The price level targeting framework also incorporates the idea of keeping monetary policy

tight after an inflationary shock albeit through a different mechanism. By assumption, the policymaker is

determined to drive the price level back to its trend path under this framework and keeps the interest rate

elevated to undo earlier changes induced by the shock. Anticipating such a policy move, households and

1 Important contributions include King (1997), Svensson (1997), Svensson (1999), Clarida, Gali, and Gertler (1999), Walsh (2003),
Woodford (2003b), Nessen and Vestin (2005), Vestin (2006), and Bilbiie (2014).

2 Consistent with the literature, we define that under a flexible targeting framework the central bank minimizes the discounted infinite
sum of a period loss function that reflects the central bank’s preferences over stabilizing prices and the real economy subject to its model of
the economy. Under inflation targeting, the loss function places weight on the squared deviations of inflation from its long-run target and
of the output gap from zero as in Svensson (2010). The price level (in deviation from a deterministic trend) takes the place of inflation in
the loss function under price level targeting; in addition the loss function places weight on the squarred deviations of the output gap from
zero. Finally as in Walsh (2003), the central bank’s loss function features an aversion to squarred deviations of inflation from its target
and of the growth rate of the output gap under the speed limit policy.

2



firms feel deterred from implementing large changes in prices and wages in the first place.

By contrast, the inflation targeting framework lacks a built-in mechanism that facilitates implementing

tight monetary policy after an inflationary shock in the discretionary Markov equilibrium. As the policy-

maker intends to stabilize inflation and the level of the output gap, the policymaker will not be expected to

drive prices back to their trend level or to delay the closing of the output gap under the inflation targeting

objective. In line with the “weight-conservative” central banker of Rogoff (1985), placing a high weight

on stabilizing inflation helps improving the performance of the inflation targeting framework, but is gener-

ally too crude to make inflation targeting attractive relative to the speed limit policy under discretionary

policymaking. Only in the simplest NKMs with a high degree of indexation to past inflation can inflation

targeting perform best, since in this case the desirability of returning the price level to its previous trend

vanishes under the optimal commitment policy. In more complex models featuring habit persistence in

consumption or sticky nominal wages (unless highly indexed to inflation as well) or the empirical CEE/SW

model inflation targeting is undesirable irrespective of the degree of price indexation when policymakers

cannot commit.3

Although, we view the case of discretionary policymaking as more realistic, we also report findings for

the case that the central bank can commit to future actions.4 Under commitment, the inflation targeting

central bank does drive prices and wages back towards their long-run trends if so desired under the optimal

commitment policy and performs reliably best across models from the textbook NKM to the CEE/SW

model with the speed limit policy a close second. Since under price level targeting the central bank will

never allow for permanent changes in prices and wages, this framework performs worst when prices and

wages are highly indexed to past inflation.5

Several experiments in the CEE/SW model lend further support to the speed limit policy framework

when policymakers can only act under discretion. Beyond parameterizing the model at the mode of the

posterior distribution reported in Smets and Wouters (2007), we consider alternative parameter choices

drawn from the Laplace approximation to the posterior distribution. When the objective functions are

parameterized optimally for each parameter draw, the speed limit policy dominates for almost all 30,000

empirically plausible draws when policymakers act under discretion. Surprisingly, the speed limit policy

under discretion outperforms the inflation targeting framework under commitment for the majority of

draws (including our benchmark parameterization). When we compare the targeting frameworks for se-

lected specifications of the objective functions that do not vary across the 30,000 parameterizations of the

CEE/SW model, the speed limit policy almost always dominates regardless of the central bank’s ability to

commit.

Our findings prevail in a version of the CEE/SW model that is estimated with euro area data instead

of US data or a version that reduces the importance of wage markup shocks relative to labor supply shocks

3 Under habit persistence smoothing a quasi-difference of the output gap enters in the true social loss functions as a motive which is well
captured by the speed limit policy objective; under sticky nominal wages with a moderate degree or no inflation indexation, the optimal
commitment policy pushes the levels of prices and wages back towards their deterministic trends even if prices are highly indexed.

4 See Bernanke and Mishkin (1997) and King (2004) for further elaborations on this issue.

5 In the case of commitment, adopting a simple objective function for the central bank can be justified on the grounds of improving
transparency, accountability and the pursuit of the central bank’s legal mandate.
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to address concerns about identification raised in Chari, Kehoe, and McGrattan (2009) and Justiniano,

Primiceri, and Tambalotti (2013). Finally, we also account for the limitations of conventional monetary

policy imposed by the zero lower bound constraint on the nominal interest rate. Unless long-lasting and

frequent zero-bound episodes cannot be eliminated by raising the long-run inflation target, our results go

unchallenged.

In terms of scope and focus, our paper is closest to Walsh (2003). In a simple NKM with sticky

prices and backward-looking elements in the form of lagged inflation and lagged output gap Walsh (2003)

illustrates the potential advantages of the speed limit policy. However, the model in Walsh (2003) is not

fully micro-founded and social welfare is measured by an ad hoc loss function that is not derived from the

preferences of the representative household. Furthermore, the underlying model is calibrated rather than

estimated and lacks many of the features found to be of empirical relevance in works such as Christiano,

Eichenbaum, and Evans (2005) and Smets and Wouters (2005). In contrast to Walsh (2003), we find that

the speed limit policy outperforms inflation and price level targeting under discretion regardless of the

degree of backward-looking inflation dynamics in the CEE/SW model. In Walsh (2003) and in simple

NKMs, this conclusion applies only for the case of an intermediate degree of backward-looking behavior.

Restricting attention to the case of a fully committed policymaker Debortoli, Kim, Lindé, and Nunes

(2015) report strong support in favor of inflation targeting using the CEE/SW model, a result we confirm

and extend to a range of other empirically relevant parameterizations of the CEE/SW model. However, as

the optimal inflation targeting under commitment is dominated by the optimal speed limit policy under

discretion for many empirically plausible parameterizations, our results appear more general.

The remainder of the paper proceeds as follows. In Section 2, we analyze inflation targeting, price

level targeting, and speed limit policy in a sequence of simple NKMs. We consider a wide range of

parameterizations and variations of the CEE/SW model in Section 3. Concluding remarks are offered in

Section 4. A technical appendix provides information on our methodology, details on the models, and

additional results.

2 Baseline New Keynesian Model

Throughout this paper, we refer to the NKM presented in Woodford (2003a), Gali (2008) or Walsh (2010)

as the textbook NKM. This model features sticky nominal prices as in Calvo (1983) and a production

technology that requires only labor as input. Sales subsidies offset the distortions arising from monopolistic

competition in the steady state. Finally, the economy experiences technology and markup shocks. One at

a time, we consider the role of features commonly present in empirical DSGE models: (i) intrinsic inflation

inertia, (ii) steady state distortions, (iii) consumption habits, and (iv) sticky wages. Appendix A offers

details on our computational approach. The models are described in Appendix B.
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2.1 Simple objective functions and targeting frameworks

Broadly speaking, analysis of monetary policy distinguishes between targeting frameworks and instrument

rules. Under a targeting framework, the central bank optimizes an objective function. An inflation targeting

central bank, for example, is instructed to keep a selected inflation measure in the neighborhood of a specific

target value. The central bank is granted some flexibility in pursuing this goal and can deviate from its

target in the short run to buffer the impact of shocks (flexible inflation targeting).6 Given a specific model

of the economy, the policymaker derives a set of optimality conditions for the targeting variables to fulfill

under the targeting framework. By contrast, an instrument rule as in Taylor (1993) is a is a formula that

specifies directly the functional relationship between the central bank’s instrument and a set of variables.

For model-based policy analysis, the central bank’s objective function under a targeting framework

specifies the variables that characterize the long-run goal(s) of the central bank and the weights assigned to

each of these variables as argued in Svensson (2010). In line with the literature, we represent loss functions

associated with the targeting frameworks of interest as:

1. inflation targeting (IT )

LIT
t = π2

p,t + λITx (xgapt )
2

(1)

2. price level targeting (PLT )

LPLT
t = p̂2t + λPLT

x (xgapt )
2

(2)

3. speed limit policy (SLP )

LSLP
t = π2

p,t + λSLP
x

(
(xgapt )−

(
xgapt−1

))2
(3)

where πp,t denotes deviations of the inflation measure from its value along the balanced growth path

(henceforth the long-run target), p̂t is the log-deviation of the price level from its value along the balanced

growth path (henceforth the long-run trend), and xgapt measures the (model-specific) output gap. We refer

to λTF
x as the weight on the activity measure under framework TF .

Each objective function implies a long-run commitment to price stability expressed in terms of a long-

run inflation target, or equivalently, a deterministic trend in the price level to provide a nominal anchor.

The central bank minimizes the discounted sum of losses subject to the equations that describe the behavior

of the economy. We consider both the case that in doing so the policymaker can commit to future policy

actions and the case that such a commitment is not feasible (discretion). A targeting framework is referred

to as optimal, when the objective function associated with this framework is parameterized to minimize

the expected welfare loss under this objective relative to the social optimum. The social optimum is

defined by the economic outcomes under the optimal commitment policy when the policymaker’s preferences

6 In practice, a targeting framework fullfils a list of formal criteria. State of the art inflation targeting, for example, is commonly
characterized as featuring the following elements, see Hammond (2012): (1) price stability as the main goal of monetary policy, (2)
public announcement of a quantitative target for inflation, (3) policy based on inflation forecast, (4) mechanisms for transparency and
accountability. Suitably adapted, these elements would also be present in other targeting frameworks. By contrast, our discussion of
targeting frameworks treats monetary policy as the solution to an optimal control problem under a specific objective function for each
framework. Given our broader perspective, the analysis in this paper is also of relevance for central banks that do not adopt a formal
targeting framework, but rather search for monetary policy strategies that achieve the central bank’s mandate as in the case of the U.S.
Federal Reserve.
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are consistent with the true social loss function. Following Woodford (1999), we adopt the concept of

“optimality from a timeless perspective” to derive commitment policies throughout this paper.

2.2 Targeting frameworks in the textbook NKM

We start our discussion of targeting frameworks using the textbook NKM. At the core of the linear version

of this model lies the New Keynesian Phillips Curve (NKPC) which links inflation, πp,t, to the (welfare-

relevant) output gap, xt,

(πp,t − ιpπp,t−1) = κp(σL + σC)xt + βEt (πp,t+1 − ιpπp,t) + up,t. (4)

Here and subsequently, all variables are expressed in deviation from their steady state values (relative if

carrying a “hat”, absolute otherwise). The markup shock, up,t, follows a known stochastic process. The

composite parameter κp(σL + σC) measures the slope of the NKPC and the parameter ιp represents the

degree of indexation to past inflation as in Christiano, Eichenbaum, and Evans (2005). The aggregate

demand curve

xt = Etxt+1 −
1

σC

(
it − Etπp,t+1 − g∗mu,t

)
(5)

provides the connection between the output gap, inflation, the nominal interest rate, it, and the natural

rate of interest, g∗mu,t = σC

[
Etŷ

∗
t+1 − ŷ∗t

]
. The natural level of output in this model

ŷ∗t =
1 + σL

σL + σC
ξ̂A,t (6)

is obtained from a counterfactual economy without nominal rigidities and without markup shocks. The

natural level of output responds to changes in technology, ξ̂A,t; other shocks that could move the natural

level of output and thus the natural rate of interest, but from which we abstract for now, are shocks to

household preferences or government spending. The output gap is defined as the difference between actual

output and the natural level of output, xt = ŷt − ŷ∗t . As in Woodford (2003a), the preferences of the

representative household (or equivalently the social welfare function in this context) are approximated to

the second-order as

Et0

(
1

2

∞∑
t=t0

βt−t0Lt

)
(7)

with the true (approximate) social loss function Lt satisfying

Lt = (σL + σC) (xt)
2
+

1 + θp
θpκp

(πp,t − ιpπp,t−1)
2

(8)

with σL, σC , θp being known parameters.

To fix ideas, we consider first the performance of each targeting framework in the fully forward-looking
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NKM, i.e., ιp = 0. The policies associated with each framework are obtained by replacing the true social

loss function Lt in equation (7) with the loss functions in (1)-(3). Each framework is evaluated for a range of

weights on the activity measure, λITx , λPLT
x , and λSLP

x , respectively, both under commitment and discretion

with xgapt = xt. Table 1 provides the parameterization of the model (and of all its extensions). For each

targeting framework we consider and for the optimal commitment policy, shocks that transmit through the

natural real interest rate, such as the technology shock, have no welfare consequences as adjustments in

the nominal interest rate prevent movements of inflation and the output gap so as to prevent any welfare

consequences. Blanchard and Gali (2007) refer to this feature of the textbook NKM as divine coincidence.7

In the following, we restrict attention to markup shocks which by contrast cannot be neutralized.

Figure 1 plots the unconditional welfare loss for each framework relative to the optimal commitment

policy expressed as consumption equivalent variation (CEV). The weight on the activity measure for which

the welfare loss is minimized under a targeting framework is indicated by“◦” for price level targeting (PLT),

“∗” for speed limit policy (SLP), and “⋄” for inflation targeting (IT). The optimal weights on the activity

measure are low relative to the weights on the inflation measure (which is normalized to 1) and the welfare

losses of not implementing the optimal commitment policy are small both under commitment and discretion

for each framework.

Figure 1 reproduces some well-known results. Under inflation targeting, a central bank acting under

commitment can replicate the optimal commitment policy; the solid line in the top panel assumes the value

of zero for the optimal choice of the weight λITx in the objective function. In the textbook NKM without

indexation, the true social loss function (8) is written solely in terms of contemporaneous inflation and

the welfare-relevant output gap. The central bank’s preferences over inflation and the output gap under

inflation targeting coincide with the true social loss function, if λITx = λx ≡ (σC + σL)κp
θp

1+θp
. Thus,

the welfare loss under optimal inflation targeting relative to the optimal commitment policy must be zero.

Given the modifications in the objective functions for price level targeting (p̂t instead of πp,t) and speed

limit policy (xgapt − xgapt−1 instead of xgapt ) relative to the true social loss function the outcomes under these

two targeting frameworks are suboptimal by construction.

The equivalence between inflation targeting and the optimal commitment policy breaks down for any

change in the model environment, most notably if the central bank lacks commitment. For example, in

response to a transitory markup shock, the optimal commitment policy manages to reduce deviations of

inflation and the output gap from their target values in the impact period by allowing these variables

to deviate from their target values also in future periods after the shock has ceased. A central bank

acting under discretion with the objective in (8) for ιp = 0, however, will find it optimal to eliminate

these deviations from target in future periods to fully stabilize the economy earlier (stabilization bias). As

households and firms correctly anticipate this behavior, the discretionary central bank will not be able to

reap the benefits of the optimal commitment policy in the impact period thereby causing larger movements

7 This feature of the model requires that shocks are sufficiently small in order for policy not to be constrained by the zero lower bound
on the nominal interest rate.
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in inflation and the output gap.8

Borrowing the idea of a “(weight-) conservative central banker” from Rogoff (1985), Clarida, Gali, and

Gertler (1999) show that the optimal inflation targeting central bank puts lower weight on the activity

measure than society does, i.e., λITx < λx, which mitigates, but does not eliminate, the negative welfare

consequences of the stabilization bias. Thus, the CEV in Figure 1 is positive for optimal inflation targeting

under discretion.9 Changes to the functional form of the policymaker’s objective function can induce

further welfare improvements: The welfare loss under optimal price level targeting is close to zero and is

marginally higher under the optimal speed limit policy in Figure 1.

To understand the strong performance of price level targeting and speed limit policy in the textbook

NKM when the policymaker acts under discretion, we revisit the effects of a markup shock under the

optimal commitment policy. Let the shock lead initially to an unexpected rise in inflation and a drop in

the output gap. Over time the optimal commitment policy drives the price level back to its long-run trend

by pushing inflation temporarily below its long-run target. The explanation for the optimality of price

level stability (relative to its long-run trend) recognizes the link between price dispersion and inflation: the

cross-sectional variation of prices is proportional to the squared value of inflation as shown in Woodford

(2003a) and Appendix B.2. By assumption, firms that do not adjust prices optimally in the current period

adjust prices by the value of the long-run inflation target instead. Suppose, that the central bank does not

plan to return the price level to its long-run trend. Firms that have not adjusted optimally for some time

will be far off the new price level and thus contribute to increased dispersion of prices. When such firms

are finally called upon to adjust optimally, a sizable price adjustment will contribute to higher inflation. If

the central bank does return the price level to its long-run trend, firms that have not adjusted optimally

for some time will find their prices to be close to the expected long-run price level; hence prices adjust

little when these firms are called upon to do so. In addition, firms that happen to adjust optimally closer

in time to the impact of the shock will be deterred from raising prices: if the price level will return to its

long-run trend over time, larger price adjustments early on bear the risk of the firms’ prices to be far off

the price level over time absent future optimal adjustments. As price level targeting under discretion will

drive the price level back to its long-run trend by construction, whereas inflation targeting considers past

deviations of inflation from its target bygones, the former outperforms the latter.10

An equivalent description of the optimal commitment policy focuses on the dynamics of the output gap

after an inflationary markup shock: an increase of inflation above its target is subsequently countered by

tighter monetary policy resulting in a negative output gap. Anticipating such a policy, forward-looking

8 In the case of the textbook NKM with an efficient steady state and the central bank’s preferences coinciding with those of the
representative household the true social loss function is given by equation (8) regardless of the central bank’s ability to commit.

9 Rogoff (1985) formulates the idea of a conservative central bank to overcome the inflation bias that arises under policy discretion in a
model with product or labor market distortions akin to Barro and Gordon (1983). A subsidy to offset market distortions also eliminates
the inflation bias under discretionary policy in this setting. Yet, in the textbook NKM, even with an efficient steady state due to such
subsidies, the optimal commitment policy continues to be time-inconsistent as discussed in the text.

10 Following Vestin (2006), we prove in Appendix B.3 that for purely transitory markup shocks, as opposed to the ARMA(1,1) shock
underlying Figure 1, optimal price level targeting under discretion replicates the optimal commitment policy. Even when the markup shock
is persistent, the response of the economy under the optimal price level targeting and speed limit policy are close to optimal. Bilbiie (2014)
shows how to construct a loss function for the central bank that replicates under discretion the optimal commitment policy regardless of
the persistence of the markup push shock.
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firms restrain their price response in the first place. Rewriting equation (5), we express the output gap as

the sum of current and future real interest rates using

xt = − 1

σC
(it − πp,t+1)−

1

σC
Et

 ∞∑
j=1

(it+j − πp,t+1+j)

 , (9)

where we have set g∗mu,t+j = 0 for all j, and we express inflation as the discounted sum of output gaps

πp,t = κp(σL + σC)xt + κp(σL + σC)Et

 ∞∑
j=1

βjxt+j

+ Et

 ∞∑
j=0

βjup,t+j

 . (10)

Following equation (9), tight future monetary policy in terms of higher future real interest rates affects

negatively the contemporaneous and expected future values of the output gap. In turn, expectations of a

slowly closing output gap reduce the trade off between contemporaneous inflation and the output gap in

equation (10) for a given markup shock. As the speed limit policy assigns dislike to changes in the output

gap, xgapt − xgapt−1, it replicates the slow closing of the output gap under the optimal commitment policy.

Yet, the speed limit policy cannot replicate the optimal commitment policy as it fails to drive the

price level back to its long-run trend. As under inflation targeting the price level changes permanently

under the speed limit policy. However, the built-in mechanism of closing the output gap slowly by running

tighter monetary policy after an inflationary shock reduces the initial increase in the price level under the

discretionary speed limit policy compared to inflation targeting. The problem with inflation targeting is

not that deviations of inflation from target are considered bygones, but the lack of a mechanism to commit

to tight future monetary policy after an inflationary shock.

The superior performance of price level targeting should not be mistaken as a general result. The speed

with and the extent to which the price level returns to its long-run trend under the optimal commitment

policy is sensitive to a range of model features, but the need to promise keeping monetary policy tight after

inflationary shocks for longer is a general feature of the optimal commitment policy. Whether price level

targeting or speed limit policy strikes a better balance between the path of the price level and other policy

considerations when the policymaker lacks commitment is the quantitative question explored in this paper.

2.3 Extensions to the textbook NKM

The welfare ordering of the targeting frameworks in the textbook NKM is robust to the addition of other

features. Inflation targeting is the preferred framework under commitment; price level targeting and speed

limit policy outperform inflation targeting under discretion. Figure 2 explores the performance of the

speed limit policy and price level targeting relative to inflation targeting as a function of the degree of

price indexation, ιp, for (i) the textbook NKM, (ii) the textbook NKM with a distorted steady state, (iii)

a model with external consumption habit, (iv) and a model with sticky nominal wages. With the inflation

targeting framework set to be the point of reference, a negative CEV indicates that the framework under

investigation is inferior to inflation targeting and superior otherwise. We turn to a detailed discussion of
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each model variation.

2.3.1 The role of price indexation in the textbook NKM

The textbook NKM with price indexation is given by equations (4)-(8) with 0 < ιp ≤ 1. The lagged

inflation rate enters equation (4) through the behavior of those firms that are not selected to reset prices

optimally in the current period. Following the literature, we assume that these non-selected firms adjust

prices by the geometric average of the steady state inflation rate and the inflation rate that prevailed in

the previous period.

The weight ιp governs the social desirability of undoing earlier changes in the price level. If non-selected

firms adjust prices by the steady state inflation rate (ιp = 0), prices of these firms grow along the long-run

trend of the price level. The optimal commitment policy limits welfare-costly price dispersion by promising

to drive the price level back to its long-run trend over the medium run.

By contrast, when inflation is fully indexed (ιp = 1), the prices of non-selected firms reflect the deviations

of the price level from its previous trend. The optimal commitment policy contains price dispersion, which

is proportional to (πp,t − πp,t−1)
2
for ιp = 1, by considering past deviations of inflation from its long-run

target bygones and by allowing the price level to change permanently. If monetary policies attempted to

revert the price level to its previous trend, it would cause unnecessary price dispersion in future periods.

In analogy to the case without indexation, the optimal commitment policy under full indexation promises

to return inflation (rather than prices) back to its long-run trend while it is the change in inflation (rather

than the change in prices) that enters the true social loss function. This promise of the central bank deters

firms that adjust prices optimally in a given period from choosing a price that is far off the price under the

automatic indexation scheme for non-selected firms.

If the degree of price indexation falls strictly between 0 and 1, the price level is stationary under

the optimal commitment policy, but the horizon over which the price level returns to its long-run trend

lengthens with the degree of indexation. As in the case of the textbook NKM without indexation, a shock

that calls for monetary tightening in the current period under the optimal commitment policy also calls

for tighter policy in future periods as evidenced by a slow closing of the output gap.11

Turning to the evaluation of targeting frameworks, note that in the presence of indexation to past

price inflation, the inflation targeting objective cannot be parameterized to match the true social loss

function in equation (8). Nevertheless, as shown in the first row of panels in Figure 2, optimal inflation

targeting outperforms price level targeting and speed limit policy under commitment for any degree of

price indexation, ιp, owing to the fact that the objective functions for price level targeting and speed limit

policy depart even more from the true social loss function. The dominance of inflation targeting is most

striking when indexation is high and the price level returns to its long-run trend very slowly, if at all, under

the optimal commitment policy. In particular, price level targeting performs poorly in this case given its

11 Stationarity of the price level (or the lack thereof) under the optimal commitment policy can be shown by writing the first order

conditions as − θp
1+θp

xt = p̂t − ιpp̂t−1. For ιp < 1, the price level must return to its long-run trend for the output gap to be closed and

inflation to be at its long-run target. For ιp = 1, the output gap is closed if and only if p̂t − p̂t−1 = πp,t = 0.
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tendency to force the price level back to trend too quickly.

Under the optimal commitment policy, the monetary authority relates acceptable deviations of inflation

from target to the change in the output gap and past inflation:

πp,t = − θp
1 + θp

(xt − xt−1) + ιpπp,t−1. (11)

An inflation targeting policymaker also aspires to set inflation in accordance with the change in the output

gap. But such a policymaker responds to expected future changes in the output gap and discards the role

of past inflation:

πp,t = −λ
IT
x

λx

θp
1 + θp

((xt − xt−1)− βιpEt (xt+1 − xt)) . (12)

For a markup shock with a strong transitory component as under our parameterization, the optimal com-

mitment policy allows inflation to rise and the output gap to turn negative initially followed by a period

of below-target inflation and a gradual closing of the output gap. Under commitment, inflation targeting

induces dynamics similar to those under the optimal commitment policy, when the central bank places a

higher weight on stabilizing the output gap, λITx > λx = (σL+σC)
θpκp

1+θp
. The higher weight on the activity

measure compensates for the fact that the expected (positive) output gap growth term in equation (12)

operates in the opposite direction of the lagged inflation term in equation (11). Finally, inflation targeting

under commitment performs strongly although it fails to drive the price level back fully to its original

trend.

Under discretion, price level targeting and speed limit policy deliver better outcomes than inflation

targeting for low and moderate degrees of price indexation (ιp < 0.8), but not for a high degree as inflation

becomes increasingly persistent irrespective of policy. High inflation persistence feeds into higher expected

inflation after an inflationary shock; an inflation targeting central bank will thus be expected to keep

interest rates high to curb inflation. This feature of the textbook NKM with (high) indexation allows the

discretionary central bank to indirectly commit to running tight future monetary policy and to preventing

the output gap from closing too quickly thereby containing the initial response of inflation. The higher

the degree of indexation, the more powerful is the fact that the inflation targeting objective replaces the

quasi-difference in inflation in the true social loss function with inflation. In the limiting case of ιp = 1,

optimal inflation targeting under discretion can even implement the optimal commitment policy under

suitable assumptions for the nature of the underlying stochastic shocks—just as price level targeting can

implement the optimal commitment policy for the case of ιp = 0.

More formally, provided that shocks are sufficiently small to prevent the zero lower bound constraint

from binding, note that in the model without indexation, ιp = 0, the price level targeting central bank

adopts the objective function LPLT
t = p̂2t + λPLT

x (xt)
2
and faces the NKPC of the form

(p̂t − p̂t−1) = κp(σL + σC)xt + βEt (p̂t+1 − p̂t) + up,t. (13)
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In the case of full indexation, ιp = 1, the inflation targeting central bank adopts the objective function

LIT
t = π2

p,t + λITx (xt)
2
and faces the NKPC of the form

(πp,t − πp,t−1) = κp(σL + σC)xt + βEt (πp,t+1 − πp,t) + up,t. (14)

Substituting πp,t with p̂t reveals that inflation targeting under discretion in the model with ιp = 1 is

isomorphic with price level targeting under discretion in the model with ιp = 0. As the optimal commitment

policy stabilizes the price level absent indexation, but stabilizes the inflation rate under full indexation,

inflation targeting performs close to optimal when ιp = 1 by analogy. Price level targeting and speed limit

policy impose too tight monetary policy in future periods when prices are fully indexed.12

Finally, this discussion shows that for a high degree of indexation optimal inflation targeting under

discretion can outperform inflation targeting under commitment. This observation raises the question

under what conditions it is desirable to assign the central bank a (simple) loss function that departs from

the true social loss function when policymakers can fully commit to future actions.

2.3.2 Inefficient steady state

Theoretical works building on the New Keynesian paradigm often assume that the steady state of the model

is efficient as subsidies/taxes offset the distortions from monopolistic competition. By contrast, works on

empirical DSGE models—including the seminal contributions of Christiano, Eichenbaum, and Evans (2005)

and Smets and Wouters (2007)—tend to abstract from such subsidies and taxes. The (in-)efficiency of the

steady state affects the welfare ranking of policies through the definition of the output gap.

Following Benigno and Woodford (2005) the true social loss function in the model with an inefficient

steady state satisfies

Lt = (σL + σC) (x̃t)
2
+

1 + θp
θpκp

(πp,t − ιpπp,t−1)
2

(15)

where x̃t denotes the welfare-relevant output gap. The structural equations are given by

(πp,t − ιpπp,t−1) = κp(σL + σC)x̃t + βEt(πp,t+1 − ιpπp,t) +
σL + σC

σL + σC + (Φ− 1)(1 + σL)
up,t (16)

x̃t = Etx̃t+1 −
1

σC
(it − Etπp,t+1 − g̃mu,t) (17)

ỹt =
1 + σL

σL + σC
ξ̂A,t −

(Φ− 1) 1+σL

σL+σC

σL + σC + (Φ− 1)(1 + σL)
up,t (18)

with g̃mu,t = σC [Etỹt+1 − ỹt]. At first glance, it appears that we have merely replaced the output gap

term “xt” with “x̃t” and rescaled the impact of the markup shock. However, the two definitions of the

output gap respond differently to the markup shock. Under the definition xt ≡ ŷt − ŷ∗t , the target output

12 For an intermediate degree of indexation, 0 < ιp < 1, hybrid price level targeting with the objective function LhPLT
t = (p̂t − ιpp̂t−1)

2+

λhPLT

(
xgapt

)2
can be shown to perform at least as well as inflation or price level targeting. See Roisland (2005) and Gaspar, Smets, and

Vestin (2007) for additional discussion.
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level ŷ∗t defined in equation (6) does not respond to the markup shock; all else equal under the definition

x̃t ≡ ŷt − ỹt, the output gap will respond by less to a markup shock since the relevant output level ỹt

defined in equation (18) moves in the same direction as actual output. Absent steady state distortions,

i.e., Φ = 1, the two definitions of the output gap coincide. Furthermore, in response to a technology shock,

the divine coincidence continues to apply under the optimal commitment policy regardless of steady state

distortions.

Applying this change in the definition of the relevant output gap to the three targeting frameworks, i.e.

xgapt = x̃t, the second row of panels in Figure 2 plots the results for the case of a distorted steady state with

the sales subsidy set equal to zero. Both under commitment and discretion, price level targeting and speed

limit policy appear closer to inflation targeting than in the case of an efficient steady state. The reason for

this finding is the reduced impact of the markup shock in the model with an inefficient steady state (Φ > 1):

in the NKPC the markup shock is scaled by a term smaller than unity and movements in the output gap

are curtailed by the adjustments in ỹt. With the effective magnitude of the markup shock reduced the

welfare losses under each targeting framework relative to the optimal commitment policy shrink.

The behavior of the output gap, and thus the ranking of targeting frameworks, is sensitive to the

definition of potential output. If xgapt = xt despite the distorted steady state the measured output gap

is larger after a markup shock all else equal, and calls for a larger adjustment in policy than under the

output gap definition of x̃t. When using xt as the output gap measure despite the presence of steady state

distortions, inflation targeting improves its perfomance and dominates price level targeting and speed limit

policy already for the moderate degree of price indexation of ιp = 0.4.

2.3.3 Habit persistence

When the household’s utility function depends on a quasi-difference in consumption (habit persistence), the

implied output gap enters with its quasi-difference into the (approximate) true social loss function. Under

external consumption habits as in Smets and Wouters (2007), the linear-quadratic form of the model is

given by the loss function

Lt = σL (xt)
2
+

σC

(1− h)(1− hβ)
(xt − hxt−1)

2
+

1 + θp
θpκp

(πp,t − ιpπp,t−1)
2

(19)

and the structural equations

(πp,t − ιpπp,t−1) = κpm̂ct + βEt (πp,t+1 − ιpπp,t) + up,t (20)

m̂ct = σLxt +
σC

1− h
(xt − hxt−1) +

hβ

1− hβ
g∗mu,t (21)

(xt − hxt−1) = Et (xt+1 − hxt)−
1− h

σC

(
it − Etπp,t+1 − g∗mu,t

)
(22)
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where g∗mu,t is defined as g∗mu,t =
σC

1−h

[
Et

(
ŷ∗t+1 − hŷ∗t

)
−
(
ŷ∗t − hŷ∗t−1

)]
. The efficient output level satisfies

the difference equation

σLŷ
∗
t +

σC

(1− h)(1− hβ)

(
ŷ∗t − hŷ∗t−1

)
− hβ

σC

(1− h)(1− hβ)
Et

(
ŷ∗t+1 − hŷ∗t

)
= (1 + σL) ξ̂A,t. (23)

The degree of habit persistence is measured by the parameter h ∈ [0, 1). The model with habit persistence

features endogenous persistence, since the lagged value of the output gap enters into the NKPC and the

aggregate demand curve, which in turn affects the dynamics of inflation.13 The presence of the lagged

output gap term in the true social loss function (19) strengthens the motive for smoothing the evolution

of the output gap under the optimal commitment policy.

As shown in the third row of panels in Figure 2, the speed limit policy can outperform inflation targeting

under commitment for a moderate degree of habit persistence (h = 0.7) and low inflation inertia due to

little or no price indexation. Abstracting from price indexation, the true social loss function resembles

the objective function of the speed limit policy framework: A reasonably high degree of habit persistence

implies that most of the weight is placed on the term (xt − hxt−1)
2
in the true social loss function and

the optimal speed limit policy under commitment mimics the optimal commitment policy. Overall, under

commitment, the differences between speed limit policy and inflation targeting are much reduced for any

degree of price indexation. Price level targeting performs relatively poorly under commitment for a high

degree of price indexation as in the previous two model variations.

When policy is conducted under discretion, inflation targeting never outperforms the other two frame-

works regardless of the degree of inflation indexation. Compared to the textbook NKM the differences

between frameworks are of much larger magnitude. The advantage of speed limit policy and price level

targeting over inflation targeting narrows considerably as the degree of price indexation ιp approaches 1.

However, the isomorphism of inflation targeting for ιp = 1 with price level targeting for ιp = 0 under

discretion no longer applies in the presence of consumption habits. Higher inflation persistence as a re-

sult of indexation allows the discretionary inflation targeting central bank to commit indirectly to tighter

monetary policy in the future after an inflationary shock. Yet, the expected future policy under inflation

targeting is not tight enough. When consumption experiences habit persistence, the optimal commitment

policy engages in more smoothing of the output gap which strengthens the motive of keeping monetary

policy tight after an inflationary shock. The inflation targeting objective does not capture this additional

motive and provides less stabilization of the economy.

13 When habits are external, the decisions taken by the household members are not efficient under flexible prices even if a sales subsidy
removes the distortions from monopolistic competition in the goods market. To render the steady state of the model efficient, we introduce
a consumption tax; yet, the dynamics remain inefficient even for technology shocks. With the term hβ

1−hβ
g∗mu,t entering equation (20)

through the definition of the marginal cost term, m̂ct, the central bank is unable to perfectly stabilize inflation and the welfare-relevant
output gap in response to technology shocks. As discussed in Leith, Moldovan, and Rossi (2012) and Woodford (2003a), consumption
habits have to be specified as internal in order for the divine coincidence to re-emerge.
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2.3.4 Sticky wages

Sticky nominal wages as in Erceg, Henderson, and Levin (2000) are the final feature that we consider in

isolation. In detail, the loss function can be shown to satisfy

Lt = (σL + σC) (xt)
2
+

1 + θp
θpκp

(πp,t − ιpπp,t−1)
2
+

1 + θw
θwκw

(πw,t − ιwπp,t−1)
2

(24)

while the structural equations are summarized by

(πp,t − ιpπp,t−1) = κpm̂ct + βEt (πp,t+1 − ιpπp,t) + up,t (25)

m̂ct = ω̂t − ξ̂A,t (26)

(πw,t − ιwπp,t−1) = κw (m̂rst − ω̂t) + βEt (πw,t+1 − ιwπp,t) + uw,t (27)

m̂rst − ω̂t = (σL + σC)xt − (ω̂t − ω̂∗
t ) (28)

(ω̂t − ω̂∗
t ) =

(
ω̂t−1 − ω̂∗

t−1

)
+ πw,t − πp,t −

(
ω̂∗
t − ω̂∗

t−1

)
(29)

xt = Etxt+1 −
1

σC

(
it − Etπp,t+1 − g∗mu,t

)
. (30)

The NKPC for wages, equation (27), links wage inflation, πw,t, to the gap between the marginal rate of sub-

stitution (between consumption and leisure), m̂rst, and the real wage, ω̂t. The policymaker places weight

on stabilizing price and wage inflation with the weights inversely related to the slopes of the respective

NKPCs. To maintain comparability with the previous models we focus on price markup shocks.

As in the model with flexible wages, a policy that promises to be tight in the future—summarized by

the discounted sum of future (negative) output gaps in equation (31)—acts towards stabilizing the output

gap, and (a weighted average of price and wage) inflation in the impact period:

πp,t +
κp
κw

πw,t = κp(σL + σC)xt + κp(σL + σC)Et

 ∞∑
j=1

βjxt+j

+ Et

 ∞∑
j=0

βjup,t+j

 . (31)

The optimal split between movements in wage and price inflation depends on the relative stickiness between

prices and wages as captured by the slope coefficients κp and κw and the evolution of the real wage.

According to equation (25),

πp,t = κpEt

 ∞∑
j=0

βjωt+j

+ Et

 ∞∑
j=0

βjup,t+j

 . (32)

If the central bank allows the real wage to fall persistently, it can lean against the initial rise in inflation.

However, a decline in the future real wage also requires that prices rise faster than wages. If the policymaker

places a high weight on stabilizing price inflation, the adjustment process has to operate more through

wage inflation. Under the optimal commitment policy, tight monetary policy in the periods following an

inflationary shock undoes almost all of the earlier changes in the price and wage level, but prices and wages

are not stationary unless there is no inflation indexation, i.e., ιp = ιw = 0. The speed with which price and

15



wage changes are undone depends on the degree of indexation. Unless both prices and wages are highly

indexed, this process is rather fast. When prices and wages are fully indexed (ιp = ιw = 1), there is no

partial undoing of earlier changes in prices and wages at all.

With these features of the optimal commitment policy in mind, we return to Figure 2. The fourth row

of the figure shows that inflation targeting outperforms the other frameworks, when the policymaker can

commit. To induce outcomes that are close to the optimal commitment policy, inflation targeting under

commitment must place a sufficiently low weight on price inflation to prevent wages from carrying too

much of the burden of the real wage adjustment. Overall, when the central bank implements its objective

under commitment, the welfare differences across targeting frameworks are small and comparable to those

in the previous models.

When the targeting frameworks are implemented under discretion, speed limit policy and price level

targeting dominate inflation targeting—and for the case of no wage indexation depicted in Figure 2—this

finding does not depend on the degree of price indexation. Given the features of the optimal commitment

policy, price level targeting is best suited to stabilize the economy although it pushes prices and wages

back to their long-run trends. Discretionary inflation targeting views all changes to prices and wages as

permanent; promising to revert price inflation to its long-run target is not a sufficient deterrent against

changes in prices and wages. Finally, the speed limit policy keeps the initial response of prices and wages

in check as the private sector expects changes in the output gap to be smooth reflecting once again the idea

to keeping future monetary policy tight after an inflationary shock. Overall, the welfare outcomes under

the speed limit policy are close to those under price level targeting.

In contrast to the previous models, the relative performance of discretionary inflation targeting worsens

when prices are increasingly indexed while keeping the degree of wage indexation unchanged. More price

indexation implies more persistent price inflation after a markup shock, which leads the inflation targeting

central bank wanting to stabilize price inflation more aggressively and thereby to put more burden on wage

inflation in the adjustment process. The performance of inflation targeting improves for a higher degree of

price indexation, when wage indexation is also high—in this case the optimal commitment policy ends up

stabilizing inflation rates and does little to push prices and wages back towards their previous trends.14

Finally, if we keep the degree of price indexation constant and low, a higher degree of wage indexation

implies a better relative performance of the optimal inflation targeting under discretion. An increase in

wage indexation has little impact on the persistence of price inflation and on the optimal parameterization

of the inflation targeting objective. Furthermore, changes in prices and wages are quickly pushed back

under the optimal commitment policy. However, the welfare losses under each framework relative to the

optimal commitment policy shrink since wage dispersion, measured by πw,t−ιwπp,t, drops for higher values

of ιw. While the welfare differences become smaller, the ranking of targeting frameworks is preserved.s

14 If wage indexation is kept fixed at a high value, the advantage of speed limit policy and price level targeting over inflation targeting
first increases as the degree of price indexation rises from 0 before eventually falling (and possibly turning negative) as the degree of price
indexation approaches 1.
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2.3.5 Comparison with Walsh (2003)

Walsh (2003) concludes that a high degree of price indexation is necessary in order for inflation targeting

to outperform speed limit policy and price level targeting when policymakers cannot commit to future

policy paths.15 Our analysis generalizes this insight to the case of sticky wages: all prices and wages

that experience nominal rigidities must be highly indexed for inflation targeting to perform strongly under

discretion. Furthermore, our findings point to the role of consumption habits as increasing the central

bank’s motive for keeping future monetary policy tight after an inflationary shock to curb the dispersion of

prices and wages. This feature is not captured in Walsh (2003) who assumes a model-invariant social loss

function of the form π2
p,t+λ (x

gap
t )

2
in departure from the linear-quadratic approximation of the preferences

of the representative household.

3 Empirical models of the business cycle

Moving beyond the textbook NKM, we extend our analysis to the medium scale CEE/SW model which

features sticky nominal prices and wages both with partial indexation to past inflation, physical capital

and investment with capital utilization and investment adjustment costs, habit persistence in consumption,

a variable elasticity of substitution between intermediate goods as in Kimball (1995) and the same for

labor types, a distorted steady state, and shocks to technology, the risk premium, government spending,

investment, price and wage markups, and monetary policy as detailed in Appendix D.

An important step in extending our analysis is to obtain a second-order accurate approximation to

the preferences of the representative household. We follow a numerical approach. Let the N × 1 vector

of endogenous variables in the CEE/SW model be denoted by xt, with the partition xt = (x̃′t, it)
′. The

variable it is the policy instrument of the central bank. The vector ζt refers to the set of exogenous

variables. Given the central bank’s choice of the policy instrument for all periods t ≥ t0, {it}∞t=t0 , the

remaining N − 1 endogenous variables satisfy the N − 1 structural model equations

Etg(xt−1, xt, xt+1, ζt) = 0 (33)

in equilibrium.

With the intertemporal preferences of society given by U = E0

∑∞
t=t0

βt−t0U(xt−1, xt, ζt), the optimal

commitment policy is derived from the maximization program

max
{xt}∞

t=t0

E0

∞∑
t=t0

βt−t0U(xt−1, xt, ζt)

s.t.

Etg(xt−1, xt, xt+1, ζt) = 0

g(xt0−2, xt0−1, xt0 , ζt0−1) = ḡt0 . (34)

15 See Appendix C for model details. Figure 14 replicates our analysis for the model in Walsh (2003) for both the case of discretion and
commitment with the latter one not being included in Walsh (2003).
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The constraint g(xt0−2, xt0−1, xt0 , ζt0−1) = ḡt0 captures the policymaker’s ability to pre-commit before the

beginning of time in t = t0 to embed the idea of optimality from a timeless perspective as in Woodford

(2003a).16

Using the toolbox developed in Bodenstein, Guerrieri, and LaBriola (2014), the first-order conditions

associated with the program in (34) can be used to obtain the purely quadratic approximation to the

intertemporal preferences of society. The true social loss function

Et0

∞∑
t=t0

βt−t0

[
1

2
x̂′tA(L)x̂t + x̂′tB(L)ζt+1

]
+ β−1φ̂

∗′
t0−1C(0)x̂t0 (35)

correctly ranks (the first-order accurate) outcomes {x̂t}∞t=t0 obtained under any monetary policy from the

perspective of the optimal commitment policy (from a timeless perspective). The matrices A(L) and B(L)

represent the approximation of the preferences with “L” denoting the lag-operator. As discussed in Benigno

and Woodford (2012), the term β−1φ̂
∗′
t0−1C(0)x̂t0 punishes violations of the pre-commitment constraint

under the assessed policy in the case of discretion.17 Appendix A provides the details of obtaining and

evaluating the welfare criterion (35) and of solving for the decision rules under discretion and commitment.

As in Section 2, we compare the welfare implications under inflation targeting, speed limit policy, and

price level targeting both under commitment and discretion. At times, we also report results from two

nominal income targeting frameworks included in Walsh (2003):

1. nominal income targeting 1 (NIT )

LNIT
t = π2

p,t + λNIT
x (πp,t + ŷt − ŷt−1)

2
(36)

2. nominal income targeting 2 (NIT -II)

LNIT -II
t = (xgapt )

2
+ λNIT -II

x (πp,t + ŷt − ŷt−1)
2
. (37)

The optimal parameterization of a targeting framework, i.e., the optimal choice of λTF
x , minimizes the

welfare distance between the targeting framework and the optimal commitment policy as measured by the

welfare criterion in equation (35). In this section, we follow Smets and Wouters (2007) in measuring the

output gap as the difference between actual output and the potential output defined as the output level

that would have prevailed absent nominal rigidities and inefficient markup shocks to prices and wages.

Our analysis of targeting frameworks in the CEE/SW model proceeds as follows. First, we fix the

parameters of the model at their posterior mode estimated in Smets and Wouters (2007). We then explore

alternative parameterization of the CEE/SW model obtained by drawning from the Laplace approximation

16 Benigno and Woodford (2012) and Debortoli and Nunes (2006) show that assuming policy to be conducted under suitable pre-
commitments is generally needed to obtain a purely quadratic approximation to the preferences of the representative household. For the
models in Section 2, the assumption of the timeless perspective is key for deriving the true social loss function when the steady state is not
efficient; see also Appendix B.

17 In practice, the correction term tends to be small. Although we did not emphasize this term in Section 2, we did include it in our
computations when needed.
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to the posterior distribution in Smets and Wouters (2007).

We close by assessing robustness of our findings along three dimensions. First, we compute optimal

targeting frameworks for the CEE/SW model when the model is estimated with data for the euro area

instead of the United States. Second, we investigate how our findings are affected by the difficulties of

distinguishing between wage markup shocks and preference shocks that shift the marginal utility of labor.

And finally, we explore the implications resulting from the zero lower bound on nominal interest rates.

3.1 Targeting frameworks in the CEE/SW model

Figure 3 summarizes our findings for the CEE/SW model. As before, we consider variations in the degrees

of price and wage indexation. The top row of panels shows how the degree of price indexation ιp impacts

the relative ordering of the five targeting frameworks in the CEE/SW model. A vertical line marks the

posterior mode of ιp = 0.22. The results nicely relate to our earlier findings. With consumption habits

at 0.71 and sticky nominal wages, the optimal speed limit policy is a close second to inflation targeting

when the policymaker acts under commitment. As price level targeting places too much importance on

price stability and disregards the need to smooth the evolution of the output gap, the welfare outcomes are

somewhat inferior. The two nominal income targeting frameworks are strictly outperformed by the speed

limit policy and the price level targeting framework. The overall magnitude of the welfare differences is

significantly larger in the CEE/SW model than in the simple NKMs, reflecting the presence of additional

model features and shocks that introduce welfare-relevant policy trade-offs.

Under discretion, the speed limit policy framework strictly outperforms all other frameworks irrespective

of the degree of price indexation. At the posterior mode parameterization of the model, the optimal speed

limit policy exceeds welfare under inflation targeting by more than 0.30% of steady state consumption,

whereas the advantage of the price level targeting framework over inflation targeting is a bit smaller with

0.25%. As in the textbook NKM with sticky wages, the advantage of the optimal speed limit policy over

inflation targeting is larger when the degree of price indexation is higher while keeping the degree of wage

indexation constant. Even the two nominal income targeting frameworks strongly outperform inflation

targeting in the discretionary Markov equilibrium.

As shown in Figure 4, discretionary speed limit policy and price level targeting capture key features of the

optimal commitment policy in the CEE/SW model in response to price markup and wage markup shocks.

Given the estimated moderate degree of indexation (ιp = 0.22 and ιw = 0.59), price and wage dispersion are

closely related to price and wage inflation, which are kept low by the promise of tight future monetary policy

after an inflationary shock under the optimal commitment policy. As a result, the price and wage levels

return slowly towards their pre-shock trends, although not completely. Noticeably, the speed limit policy

considers deviations of price and wage inflation from their long-run target values bygones. However, given

the built-in promise of keeping future policy tight after an inflationary shock this policy reduces overall

inflation and the rise in the price and wage levels. Price level targeting as a monetary policy strategy signals

tight monetary policy in response to inflationary shocks through explicitly promising to return prices and
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wages to their earlier trends. For a moderate degree of indexation, the resulting stabilization of price and

wage inflation is close to optimal. By contrast, the inflation targeting objective does not include built-in

features that would allow the central bank to promise tight future monetary policy in an environment with

low to moderate inflation indexation under discretion. Thus, the inflation targeting central bank is less

effective at stabilizing the economy: Inflation is persistently higher and the output gap drops by more on

impact compared to the optimal commitment policy and the other targeting frameworks in Figure 4.

The CEE/SW model abstracts from taxes/subsidies that could correct the distortions associated with

monopolistic competition in the production of intermediate goods and the labor market. The second row

of panels in Figure 3 reveals that if these distortions are removed, inflation targeting improves its relative

performance slightly.

As for the textbook NKM with sticky wages, we vary the degree of wage indexation in the bottom row of

panels. Varying the degree of wage indexation away from its posterior mode of ιw = 0.59 while keeping the

degree of price indexation at its posterior mode of ιp = 0.22 reveals that a lower degree of wage indexation

goes along with a relatively poorer performance of inflation targeting under discretion as in the previous

section. Under commitment, changing the degree of wage indexation impacts the relative performance of

the frameworks in a manner similar to changes in price indexation.

3.2 Deconstructing the results

While the outcomes in the CEE/SW model resemble those in Section 2, we also consider one of the many

sequences of expanding the textbook NKM step-by-step to the CEE/SW model. We present results for

the case of discretion. Figure 5 plots the CEV values for each framework relative to the inflation targeting

framework under discretion. Starting from the textbook NKM with preferences being specified as in Smets

and Wouters (2007)—titled SW–Woodford—and using the parameters estimated by Smets and Wouters

(2007) where applicable we introduce the following changes step-by-step:

• remove taxes/subsidies for intermediate goods,

• government spending, physical capital and investment, including capital utilization and investment

adjustment costs, and related shocks,

• sticky wages (with a wage subsidy to offset distortions in the labor market and no wage markup

shock),

• a wage markup shock,

• remove the wage subsidy,

• habit persistence,

• a higher degree of nominal rigidities measured by the probabilities of not adjusting prices or wages

optimally from ξp = 0.65 and ξw = 0.73 to ξp = 0.85 and ξw = 0.88, respectively, in order to match the

slopes of the NKPC between a model with and without a variable elasticity of substitution (Kimball

aggregator),
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• a variable elasticity of substitution as in Kimball (1995).

The figure confirms the importance of indexation, sticky wages, and habit persistence in determining the

ranking of targeting frameworks under discretion. Absent sticky wages, a higher degree of price indexation

plays out in favor of inflation targeting under discretion. In the presence of sticky nominal wages this

finding is overturned. Furthermore, the magnitude of welfare differences increases with sticky wages and

the associated wage markup shocks. Habit persistence in consumption raises the overall welfare costs of

not implementing the optimal commitment policy and thus the advantage of speed limit policy and price

level targeting over inflation targeting. With the true social loss function featuring an explicit motive for

smoothing the quasi-difference in the output gap, the speed limit policy gets even closer to the price level

targeting framework. The role of capital accumulation and investment adjustment costs on the quantitative

differences between targeting frameworks is relatively minor.

In addition to the features discussed in Section 2, the variable elasticity of substitution is the other

feature of quantitative importance as it increases the strategic complementarity in price setting. The

Kimball aggregator impacts our outcomes mostly through changing the slope of the NKPCs. Moving from

the bottom left panel in the figure (constant elasticity of substitution and ξp = 0.65 and ξw = 0.73) to

the bottom right panel (variable elasticity of substitution and ξp = 0.65 and ξw = 0.73) directly, the

welfare differences between price level targeting (or speed limit policy) and inflation targeting triple. Yet,

considering the intermediate step of the middle panel (constant elasticity of substitution and ξp = 0.85

and ξw = 0.88) reveals that this increase could also be obtained by raising the degree of nominal rigidities

while keeping the slopes of the NKPCs the same between the last two panels. Similar conclusions regarding

the importance of the various model features emerge when we change the sequence of introducing them or

when policymakers act under commitment.

3.3 Robustness to alternative parameterizations

To explore the sensitivity of our findings to alternative, yet empirically plausible, parameter choices. We

draw 30000 parameter specifications from the Laplace approximation to the posterior distribution Smets

and Wouters (2007) and we

1. compute the optimal weights on the activity measure in the objective functions, λTF
x , associated with

inflation targeting, speed limit policy, and price level targeting for each parameter draw and compare

welfare for each parameter draw under these optimal weights,

2. compare welfare across targeting frameworks for each parameter draw when the weights on the activity

measure in the objective function are fixed at specific values.

We exclude the NIT and NIT-II framework from this exercise as they were strictly dominated by price

level targeting and speed limit policy.

The first experiment, referred to as the “optimal weights case,” confirms that the ordering of targeting

frameworks is robust to alternative empirically plausible parameterizations of the CEE/SW model. Figure

6 plots the distribution of welfare losses relative to the optimal commitment policy (expressed in CEV)
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for each draw of parameters and targeting framework. Under commitment (the top row of panels), the

distribution of welfare losses is similar across targeting frameworks, although the losses tend to be slightly

smaller under inflation targeting. The median loss under inflation targeting is -0.0288, whereas it reaches

-0.0538 under price level targeting and -0.0454 under the speed limit policy. Large losses are rare for all

frameworks. Table 2 Panel (a) reports the frequency with which each of the frameworks performs better

than the remaining two. The optimal inflation targeting framework emerges as the winner for 97% of the

parameter draws. Table 2 Panel (d) is designed to shed light on the magnitude of the welfare differences.

For each draw of parameters we compute the welfare difference between a given targeting framework and

the best performing framework of the remaining two and report the percentiles of the resulting distribution

of welfare differences in increasing order. Since inflation targeting almost always performs best, when

policymakers can commit, the differences reported in columns 3 and 4 basically coincide with the differences

between price level targeting and inflation targeting and between the speed limit policy and inflation

targeting, respectively. Only for 5% of the parameter draws does the difference between the price level

targeting and the inflation targeting framework exceed -0.0493; for the speed limit policy framework, the

value is even smaller with -0.0280. For the inflation targeting framework, the advantage over the next best

targeting framework is smaller than 0.0280 for about 95% of the draws. The values at the nth percentile

for column 2 (IT) and the (100 − n)th percentile for column 4 (SLP) indicate that the speed limit policy

framework is the second-best performing framework for most parameter draws.

Under discretion, the distributions of welfare losses induced by the three targeting frameworks look

much less alike. In Figure 6 (the middle row of panel), the distribution of welfare losses relative to the

optimal commitment policy is noticeably more dispersed for price level targeting and, in particular, for

inflation targeting than under commitment. By contrast, the distribution under the speed limit policy is

more concentrated, an observation leading us to speculate whether the optimal speed limit policy under

discretion may deliver better welfare outcomes (1) than the optimal speed limit policy under commitment,

and (2) than optimal inflation targeting under commitment. The first claim is true for any parameterization

we consider; the second claim is true for more than 50% of the parameter draws and in particular it is

true when the parameters in the CEE/SW model are fixed at their posterior mode. Table 2, Panel (a)

further reveals the superiority of speed limit policy under discretion. It is found to perform better than

inflation targeting and price level targeting for most parameter draws (around 98%). As shown in Panel (d),

the advantage of the speed limit policy framework over the inflation targeting framework can be sizeable

(column 5). Although price level targeting performs consistently better than inflation targeting under

discretion, it rarely performs best (column 6).

The final row of Figure 6 plots the cumulative distribution functions of the optimal weights on the

activity measure. For each framework, the optimal weights tend to be larger and the distributions of

weights are more dispersed under commitment than under discretion. For example, the median weight

under the speed limit policy framework is λSLP
x = 11.86 for commitment, but only λSLP

x = 3.39 for

discretion.

The robust performance of the speed limit policy framework across commitment and discretion not only
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applies to a wide range of empirically plausible parameterizations of the CEE/SW model when the weights

on the activity measure are set optimally for each draw and framework. Our second set of experiments

finds that the performance of the speed limit policy framework is also less sensitive to the exact choice

of the weight on the activity measure: (1) We fix the weight on the activity measure for each targeting

framework at the value found to be optimal when the parameters in the CEE/SW model are fixed at their

posterior mode (under commitment and discretion, respectively) and compute the welfare losses relative

to the optimal commitment policy for each of the 30000 parameter draws. (2) We fix the weight on

the activity measure for each targeting framework at the value found to be optimal under commitment

(discretion) when the parameters in the CEE/SW model are fixed at their posterior mode and compute the

welfare losses relative to the optimal commitment policy for each of the 30000 parameter draws, but solve

the model under the assumption that the policymaker acts under discretion (commitment). Subsequently,

we refer to (1) as the “fixed weights case” and to (2) as the “exchanged weights case.”

As reported in Table 2, Panel (b), in the fixed weights case, the speed limit policy performs best

for 16.5% of the parameter draws under commitment—up from 2.7% in the original experiment—and it

maintains its superior performance under discretion by outperforming the other frameworks for 98% of the

draws. Figure 7 plots the distribution of welfare losses under the fixed weights case relative to the optimal

weights case. The welfare losses that are caused by the policymaker using the optimal weights for a given

parameter draw are small under commitment across regimes, but are often sizeable under discretion for

both price level targeting and, in particular, inflation targeting.

The exchanged weights case explores the sensitivity of the targeting frameworks to both parameter

uncertainty and uncertainty about the ability of the policymaker to commit. As shown in Table 2, Panel

(c) when policy is conducted under commitment, but the policymaker uses the weights found to be optimal

under discretion for the posterior mode parameterization of the CEE/SW model, the speed limit policy

framework performs best for 99% of the parameter draws. Under discretion, the speed limit policy frame-

work performs best for 98% of the draws. Figure 8 also plots the distribution of welfare losses under the

exchanged weights case relative to the optimal weights case for each framework. The inflation targeting

framework is very sensitive to getting the weight on the activity measure right as evidenced by the high

share of large welfare losses exceeding 1% (measured as CEV) for more than 50% of the parameter draws.

Under the speed limit policy framework such large losses are never observed.

The speed limit policy framework emerges as the most desirable setting in our analysis of the CEE/SW

model. Across parameterizations, the optimal speed limit policy consistently outperforms the inflation

targeting and the price level targeting framework under discretion; under commitment the speed limit

policy framework is a very close second to the inflation targeting framework; the optimal speed limit policy

framework implemented under discretion delivers higher social welfare than optimal inflation targeting

under commitment. Finally, the performance of the economy under a speed limit policy is much less

sensitive to the exact parameterization of the objective function which is of relevance if the policymaker

faces uncertainty about the correct specification of the economy.
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3.4 Additional robustness checks

We conclude our analysis with robustness checks regarding the data used to estimate the model, the role of

the relative importance of labor supply shocks versus wage markup shocks, and the limitations of monetary

policy imposed by the zero lower bound constraint on the nominal interest rate.

3.4.1 Robustness to alternative data

Smets and Wouters (2007) estimated the CEE/SW model using U.S. data. Figure 9 compares the perfor-

mance of all five targeting frameworks when the CEE/SW model is estimated using data for the euro area

instead.18

Qualitatively, the results for the euro area are similar to those derived from U.S. data. From a quantita-

tive perspective, the case for price level targeting and speed limit policy is even stronger. Their advantage

over inflation targeting measured in terms of steady state consumption doubles under discretion. Under

commitment the inflation targeting framework maintains a small advantage over speed limit policy and

price level targeting.

3.4.2 Shocks to labor supply and wage markups

Chari, Kehoe, and McGrattan (2009) point to an identification problem in the CEE/SW model that pref-

erence shocks shifting the marginal disutility of labor cannot be easily distinguished from wage markup

shocks. Gali, Smets, and Wouters (2011) and Justiniano, Primiceri, and Tambalotti (2013) impose as-

sumptions to overcome this identification problem.19 While in comparison to the CEE/SW model wage

markup shocks play a less important role in both these papers, wage markup shocks continue to contribute

significantly to the fluctuations in inflation in Gali, Smets, and Wouters (2011). Given the different welfare

implications of the inefficient wage markup shocks, which creates a monetary policy trade off, and the

efficient labor supply shocks, the relative importance of these two shocks may influence the ranking of

targeting frameworks.

Figure 10 provides a preliminary inquiry into the importance of the issues raised by Chari, Kehoe, and

McGrattan (2009) for the ranking of frameworks. We compute the welfare differences between targeting

frameworks by changing the relative importance of wage markup and labor supply shocks. Following Gali,

Smets, and Wouters (2011) and Justiniano, Primiceri, and Tambalotti (2013), we model the labor supply

shock as a shock to the marginal disutility of labor. The labor supply shock is specified to match the

unconditional variance of the wage markup shock and to induce responses similar in magnitude to those

18 Smets and Wouters (2005) estimate a medium-scale DSGE model for the euro area, but the details of the model differ from those
in Smets and Wouters (2007). To maintain comparability of results, we estimate the model specified in Smets and Wouters (2007) using
data for the euro area from the Area Wide Model database (see Fagan, Henry, and Mestre (2005)). Data on consumption, investment,
GDP, hours and wages are expressed in 100 times the log. Inflation is the first difference of the log GDP deflator. The interest rate is the
short-term interest in the AWM database. As stated in Smets and Wouters (2005), total employment data is used in place of hours worked
due to the absence of hours worked data for the euro area.

19 Gali, Smets, and Wouters (2011) obtain identification by embeding a theory of unemployment and by including data on unemployment.
Justiniano, Primiceri, and Tambalotti (2013) do not exploit the connection between unemployment and wage markups and assume instead
a particular stochastic structure for the latter (white noise) to obtain identification.
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induced by the wage markup shock. The relative weight on the labor supply shock depicted along the

horizontal axis governs the relative importance of the two shocks.

Both for the commitment and the discretion case, the ranking of targeting frameworks is independent

of the relative importance of wage markup and labor supply shocks with the exception of the NIT and

the NIT-II framework for the case of discretion and a high importance of the labor supply shock. As

the importance of the inefficient wage markup shock is reduced, the welfare differences between targeting

frameworks shrink by construction. Monetary policy can mostly offset the welfare consequences of the

labor supply shock; when wage markup shocks are absent from the model, price markup shocks are the

only remaining source of inefficient fluctuations.

As long as one believes wage markup shocks to play some role in driving business cycle fluctuation as in

Gali, Smets, and Wouters (2011), the speed limit policy framework under discretion strongly outperforms

all other frameworks under discretion (as well as the inflation targeting framework under commitment).

But even for the assessment in Justiniano, Primiceri, and Tambalotti (2013), which assigns little importance

to wage markup shocks, the speed limit policy framework performs well. Absent certainty about the true

data-generating process, adopting the speed limit policy framework may turn out to be a prudent choice.

3.4.3 Zero lower bound on nominal interest rates

Following earlier work on optimal policy design, we have abstracted from the implications for monetary

policy imposed by the zero lower bound on the nominal interest rate. This way of preceding allows us to

include larger models and to consider aspects of parameter uncertainty. Furthermore, the probability of

the policy rate reaching zero (and staying at zero for several periods) is low in the CEE/SW model. As

long as the time that the economy spends at the zero bound is short, economic outcomes when the zero

bound is enforced barely differ from the outcomes when the policy rate is allowed to violate the zero bound.

Thus, the optimal parameterization of each targeting framework is expected to change by little if we were

to impose the zero bound in our analysis. Nevertheless, we want to touch on the challenges for monetary

policy design presented by the zero bound at least in closing.

Figure 11 plots the impulse responses of selected variables to a combination of contractionary demand

shocks under the optimal commitment policy. The figure also plots the responses under inflation targeting,

price level targeting, and the speed limit policy: the policymaker acts under discretion, the model parame-

ters are fixed at the posterior mode, and the objective functions are parameterized as found to be optimal

absent the zero bound constraint.20 In response to the shock, the optimal commitment policy lowers the

short-term interest rate to zero, although not for long, and allows for mild deflation of prices and wages.

The output gap turns negative and closes slowly. Further out, the optimal commitment policy allows for

only very minor overshooting of price and wage inflation above their long-run target values and the output

20 Initially, the economy is assumed to be growing along the balanced growth path. In period 1 the economy experiences a negative
one-standard deviation risk-premium shock together with a negative 10-standard deviation shock to government spending. In addition,
we lowered the value of the nominal interest rate along the balanced growth path to 4%. The problem is solved using the piece-wise
linear approach in Eggertsson and Woodford (2003), Coibion, Gorodnichenko, and Wieland (2012), and Guerrieri and Iacoviello (2015); we
abstract from modifications of the social loss function that could result from the zero bound constraint.
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gap hardly rises above zero.

Although operated under discretion, all three targeting frameworks perform closely to the optimal

commitment policy. The inflation and price level targeting central banks are more aggressive at stabilizing

price and wage inflation and the output gap. As the shock pushes price and wage inflation, and the output

gap in the same direction, the high relative weight on price inflation in the objective function of the inflation

targeting central bank allows the inflation targeting central bank to mimic the behavior of the price level

targeting central bank.21

The optimal speed limit policy computed in Section 3.1 allows for larger deviations of inflation and the

output gap than the optimal commitment policy. Under the speed limit policy, the policymaker seeks to

adjust the output gap gradually. While such gradualism is of advantage in response to price and wage

markup shocks—keeping the output gap negative after an inflationary shocks signals tight future monetary

policy and reduces the initial rise in inflation—it is of potential disadvantage after large demand shocks

that push the policy interest rate to zero. The slow closing of the output gap under the speed limit

policy prevents price and wage inflation from a fast return to their long-run targets. Shocks that are more

contractionary than the ones underlying Figure 11 can exacerbate this feature of the speed limit policy.

This potential drawback of the speed limit policy can be ameliorated by reducing the weight on the

activity measure in the objective function. To convey this idea, Figure 11 also plots the impulse responses

under a speed limit policy with a reduced weight on the output gap under the label Alt. SLP (that is

one tenth of the weight found to be optimal in Section 3.1). Under the reduced weight, the speed limit

policy closely resembles the optimal commitment policy. While the dramatic reduction in weight on the

activity measure worsens the performance of the speed limit policy to price and wage markup shocks in

particular, this specific parameterization of the speed limit policy still outperforms the optimal inflation

and the optimal price level targeting framework under discretion computed in Section 3.1 for the posterior

mode parameterization of the model.22

The optimal parameterization let alone the ranking of targeting regimes in the CEE/SW model may

hardly be affected if we enforced the zero bound constraint on nominal interest rates. If shocks that call

for lowering the policy interest rates to zero are more frequent than in the CEE/SW model, price level

targeting might be preferred to the speed limit policy under discretionary policymaking given a low value

of the long-run inflation target. However, raising the long-run inflation target may constitute a viable

alternative: the monetary authority can adopt a speed limit policy which is effective in ameliorating the

time inconsistency problem associated with price and wage markup shocks while significantly reducing the

likelihood of zero bound events. Whether these benefits outweigh the costs of achieving a long-run inflation

21 This result is not at odds with Adam and Billi (2007) or Bodenstein, Hebden, and Nunes (2012) who point out the importance of
commitment at the zero lower bound when the central bank maximizes the discounted utility of the representative household. In our
application, the discretionary central bank places a higher weight on stabilizing price inflation than under the true social loss function and
is therefore much better positioned to stabilize the economy through accommodative monetary policy than in those papers for the case of
discretion.

22 Abstracting from the zero lower bound, the optimal parameterization of each framework is primarily determined by the price and wage
markup shocks. Ironically, the optimal weight on the activity measure under the speed limit policy is higher when these markup shocks
are more important which in turn impedes the central bank’s ability to stabilize the economy in the face of large negative demand shocks
and zero interest rates.
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target is an empirical question beyond the scope of this section.23

4 Conclusion

The debate on targeting frameworks has often focused on the differences between inflation and price level

targeting. In models that follow the New Keynesian paradigm, the optimal commitment policy tends to

undo most, if not all, changes of price and wage inflation from their long-run targets over time to realign

prices and wages with their long-run trends. Given this insight, price level targeting appears to be a natural

contender to inflation targeting when policymakers act under discretion.

However, we argue that speed limit policy is a clear alternative to both the inflation targeting and the

price level targeting framework. The objective function underlying the speed limit policy framework with

its long-run commitment to stable inflation and its short-run focus on inflation and smooth changes in the

output gap leads to better outcomes than all other frameworks when policymakers act under discretion

in many circumstances. When policymakers act under commitment, the differences between the three

targeting frameworks are negligible. Most importantly, the speed limit policy under discretion outperforms

inflation targeting under commitment in numerous cases. We show the relative superiority of the speed limit

policy framework in a sequence of simple NK models, that introduce inflation indexation, habit persistence

in consumption, and sticky wages, and in the CEE/SW model. The optimal speed limit policy is more

robust to empirically-relevant alternative parameterizations of the CEE/SW model and to unclarity about

the ability of the central bank to commit. Unless the economy can experience large and persistent negative

(demand) shocks and the costs of raising the long-run inflation target are high, the speed limit policy will

also outperform inflation and price level targeting under discretion when the zero lower bound constraint

on nominal interest rates is enforced in the model.

Since speed limit policies have not yet been as thoroughly examined as inflation and price level targeting,

a range of open questions remain to be addressed. How would a speed limit policy perform under model

settings that included informational rigidities, or financial frictions? How does a central bank’s ability to

measure the output gap accurately in real-time—an issue explored in Orphanides (2003)— influence the

relative performance of targeting frameworks? What about central bank communication of current and

future policy goals? Given the promising performance of speed limit policies shown in this paper, it appears

worth to continue exploring the implications of this policy and find answers to the preceding questions.

23 Pursuing higher inflation targets has captured the imagination of policymakers in the aftermath of the Great Recession, see Williams
(2016). Coibion, Gorodnichenko, and Wieland (2012) compute the optimal inflation target for a discretionary central bank to fall just
below 3%; Billi (2011) reports significantly higher numbers.
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Table 1: Parameter values for the textbook NKM and its extensions

Parameters governing

sticky prices sticky wages other

Model description ξp ιp θp τ̄p ξw ιw θw τ̄w h σC σL β

1 textbook model 0.8 0 0.61 0.61 − − − − 0 1.39 1.92 0.9984

2 price indexation 0.8 [0; 1] 0.61 0.61 − − − − 0 1.39 1.92 0.9984

3 inefficient steady state 0.8 [0; 1] 0.61 0 − − − − 0 1.39 1.92 0.9984

4 consumption habits 0.8 [0; 1] 0.61 0.61 − − − − 0.7 1.39 1.92 0.9984

5 sticky wages 0.8 [0; 1] 0.61 0.61 0.8 0 0.5 0.5 0 1.39 1.92 0.9984

Note: The table documents the parameter values of the textbook NKM and its extensions underlying Figures 1 and 2. Model 1 is the

textbook NKM without indexation. In Model 2 we augment the textbook NKM to allow for price indexation. Model 3 features distortions

in the steady state. Habit persistence in consumption is introduced in Model 4. Finally, Model 5 allows for sticky nominal prices and wage.

In all models, an ARMA(1,1) price markup shock is the sole source of fluctuations with the autocorrelation coefficient ρu = 0.9, the moving

average coefficient ρuϵ = 0.74, and the standard deviation for innovations σu = 0.0014.
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Table 2: Performance of targeting frameworks under parameter uncertainty

a: Frequency of being the best framework: optimal weights case

IT PLT SLP

Commitment 0.9723 0.0004 0.0273

Discretion 0.0000 0.0167 0.9833

b: Frequency of being the best framework: fixed weights case

IT PLT SLP

Commitment 0.8281 0.0073 0.1646

Discretion 0.0000 0.0168 0.9832

c: Frequency of being the best framework: exchanged weights case

IT PLT SLP

Commitment 0.0036 0.0056 0.9908

Discretion 0.0000 0.0162 0.9838

d: Percentiles of CEV differences

Commitment Discretion

Quantile IT PLT SLP IT PLT SLP

5% 0.0022 -0.0493 -0.0280 -0.7717 -0.2169 0.0114

10% 0.0055 -0.0413 -0.0244 -0.6086 -0.1621 0.0193

15% 0.0081 -0.0368 -0.0222 -0.5291 -0.1350 0.0258

20% 0.0098 -0.0338 -0.0207 -0.4772 -0.1172 0.0310

25% 0.0110 -0.0316 -0.0194 -0.4349 -0.1035 0.0362

30% 0.0119 -0.0297 -0.0184 -0.4013 -0.0927 0.0409

35% 0.0128 -0.0280 -0.0174 -0.3728 -0.0837 0.0458

40% 0.0135 -0.0264 -0.0166 -0.3475 -0.0757 0.0510

45% 0.0142 -0.0250 -0.0158 -0.3253 -0.0685 0.0565

50% 0.0150 -0.0237 -0.0150 -0.3053 -0.0624 0.0624

55% 0.0158 -0.0226 -0.0143 -0.2856 -0.0565 0.0685

60% 0.0165 -0.0213 -0.0136 -0.2674 -0.0510 0.0757

65% 0.0174 -0.0202 -0.0128 -0.2483 -0.0458 0.0837

70% 0.0183 -0.0191 -0.0120 -0.2294 -0.0409 0.0927

75% 0.0193 -0.0178 -0.0110 -0.2105 -0.0362 0.1035

80% 0.0206 -0.0165 -0.0099 -0.1910 -0.0310 0.1172

85% 0.0222 -0.0149 -0.0082 -0.1675 -0.0258 0.1350

90% 0.0243 -0.0130 -0.0056 -0.1388 -0.0193 0.1621

95% 0.0279 -0.0094 -0.0023 -0.0970 -0.0114 0.2169

Note: The table summarizes the performance of inflation targeting (IT), price level targeting (PLT), and speed limit policy (SLP) when the

parameters of the CEE/SW model are drawn from the Laplace approximation to the posterior distribution in Smets and Wouters (2007).

Panel (a) states the frequency of each targeting regime being the best performing one for both the case of commitment and discretion.

The weight on the activity measure λTF
x is chosen optimally for each framework and each parameter draw. In Panel (b) the weight on the

activity measure λTF
x is fixed for each framework at the value that is optimal when the model is parameterized at the posterior mode. All

other parameters are drawn from the Laplace approximation to the posterior distribution. In Panel (c) when policy is conducted under

commitment (discretion) the weight on the activity measure λTF
x is fixed for each framework at the value that is optimal under discretion

(commitment) for the posterior mode parameterization of the model. All other parameters are drawn from the Laplace approximation to

the posterior distribution. In Panel (d), we first compute the CEV difference between the best performing and the second best performing

framework for each parameterization; we then rank the differences by size for each framework and compute percentiles.
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Figure 1: Targeting frameworks in the textbook NKM
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Note: The figure plots the welfare loss for each targeting framework against the optimal commitment policy under different values for

λTF
x . The only source of fluctuations is an ARMA(1,1) markup shock. Welfare is reported in terms of consumption equivalent variation

multiplied by 100. The weight λTF
x for which the welfare loss is minimized is indicated by“◦” under price level targeting (PLT), “∗” under

speed limit policy (SLP), and “⋄” under inflation targeting (IT), respectively.
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Figure 2: Welfare evaluation of targeting frameworks in extensions of the textbook NKM
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Note: Welfare performance of price level targeting and speed limit policy relative to inflation targeting in the textbook NKM and its

extensions with varying degree of price indexation ιp under commitment and discretion. The only source of fluctuations is an ARMA(1,1)

markup shock. Welfare is reported in terms of consumption equivalent variation multiplied by 100. The top row depicts the results in the

textbook NKM with an efficient steady state and price indexation. Each of the following rows differs from the textbook NKM by a single

feature: distorted steady state (second row), external consumption habits (third row), and sticky nominal wages (last row).
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Figure 3: Welfare evaluation of targeting frameworks in the CEE/SW model
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Note: Welfare performance of price level targeting (PLT), speed limit policy (SLP), and the two nominal income targeting frameworks

(NIT, NIT-II) relative to inflation targeting (IT) in the CEE/SW model under commitment and discretion. Parameters are set at the mode

of the posterior distribution reported in Smets and Wouters (2007). Welfare is measured in terms of consumption equivalent variation

multiplied by 100. In the first two rows of panels, we vary the degree of price indexation. The second row deviates from Smets and Wouters

(2007) by correcting steady state inefficiencies due to external habits and monopolistic competition. The third row considers variations in

the degree of wage indexation.
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Figure 4: Impulse responses in the CEE/SW model to price and wage markup shocks
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Note: The figure compares the impulse responses to a price and wage markup shock under the optimal commitment policy, inflation

targeting (IT), price level targeting (PLT), and speed limit policy (SLP). The two markup shocks follow ARMA(1,1) processes. See also

Appendix D. 36



Figure 5: Understanding the welfare rankings in the CEE/SWmodel under discretion: introducing features sequentially
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Note: Welfare performance of price level targeting (PLT), speed limit policy (SLP), and the two nominal income targeting frameworks

(NIT, NIT-II) relative to inflation targeting (IT) in the CEE/SW model under discretion. From top left to bottom right we augment

the textbook NKM step-by-step by the features in Smets and Wouters (2007): Goods subsidies are removed to render the steady state

inefficient, capital and government spending are added in top right panel. In the second row, sticky wages with a wage subsidy to remove

distortions in the labor market are introduced, a wage markup shock is added, and finally, the wage subsidy is removed. In the final row,

we introduce external consumption habits, increase the nominal rigidities to obtain the same slopes in the NKPCs in the model without

variable elasticity of substitution as in the full CEE/SW model with a Kimball (1995) aggregator in the bottom right panel.
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Figure 6: Targeting frameworks in the CEE/SW model for alternative parameterizations: optimal weights case
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Note: The figure plots the distribution of welfare and the optimized weights λTF
x for inflation targeting (IT), price level targeting (PLT)

and speed limit policy (SLP) under commitment and discretion when the parameters of the CEE/SW model are drawn from the Laplace

approximation to the posterior distribution in Smets and Wouters (2007). We simulate 30000 draws. The top row shows the density

distribution of the consumption equivalent variation (CEV) under commitment, the middle row shows the results under discretion. The

bottom row of panels depicts the cumulative distribution function (CDF) of the optimal weights under discretion and commitment for each

framework in a single panel.
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Figure 7: Targeting frameworks in the CEE/SW model for alternative parameterizations: fixed weights case
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Note: The figure plots the cumulative welfare distribution under inflation targeting (IT), price level targeting (PLT), and speed limit policy

(SLP) when the weights on the activity measure are fixed at the values that are optimal under the posterior mode parameterization of the

CEE/SW model relative to the case when the weights on the activity measure are set optimally for each parameter draw and targeting

framework. All other parameters are drawn from the Laplace approximation to the posterior distribution in Smets and Wouters (2007).

We simulate 30000 draws. The upper panel plots the cumulative distribution function (CDF) under commitment; the bottom panel plots

the cumulative distribution function (CDF) under discretion.
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Figure 8: Targeting frameworks in the CEE/SW model for alternative parameterizations: exchanged weights case
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Note: The figure plots the cumulative welfare distribution under inflation targeting (IT), price level targeting (PLT), and speed limit policy

(SLP) when the weights on the activity measure under commitment (discretion) are fixed at the values that are optimal under the posterior

mode parameterization of the CEE/SW model with discretion (commitment) relative to the case when the weights on the activity measure

are set optimally for each parameter draw and targeting framework. All other parameters are drawn from the Laplace approximation to

the posterior distribution in Smets and Wouters (2007). We simulate 30000 draws. The upper panel plots the cumulative distribution

function (CDF) under commitment; the bottom panel plots the cumulative distribution function (CDF) under discretion.
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Figure 9: Welfare evaluation of targeting frameworks in the CEE/SW model estimated with euro area data
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Note: Welfare performance of price level targeting (PLT), speed limit policy (SLP), and the two nominal income targeting frameworks

(NIT, NIT-II) relative to inflation targeting in the CEE/SW model estimated with euro area data (1975Q4 to 2008Q3) under commitment

and discretion. In the first row of panels the degree of price indexation is varied. The second row considers variations in the degree of wage

indexation. The degree of indexation at the posterior mode is indicated with ιp = 0.128 for prices and ιw = 0.374 for wages, respectively.
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Figure 10: Welfare evaluation of targeting frameworks: relative importance of wage markup shocks and labor supply
shocks
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Note: Welfare performance of price level targeting (PLT), speed limit policy (SLP), and the two nominal income targeting frameworks

(NIT, NIT-II) relative to inflation targeting in the modified CEE/SW model when allowing for labor supply and wage markup shocks.

This version of the model features preferences that are separable in consumption and leisure. The relative importance of the two shocks

is controlled by the weight parameter indicated on the x-axis. “0” indicates the absence of the labor supply shock and “1” indicates the

absence of the wage markup shock. The wage markup shock follows an ARMA(1,1) process as in Smets and Wouters (2007), whereas the

labor supply shock is assumed to be an AR(1) process. The labor supply shock is scaled to ensure similar magnitudes of the shock as the

ARMA(1,1) wage markup shock when comparing the unconditional variances of the shocks.
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Figure 11: Welfare evaluation of targeting frameworks under the zero lower bound constraint
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Note: The figure compares the impulse responses to a negative one-standard deviation risk premium shock and a negative 10-standard

deviation shock to government spending under inflation targeting (IT), price level targeting (PLT), and speed limit policy (SLP) each

under discretion and the under the optimal commitment policy. The shocks are large enough for the policy interest rate to be constrained

by the zero lower bound.
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A Methodology

This Appendix discusses the computational details of our analysis. We describe how to:

1. obtain a valid second-order accurate welfare criterion for any nonlinear model

2. evaluate this welfare criterion given the (linear) decision rules under each monetary policy framework

3. compute the linear decision rules under each targeting framework for the case of

(a) commitment

(b) discretion

4. translate the welfare differences that arise between the monetary policy frameworks into consumption

units.

Given a fully-specified model, our analysis proceeds as follows. First, we obtain a purely quadratic

approximation of the welfare function that describes the preferences of society (in standard applications,

the utility function of the representative household)—the true social loss function. This approximation is

summarized by the matrices (A(L), B(L)). Next, we assume that the central bank optimizes a given, yet

arbitrary, quadratic objective subject to the linearized structural equations of the underlying model of the

economy. The linearized economy is summarized by the matrices (C(L), D(L)). Solving the system of first

order conditions delivers linear decision rules that describe the behaviour of the economy under the given

objective function for monetary policy. Finally, we use the matrices (A(L), B(L)) and the linear decision

rules to measure the welfare implications of each policy objective. Within each class of policy objectives we

search for its loss-minimizing parameterization. While we restrict attention to linear-quadratic frameworks,

i.e., quadratic objective functions and linear constraints, for comparability with the existing literature, our

approach can be implemented at higher orders of approximation without restrictions.

A.1 Welfare criterion

For a given model, let the N × 1 vector of endogenous variables be denoted by xt with the partition

xt = (x̃′t, it)
′. The variable it is the policy instrument of the central bank, typically a short-term interest

rate. The vector ζt refers to the complete set of exogenous variables. Given the central bank’s choice of

the policy instrument for all periods t ≥ t0, {it}∞t=t0 , the remaining N − 1 endogenous variables satisfy the

N − 1 structural model equations

Etg(xt−1, xt, xt+1, ζt) = 0 (38)

in equilibrium. The system of equations in (38) is assumed to be differentiable up to the desired order of

approximation. We refrain from splitting g(·) into equations that contain no forward-looking variables and

equations that do contain forward-looking variables for ease of notation and proceed as if each equation in

g(·) contains at least one forward-looking variable.24 The intertemporal preferences of society are described

24 When implementing our numerical procedure, however, we carefully separate the equations into those with and without forward-looking
variables as in Benigno and Woodford (2012).
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by U = E0

∑∞
t=t0

βt−t0U(xt−1, xt, ζt) with the utility function U(xt−1, xt, ζt). Within this setting, the

optimal monetary policy under full commitment is derived from the maximization program

max
{xt}∞

t=t0

E0

∞∑
t=t0

βt−t0U(xt−1, xt, ζt)

s.t.

Etg(xt−1, xt, xt+1, ζt) = 0. (39)

As is well understood, the problem stated in (39) does not deliver time-invariant decision rules. Following

a large body of the literature, we opt for the optimal monetary policy under commitment from the timeless

perspective as the reference point to evaluate the performance of different policies, henceforth referred to

as the optimal commitment policy ; see Woodford (2003a). Optimality from a timeless perspective assumes

that the policymaker can “pre-commit” to a policy before period t0 of the form

g(xt0−2, xt0−1, xt0 , ζt0−1) = ḡt0 (40)

to yield the new optimization program

max
{xt}∞

t=t0

E0

∞∑
t=t0

βt−t0U(xt−1, xt, ζt)

s.t.

Etg(xt−1, xt, xt+1, ζt) = 0

g(xt0−2, xt0−1, xt0 , ζt0−1) = ḡt0 . (41)

If not all equations in g(·) contain forward-looking variables, pre-commitments only need to be specified

for those equations with forward-looking variables.

As stressed in Benigno and Woodford (2012) and Debortoli and Nunes (2006) assuming that policy is

conducted under suitable pre-commitments is generally key in order to obtain a purely quadratic approxi-

mation of the welfare function.25 Two important remarks are in order:

1. Including the pre-commitment constraints in (40) into problem (39) changes the original optimization

problem.

2. Policies that violate the initial pre-commitments (40) are penalized with regard to welfare in accor-

dance with the severity of the violation. In particular, the path of the endogenous variables derived

from the original problem (39) may no longer be deemed optimal under the new program (41).

There are two equivalent approaches to obtain the correct linear-quadratic approximation of the opti-

mization problem stated in (41). The first approach (LQ problem), described in Benigno and Woodford

(2012), is often followed to obtain a compact characterization of the policy problem in small-scale models.

Starting from a second-order Taylor-series expansion of the utility function U(xt−1, xt, ζt), second-order

Taylor-series expansions of the structural equations, Etg(xt−1, xt, xt+1, ζt) = 0, and of the pre-commitment

25 Most prominently, assuming optimality from a timeless perspective is necessary if the deterministic steady state of the model is
inefficient. Compare Benigno and Woodford (2005) for details.
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constraint, g(xt0−2, xt0−1, xt0 , ζt0−1) = ḡt0 , are used to substitute out the linear terms in the approximation

to the utility function. As a result, the approximation to the welfare function involves quadratic terms

only and it can be maximized subject to the linear approximation of the constraints in (38) and (40) to

get a first-order accurate approximation to the problem in (41). The alternative approach computes the

first order conditions of the problem in (41) and then seeks the approximation of the resulting system of

equations to the desired order. Both approaches can be implemented numerically. We utilize the toolbox

developed in Bodenstein, Guerrieri, and LaBriola (2014) which follows the second approach.

The first order conditions associated with the program (41)

max
{xt}∞

t=t0

E0

∞∑
t=t0

βt−t0U(xt−1, xt, ζt)

s.t.

Etg(xt−1, xt, xt+1, ζt) = 0

g(xt0−2, xt0−1, xt0 , ζt0−1) = ḡt0

imply that under the assumptions of full commitment and optimality from a timeless perspective the

equilibrium process {xt, φt}∞t=t0 satisfies

DxU(xt−1, xt, ζt) + βEtDx−U(xt, xt+1, ζt+1)

+βEt

{
φ′
t+1Dx−g(xt, xt+1, xt+2, ζt+1)

}
+ Et {φ′

tDxg(xt−1, xt, xt+1, ζt)}

+β−1φ′
t−1Dx+g(xt−2, xt−1, xt, ζt−1) = 0 (42)

and the structural equations

Etg(xt−1, xt, xt+1, ζt) = 0 (43)

at each date t ≥ t0. The notation Dx denotes the vector of partial derivatives of any functions with respect

to the elements of xt; likewise do Dx− and Dx+ for derivatives with respect to xt−1 and xt+1, respectively.

Taking a first order approximation of the equations in (42) around the deterministic steady state of the

model delivers

D2
xx−Ū x̂t−1 +

[
D2

xxŪ + βD2
x−x−Ū

]
x̂t + βD2

x−xŪEtx̂t+1 +D2
xζŪζt + βD2

x−ζŪEtζt+1

+βφ̄
{
D2

x−x− ḡx̂t +D2
x−xḡEtx̂t+1 +D2

x−x+ ḡEtx̂t+2 +D2
x−ζ ḡEtζt+1

}
+φ̄

{
D2

xx− ḡx̂t−1 +D2
xxḡx̂t +D2

xx+ ḡEtx̂t+1 +D2
xζ ḡζt

}
+β−1φ̄

{
D2

x+x− ḡx̂t−2 +D2
x+xḡx̂t−1 +D2

x+x+ ḡx̂t +D2
x+ζ ḡζt−1

}
+βEtDx− ḡ′φ̂t+1 +Dxḡ

′φ̂t + β−1Dx+ ḡ′φ̂t−1 = 0. (44)

The notation D2
xx− marks the matrix of second derivatives of a function with respect to x and x−. Ū and ḡ

are used as short-hand to indicate that a function (or its partial derivatives) is evaluated at the steady-state

values {x̄, φ̄}. “Hatted” variables refer to the deviation of the original variable from its steady-state value.
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Regrouping terms delivers

φ̄
[
β−1D2

x+x− ḡ
]
x̂t−2 +

{
D2

xx−Ū + φ̄
[
D2

xx− ḡ + β−1D2
x+xḡ

]}
x̂t−1

+
{[
D2

xxŪ + βD2
x−x−Ū

]
+ φ̄

[
D2

xxḡ + βD2
x−x− ḡ + β−1D2

x+x+ ḡ
]}
x̂t

+
{
βD2

xx−Ū + βφ̄
[
D2

xx− ḡ + β−1D2
x+xḡ

]}′
Etx̂t+1

+β2φ̄
[
β−1D2

x+x− ḡ
]′
Etx̂t+2 +

{
βD2

x−ζŪ + βφ̄D2
x−ζ ḡ

}
Etζt+1

+
{
D2

xζŪ + φ̄D2
xζ ḡ
}
ζt + β−1φ̄D2

x+ζ ḡζt−1

+βEtDx− ḡ′φ̂t+1 +Dxḡ
′φ̂t + β−1Dx+ ḡ′φ̂t−1 = 0 (45)

which coincides with the first order conditions of the following LQ problem, where we have turned the

maximization problem of the utility function into a minimization problem of the (approximated) true

social loss function

min
{x̂t}∞

t=t0

Et0

∞∑
t=t0

βt−t0

[
1

2
x̂′tA(L)x̂t + x̂′tB(L)ζt+1

]
s.t.

EtC(L)x̂t+1 +D(L)ζt = 0

C(L)x̂t0 = dt0

ζt = Γζt−1 +Υξt (46)

where

A2 = −2φ̄
[
β−1D2

x+x− ḡ
]

A1 = −2
(
D2

xx−Ū + φ̄
[
D2

xx− ḡ + β−1D2
x+xḡ

])
A0 = −

[
D2

xxŪ + βD2
x−x−Ū

]
− φ̄

[
D2

xxḡ + βD2
x−x− ḡ + β−1D2

x+x+ ḡ
]

A(L) = A0 +A1L+A2L
2

B(L) = −
{
βD2

x−ζŪ + βφ̄D2
x−ζ ḡ

}
−
{
D2

xζŪ + φ̄D2
xζ ḡ
}
L− β−1φ̄D2

x+ζL
2

C(L) = Dx+ ḡ +DxḡL+Dx− ḡL2

D(L) = Dζ ḡ.

where x̂t measures the (log-) deviation of variable “x” from its value assumed in the deterministic steady

state. The matrices (A(L), B(L)) capture the second-order approximation of the welfare function, where

“L” denotes the lag-operator. The matrices C(L) and D(L) capture the linear approximation of the con-

straints. The linear constraints C(L)x̂t0 = dt0 implement the timeless perspective through the appropriate

choice of dt0 . The model description is completed by the evolution of the exogenous variables, the last

equation in (46). The innovations ξt follow iid standard normal distributions. To a first-order approxi-

mation, the output of the toolbox in Bodenstein, Guerrieri, and LaBriola (2014) is equivalent to that of

the LQ approach studied in Benigno and Woodford (2012) and using the above definitions, it is easy to

compute the matrices for the LQ problem from the numerical output produced by the toolbox described
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in Bodenstein, Guerrieri, and LaBriola (2014).

The criterion Et0

∞∑
t=t0

βt−t0
[
1
2 x̂

′
tA(L)x̂t + x̂′tB(L)ζt+1

]
ranks outcomes {xt}∞t=t0 obtained from policies

that satisfy the initial pre-commitment constraints C(L)x̂t0 = dt0 correctly by their welfare implications.

However, if the policies considered do not respect the initial pre-commitment constraints, the criterion

needs to be augmented to include a penalty for violations of the initial pre-commitment. As discussed in

detail in Benigno and Woodford (2012), the correct criterion that allows for meaningful welfare comparisons

of arbitrary policies against the optimal commitment policy is given by

Et0

∞∑
t=t0

βt−t0

[
1

2
x̂′tA(L)x̂t + x̂′tB(L)ζt+1

]
+ β−1φ̂

∗′
t0−1C(0)x̂t0 . (47)

φ̂
∗′
t0−1 denotes the values of the Lagrange multipliers associated with the pre-commitment constraints

under the optimal commitment policy. C(0) is the coefficient matrix going along with the forward-looking

variables in the first order approximation of the equations in g(·). Finally, x̂t0 contains the values of the

endogenous variables at time t0 under the policy that is actually implemented. Intuitively, insuring that the

optimal commitment policy is the best policy among all feasible policies requires a change in preferences.

Rather than viewing preferences as being described by E0

∑∞
t=t0

βt−t0U(xt−1, xt, ζt), preferences need to

be viewed as

E0

∞∑
t=t0

βt−t0U(xt−1, xt, ζt) + β−1φ′
t0−1

(
g(xt0−2, xt0−1, xt0 , ζt0−1)− ḡt0

)
. (48)

The optimal policy problem is then given by

max
{xt}∞

t=t0

E0

∞∑
t=t0

βt−t0U(xt−1, xt, ζt) + β−1φ′
t0−1

(
g(xt0−2, xt0−1, xt0 , ζt0−1)− ḡt0

)
s.t.

Etg(xt−1, xt, xt+1, ζt) = 0. (49)

Approximating this problem following the same steps as above yields the criterion function in (47). By

construction, the problem in (49) implies the same first-order conditions as the optimization program in

(41). In finding a second-order approximation of the augmented utility function one only needs to include

the second-order expansion of the penalty term, which after eliminating first-order terms, is simply given

by β−1φ̂′
t0−1Dx+ ḡ′x̂t0 = β−1φ̂′

t0−1C(0)x̂t0 .

A.2 Applying the welfare criterion

We focus on unconditional welfare, but similar steps apply for computing conditional welfare. In doing so,

we integrate out initial conditions with the help of the invariant unconditional distribution over possible

initial conditions — including the pre-commitments.

Consider an arbitrary policy regime, indexed by TF , and suppose that the (linear) equilibrium decision

rules can be summarized by

zTF
t = PTF zTF

t−1 +QTF ξt. (50)
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If policy is conducted under commitment (from a timeless perspective), the vector zTF
t contains the en-

dogenous variables x̂TF
t , the exogenous shocks ζt and ζt−1, and a set of Lagrange multipliers φ̂TF

t . Under

discretion, Lagrange multipliers are not part of the state space and will be omitted from the vector zTF
t .

The same applies if one were to include instrument rules in the analysis. We denote the decision rules

under the optimal commitment policy by a star, “∗”, instead of TF .

The unconditional variance-covariance matrix CovzTF ,zTF satisfies

CovzTF ,zTF = PTF
[
CovzTF ,zTF

]
PTF ′

+QTFQTF ′
(51)

which can be computed efficiently using the doubling algorithm suggested in Anderson, McGrattan, Hansen,

and Sargent (1996). The (first) auto-covariance term is obtained by recognizing that CovzTF ,zTF
−1

=

PTFCovzTF ,zTF .

To compute the unconditional welfare implied by the policy TF we simplify the two terms in equation

(47) as follows. The first term of the welfare criterion can be written in terms of the unconditional

covariances and auto-covariances between the endogenous variables, x̂TF
t , and exogenous variables, ζt,

since

1

1− β
tr

{
E

[
1

2
x̂TF ′

t A(L)x̂TF
t + x̂TF ′

t B(L)ζt+1

]}
=

1

1− β
tr

{
1

2

2∑
i=0

A(i)Covx̂TF
−i ,x̂TF +

2∑
i=0

B(i)Covζ−i+1,x̂
TF

}
(52)

where tr(M) denotes the trace of the matrix M .

Because the second term in (47) involves the Lagrange multipliers associated with the optimal commit-

ment policy, evaluation of the term requires knowledge of the variance-covariance matrix of the endogenous

variables under the optimal commitment policy, φ̂∗
t0−1. The pre-commitments are drawn from the invariant

distribution of the endogenous variables under the optimal policy.

If the policy TF is conducted under commitment, the second term can be written as

E
[
β−1φ̂

∗′
t0−1C(0)x̂

TF
t0

]
= β−1tr

{
C(0)SxP

∗Covz∗,φ̂∗ + C(0)SxQ
∗Covξ,φ̂∗

−1

}
(53)

from the unconditional perspective. The matrix Sx selects the elements in zt that coincide with those in

the vector x̂t. If the policymaker respects the pre-commitments consistent with the optimal commitment

policy, it must be that C(0)x̂TF
t0 = C(0)x̂t0 . Thus, the term (53) does not depend on the decision rules of

the policy regime under consideration as long as the policymaker respects pre-commitments.

When pre-commitments are not honoured, in particular under discretion or an instrument rule, the

second term does depend on the decision rules of the policy implemented by the central bank and therefore

the correction term satisfies

E
[
β−1φ̂

∗′
t0−1C(0)x̂

TF
t0

]
= β−1tr

{
C(0)SxP

TFCovz∗,φ̂∗ + C(0)SxQ
TFCovξ,φ̂∗

−1

}
(54)

with Sx defined appropriately to select the elements in zt that coincide with those in the vector x̂t under
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discretion.

A.3 Decision rules under commitment and discretion

For each targeting framework, we consider the case of the central bank optimizing its assigned objective

under full commitment from a timeless perspective and the case of optimization under discretion. We

assume that the central bank is committed to an explicit long-run inflation target. Thus, our analysis

abstracts from the inflationary bias under discretion; our work focuses purely on the stabilization bias.

Each targeting framework is represented by a quadratic loss function:

1. inflation targeting (IT )

LIT
t = π2

p,t + λITx (xgapt )
2

(55)

2. price level targeting (PLT )

LPLT
t = p̂2t + λPLT

x (xgapt )
2

(56)

3. speed limit policy (SLP )

LSLP
t = π2

p,t + λSLP
x

(
(xgapt )−

(
xgapt−1

))2
(57)

4. nominal income targeting (NIT )

LNIT
t = π2

p,t + λNIT
x (πp,t + ŷt − ŷt−1)

2
(58)

5. nominal income targeting II (NIT -II)

LNIT -II
t = (xgapt )

2
+ λNIT -II

x (πp,t + ŷt − ŷt−1)
2

(59)

where πp,t denotes deviations of the inflation measure from its value along the balanced growth path, p̂t

is the log-deviation of the price level from its value along the balanced growth path, and xgapt measures

the output gap. We follow Smets and Wouters (2007) and define the output gap as the difference between

actual output (in deviations from the balanced growth path), ŷt, and the output level that would prevail

absent nominal rigidities and markup shocks.

A.3.1 Targeting frameworks under commitment

For a given parameterization of a targeting framework, a central bank, that formulates policy under com-

mitment and respects the same pre-commitments as the optimal commitment policy, solves the optimization

problem

min
{x̂TF

t }∞
t=t0

Et0

∞∑
t=t0

βt−t0 1

2
x̂TF ′

t ATF (L)x̂TF
t

s.t.

EtC(L)x̂
TF
t+1 +D(L)ζt = 0

C(L)x̂TF
t0 = dt0

ζt = Γζt−1 +Υξt. (60)
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The matrix ATF (L) is parameterized to reflect the loss function that characterizes the targeting framework

under consideration with TF = {IT, PLT, SLP,NIT,NIT -II}. The entries into ATF (L) are zero except

for those diagonal elements that correspond to the positions of the targeting variables in the vector x̂t

for the targeting regime TF . Thus, the problem resembles the one of obtaining the optimal commitment

policy in (46) with (A(L), B(L)) being replace by ATF (L).

The first-order conditions associated with this linear quadratic program can be solved using standard

algorithms to obtain the decision rules of the endogenous variables and the Lagrange multipliers. These

decision rules are then used to compute the relevant variance-covariance matrices to evaluate the welfare

criterion (47).

A.3.2 Targeting frameworks under discretion

To find the (Markov equilibrium) decision rule of a central bank acting under discretion we follow the

methodology suggested in Dennis (2007). Today’s central bank is viewed as the Stackelberg leader; house-

holds and firms as well as future policymakers are the Stackelberg followers. Define z̃t

z̃t =

(
x̂
TF,\i
t
ζt

)
(61)

to be the vector that contains the endogenous variables, x̂TF
t , except for the vector of policy instru-

ments, it = x̂TF,i
t , and the exogenous shocks. We start by writing the linearized equilibrium conditions

EtC(L)x̂
TF
t+1 +D(L)ζt = 0 as

M0z̃t =M1z̃t−1 +M2Etz̃t+1 +M3it +M4Etit+1 +M5ξt (62)

with

M0 = −
[
C\i(1) 0

]
(63)

M1 =
[
C\i(2) D(0)Γ +D(1)

]
(64)

M2 =
[
C\i(0) 0

]
(65)

M3 = c(1) (66)

M4 = c(0) (67)

M5 = D(0)Υ. (68)

The matrix C\i(1) is derived from C(1) by eliminating from C(1) the column c(1) which is associated with

the policy instrument and similarly for C(0) and C(2). We assume c(2) to be a vector of zeros.

Similarly, we write the objective function of the central bank—originally characterized by ATF (L)—to

conform with the inclusion of the exogenous variables into the vector z̃t and the separating out of the policy

instrument

Et0

∞∑
t=t0

βt−t0 1

2

[
z̃′tW

TF z̃t + i′tK
TF it

]
(69)
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where

WTF =

[
ATF,\i 0

0 0

]
(70)

KTF = aTF . (71)

We proceed under the conjecture that the solution will be of the form

z̃t = H1z̃t−1 +H2ξt (72)

it = F1z̃t−1 + F2ξt. (73)

Substituting this conjecture into equation (62) we obtain

[M0 −M2H1 −M4F1] z̃t =M1z̃t−1 +M3it +M5ξt. (74)

Similarly, the objective function (69) can be written as

Et0

∞∑
t=t0

βt−t0 1

2

[
z̃

′

tW
TF z̃t + i′tK

TF it

]
= z̃′tN

TF z̃t + i′tK
TF it +

β

1− β
tr
(
H ′

2N
TFH2 + F ′

2K
TFF2

)
(75)

since

Et0

∞∑
t=t0

βt−t0
[
z̃

′

tW
TF z̃t

]
= z̃

′

t

( ∞∑
t=t0

βt−t0
(
H ′t−t0

1

)
WTF

(
Ht−t0

1

))
z̃t

+β

∞∑
t=t0

∞∑
t̃=t0

β(t−t0)+(t̃−t0)tr
(
H ′

2

(
H ′t−t0

1

)
WTF

(
Ht−t0

1

)
H2

)
= z̃′tSz̃t +

β

1− β
tr (H ′

2SH2) (76)

and

Et0

∞∑
t=t0

βt−t0
[
i′tK

TF it
]

= i′tK
TF it + βz̃

′

t

( ∞∑
t=t0

βt−t0
(
H ′t−t0

1

)
F ′
1K

TFF1

(
Ht−t0

1

))
z̃t

+
β

1− β
tr
(
F ′
2K

TFF2

)
+β

∞∑
t=t0

∞∑
t̃=t0

β(t−t0)+(t̃−t0)tr
(
H ′

2

(
H ′t−t0

1

)
F ′
1K

TFF1

(
Ht−t0

1

)
H2

)
= i′tK

TF it + βz̃′tRz̃t +
β

1− β
tr
(
F ′
2K

TFF2

)
+

β2

1− β
tr (H ′

2RH2) .

(77)

The matrices S, R and NTF are defined implicitly as

S = WTF + βH ′
1SH1 (78)

R = F ′
1K

TFF1 + βH ′
1RH1 (79)

NTF = S + βR. (80)
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S and R are fixed points provided that the spectral radius of H1 is less than one. In our application,

KTF = 0 and the second term of the objective function drops out.

Under discretion, the policymaker optimizes the objective function (75) subject to the conditions in

(74). Taking first-order conditions and applying the method of undetermined coefficients yields

M̄ ≡ M0 −M2H1 −M4F1 (81)

NTF ≡ WTF + βF ′
1K

TFF1 + βH ′
1N

TFH1 (82)

F1 = −(KTF +M ′
3M̄

′−1NTF M̄−1M3)
−1M ′

3M̄
′−1NTF M̄−1M1 (83)

F2 = −(KTF +M ′
3M̄

′−1NTF M̄−1M3)
−1M ′

3M̄
′−1NTF M̄−1M5 (84)

H1 = M̄−1(M1 +M3F1) (85)

H2 = M̄−1(M5 +M3F2). (86)

Equations (72) and (73) can be combined to deliver the law of motion to the full vector zt under

discretionary policies as in equation (50).

In order to evaluate the five targeting frameworks under discretionary policymaking, we do not need

to characterize the optimal policy under discretion when the central bank’s objective is derived from the

utility function of the representative household. Each targeting framework can be evaluated by applying

the criterion stated in (47) to assess the welfare implications of the policy paths under discretion—the true

social loss function. The reason for condition (47) to suffice for welfare evaluations lies in the fact that

absent shocks, the central bank chooses the same policy path under each objective regardless of policy

being conducted under commitment or discretion. In particular, an inflationary bias cannot arise even if

the steady state is not efficient.26

A.4 Welfare comparison

We compute welfare under the targeting regime WTF and the optimal commitment policy W ∗ and convert

the difference into consumption units. More concretely, the difference is expressed in terms of the con-

sumption equivalent variation (CEV ). The CEV is defined as the amount of (steady state) consumption

that the representative household—with preferences over consumption and leisure U(C,N)—would need

to give up to be indifferent between the optimal commitment policy and the targeting framework being

implemented. Algebraically, the CEV is defined as

WTF −W ∗ = U((1 + CEV )C̄, N̄)− U(C̄, N̄)

=
∂U

∂C

∣∣∣∣
C=C̄

[(1 + CEV )C̄ − C̄]

=
∂U

∂C

∣∣∣∣
C=C̄

C̄CEV

26 As pointed out in Woodford (2003a), Chapter 7, page 470, footnote 4, characterizing the optimal policy under discretion is a complicated
task, in particular when the steady state is distorted. Assigning to a central bank acting under discretion the objective in (47) does not
yield the optimal policy under discretion as the derivations underlying expression (47) assume that policy is conducted under commitment
from a timeless perspective.
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or solved for the CEV

CEV =
WTF −W ∗

∂U

∂C

∣∣∣∣
C=C̄

C̄

. (87)

When households experience habit persistence in consumption—here of the form U(Ct, Ct−1, Lt) =

U(Ct − hCt−1, Nt)—we follow the approach in Otrok (2001). In this case, we obtain

WTF −W ∗ = U((1 + CEV )C̄, (1 + CEV )C̄, N̄)− U(C̄, C̄, N̄)

=
∂U

∂C

∣∣∣∣
C=C̄

[((1 + CEV )C̄ − (1 + CEV )hC̄)− (C̄ − hC̄)]

=
∂U

∂C

∣∣∣∣
C=C̄

(1− h)C̄CEV.

Under additive separable preferences, as conventionally assumed in the textbook NKM, it is

CEV =
WTF −W ∗

((1− h)C̄)1−σC
.

Under the preferences assumed in Smets and Wouters (2007) the CEV is given by

CEV =
WTF −W ∗

((1− h)C̄)1−σC exp

(
σC − 1

1 + σL
N̄1+σL

) .
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B Baseline New Keynesian model

B.1 Model description

For completeness, we lay out the assumptions of the textbook NK model and its variations discussed in the

text. We then derive the linear-quadratic framework for versions of the NK model with price indexation,

external habits, inefficient steady state, and sticky wages.

B.1.1 Household

Household j chooses consumption Ct(j), labor supply Nt(j), bond holdings to maximize expected dis-

counted lifetime utility taking prices, wages, taxes, and transfers as given. The household’s preferences

over consumption and leisure are given by

Et0

∞∑
t=t0

βt−t0

{(
Ct(j)− hCA

t−1

)1−σC

1− σC
− Nt(j)

(1+σL)

1 + σL

}
. (88)

Consumption habits are external; CA
t−1 refers to the aggregate level of consumption in the previous period

and the degree of habit persistence is governed by the parameter h. The inverse of the intertemporal

elasticity of substitution of consumption is denoted by σC , and the parameter σL is the inverse of the Frisch

elasticity of labor supply. We assume that financial markets are complete due to a set of Arrow securities.

As a result consumption is equalized across households in equilibrium. In addition, each household can

invest in a simple bond without state-contingent payoffs.

The budget constraint of household j satisfies

PtCt(j) +
Bt(j)

Rt
=WtNt(j) +Bt−1(j) + Profitst + Transferst. (89)

The household earns income by supplying labor services Nt(j) for the nominal wage Wt, receives payments

from holding bondsBt(j), receives an aliquot share of profits Profitst and government transfer Transferst.

This income is used to purchase the consumption good and bonds. The notation abstracts from the

household’s transactions in Arrow securities.

B.1.2 Labor market

We consider the case with and without flexible wages. If wages are flexible, workers receive the same

nominal wage Wt in period t. The household chooses the labor supply optimally.

In modeling nominal sticky wages we follow in general Erceg, Henderson, and Levin (2000), but the

details of the implementation are as in Gali (2008). Households supply their homogenous labor to labor

unions. The labor union differentiates the labor services, and resells them to a labor bundler. These

aggregated labor services are then hired out to firms.

The labor bundlers aggregate the labor services provided by the labor unions according to

Lt =

[∫ 1

0

Lt(j)
1

1+θw dj

]1+θw

. (90)
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Labor bundlers buy labor services Lt(j) from labor union j, combine the differentiated services into Lt,

and then resell the aggregate labor service to intermediate goods producers. The Labor bundlers maximize

profits under perfect competition. The first order conditions associated with this maximization problem

can be combined to obtain the labor demand functions for the labor services Lt(j) offered by labor union j

Lt(j) =

[
Wt(j)

Wt

]− 1+θw
θw

Lt (91)

and the aggregate wage index

Wt =

[∫ 1

0

Wt(j)
− 1

θw dj

]−θw

. (92)

Labor unions take the household’s marginal rate of substitution between consumption and leisure as

the costs of labor services. The labor unions act under monopolistic competition and wages are set using

staggered contracts as in Calvo (1983). Each period, the union faces a constant probability 1 − ξw to

re-optimize its wage W̃t(j). This probability is independent across unions and time. Unions that cannot

adjust their wage optimally in the current period will increase their wage by the weighted average of

(gross) inflation Πt =
Pt

Pt−1
in the previous period and steady state inflation Π̄ with weights ιw and 1− ιw,

respectively. Let W̃t(j) be the optimal wage set by union j in period t. The union charges

Wt+1(j) = W̃t(j)
(
Πιw

t Π̄(1−ιw)
)

(93)

in period t+1, if it is not allowed to adjust the wage optimally in period t+1. When the union can choose

its wage optimally, the union solves the following optimization problem

max
W̃t(j)

Et

∞∑
s=0

(ξw)
s β

sλt+s

λt

[
(1 + τ̄w)Wt+s(j)−Wh

t+s

]
Lt+s(j)

s.t.
Lt+s(j)

Lt+s
=

(
Wt+s(j)

Wt+s

)− 1+θw
θw

Wt+s(j) = W̃t(j)X
W
t,s

XW
t,s =


1 for s = 0
s∏

l=1

(
Πιw

t+l−1Π̄
1−ιw

)
for s = 1, ...,∞.

(94)

B.1.3 Intermediate goods producer

Each intermediate goods producer employs labor to produce a variety. The cost minimization problem of

the producer is

min
Lt(i)

WtLt(i)

s.t. Yt(i) = ξA,tLt(i). (95)

ξA,t denotes a shock to total factor productivity which follows an exogenous stochastic process

log
(
ξA,t

)
= ρA log

(
ξA,t−1

)
+ εA,t (96)
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εA,t is white noise following N(0, σ2
A).

Prices are set using staggered contracts as in Calvo (1983). Each period, a firm faces a constant

probability 1 − ξp to re-optimize its price P̃t(i). This probability is independent across firms and time.

A firm that does not re-optimize its price in period t, the price increases by the weighted average of

(gross) inflation Πt =
Pt

Pt−1
in the previous period and steady state inflation Π̄ with weights ιp and 1− ιp,

respectively. Finally, firms engage in monopolistic competition.

Thus, the price setting problem of intermediate goods producer i can be stated as

max
P̃t(i)

Et

∞∑
s=0

(
βξp
)s λt+s

λt
[(1 + τ̄p)Pt+s(i)−MCt+s]Yt+s(i)

s.t. Yt+s(i) =

(
Pt+s(i)

Pt+s

)− 1+θp
θp

Yt+s

Pt+s(i) = P̃t(i)X
P
t,s

XP
t,s =


1 for s = 0
s∏

l=1

(
Π

ιp
t+l−1Π̄

1−ιp
)

for s = 1, ...,∞.
(97)

In the following, we will assume the presence of a price markup shock, often also referred to as markup

shock. In the literature, several ways have been suggested to motivate this shock: (i) a shock to the subsidy

τ̄p, (ii) a shock to the elasticity of substitution θp, or (iii) a shock in the first order condition associated

with the maximization problem of the intermediate goods producers. While all three approaches lead to

the same set of equations when the model is approximated to the first order, this is not true, when the

model is approximated to the second order. We offer a short discussion on this topic later in this appendix.

B.1.4 Final good bundlers

Intermediate goods are combined into a composite final good by a continuum of representative bundlers

acting under perfect competition. The standard Dixit-Stiglitz aggregator implies

Yt =

[∫ 1

0

Yt(i)
1

1+θp di

]1+θp

(98)

where
1+θp

θp
denotes the elasticity of substitution between the intermediate goods.

Each bundler maximizes profits by choosing the amount of each intermadiate good to obtain the final good

max
Yt(i),Yt

PtYt −
∫ 1

0

Pt(i)Yt(i)di

s.t. Yt =

[∫ 1

0

Yt(i)
1

1+θp di

]1+θp

. (99)

The first order conditions to this problem provide the demand function for each intermediate goods and

an expression for the aggregate price level

Yt(i) =

(
Pt(i)

Pt

)− 1+θp
θp

Yt (100)
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and

Pt =

[∫ 1

0

Pt(i)
− 1

θp di

]−θp

, (101)

respectively.

B.1.5 Resource constraint

Market clearing in the market for the final good requires that

Yt = Ct. (102)

When wages are flexible, the supply of the final good is given by

Ωy
t Yt = ξA,tNt (103)

where Ωy
t is the measure of price dispersion

Ωy
t =

[∫ 1

0
Yt(i)di

]
[∫ 1

0
Yt(i)

1
1+θp di

]1+θp
. (104)

We have made use of the fact that under flexible wages the labor market clears when

Nt = Lt. (105)

Under sticky wages an additional term that captures wage dispersion arises in equation (103). Note

that

Nt =

∫ 1

0

Lt(j)dj =

[∫ 1

0

(
Wt(j)

Wt

)− 1+θw
θw

dj

]
Lt = Ωl

tLt (106)

where j is the index of a labor union. Since the labor supplied by the households is homogeneous, Nt(i) =

Nt. Similarly, aggregate output and manufactured varieties satisfy the relationship

∫ 1

0

Yt(i)di =

∫ 1

0

(
Pt(i)

Pt

)− 1+θp
θp

di

Yt = Ωy
t Yt. (107)

Market clearing implies ∫ 1

0

Yt(i)di = ξA,tLt (108)

or making use of the above relationships

Ωl
tΩ

y
t Yt = ξA,tNt. (109)

B.2 Linear-quadratic frameworks

We derive the linear-quadratic framework consistent with the NK model laid out in the preceding section.

We begin with a version of the model that features flexible wages and an efficient steady state. Then we
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discuss the derivations of the linear-quadratic framework for the case of a distorted steady state and flexible

wages. Finally, we move on to the case of sticky wages.

B.2.1 NKM with external consumption habits

Our model with external consumption habits and inflation persistence resembles Leith, Moldovan, and

Rossi (2012).27 Following the steps outlined in Woodford (2003a) and Gali (2008), the second-order ap-

proximation of the household preferences around the efficient steady state can be shown to be of the form

Lt = σL (xt)
2
+
σC

δ
(xt − hxt−1)

2
+

1 + θp
θpκp

(πp,t − ιpπp,t−1)
2
. (110)

To arrive at this results, we first approximate each of the utility contributions from consumption and

labor in equation (88). In the private sector equilibrium, the utility from consumption can be written as

(Ct − hCt−1)
1−σC

1− σC

= UcC̄

{(
ĉt +

1

2
ĉ2t

)
− h

(
ĉt−1 +

1

2
ĉ2t−1

)
− σC

2(1− h)
(ĉt − hĉt−1)

2

}
+ t.i.p.+O(2)

(111)

with Uc =
(
(1− h)C̄

)−σC
. Summing over all periods leads to the expression

Et0

∞∑
t=t0

βt−t0 (Ct − hCt−1)
1−σC

1− σC

= UcC̄Et0

∞∑
t=t0

βt−t0

{
(1− hβ)

(
ĉt +

1

2
ĉ2t

)
− σC

2(1− h)
(ĉt − hĉt−1)

2

}
+ t.i.p.+O(2).

(112)

Given the linearity of production in labor, the disutility from labor can be written as

N1+σL
t

1 + σL
= UnN̄

{
n̂t +

1 + σL

2
n̂2t

}
+ t.i.p.+O(2) (113)

where Un = N̄σL . Applying the following result from Woodford (2003a)

n̂t = ŷt − ξ̂A,t +
1 + θp
2θp

vari (pt(i)) (114)

in equation (113), the disutility from labor can be expressed as

Et0

∞∑
t=t0

βt−t0N
1+σL
t

1 + σL

= N̄1+σLEt0

∞∑
t=t0

βt−t0

{
ŷt +

1 + σL

2
ŷ2t − 2

1 + σL

2
ŷtξ̂A,t +

1 + θp
2θp

vari (pt(i))

}
+t.i.p.+O(2). (115)

Before re-combining the expressions for the utility from consumption and the disutility from labor, we

27 Leith, Moldovan, and Rossi (2012) abstract from inflation persistence and focus on the conceptually more challenging derivations under
various formulations of consumption habits (internal versus external, deep versus superficial habits).
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turn to three relationships that allow us to simplify the approximation. The market clearing condition

implies

ĉt = ŷt +
1

2
ŷ2t −

1

2
ĉ2t +O(2) (116)

and the price dispersion term can be expressed as

∞∑
t=t0

βt−t0vari (pt(i)) =
ξp

(1− βξp)(1− ξp)

∞∑
t=t0

βt−t0 (πp,t − ιpπp,t−1)
2
. (117)

The third relationship is

(1− hβ)UcC̄ = UnN̄ (118)

which is derived as follows. The deterministic steady state of the market economy is not necessarily efficient

under external habits as agents do not internalize the impact of today’s consumption choice on tomorrow’s

marginal utility. To render the steady state efficient, we introduce a tax on consumption, which satisfies

1 + τ̄ c =
1

1−hβ . With this tax in place, the first order conditions for consumption and labor imply that in

the steady state (
(1− h)C̄

)−σC

N̄σL
= (1 + τ̄ c)

N̄

C̄
(119)

or

(1− hβ)UcC̄ = UnN̄ . (120)

Combining the utility from consumption and the disutility from labor using these three relationships,

we obtain the second-order approximation to household preferences as

UnN̄Et0

∞∑
t=t0

βt−t0

{(
ŷt +

1

2
ŷ2t

)
− σC

2(1− h)(1− hβ)
(ĉt − hĉt−1)

2

}

−UnN̄Et0

∞∑
t=t0

βt−t0

{(
ŷt +

1

2
ŷ2t

)
+
σL

2
ŷ2t − 2

1 + σL

2
ŷtξ̂A,t +

1 + θp
2θp

vari (pt(i))

}
+t.i.p.+O(2)

= −1

2
UnN̄Et0

∞∑
t=t0

βt−t0

{
σLŷ

2
t +

σC

δ
(ŷt − hŷt−1)

2 − 2(1 + σL)ŷtξ̂A,t +
1 + θp
θpκp

(πp,t − ιpπp,t−1)
2

}
+t.i.p.+O(2) (121)

with

κp =
(1− βξp)(1− ξp)

ξp

δ = (1− h)(1− hβ).

Our baseline model with sticky prices and external consumption habits can be summarized in linear-

quadratic form by the (hybrid) New Keynesian Phillips curve

(πp,t − ιpπp,t−1) = κpm̂ct + up,t + βEt (πp,t+1 − ιpπp,t) (122)
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where ut denotes a stationary markup shock.28 Marginal costs follow

m̂ct = σLŷt +
σC

1− h
(ŷt − hŷt−1)− (1 + σL) ξ̂A,t (123)

and the aggregate demand curve satisfies

(ŷt − hŷt−1) = Et (ŷt+1 − hŷt)−
1− h

σC
(it − Etπp,t+1) (124)

where it denotes the nominal interest rate. The social loss function satisfies

Et0

(
1

2

∞∑
t=t0

βt−t0Lt

)
(125)

with

Lt = σLŷ
2
t +

σC

δ
(ŷt − hŷt−1)

2 − 2(1 + σL)ŷtξ̂A,t +
1 + θp
θpκp

(πp,t − ιpπp,t−1)
2
. (126)

To express the model consisting of equations (122) to (126) in terms of “gaps,” we adopt the notion

of the welfare-relevant output gap as in Woodford (2003a). The welfare-relevant output gap is computed

by defining potential output as the output level that would prevail absent nominal rigidities and markup

shocks, but the internalization of consumption habits . Although the consumption tax 1 + τ̄ c removes

all static distortions arising from external habits, the dynamics remain distorted. To obtain the (linear)

equilibrium dynamics of this efficient output level, we solve the model under internal habits, as a social

planner would do, to deliver

m̂c
∗
t =

̂[W
P

]∗
t

− (ŷ∗t − n̂∗t )

= σLn̂
∗
t +

σC

δ

(
ĉ∗t − hĉ∗t−1

)
− hβ

σC

δ
Et

(
ĉ∗t+1 − hĉ∗t

)
− (ŷ∗t − n̂∗t )

= σL

(
ŷ∗t − ξ̂A,t

)
+
σC

δ

(
ŷ∗t − hŷ∗t−1

)
− hβ

σC

δ
Et

(
ŷ∗t+1 − hŷ∗t

)
− ξ̂A,t

= σLŷ
∗
t +

σC

δ

(
ŷ∗t − hŷ∗t−1

)
− hβ

σC

δ
Et

(
ŷ∗t+1 − hŷ∗t

)
− (1 + σL) ξ̂A,t. (127)

In the efficient economy (flexible prices, no markup shocks) real marginal costs are constant and therefore

efficient output evolves according to

σLŷ
∗
t +

σC

δ

(
ŷ∗t − hŷ∗t−1

)
− hβ

σC

δ
Et

(
ŷ∗t+1 − hŷ∗t

)
= (1 + σL) ξ̂A,t. (128)

Equation (128) can be used to rewrite the model in terms of the welfare-relevant output gap. Applied

to equation (121), we obtain

−1

2
UnN̄Et0

∞∑
t=t0

βt−t0

{
σLŷ

2
t − 2σLŷtŷ

∗
t +

1 + θp
θpκp

(πp,t − ιpπp,t−1)
2

}
28 The literature offers several ways of modelling markup shocks such as variations in desired markups in the price setting rules of firms,

exogenous variations in wage markups, shocks to the price subsidy paid to producers, or even shocks to the elasticity of substitution between
varieties. To a first order approximation all these models imply the same dynamic responses of the economy to the markup shock. As
discussed below, the second-order approximation of the household preferences, however, is not identical across approaches if the steady
state is inefficient.
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−1

2
UnN̄Et0

∞∑
t=t0

βt−t0 σC

δ

{
(ŷt − hŷt−1)

2 − 2
[
ŷt
(
ŷ∗t − hŷ∗t−1

)
− βhŷt

(
ŷ∗t+1 − hŷ∗t

)]}
+t.i.p.+O(2)

= −1

2
UnN̄Et0

∞∑
t=t0

βt−t0

{
σLŷ

2
t − 2σLŷtŷ

∗
t +

1 + θp
θpκp

(πp,t − ιpπp,t−1)
2

}

−1

2
UnN̄Et0

∞∑
t=t0

βt−t0 σC

δ

{
(ŷt − hŷt−1)

2 − 2 (ŷt − hŷt−1)
(
ŷ∗t − hŷ∗t−1

)
]
}

+t.i.p.+O(2) (129)

using

Et0

∞∑
t=t0

βt−t0 ŷt
{(
ŷ∗t − hŷ∗t−1

)
− hβ

(
ŷ∗t+1 + hŷ∗t

)}
= Et0

∞∑
t=t0

βt−t0 (ŷt − hŷt−1)
(
ŷ∗t − hŷ∗t−1

)
. (130)

Let the welfare-relevant output gap be denoted by xt = ŷt − ŷ∗t . Equations (122) to (126) can be stated

as

(πp,t − ιpπp,t−1) = κpm̂ct + up,t + βEt (πp,t+1 − ιpπp,t) (131)

with marginal costs following

m̂ct = σLxt +
σC

1− h
(xt − hxt−1) +

hβ

1− hβ
g∗mu,t (132)

and the aggregate demand curve

(xt − hxt−1) = Et (xt+1 − hxt)−
1− h

σC

(
it − Etπp,t+1 − g∗mu,t

)
. (133)

g∗mu,t is defined as

g∗mu,t =
σC

1− h

[
Et

(
ŷ∗t+1 − hŷ∗t

)
−
(
ŷ∗t − hŷ∗t−1

)]
. (134)

The social loss function is now written as

Et0

(
1

2

∞∑
t=t0

βt−t0Lt

)
(135)

with

Lt = σL (xt)
2
+
σC

δ
(xt − hxt−1)

2
+

1 + θp
θpκp

(πp,t − ιpπp,t−1)
2
. (136)

The equilibrium efficient output follows

ŷ∗t = Γŷ∗ ŷ∗t−1 + Γ
ξ̂
A ξ̂A,t (137)

as derived from equation (128) with Γŷ∗ being the solution to

−hβ σC

δ
Γ2
ŷ∗ +

(
σL +

σC

δ
(1 + h2β)

)
Γ2
ŷ∗ − h

σC

δ
= 0 (138)
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and Γ
ξ̂
A being given by

Γ
ξ̂
A =

1 + σL

σL + σC

δ (1 + h2β)− hβ σC

δ (Γŷ∗ + ρA)
. (139)

As the term hβ
1−hβ g

∗
mu,t appears in equation (132), the central bank is unable to perfectly stabilize

inflation and the welfare-relevant output gap under external consumption habits in response to technology

shocks. As discussed in Leith, Moldovan, and Rossi (2012) and Woodford (2003a), consumption habits have

to be specified as internal in order for the “divine coincidence” to re-emeerge; also compare to Blanchard

and Gali (2007).

B.2.2 Linear quadratic framework with distorted steady state

In our discussion of the case of a distorted steady state, we return to the simple New Keynesian Model with

flexible wages and no consumption habits (h=0) as in Benigno and Woodford (2005). In our derivations,

we allow for two sources that could justify the presence of a shock in the NKPC. The first one is an ad hoc

markup shock µp,t that is introduced into the first order condition of price setting firms. The second one is

a shock to the sales subsidy τp,t. If the subsidies to prices do not fully offset the monopolistic distortions

in the product market, the steady state relationship between consumption and labor is determined by

C̄1−σC = N̄1+σLΦ (140)

with the steady state markup satisfying 1
mc =

1+θp

1+τ̄p
= Φ. In combining the utility from consumption,

equation (112), and the disutility from labor, equation (115), the linear term ŷt does not drop out

ΦUnN̄Et0

∞∑
t=t0

βt−t0

{(
ŷt +

1

2
ŷ2t

)
− σC

2
ŷ2t

}

−UnN̄Et0

∞∑
t=t0

βt−t0

{(
ŷt +

1

2
ŷ2t

)
+
σL

2
ŷ2t − 2

1 + σL

2
ŷtξ̂A,t +

1 + θp
2θp

vari (pt(i))

}
+t.i.p.+O(2)

= −1

2
UnN̄Et0

∞∑
t=t0

βt−t0
{
−2 (Φ− 1) ŷt + [(σL + σC)− (1− σC)(Φ− 1)] ŷ2t

}
−1

2
UnN̄Et0

∞∑
t=t0

βt−t0

{
−2(1 + σL)ŷtξ̂A,t +

1 + θp
θpκp

(πp,t − ιpπp,t−1)
2

}
+ t.i.p.+O(3).

(141)

Absent distortions, Φ = 1, and the linear term (Φ − 1)ŷt in equation (141) cancels out. With distortions,

we employ the second-order approximation to the nonlinear New Keynesian Phillips curve as in Benigno

and Woodford (2005) to substitute out for this linear term. The first order condition for price setting is

given by

P opt
t =

Ht

Gt
(142)
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where

Ht0 =
1

C−σC
t0

Et0

∞∑
t=t0

(βξp)
t−t0(1 + µp,t)N

σL
t

(
Π(t)Pt0

Pt

)− 1+θp
θp

Yt (143)

Gt0 =
1

C−σC
t0

Et0

∞∑
t=t0

(βξp)
t−t0(1 + τp,t)C

−σC
t

(
Π(t)Pt0

Pt

)1− 1+θp
θp

Yt (144)

and Π(t) =
t∏

l=1

(
π
ιp
t0+l−1π̄

1−ιp
)
. Following the steps outlined in Benigno and Woodford (2005), this rela-

tionship can be shown to be approximated by

Vt
σL + σC

= κpEt

∞∑
t=t0

βt−t0

 ĥt − ĝt
σL + σC

+

(
ĥt − ĝt

)(
ĥt + ĝt

)
2 (σL + σC)


+κpEt

∞∑
t=t0

βt−t0

[
1 + θp

2(σL + σC)κpθp
(πp,t − ιpπp,t−1)

2

]
+ t.i.p.+O(3) (145)

where the terms ĝt and ĥt are given by

ĝt =
τ̄p

1 + τ̄p
τ̂p,t − (σC − 1) ŷt

ĥt =
µ̄p

1 + µ̄p

µ̂p,t + (1 + σL) ŷt − (1 + σL) ξ̂A,t + σL
1 + θp
2κpθp

(πp,t − ιpπp,t−1)
2
.

Substituting the definitions ĝt and ĥt into equation (145),

ĥt − ĝt
σL + σC

+

(
ĥt − ĝt

)(
ĥt + ĝt

)
2 (σL + σC)

+
1 + θp

2(σL + σC)κpθp
(πp,t − ιpπp,t−1)

2

= ŷt +
2 + σL − σC

2
ŷ2t +

1 + σL

σL + σC

1 + θp
2κpθp

(πp,t − ιpπp,t−1)
2

− (1 + σL)
2

σC + σL
ξ̂A,tŷt +

µ̄p

1 + µ̄p

1 + σL

σC + σL
µ̂p,tŷt −

τ̄p
1 + τ̄p

1− σC

σC + σL
τ̂p,tŷt + t.i.p. (146)

multiplying with − 1
κp
UN N̄(Φ− 1) and adding into equation (141) we obtain the approximation

−1

2
UnN̄

{
1 + (Φ− 1)

1 + σL

σL + σC

}
Et0

∞∑
t=t0

βt−t0(σL + σC)ŷ
2
t

−1

2
UnN̄

{
1 + (Φ− 1)

1 + σL

σL + σC

}
Et0

∞∑
t=t0

βt−t0 − 2(σL + σC)
1 + σL

σL + σC
ŷtξ̂A,t

−1

2
UnN̄

{
1 + (Φ− 1)

1 + σL

σL + σC

}
Et0

∞∑
t=t0

βt−t0 1 + θp
κpθp

(πp,t − ιpπp,t−1)
2

−1

2
UnN̄

{
1 + (Φ− 1)

1 + σL

σL + σC

}
Et0

∞∑
t=t0

βt−t0
2

µ̄p

1+µ̄p
(Φ− 1)(1 + σL)

σL + σC + (Φ− 1)(1 + σL)
µ̂p,tŷt

−1

2
UnN̄

{
1 + (Φ− 1)

1 + σL

σL + σC

}
Et0

∞∑
t=t0

βt−t0
−2

τ̄p

1+τ̄p
(Φ− 1)(1− σC)

σL + σC + (Φ− 1)(1 + σL)
τ̂p,tŷt

+t.i.p.+O(3). (147)
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Therefore, the model with a distortionary steady state can be written as

Et0

(
1

2

∞∑
t=t0

βt−t0Lt

)
(148)

with

Lt = (σL + σC) (ŷt − ỹt)
2
+

1 + θp
θpκp

(πp,t − ιpπp,t−1)
2

(149)

and the target output level ỹt

ỹt =
1 + σL

σL + σC
ξ̂A,t

−
(Φ− 1) 1+σL

σL+σC

σL + σC + (Φ− 1)(1 + σL)

µ̄p

1 + µ̄p

µ̂p,t

+
(Φ− 1) 1−σC

σL+σC

σL + σC + (Φ− 1)(1 + σL)

τ̄p
1 + τ̄p

τ̂p,t.

The linear New Keynesian Phillips curve is given by

(πp,t − ιpπp,t−1) =
(1− βξp)(1− ξp)

ξp

(
(σL + σC)ŷt +

µ̄p

1 + µ̄p

µ̂p,t −
τ̄p

1 + τ̄p
τ̂p,t − (1 + σL)ξ̂A,t

)
+βEt(πp,t+1 − ιpπp,t) (150)

or written in terms of the welfare relevant output gap ŷt − ỹt

(πp,t − ιpπp,t−1) = κp(σL + σC) (ŷt − ỹt)

+κp

(
1− (Φ− 1)(1 + σL)

σL + σC + (Φ− 1)(1 + σL)

)
µ̄p

1 + µ̄p

µ̂p,t

−κp
(
1− (Φ− 1)(1− σC)

σL + σC + (Φ− 1)(1 + σL)

)
τ̄p

1 + τ̄p
τ̂p,t

+βEt(πp,t+1 − ιpπp,t). (151)

In contrast to the model with an efficient steady state, the target output level ỹt responds to the price

markup shock µ̂p,t and the shock to the subsidy τ̂p,t. Only when Φ = 1 does the target level remain

unchanged after such shocks. While under an undistorted steady state the two shocks have the same

impact under the optimal policy, this is no longer true if the steady state is distorted. This can easily be

seen if σC = 1. In this case, the shock τ̂p,t does not impact the target output level at all.

Ignoring the movements in the output target level induced by markup/subsidy shocks when formulating

policies leads to inefficiencies. Although the optimal commitment policy can be described as an inflation

targeting framework, the definition of the output gap is key. If the output gap measure applied by the

policymaker rests on a definition of potential output as ȳt = 1+σL

σL+σC
ξ̂A,t—as would be the case under

the definition applied in Smets and Wouters (2007)—instead of ỹt the central bank’s response will not be

optimal.
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B.2.3 Linear quadratic framework with sticky wages

When prices and wages are sticky, we follow the steps outlined in Gali (2008) and Erceg, Henderson, and

Levin (2000) to approximate the utility function of the household to the second-order. Our derivations in-

clude a shock to the marginal disutility of labor to illustrate the discussion in Chari, Kehoe, and McGrattan

(2009).

In comparison to the previous section, the approximations of the utility from consumption shown in

equation (112) and the disutility from labor given in equation (113) remain unchanged with the small

qualifier that the latter expression is augmented by a term to capture the labor supply shock

UcC̄Et0

∞∑
t=t0

βt−t0

{
(1− hβ)

(
ĉt +

1

2
ĉ2t

)
− σC

2(1− h)
(ĉt − hĉt−1)

2

}
+ t.i.p.+O(2).

(152)

and

UnN̄Et0

∞∑
t=t0

βt−t0

{
n̂t +

1 + σL

2
n̂2t + ξ̂L,tn̂t

}
+ t.i.p.+O(2). (153)

Absent sticky wages aggregate labor supply Nt is related to final output Yt and the level of technology

via a term that measures price dispersion. Under sticky wages an additional term that captures wage

dispersion arises in this relationship. Note that

Nt =

∫ 1

0

Lt(j)dj =

[∫ 1

0

(
Wt(j)

Wt

)− 1+θw
θw

dj

]
Lt = Ωl

tLt (154)

where j is the index of a labor union. Similarly, aggregate output and manufactured varieties satisfy the

relationship

∫ 1

0

Yt(i)di =

∫ 1

0

(
Pt(i)

Pt

)− 1+θp
θp

di

Yt = Ωy
t Yt. (155)

Market clearing implies ∫ 1

0

Yt(i)di = ξA,tLt (156)

or making use of the above relationships

Ωl
tΩ

y
t Yt = ξA,tNt. (157)

Applying results from Woodford (2003a) and Gali (2008) regarding the second-order approximations of Ωy
t

and Ωl
t we obtain

n̂t = ŷt − ξ̂A,t +
1 + θp
2θp

vari (pt(i)) +
1 + θw
2θw

varf (wt(f)) . (158)
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Thus, the disutility from labor can be approximated by

ξL,t

N1+σL
t

1 + σL
= UnN̄

{
ŷt − ξ̂A,t +

1 + θp
2θp

vari (pt(i)) +
1 + θw
2θw

varf (wt(f))

}
+UnN̄

{
1 + σL

2

(
ŷt − ξ̂A,t

)2
+ ξ̂L,tŷt

}
+ t.i.p.+O(2). (159)

Assuming that the steady state is efficient due to appropriately chosen subsidies, i.e., (1 − hβ)UcC̄ =

UnN̄ , the utility function of the representative household can be approximated as

UnN̄Et0

∞∑
t=t0

βt−t0

{
ŷt +

1

2
ŷ2t −

σC

2(1− h)(1− hβ)
(ŷt − hŷt−1)

2

}

−UnN̄Et0

∞∑
t=t0

βt−t0

{
ŷt − ξ̂A,t +

1 + θp
2θp

vari (pt(i)) +
1 + θw
2θw

varf (wt(f))

}

−UnN̄Et0

∞∑
t=t0

βt−t0

{
1 + σL

2

(
ŷt − ξ̂A,t

)2
+ ξ̂L,tŷt

}
+ t.i.p.+O(2) (160)

or after simplifying

−1

2
UnN̄Et0

∞∑
t=t0

βt−t0

{
σLŷ

2
t +

σC

δ
(ŷt − hŷt−1)

2 − 2 (1 + σL) ŷtξ̂A,t +
1 + θp
θpκp

(πp,t − ιpπp,t−1)
2

}

−1

2
UnN̄Et0

∞∑
t=t0

βt−t0

{
2ŷtξ̂L,t +

1 + θw
θwκw

(πw,t − ιwπp,t−1)
2

}
+ t.i.p.+O(2) (161)

where

κp =
(1− βξp)(1− ξp)

ξp

κw =
(1− βξw)(1− ξw)

ξw
δ = (1− h)(1− hβ).

To obtain the (linear) equilibrium dynamics of the efficient output level in the model with labor supply

shocks, note that

m̂c
∗
t = ξ̂L,t + σLn̂

∗
t +

σC

δ

(
ĉ∗t − hĉ∗t−1

)
− hβ

σC

δ
Et

(
ĉ∗t+1 − hĉ∗t

)
− (ŷ∗t − n̂∗t )

= σLŷ
∗
t +

σC

δ

(
ŷ∗t − hŷ∗t−1

)
− hβ

σC

δ
Et

(
ŷ∗t+1 − hŷ∗t

)
− (1 + σL) ξ̂A,t + ξ̂L,t. (162)

and

σLŷ
∗
t +

σC

δ

(
ŷ∗t − hŷ∗t−1

)
− hβ

σC

δ
Et

(
ŷ∗t+1 − hŷ∗t

)
= (1 + σL) ξ̂A,t − ξ̂L,t. (163)

Efficient output is therefore a function of lagged efficient output, technology, and the labor supply shock.

By substituting this last expression back into equation (161), we can approximate the utility function

in terms of the welfare-relevant output gap, price and wage inflation, and the labor supply shock

−1

2
UnN̄Et0

∞∑
t=t0

βt−t0
{
σLŷ

2
t − 2σLŷtŷ

∗
t

}
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−1

2
UnN̄Et0

∞∑
t=t0

βt−t0

{
1 + θp
θpκp

(πp,t − ιpπp,t−1)
2
+

1 + θw
θwκw

(πw,t − ιwπp,t−1)
2

}

−1

2
UnN̄Et0

∞∑
t=t0

βt−t0 σC

δ

{
(ŷt − hŷt−1)

2 − 2
[
ŷt
(
ŷ∗t − hŷ∗t−1

)
− βhŷt

(
ŷ∗t+1 − hŷ∗t

)]}
+t.i.p.+O(2). (164)

Applying equation (130) once more allows us to define the social loss function for the model with sticky

wages and prices, indexation, labor supply shocks, and external habits as

Et0

(
1

2

∞∑
t=t0

βt−t0Lt

)
(165)

with

Lt = σL (xt)
2
+
σC

δ
(xt − hxt−1)

2

+
1 + θp
θpκp

(πp,t − ιpπp,t−1)
2
+

1 + θw
θwκw

(πw,t − ιwπp,t−1)
2

(166)

xt = ŷt − ŷ∗t denotes the welfare-relevant output gap. The structural equations of the model are given by

the New Keynesian Phillips curve for prices

(πp,t − ιpπp,t−1) = κpm̂ct + up,t + βEt (πp,t+1 − ιpπp,t) (167)

with

m̂ct = ω̂t − ξ̂A,t = ω̂t − ω̂∗
t (168)

and the price markup shock up,t, the New Keynesian Phillips curve for wages

(πw,t − ιwπp,t−1) = κw (m̂rst − ω̂t) + uw,t + βEt (πw,t+1 − ιwπp,t) (169)

with

m̂rst − ω̂t = σLŷt +
σC

1− h
(ŷt − hŷt−1)− σLξ̂A,t + ξ̂L,t − ω̂t

= σLŷt +
σC

1− h
(ŷt − hŷt−1)− (1 + σL) ξ̂A,t + ξ̂L,t − (ω̂t − ω̂∗

t )

= σLxt +
σC

1− h
(xt − hxt−1)− (ω̂t − ω̂∗

t )

+σLŷ
∗
t +

σC

1− h

(
ŷ∗t − hŷ∗t−1

)
− (1 + σL) ξ̂A,t + ξ̂L,t

= σLxt +
σC

1− h
(xt − hxt−1)− (ω̂t − ω̂∗

t ) +
hβ

1− hβ
g∗mu,t (170)

and the wage markup shock uw,t, the evolution of real wages

(ω̂t − ω̂∗
t ) =

(
ω̂t−1 − ω̂∗

t−1

)
+ πw,t − πp,t −

(
ω̂∗
t − ω̂∗

t−1

)
(171)
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and the aggregate demand curve

(xt − hxt−1) = Et (xt+1 − hxt)−
1− h

σC

(
it − Etπp,t+1 − g∗mu,t

)
. (172)

g∗mu,t is defined as

g∗mu,t =
σC

1− h

[
Et

(
ŷ∗t+1 − hŷ∗t

)
−
(
ŷ∗t − hŷ∗t−1

)]
. (173)

The efficient equilibrium output follows

σLŷ
∗
t +

σC

δ

(
ŷ∗t − hŷ∗t−1

)
− hβ

σC

δ
Et

(
ŷ∗t+1 − hŷ∗t

)
= (1 + σL) ξ̂A,t − ξ̂L,t (174)

and the efficient real wage is determined by

ω̂∗
t = ξ̂A,t. (175)

Figures 12 and 13 depict the impulse responses after a price markup shock in the model with sticky

wages and no price indexation and with full price indexation, respectively.
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Figure 12: Impulse responses to a price markup shock in a model with sticky wages and no price indexation
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Note: The figure shows the impulse responses of selected variables in the sticky wage model with no price or wage indexation (ιp = ιw = 0)

after a price markup shock. The results for four policies are shown: the optimal commitment policy (Ramsey), optimal inflation targeting

framework (IT), the optimal price level targeting (PLT), and the optimal speed limit policy (SLP).
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Figure 13: Impulse responses to a price markup shock in a model with sticky wages and full price indexation
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Note: The figure shows the impulse responses of selected variables in the sticky wage model with full price indexation (ιp = 1) but no

wage indexation (ιw = 0) after a price markup shock. The results for four policies are shown: the optimal commitment policy (Ramsey),

optimal inflation targeting framework (IT), the optimal price level targeting (PLT), and the optimal speed limit policy (SLP).
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B.3 Inertia under price level targeting and speed limit policy in the textbook
NKM

When policymakers act under discretion, price level targeting and speed limit policy perform strongly

in comparison to the optimal commitment policy as discussed in Walsh (2003) and Vestin (2006). This

appendix reproduces the key steps to show how inertia in the output gap and inflation arise in the textbook

NKM without price indexation or habit persistence under these two targeting frameworks.

In the following, we assume that the markup shock is transitory, i.e., Et(up,t+1) = 0, and we abstract

from the zero lower bound on the nominal interest rate, which allows us to ignore the aggregate demand

curve of the model. Under these assumptions, the optimal commitment policy implies the following dy-

namics for the output gap and inflation

xt = Υxxt−1 +Υuup,t (176)

πp,t =
λ

κ̃p
(1−Υx)xt−1 −

λ

κ̃p
Υuup,t (177)

with Υx being the solution to (
1 + β +

(κ̃p)
2

λ

)
Υx − βΥ2

x − 1 = 0 (178)

that satisfies Υx < 1. The value for Υu is

Υu =
−κ̃p

λ {1 + β (1−Υx)}+ (κ̃p)
2 . (179)

λ is the weight on the output gap in the true social loss function when the weight on inflation is normalized

to unity in the textbook NKM without price indexation, i.e., λ =
κ̃pθp

1+θp
. Recall, that under the assumptions

of the textbook NKM the functional form of the true social loss function is identical to the objective

function under the inflation targeting framework.

In equilibrium, both inflation and the output gap depend on the pervious realization of the output gap.

This feature of the optimal commitment policy is not found in the optimal discretion policy.

B.3.1 Price level targeting

To solve for the equilibrium under discretion we conjecture that the value function of the policymaker is

quadratic and depends on the price level of the previous period under price level targeting. We start with

the assumption that up,t = ρuup,t−1+σuεu,t. When comparing the solution under the price level targeting

framework to the solution under the optimal commitment policy, however, we will set ρu = 0.

The value function of the policymaker satisfies

V (p̂t−1, up,t) = min
p̂t,xt

1

2

(
p̂2t + λPLT (xt)

2
)
+ βEtV (p̂t, up,t+1) (180)

s.t.

(p̂t − p̂t−1) = κ̃pxt + βEprivate
t (p̂t+1 − p̂t) + up,t. (181)
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We conjecture that the value function is quadratic of the form

Vp(p̂t−1, up,t) = a1up,t +
1

2
a2 (up,t)

2
+ a3up,tp̂t−1 + a4p̂t−1 +

1

2
a5 (p̂t−1)

2
(182)

implying the derivative with respect to p̂t−1 to be of the form

Vp(p̂t−1, up,t) = a3up,t + a4 + a5p̂t−1 (183)

and that in equilibrium the price level evolves according to

p̂t = Θpp̂t−1 +Θuup,t. (184)

(p̂t − p̂t−1) = κ̃pxt + βEprivate
t (p̂t+1 − p̂t) + up,t (185)

(p̂t − p̂t−1) = κ̃pxt + β (Θp − 1) p̂t + (βΘuρu + 1)up,t (186)

Combining equations (181) and (184) to eliminate p̂t+1 and imposing expectations to be rational delivers

xt =
ω

κ̃p
p̂t −

1

κ̃p
p̂t−1 −

1 + βρuΘu

κ̃p
up,t. (187)

with ω = 1 + β (1−Θp). Replacing the term xt in the value function by the expression in equation (187),

the Envelop condition associated with the policymaker’s optimization problem implies

a3up,t + a4 + a5p̂t−1 = −λ
PLT

κ̃p
xt (188)

and the first order condition with respect to p̂t delivers

p̂t + ω
λPLT

κ̃p
xt + β [a4 + a5p̂t] = 0. (189)

Combining the last two equations to eliminate xt and applying equation (184) delivers the parameter

restrictions

Θp =
ωa5

1 + βa5
(190)

Θu =
ω − βρu
1 + βa5

a3 (191)

and a4 = 0. Using this information in the Envelop condition

a3up,t + a5p̂t−1 =
λPLT

κ̃p

1

κ̃p
(1− ωΘp) p̂t−1 +

λPLT

κ̃p

1

κ̃p
(1 + βρuΘu − ωΘu)up,t (192)

we obtain the remaining two conditions

a3 =
λPLT

(κ̃p)
2 (1 + βρuΘu − ωΘu) (193)
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a5 =
λPLT

(κ̃p)
2 (1− ωΘp) . (194)

By combining equations (190), (191), (193), and (194), we obtain the implicit definition of Θp and Θu

Θp =
λPLTω

(κ̃p)
2
+ βλPLT (1− ωΘp) + λPLTω2

(195)

Θu =
λPLT (ω − βρu)

(κ̃p)
2
+ βλPLT (1− ωΘp) + λPLT (ω − βρu)

2 (196)

noting that ω is a function of Θp.

Equipped with the law of motion for prices and the output gap under price level targeting with discretion,

we can show that inflation and the output gap follow the same path as under the optimal commitment

policy, when ρu = 0 and therefore Θu = Θp. Note that equation (187) can be rewritten as

xt =
1 + β (1−Θp)

κ̃p
p̂t −

1

κ̃p
p̂t−1 −

1

κ̃p
up,t =

ω − 1
Θp

κ̃p
p̂t (197)

and therefore p̂t =
κ̃p

ω− 1
Θp

xt. The price level is proportional to the output gap, just as it is the case under

the optimal commitment policy (compare to the optimal targeting rule expressed as p̂t = − λ
κ̃p
xt). Hence,

we obtain the law of motion for xt as

xt = Θpxt−1 +
Θpω − 1

κ̃p
up,t. (198)

Thus, for the price level targeting framework to implement the optimal commitment policy, λPLT must

be chosen to satisfy

Υx =
λPLTω

(κ̃p)
2
+ βλPLT (1− ωΥx) + λPLTω2

(199)

with Υx being the solution to equation (178) and ω = 1+β (1−Υx). Furthermore, it is
Θpω−1

κ̃p
= Υu given

the conditions imposed on Υx.

B.3.2 Speed limit policy

To solve for the equilibrium under discretion in the speed limit policy framework we conjecture that the

value function of the policymaker is quadratic and depends on the output gap of the previous period. The

value function of the policymaker satisfies

V (xt−1, up,t) = min
πp,t,xt

1

2

(
π2
p,t + λSLP (xt − xt−1)

2
)
+ βEtV (xt, up,t+1) (200)

s.t.

πp,t = κ̃pxt + βEprivate
t πp,t+1 + up,t. (201)

We conjecture that the value function is quadratic implying the derivative with respect to xt−1 to be of

the form

Vx(xt−1, up,t) = a3up,t + a4 + a5xt−1 (202)
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and that in equilibrium inflation evolves according to

πp,t = Ωπxt−1 +Ωuup,t. (203)

Combining equations (201) and (203) and imposing rational expectations delivers

πp,t = (κ̃p + βΩπ)xt + (βΩuρu + 1)up,t. (204)

Thus, the Envelop condition associated with the policymaker’s optimization problem implies

Vx(xt−1, up,t) = a3up,t + a4 + a5xt−1 = −λSLP (xt − xt−1). (205)

If in equilibrium xt evolves according to

xt = Θxxt−1 +Θuup,t (206)

we obtain the conditions a3 = −λSLPΘu, a4 = 0, and a5 = λSLP (1−Θx).

From the first order condition of the value function, we obtain

πp,t (κ̃p + βΩπ) + λSLP (xt − xt−1) + βa3ρuup,t + βa5xt = 0 (207)

or after substituting out for πp,t and xt[(
(κ̃p + βΩπ)

2
+ βa5

)
Θx + λSLP (Θx − 1)

]
xt−1

+
[(

(κ̃p + βΩπ)
2
+ βa5

)
Θu +

(
(βΩuρu + 1) (κ̃p + βΩπ) + λSLPΘu + βa3ρu

)]
up,t = 0. (208)

Using the fact that a5 = λSLP (1−Θx) and Ωπ =
κ̃pΘx

1−βΘx

(κ̃p)
2

(
1

1− βΘx

)2

Θx − λSLP (1−Θx) (1− βΘx) = 0 (209)

and finally we obtain a relationship between Θx and λSLP

(κ̃p)
2

λSLP
= (1−Θx)

(1− βΘx)
3

Θx
. (210)

Similarly, we have(
(κ̃p)

2

(
1

1− βΘx

)2

+ βλSLP (1−Θx)

)
Θu +

(
(1 + βΩuρu)

κ̃p
1− βΘx

+ λSLPΘu (1− βρu)

)
= 0 (211)

where

Ωu =
(κ̃p + βΩπ)Θu + 1

1− βρu
(212)

to determine Θu.

We are now in a position to compare the solution under the discretionary speed limit policy to the
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optimal commitment policy. Rewrite condition (178) as

(κ̃p)
2

λ
= (1−Υx)

(1− βΥx)

Υx
. (213)

and compare to condition (210). For λSLP = λ, the speed limit policy imparts some, but less persistence

to the output gap than the optimal commitment policy.

If λSLP = λ/ (1− βΥx)
2
, the speed limit policy impart the same persistence on the output gap. How-

ever, the optimal commitment policy is not replicated for this value of λSLP since Θu ̸= Υu: setting ρu = 0

for simplicity condition (211) reduces to

Θu = (1− βΥx)
−κ̃p

λ {1 + β (1−Υx)}+ (κ̃p)
2 = (1− βΥx)Υu. (214)

C Model in Walsh (2003)

Walsh (2003) uses the following linear model which resembles our NK model with price indexation and

consumption habits. Backward-looking behavior in the hybrid New Keynesian Phillips curve is measured

by the parameter ϕ

πp,t = (1− ϕ)βEtπp,t+1 + ϕπp,t−1 + κxt + et (215)

where πp,t denotes inflation, xt the output gap and et a markup shock. The aggregate demand curve

includes a lagged term of the output gap

xt = θxt−1 + (1− θ)Etxt+1 − σ(Rt − Etπp,t+1) + µt (216)

where Rt is the nominal interest rate. The variable µt summarizes shocks to the natural rate of interest

µt = ut − [1− (1− θ)γ̄]ȳt + θȳt−1 (217)

where potential output ȳt and the demand shock ut follow AR(1) processes

ȳt = γ̄ȳt−1 + ξt (218)

ut = γuut−1 + ηt. (219)

Finally, the markup shock is given by

et = γeet−1 + εt. (220)

The welfare criterion in Walsh (2003) is not derived from the preferences of households, but it is simply

stated to be of the form

π2
p,t + λx2t . (221)

The parameterization of the model is summarized in Table 3.
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Table 3: Parameter Values for Walsh(2003)

Parameter Description Value

β discount factor 0.99

κ slope of NKPC 0.05

λ weight on output gap 0.25

σ inverse of elast. subs. 1.5

ϕ lagged inflation in NKPC 0.5

θ lagged consumption in AD 0.5

Shock Description Value

σε autocorr. markup 0.015

γe std. markup 0

σu autocorr. demand shock 0.015

γu std. demand shock 0.3

σξ autocorr. natural output 0.005

γ̄ std. natural output 0.97

We solve the model for inflation targeting, price level targeting, speed limit policy, and the second

nominal income targeting framework under commitment and discretion. Walsh (2003) only reports results

under discretion. Figure (14) shows the welfare outcomes for each framework relative to the IT framework

as a function of the degree of price indexation. The top two panels report welfare differences in percent

deviations from the IT framework as in Walsh (2003) while the bottom two panels report the welfare

differences in terms of consumption equivalent variation (CEV).

Similar to our findings, the price level targeting and speed limit policy frameworks perform worse than

the IT framework when policymakers act under commitment. Given that Walsh (2003) evaluates welfare

using a loss function that has the same functional form as the objective function under IT, this result holds

by assumption. Under discretion, the price level targeting and the speed limit policy perform much better

than the IT framework for moderate degrees of price indexation. This contrasts with our finding that price

level targeting and the speed limit policy outperform the IT framework for all degrees of price indexation

in the model with moderate consumption habits.
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Figure 14: Welfare evaluation of targeting frameworks in Walsh (2003)
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Note: The figure shows the welfare performance of price level targeting (PLT), speed limit policy (SLP), and nominal income targeting

(NIT-II) relative to inflation targeting (IT) under discretion and commitment in the model of Walsh (2003). In the upper panels, we express

the welfare differences of each targeting framework as the percent deviation from the inflation targeting framework as in Walsh (2003),

while in the lower panels we express the differences between frameworks in terms of the consumption equivalent variation (CEV).
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D The CEE/SW model

This section lays out the nonlinear version of the CEE/SW model as implemented in our paper following

Smets and Wouters (2007).

D.1 Households

D.1.1 Household Agent

Each period t, household j chooses consumption Ct(j), labor supply Nt(j), investment It(j), the capital

stock Kt(j), capital utilization Zt(j), and domestic bond holdings to maximize expected discounted lifetime

utility. In doing so the household takes prices, wages and transfers as given.

Household j’s preferences over consumption and leisure are given by

Et0

∞∑
t=t0

βt−t0

{
1

1− σC

(
Ct(j)− hCA

t−1

)1−σC
exp

(
σC − 1

1 + σL
Nt(j)

(1+σL)

)}
(222)

CA
t−1 refers to the level of aggregate consumption in the previous period; the parameter h captures the

degree of external consumption habits.

The budget constraint of the household is given by

PtCt(j) + PtIt(j) +
Bt(j)

ξRt Rt

=W f
t Nt(j) +Rk

tKt−1(j)Zt(j)− a(Zt(j))Kt−1(j)Pt + Profitst + Tt

(223)

The household earns income by supplying homogeneous labor services to labor union Nt(j) and earns the

wage rateW f
t . Furthermore, the household derives income from renting out its capital stock, Rk

tKt−1(j)Zt(j)

net of capital utilization cost a(Zt(j))Kt−1(j)Pt. Finally, the household receives payments from holding fi-

nancial assets, Bt(j), Profitst and government transfers Tt. This income is spent on consumption, PtCt(j),

investment, PtIt(j), and financial assets.

Capital accumulates following

Kt(j) = (1− δ)Kt−1(j) + ξIt It(j)

[
1− S

(
It(j)

It−1(j)

)]
(224)

with the investment adjustment cost function

S

(
It(j)

It−1(j)

)
=
κ

2

(
It(j)

It−1(j)
− γ

)2

(225)

where S (γ) = 0, S′(γ) = 0, S′′(.) = κ > 0. Capital utilization costs are governed by

a(Zt(j)) =
(Rk)2

z

[
exp

( z

Rk
(Zt(j)− 1)

)
− 1
]

(226)

δ is the depreciation rate. The utilization function satisfies a(1) = 0, a
′
(1) = Rk, and a

′′
(1) = z.
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D.1.2 Labor unions and bundlers

Households supply their homogeneous labor to intermediate labor unions. These unions differentiate the

labor services, and resell them to labor bundlers. The union acts under monopolistic competition and sets its

wage rate using staggered contracts as in Calvo (1983). The labor bundlers combine the differentiated labor

services into an aggregate labor service that is sold to the intermediate goods producers in a competitive

market.

Labor bundling takes the form ∫ 1

0

G

(
Lt(j)

Lt

)
di = 1 (227)

following Kimball (1995). G is assumed to be a strictly concave and increasing function

G

(
Lt(j)

Lt

)
=

1 + θw
1− θwϵw

[(1 + θw − θwϵw
1 + θw

)Lt(j)

Lt
+

θwϵw
1 + θw

]( 1−θwϵw
1+θw−θwϵw

)
− θw + θwϵw

1− θwϵw

(228)

where 1+θw

θw
refers to the elasticity of substitution among labor varieties, and ϵw is referred to as the Kimball

elasticity. For ϵw = 0, the function G reduces to the standard Dixit-Stiglitz aggregator with a constant

elasticity of substitution between varieties.

Each labor bundler buys differentiated labor services from all unions and packages the differentiated

services into an aggregate labor service Lt. In doing so, a bundler solves the profit maximization problem

max
Lt(i),Lt

WtLt −
∫ 1

0

Wt(j)Lt(j)dj (229)

s.t.

∫ 1

0

G

(
Lt(j)

Lt

)
djLt = Lt (λLt ). (230)

The first order conditions imply the bundlers’ demand function for labor of type j

Lt(j)

Lt
=

1 + θw
1 + θw − θwϵw

(Wt(j)

Wt

Wt

λLt

)− 1+θw−θwϵw
θw − θwϵw

1 + θw − θwϵw
(231)

and wage costs charged to an intermediate goods produced satisfies

λLt
Wt

=
[ ∫ 1

0

(Wt(j)

Wt

Wt

λLt

)− 1−θwϵw
θw

dj
]− θw

1−θwϵw
. (232)

Each labor union measures the costs of the labor services it differentiates in terms of the marginal

rate of substitution of the supplying households. The unions are subject to nominal rigidities as in Calvo

(1983). A union can readjust its nominal wage with probability 1 − ξw in each period. For those that

cannot adjust wages optimally in the current period, wages increase as the weighted average of inflation in

the previous period Πt =
Pt

Pt−1
and inflation rate along the balance growth path Π̄ taking into account the

labor-augment technological progress γ, i.e.,

Wt+1(j) = W̃t(j)
(
Πιw

t Π̄(1−ιw)γ
)

(233)

For those that can adjust, the problem is to choose a wage W̃t(j) that maximizes the wage income in all
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states of nature where union has to maintain that wage in the future: Wage setting behavior for labor

variety j

max
W̃t(j)

Et

∞∑
s=0

(ξw)
s β

sλt+s

λt

[
Wt+s(j)−Wh

t+s

]
Lt+s(j)

s.t.
Lt+s(j)

Lt+s
=

1 + θw
1 + θw − θwϵw

(Wt+s(j)

Wt+s

Wt+s

λt+s

)− 1+θw−θwϵw
θw − θwϵw

1 + θw − θwϵw

Wt+s(j) = W̃t(j)X
W
t,s

XW
t,s =


1 for s = 0
s∏

l=1

(Πιw
t+l−1Π̄

1−ιwγ) for s = 1, ...,∞
(234)

A wage markup shock is modeled by allowing θw to vary over time. This shock is assumed to follow an

ARMA(1,1) process. Accordingly, θw is replaced by θw,t with

log (θw,t) = (1− ρw) log(θw) + ρw log (θw,t−1) + εw,t − ρw,ϵϵw,t−1 (235)

εw,t is white noise following N(0, σ2
w).

D.2 Firms

There are two types of firms: intermediate goods producers and final good producers.

D.2.1 Intermediate Goods Producer

Intermediate goods producers choose capital and labor to minimize the cost of producing an intermediate

goods variety using a Cobb-Douglas technology. In doing so they take the capital rental rate Rk
t and the

aggregate wage rate Wt as given. The cost minimization problem is then given by

min
Kt(i),Lt(i)

Rk
tKt(i) +WtLt(i)

s.t. Yt(i) = ξA,tKt(i)
ωk

(γtLt(i))
ωl

− γtΦ (236)

where Φ is a fixed cost that is chosen to set the producer’s profits equal to zero in the steady state. Marginal

costs are equalized across firms as firms share the same technology and factor markets are frictionless. ξ̂A,t

denotes a shock to total factor productivity

log
(
ξA,t

)
= (1− ρA) log(γ) + ρA log

(
ξA,t

)
+ εA,t (237)

εA,t is white noise following N(0, σ2
A). γ refers to steady sate labor-augment technology progress.

Intermediate goods producers set prices using staggered contracts as in Calvo (1983). Each period, a

firm can reset its price optimally with a constant probability 1− ξp. This probability is independent across

producers and time. Producers that cannot optimally adjust their price in the current period adjust by a

weighted average of Πt the nominal price inflation in the previous period and Π̄ the steady state inflation
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rate.

Pt+1(i) = P̃t(i)
(
Π

ιp
t Π̄1−ιp

)
. (238)

The intermediate goods producer i solves the profit maximization problem

max
P̃t(i)

Et

∞∑
s=0

(ξp)
sψt,t+s [(Pt+s(i)−MCt+s)]Yt+s(i)

s.t.

Yt+s(i)

Yt+s
=

1 + θp
1 + θp − θpϵp

(
Pt+s(i)

Pt+s

Pt+s

λYt+s

)− 1+θp−θpϵp
θp

− θpϵp
1 + θp − θpϵp

Pt+s(i) = P̃t(i)X
P
t,s

XP
t,s =


1 for s = 0
s∏

l=1

(Π
ιp
t+l−1Π̄

1−ιp) for s = 1, ...,∞
(239)

by fixing the price in the current period.

D.2.2 Final Good Producer

Differentiated intermediated products are combined to form the composite good by a continuum of bundlers

in a perfectly competitive environment. Using a technology of the form in Kimball (1990), it is∫ 1

0

G

(
Yt(i)

Yt

)
di = 1 (240)

and

G

(
Yt(i)

Yt

)
=

1 + θp
1− θpϵp

[(
1 + θp − θpϵp

1 + θp

)
Yt(i)

Yt
+

θpϵp
1 + θp

]( 1−θpϵp
1+θp−θpϵp

)
− θp + θpϵp

1− θpϵp

(241)

where
1+θp

θp
refers to the elasticity of substitution between intermediate varieties, and ϵp stands for the

Kimball elasticity. If ϵp = 0, the Kimball aggregator reduces to the standard Dixit-Stiglitz aggregator with

Yt =

[∫ 1

0

Yt(i)
1

1+θp di

]1+θp

(242)

Profit maximization for intermediate producer i is defined as:

max
Yt(i),Yt

PtYt −
∫ 1

0

Pt(i)Yt(i)di

s.t.∫ 1

0

G

(
Yt(i)

Yt

)
diYt = Yt (λYt ). (243)
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The first order conditions deliver the demand function for each intermediate good and an expression for

the aggregate price index

Yt(i)

Yt
=

1 + θp
1 + θp − θpϵp

(
Pt(i)

Pt

Pt

λYt

)− 1+θp−θpϵp
θp

− θpϵp
1 + θp − θpϵp

(244)

and

λYt
Pt

=

∫ 1

0

(
Pt(i)

Pt

Pt

λYt

)− 1−θpϵp
θp

di

− θp
1−θpϵp

. (245)

Again, if ϵp = 0, the demand of each differentiate becomes

Yt(i) =

(
Pt(i)

Pt

)− 1+θp
θp

Yt (246)

and the aggregate price index is

Pt =

[∫ 1

0

Pt(i)
− 1

θp di

]−θp

. (247)

Time variation in the markup can be introduced by replacing θp with θp,t, where θp,t follows an ARMA(1,1)

process

log (θp,t) =
(
1− ρp

)
log(θp) + ρp log (θp,t−1) + εp,t − ρpεp,t−1 (248)

εp,t is white noise following N(0, σ2
p).

D.2.3 Fiscal and Monetary Policy

Government budget is balanced with

PtGt +Bt−1 = Tt +
Bt

Rt
(249)

and

Gt = ξG,tYss (250)

The government spending shock ξG,t follows the stochastic process

log
(
ξG,t

)
= (1− ρG) log(gy) + ρG log

(
ξG,t−1

)
+ ρAG log(ξA,t)− ρAG log(ξA,t−1) + εG,t. (251)

εG,t is white noise following N(0, σ2
G). where gy is the government spending to GDP ratio in the steady

state.
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D.2.4 Resources Constraint

Capital market clearing The market for capital clears if the total amount demanded by firms
∫ 1

0
Kt(i)di

equals the amount supplied by the households∫ 1

0

Kt(i)di = Zt

∫ 1

0

Kt−1(j)dj. (252)

Labor market clearing The relationship between labor supply and aggregate labor demand can be stated

as

Nt = Ωl
tLt. (253)

It can be shown that Ωl
t ⩾ 1 due to the concavity of the Kimball aggregator. Ωl

t is defined implicitly by

the above equation; see also Appendix B.1.

Final product market clearing Demand for the final product is

Yt = Ct + It +Gt + a(Zt)Kt−1. (254)

The final product is purchased by households for consumption and investment and capital utilization, and

by the government.

Supply of the final product is given by

Ωy
t Yt = ξL,tK

α
t (γ

tLt)
1−α − θp

1 + θp
γtKssLss. (255)

It can be shown that Ωy
t ⩾ 1 due to the concavity of the Kimball aggregator. Ωy

t is defined implicitly by

the above equation; see also Appendix B.1.

Table 4 summarizes the parameters estimated for the CEE/SW model. Figure 4 plots the impulse

responses of selected variables to a price and a wage markup shock under the optimal commitment policy,

and inflation targeting, price level targeting and speed limit policy under discretion.
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Table 4: Parameter values for CEE/SW model estimated with US data

a:Calibrated and Estimated Parameters

Parameter Description Value Parameter Description Value

δ depreciation rate 0.025 κ invest. adjust. cost 5.48

ϵp Kimball elas. goods 10 ϵw Kimball elas. labor 10

gy s.s. G/Y 0.18 β discount factor 0.9984

γ tech. progress 1.0043 π̄ s.s. inflation rate 1.0081

σC inverse cons. elastic. 1.39 σL inverse labor. elastic. 1.92

θw s.s. net wage markup 0.5 θp s.s. net price markup 0.61

h habit persistence 0.71 ψ capital util. cost 0.54

ξp price stickiness 0.65 ξw wage stickiness 0.73

ιp price indexation 0.22 ιw wage indexation 0.59

ωk capital share 0.19 ωl labor share 0.81

τ̄p price subsidies 0 τ̄w wage subsidies 0

b:Parameters for Shock Process

Shock AR(1) MA(1) Standard deviation (%) Value

technology ρA 0.95 - - σA 0.45

risk premium ρR 0.18 - - σR 0.24

gov. spending ρG 0.97 ρAG 0.52 σG 0.52

invest. specific ρI 0.71 - - σI 0.45

price markup ρp 0.90 ρpε 0.74 σp 0.14

wage markup ρw 0.97 ρwε 0.88 σw 0.24
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Table 5: Parameter values for CEE/SW model estimated with euro area data

a:Calibrated and Estimated Parameters

Parameter Description Value Parameter Description Value

δ depreciation rate 0.025 κ invest. adjust. cost 5.68

ϵp Kimball elas. goods 10 ϵw Kimball elas. labor 10

gy s.s. G/Y 0.18 β discount factor 0.9977

γ tech. progress 1.0039 π̄ s.s. inflation rate 1.0068

σC inverse cons. elastic. 1.32 σL inverse labor. elastic. 2.60

θw s.s net wage markup 0.5 θp s.s. net price markup 0.77

h habit persistence 0.72 ψ capital util. cost 0.24

ξp price stickiness 0.64 ξw wage stickiness 0.75

ιp price indexation 0.128 ιw wage indexation 0.374

ωk capital share 0.16 ωl labor share 0.84

τ̄p price subsidies 0 τ̄w wage subsidies 0

b:Parameters for Shock Process

Shock AR(1) MA(1) Standard deviation (%) Value

technology ρA 0.99 - - σA 0.27

risk premium ρR 0.69 - - σR 0.10

gov. spending ρG 0.99 ρAG 0.39 σG 0.29

invest. specific ρI 0.12 - - σI 0.55

price markup ρp 0.99 ρpε 0.92 σp 0.16

wage markup ρw 0.98 ρwε 0.84 σw 0.15
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