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Abstract

We use several US and euro-area surveys of professional forecasters to
estimate a dynamic factor model of inflation featuring time-varying un-
certainty. We obtain survey-consistent distributions of future inflation
at any horizon, both in the US and the euro area. Equipped with this
model, we propose a novel measure of the anchoring of inflation expec-
tations that accounts for inflation uncertainty. Our results suggest that
following the Great Recession, inflation anchoring improved in the US,
while mild de-anchoring occurred in the euro area. As of our sample end,
both areas appear to be equally anchored.
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Introduction

1 Introduction

In this paper we study survey-based inflation expectations and uncertainty about

these expectations. In particular, we propose a novel measure that allows macro-

economists and policymakers to assess the extent to which inflation expectations are

anchored.

The Federal Reserve System (the Fed) and the European Central Bank (the

ECB) are two of many central banks that have adopted a mandate for price stabil-

ity devised to foster economic activity. To meet this objective, central banks pay

close attention to various measures of inflation expectations implied both by financial

market data and by surveys of professional forecasters. Surveys, in particular, have

received considerable attention from policymakers and academic researchers. What

makes surveys so attractive? First, survey-based measures of inflation expectations

— unlike market-based measures — are not affected by inflation risk premiums.

Market-based inflation compensation measures, such as inflation swaps and TIPS

break-even rates, contain two components: inflation expectations and inflation risk

premiums. Several studies show that inflation risk premiums can be large in magni-

tude and tend to vary a lot, thus distorting the readings of inflation expectations.1

Second, surveys have been documented to be successful in forecasting inflation rela-

tive to various time-series models (e.g. Ang, Bekaert, and Wei, 2007). As a result of

the above, surveys are closely monitored and used to assess the anchoring of inflation

expectations.

This paper contributes to a growing literature on the anchoring of inflation ex-

pectations. There are several proposed measures of anchoring, or stability of infla-

tion expectations. One popular measure is the response of inflation compensation

measures (TIPS break-even rates of inflation swaps) or interest rates to incom-

ing macroeconomic news (Gürkaynak, Levin, Marder, and Swanson, 2007; Mishkin,
1See Campbell and Viceira (2001); Buraschi and Jiltsov (2005); Ang, Bekaert, and Wei (2008);

Hördahl and Tristani (2010); Ajello, Benzoni, and Chyruk (2012); Chernov and Mueller (2012);
Haubrich, Pennacchi, and Ritchken (2012); Abrahams, Adrian, Crump, and Moench (2013); Gr-
ishchenko and Huang (2013); Fleckenstein, Longstaff, and Lustig (2013); Crump, Eusepi, and
Moench (2016); Breach, D’Amico, and Orphanides (2016); D’Amico, Kim, and Wei (2016).
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2007; Beechey, Johannsen, and Levin, 2011; De Pooter, Robitaille, Walker, and

Zdinak, 2014; Speck, 2016). Other measures include the response of (changes in)

long-term inflation expectations to (changes in) short-term ones (Buono and Formai,

2016; Gerlach, Moessner, and Rosenblatt, 2017), the precision around estimates of

the level of inflation (Mehrotra and Yetman, 2014), the volatility of shocks to trend

inflation (Mertens, 2016), and the closeness of average beliefs to the central bank’s

inflation target (Kumar, Afrouzi, Coibion, and Gorodnichenko, 2015; Łyziak and

Paloviita, 2016).

While the above measures are used to define “anchored” expectations, most of

them are mainly related to the stability of the conditional mean of inflation. How-

ever, the conditional mean can be stable even if the conditional variance (i.e. uncer-

tainty) is relatively high.2 To better capture the uncertainty underlying the concept

of anchoring, we propose to measure anchoring in terms of probabilities of future

inflation being in a certain range that is consistent with inflation targets.

To this end, we propose an approach that takes survey-based inflation forecasts

(for various horizons, at varying frequencies and with different definitions) as inputs

and produces survey-consistent distributions of inflation at any horizon. We rely

both on survey-based consensus inflation forecasts that correspond to an average

scenario and on probability distributions of future inflation rates that provide infor-

mation about uncertainty surrounding this scenario. Specifically, we estimate our

model by fitting survey-based first- and second-order moments.

Our dynamic factor model has several noteworthy features. First, common latent

factors are allowed to drive the dynamics of inflation rates in both economies, re-

flecting ever-increasing interconnectedness between developed economies (Monacelli

and Sala, 2009; Ciccarelli and Mojon, 2010). Second, our model features stochastic

volatility of inflation, hence allowing for time-varying inflation uncertainty.3 Third,
2Consider, for instance, a situation when a specific macroeconomic surprise results in a sub-

stantial increase in the long-term conditional variance but has no effect on the conditional mean.
That is, suppose we face equal increases in both downside and upside risks. In this situation, while
long-term inflation expectations remain stable, the probability of having very high or very low
future inflation rates increases substantially, which is at odds with the concept of anchoring.

3Engle (1982) was the first who emphasized time-varying inflation uncertainty in the context
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our model is highly tractable because it offers closed-form solutions for conditional

first and second moments of future inflation rates at any horizon. This tractability

is due to the fact that the factors in our econometric model follow so-called affine

processes. The affine property of our factors implies that the model can be easily

cast in state-space form and subsequently estimated using Kalman filtering tech-

niques. These techniques easily handle missing observations, which is particularly

useful in our case, because different surveys are released at different points in time.

We apply our methodology to the US and euro-area spanning the period from

January 1999 to June 2016. We construct inflation expectations, inflation uncer-

tainty, and inflation anchoring measures for both economies using several prominent

surveys of professional forecasters. The measures obtained are directly comparable

across the two economies, they are available on a regular (monthly) frequency, and

can be computed for any horizon. We find that, in the early 2000s, euro-area long-

term inflation expectations are more anchored relative to the US ones. Specifically,

the probability of euro-area inflation 5- and 10-years ahead being between 1.5% and

2.5% is larger than 60%, compared to 40% for the United States. However, euro-area

inflation expectations show mild signs of de-anchoring in the post crisis period. In

contrast, the anchoring of US long-term inflation expectations improves during this

period. By the end of our sample (2016Q2), US and euro-area inflation expectations

are similarly anchored, according to our measures.

In the remainder of the paper Section 2 summarises the data used in our anal-

ysis, Section 3 describes our model and estimation strategy and Section 4 presents

empirical results, and Section 5 concludes. Appendix 6 gathers proofs and technical

results.

of an econometric model by specifying a new class of stochastic processes called autoregressive
conditional heteroscedastic (ARCH) processes. Zarnowitz and Lambros (1987) were the first who
emphasized time-varying inflation uncertainty in the context of the second moment of survey-based
inflation distributions; the concept that we use in our model to proxy for inflation uncertainty.
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2 Data

2.1 Notation

Let us first define a notation which is flexible enough to account for the breadth of

data described in the following Subsection 2.2. We denote by π(i)
t,t+h the annualized

inflation rate in economy i between dates t and dates t + h, defined as the log

difference in the price index P (i)
t :

π
(i)
t,t+h =

12

h
log

(
P

(i)
t+h

P
(i)
t

)
, (1)

where h is the forecast horizon measured in months.

Further, because it used in some surveys, we denote by π̃t,t+h the annual-quarter-

average over annual-quarter-average percent change in prices, defined as follows:

π̃
(i)
t,t+h =

P
(i)
t+h + P

(i)
t+h−3 + P

(i)
t+h−6 + P

(i)
t+h−9

P
(i)
t+h−12 + P

(i)
t+h−15 + P

(i)
t+h−18 + P

(i)
t+h−21

. (2)

Note that when inflation is relatively small, the inflation target in eq. (2) is well

approximated by:4

π̄
(i)
t,t+h =

1

4
(π

(i)
t+h−21,t+h−9 + π

(i)
t+h−18,t+h−6 + π

(i)
t+h−15,t+h−3 + π

(i)
t+h−12,t+h). (3)

2.2 Survey data: sources and content

In our model estimation, we use several surveys of professional forecasters for the

United States and for the euro area. Specifically, we obtain inflation forecast data

from the following surveys: the Survey of Professional Forecasters conducted by

the Federal Reserve Bank of Philadelphia (US-SPF), the Survey of Primary Dealers

conducted by the Federal Reserve Bank of New York (SPD), the Blue Chip Survey

of Financial Forecasts and Economic Indicators (Blue Chip, or BCFF and BCEI

hereafter), the Survey of Professional Forecasters conducted by the European Cen-
4This is illustrated in Figure 1.
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tral Bank (ECB-SPF) and the Consensus Economics Survey (CES) conducted by

Consensus Economics. The sample period extends from January 1999, which coin-

cides with the onset of the euro area and the start date of the ECB-SPF, until June

2016. Table 1 summarizes the forecast variables extracted from the different surveys

and Appendix 6.4 provides specific details about each survey.

[Insert Table 1 about here.]

We construct a detailed database of inflation expectation surveys at various hori-

zons. Importantly, surveys target different measures of inflation. To illustrate this,

Figure 1 depicts year-over-year inflation πt−12,t, annual-quarter-average over annual-

quarter-average percent change in prices π̃t−12,t, and its approximation π̄t−12,t, for

the euro area and the US, respectively. Two points are worth mentioning: (i) the

annual-quarter-average over annual-quarter-average percent change in prices π̃t−12,t

is well approximated by π̄t−12,t and (ii) πt−12,t and π̄t−12,t are considerably different,

with spreads reaching up to 1 percentage point, implying that raw survey data, even

if they target the same horizon, are not necessarily comparable.

[Insert Figure 1 about here.]

Surveys typically provide point estimates but some surveys provide information

on the distribution of inflation. In our analysis, we exploit surveys with density

forecasts, which either provide information at an aggregate level (SPD) or at an

individual forecasters’ level (US-SPF and ECB-SPF). In the latter case, our model

assumes the existence of a representative forecaster and, therefore, in our estimation,

we use the average of survey outputs (i.e. aggregate densities).

The top and middle panels of Figure 2 illustrate, respectively, the point esti-

mates and aggregate densities (histograms) for the five-year ahead ECB-SPF infla-

tion forecasts and the five-year in five years US-SPD inflation forecasts. Note that

the information embedded in the aggregate densities (depicted in the middle panels,

in black) amounts to the value of the associated cumulative distribution function

(CDF) at a few key values (i.e. 1%, 1.5%, 2%, 2.5% and 3%).
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[Insert Figure 2 about here.]

2.3 Measuring uncertainty

Uncertainty can be measured as the conditional variance of the aggregate probability

distribution of survey forecasts.5 As mentioned in Subsection 2.2, the US-SPF, the

SPD, and the ECB-SPF provide us with the CDF at key points. However, this

information is not sufficient to obtain the variance. Therefore, we first apply Beta-

smoothing techniques to the observed aggregated CDF to obtain an estimate of the

full distribution. Note that Beta-smoothing has been widely used in the literature

(see Engelberg, Manski, and Williams, 2009; Boero, Smith, and Wallis, 2014) and

Appendix 6.5 provides further details about this procedure. Once equipped with

the smoothed CDFs, we proceed in computing the associated conditional variances

(i.e. uncertainty).6

The middle panels of Figure 2 illustrate (in grey) the smoothed CDF at a few key

values. We observe that the smoothed series (in grey) fit the raw CDFs (in black)

reasonably well. The bottom panels display the uncertainty measures associated

with the five-year ahead ECB-SPF inflation forecasts and the five-year in five years

US-SPD inflation forecasts.

One important implication is that the conditional variance of the aggregate distri-

bution amounts to the sum of disagreement and the average of individual variances

(which results from the application of the law of total variance).7 Thus, denot-

ing by σ2
agg,th the conditional variance of the aggregate distribution, the proxy for

5Such uncertainty measures based on the diffuseness of probability distributions have been
considered by Zarnowitz and Lambros (1987), Conflitti (2011), Rich, Song, and Tracy (2012),
Boero, Smith, and Wallis (2014), and D’Amico and Orphanides (2014), among others.

6In Section 3, we fit the conditional variances stemming from the smoothed aggregate densities.
7An important strand of the literature studies survey-based measures of disagreement and

uncertainty. Similarly to our measure, Lahiri and Sheng (2010) decompose forecast errors into
common and idiosyncratic shocks and show that aggregate forecast uncertainty can be expressed
as the sum of the disagreement among forecasters and the perceived variability of future aggregate
shocks. This finding implies that the reliability of disagreement as a proxy for uncertainty depends
primarily on the stability of the forecasting environment.
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uncertainty is given by:

σ2
agg,th = dth +

1

F

F∑
f=1

σ2
fth, (4)

where F is the number of forecasters f , t is the time the forecast is made, h is

the forecasting horizon, dth is the disagreement among forecasters and σ2
fth is the

variance associated with forecaster f ’s distribution. This measure of uncertainty

captures both forecasters’ heterogeneity via the cross-sectional variance of individual

means (i.e. disagreement) and the average uncertainty of individual forecasters.

3 Model and estimation strategy

3.1 Inflation and its driving factors

We assume that the annual inflation rate, π(i)
t−12,t, is a linear combination of factors

gathered in the n× 1 vector Yt = (Y1,t, . . . , Yn,t)
′. As specified below, the dynamics

of Yt is such that the marginal mean of Yt is zero. Importantly, Yj,t factors, where

j ∈ {1, . . . , n}, may be common to different economies:

π
(i)
t−12,t = π(i) + δ(i)

′
Yt. (5)

We assume that the distribution of Yt is Gaussian conditional on its past realization

Yt−1 = {Yt−1, Yt−2, . . . } and on another q × 1 exogenous vector zt = (z1,t, . . . , zq,t)
′

that affects the variance of Yt.8 Specifically, Yt is given by:

Yt = ΦY Yt−1 + diag
(√

ΓY,0 + Γ′Y,1zt

)
εY,t, εY,t ∼ N (0, I), (6)

where ΓY,0 is an n × 1 vector and ΓY,1 is a q × n matrix. According to eq. (6), zt

affects the conditional variance of Yt. Vector zt is essential for modelling the time-

varying variance of inflation so we refer to zt as the uncertainty vector (and to the
8Note that this does not imply that the marginal distribution of Yt is Gaussian (as it is in

GARCH models).
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zj,ts as the uncertainty factors) hereinafter.

The specification of the conditional variance in eq. (6) implies that the entries

of ΓY,0 + Γ′Y,1zt have to be non-negative for all t. To that end, we assume that all

elements of ΓY vectors are non-negative and that zt follows a multivariate auto-

regressive gamma process. As shown in Appendix 6.2, the dynamics of zt admits

the following semi-strong VAR representation:

zt = µz + Φzzt−1 + diag
(√

Γz,0 + Γ′z,1zt−1

)
εz,t, (7)

where, conditional on zt−1, εz,t has a zero mean and a unit diagonal covariance

matrix, and where Γz,0 is a q × 1 vector and Γz,1 is a q × q matrix.

Given the dynamics of Yt and zt, the semi-strong VAR form of the dynamics

followed by Xt = (Y ′t , z
′
t)
′ is:

Xt =

Yt
zt

 = µX + ΦX

Yt−1
zt−1

+ ΣX(zt−1)εX,t, (8)

where εX,t is a (n+ q)-dimensional unit-variance martingale difference sequence and

where:

µX =

 0

µz

 , ΦX =

 ΦY 0

0 Φz

 , ΣX(zt−1)ΣX(zt−1)
′ =

Σ11 Σ12

Σ′12 Σ22

 ,

with


Σ11 = diag(ΓY,0 + Γ′Y,1(µz + Φzzt−1)),

Σ22 = diag(Γz,0 + Γ′z,1zt−1),

Σ12 = 0.

An important property of Xt is that it is affine (see Appendix 6.1.1). This

implies that, conditionally on Xt = {Xt, Xt−1, . . . }, the first and second conditional

moments of any linear combination of future values of Xt are affine functions of Xt.

In particular, since the realized log annual growth rate of the price index π(i)
t−12,t is

9
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an affine transformation of Xt (see eq. (5)), its first and second moments can be

written as affine functions of the Xt factors as well:

Et(π(i)
t+h−12,t+h) = π(i) + a

(i)
h + b

(i)
h

′
Xt (9)

Vart(π(i)
t+h−12,t+h) = α

(i)
h + β

(i)
h

′
Xt, (10)

where Et(•) and Vart(•) respectively denote the expectations and variances con-

ditional on Xt. As explained in Section 2, we have to consider other measures of

inflation because of the nature of the different surveys we fit. In particular, we study

the annualized h-period ahead inflation rates π(i)
t,t+h = (12/h) log(P

(i)
t+h/P

(i)
t ), that we

can write as:

π
(i)
t,t+h = π(i) +

1

k
δ(i)
′
(Yt+12 + Yt+24 + · · ·+ Yt+h), (11)

where h = 12 × k. Because π(i)
t,t+h is affine in Yt (and therefore in Xt), the first

and second conditional moments of π(i)
t,t+h can also be written as affine functions of

Xt. The same applies to π̄(i)
t,t+h (see Subsection 2.1). Appendices 6.1.2 and 6.1.3

detail the recursive algorithms used to compute the loadings defining all these affine

relationships.

3.2 State-space model and Kalman-filter estimation

3.2.1 Objective and strategy

In addition to model parameters, we have to estimate the factors Xt that are not

observed by the econometrician. We handle both estimations in a joint manner

using Kalman filtering techniques. The affine property of the process Xt is key to

the tractability of the estimation. Specifically, we not only have closed-form formulas

for conditional expectations and variances (as in eqs. (9) and (10) for π(i)
t+h−12,t+h),

but they also are affine. This allows us to easily cast the model into a linear state-

space form, which is the required form of the model for the Kalman filter algorithm

10
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to be applied. This is a fundamental difference between our approach and alternative

inflation models exhibiting stochastic volatility (see, e.g. Stock and Watson, 2007;

Mertens, 2016). Indeed, while the latter models entail closed-form expressions for the

first two conditional moments of inflation, the second-order moments are non-linear

in the unobserved factors, which substantially complicates the model estimation.

A state-space model consists of two types of equations: transition equations

and measurement equations. Transition equations describe the dynamics of the

latent factors, as in eq. (8). Measurement equations specify the relationship between

the observed variables and the latent factors. A by-product of the Kalman filter

algorithm is the likelihood function. Parameter estimates can therefore be obtained

by maximising this function.

3.2.2 Measurement equations

The state-space model involves three types of measurement equations:

(a) The first set of equations states that, for each economy i, the realised inflation

rate is equal to a linear combination of factors Yt, as stated by eq. (5), with

area-specific loadings.

(b) The second set of equations states that, up to the measurement error, survey-

based expectations of future inflation rates are equal to the model-implied

ones, that is:

SPFt = π + a + b′Xt + diag(σavg)ηavgt , (12)

where ηavgt is a vector of iid Gaussian measurement errors, SPFt gathers all

survey-based inflation expectations available at date t and the vector π, the

vector a and the matrix b are filled with the appropriate π(i)s and with the

parameters defining the affine relationships between conditional expectations

and Xt (such as eq. (9)).

(c) The third set of equations states that, up to the measurement error, survey-

11
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based variances are equal to the model-implied ones, i.e.:

V SPFt = α + β′Xt + diag(σvar)ηvart (13)

where ηvart is a vector of iid Gaussian measurement errors, V SPFt gathers

all survey-based conditional variances of inflation forecasts available at date t,

and the vector α and the matrix β are filled with the parameters defining the

affine relationships between conditional variances and Xt (such as eq. (10)).

Let us denote by St the vector of observations used in the state-space model.

Since the latter is based on equations of types (a), (b) and (c), we have St =

[π
(1)
t , π

(2)
t , SPF ′t , V SPF

′
t ]
′. Using obvious notations, the measurement equations of

the state-space model read:

St = A+B′Xt + diag(σS)ηSt , (14)

where Var(ηSt ) = Id.

3.2.3 Discussion of model estimation

At this stage, three remarks are in order. First, most survey forecasts are not

released every month so SPFt and V SPFt are not available every month and thus

their series contain missing observations when measured at a monthly frequency.9

Fortunately, it is straightforward to adjust the Kalman filter in order to handle

missing observations (for details see Harvey and Pierse, 1984; Harvey, 1989). For

the months when no SPFt and V SPFt variables are available, the filter can still

produce estimates of all latent factors, though with lower precision.

The second remark is about the Kalman filter performance in our case. While

the affine form of our transition and measurement equations facilitates the imple-

mentation of the filter, the filter we eventually run is not optimal. It would have
9An alternative, but equivalent, view would be that the vectors and matrices π, a, b, α and β

have time-varying sizes.
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been optimal had the conditional covariance matrix ΣXΣ′X in eq. (8) not been de-

pendent on Xt−1. However, this is not the case given some entries of ΓY,1 are non-

null. Therefore, we estimate our model using a quasi-maximum-likelihood (QML)

approach based on a modifed version of the Kalman filter.10

The third remark pertains to the standard deviations of the measurement equa-

tions, i.e. to the components of vectors σavg and σvar (see eqs. (12) and (13)). In

order to reduce the number of parameters to estimate, these standard deviations

are calibrated in a preliminary step. We employ the approach of Green and Sil-

verman (1994) and proceed as follows. We apply a smoothing spline to the raw

survey-based expectations and variances (SPFt and V SPFt). Next, we compute

the standard deviations of the differences between the survey-based series and their

smoothed counterparts. The standard errors of the measurement equations are set

to these values.

4 Results

4.1 Estimated model

Table 2 presents the fit of the data resulting from three different specifications:

n = 3, 4, 5 (dimension of Yt) and q = 2 (dimension of zt).11 The fitting perfor-

mances of the model are reported in terms of root mean squared errors (RMSE)

and ratios of mean squared errors (MSE) to variances of the measurement equations

(eq. 14). Out of the 22 considered moments, 7 relate to the euro area (4 means and 3
10Our filter algorithm makes use of the standard forecasting and updating steps of the Kalman

filter except that, at iteration t, we replace the unobserved covariance matrix of the Xt innovations
(ΣX(zt−1)ΣX(zt−1)′) by ΣX(zt−1|t−1)ΣX(zt−1|t−1)′, where zt−1|t−1 denotes our filtered estimate
of zt−1 (using the information up to date t − 1). Another adjustment we have to make to the
filter pertains to the fact that factors zt are non-negative. For this purpose, after each updating
step of the algorithm, negative entries in the zt estimate are replaced by 0. Monte Carlo analyses
run by Duan and Simonato (1999), Zhou (2001) and Monfort, Pegoraro, Renne, and Roussellet
(2017) suggest that in the case of linear but heteroscedastic models, that kind of approximation is
of limited importance in practice (see also Duffee and Stanton (2012)).

11These results are for the joint model (US and euro area). Individual estimations per country, as
well as estimations excluding second conditional moments, have been conducted and their results
are qualitatively similar. We opt for the joint specification including second conditional moments
as it allows for interesting studies of inflation co-movements and uncertainty. Results of these
robustness checks are available upon request.
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variances) 15 to the US (8 means and 7 variances). Overall, the fitting performances

are substantially better for n = 5, especially for long-run conditional moments. Un-

reported results suggest that, for q = 1, second order moments are poorly fitted and

that, compared to the case where q = 2, they are only slightly improved for q = 3.

As a result, in what follows, we focus on results obtained for (n, q) = (5, 2).

Table 3 presents the parameter estimates for our joint model estimation. For

the sake of identification, the euro-area loadings on latent factors, i.e. the δ(1)j s in

eq. (5), are set to 1. This is also the case for the scale parameters associated with the

volatility factor zt.12 Further, realized inflation are assumed to be measured without

error (eq. 5). To facilitate estimation, the marginal means of inflation, i.e. π(1) and

π(2), are set to their sample values. The estimated autoregressive parameters of the

first and the second level factors Yt are very close to one: ΦY [1, 1] = 0.994 and

ΦY [2, 2] = 0.999, suggesting that these persistent processes are the main long-run

drivers of inflation. The three other factors are less persistent. The autoregressive

parameter of the first volatility factor z1,t is also very persistent (Φz[1, 1] = 0.994),

while the second volatility factor z2,t is less persistent (Φz[2, 2] = 0.969).

[Insert Table 3 about here.]

Figure 3 displays the factor loadings of the estimated model. The more persistent

the considered factor, the flatter the loadings curve. As a result, the loading curve

associated with the second factor, which is highly persistent, is almost flat. This

factor seems to be particularly important in the euro area and far less so in the US.

By contrast, the third factor, which is less persistent, is more important for the US

inflation than for the euro-area one. The first factor seems to be of equal importance

in both areas. With regard to conditional variances (second row of plots), the first

uncertainty factor z1,t plays the biggest role across all horizons in the euro area. In

the US, the second factor is more important for short horizons.

[Insert Figure 3 about here.]
12These scale parameters are the entries of vector µ in Appendix 6.2. The entries of Γ1,Y and of

µ are not simultaneously identified.
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Figure 4 illustrates the fit obtained for some selected survey-based moments.13

While the left-hand side shows the fit of euro area surveys, the right-hand side shows

the fit of US surveys. The top panels show realized HICP/CPI inflation. Panels in

row 2 (3) show the fit of one-year-ahead conditional expectations (variances) from

the ECB-SPF and US-SPF surveys. Panels in row 4 (5) show the fit of the long-term

conditional expectations (variances), πt+48,t+60 for the euro area and πt+60,t+120 for

the US. The euro-area long-term moments are taken from the ECB-SPF survey; US

ones are taken from a combination of surveys: the conditional expectations corre-

spond to BCFF/BCEI observations before March 2007, and to SPD observations

afterwards.14 For the US, long-term conditional variance dots correspond to the

SPD observations only.15 It is important to stress that the definition of inflation

forecasts,16 both across areas and surveys, differs and, thus, the outputs are not

directly comparable.

[Insert Figure 4 about here.]

4.2 Model-implied conditional distributions

Figure 5 compares the one-year ahead survey-based histograms (grey and red bars)

to the one-year ahead model-implied distributions for February 2005 and April 2016

(euro area) and January 2005 and January 2016 (US).17 In order to illustrate the

effect of Beta-smoothing raw survey data (Appendix 6.5), we also plot survey-based

Beta-smoothed distributions. For the model-implied distributions, two-standard-

deviation confidence intervals are reported. These standard deviations reflect un-

certainty associated with the estimation of the latent factors Xt and are obtained
13For the sake of readability, this figure does not show the fit of all observed surveys.
14Because SPD are released more frequently than BCFF/BCEI surveys, we favour the former

once these become available (in March 2007).
15BCFF/BCEI surveys are about conditional expectations only. SPD started asking respondents

about long-term inflation densities in March 2007, so these series are not available before this date.
16We mean here differences between Et(πt+h−12,t+h), Et(πt,t+h) and Et(π̄t,t+h) (see Subsec-

tion 2.1).
17We cannot use the same months for both areas because surveys that feature histograms are

not released on the same month in the US and in the euro area. The first selected dates – namely
February 2005 for the euro area and January 2005 for the US – are chosen because they correspond
to periods when inflation uncertainty was somewhat low relative to the end-of-sample dates.
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by applying the delta method on the function relating Xt factors to the conditional

cumulative distribution function (CDF) of future inflation.18 Again, we stress that

the raw survey data are not comparable across areas unless the inflation measure

is the same, which is not the case here.19 By contrast, as will be exploited below,

we can deduce from the estimated model moments that are adequately comparable

across economies.

In both economies, conditional inflation distributions have shifted noticeably

to the left from 2005 to 2016, suggesting a decline in inflation expectations. The

euro-area inflation distribution widened, indicating an increase in the variance of

inflation expectations and, thus, greater inflation uncertainty.20 By contrast, the

US conditional distribution of the one-year ahead inflation became less dispersed,

which indicates diminished short-term uncertainty about future inflation, possibly

reflecting the announced inflation target in January 2012 by the Fed.21

[Insert Figure 5 about here.]

Figure 6 displays the model-implied term structure of conditional inflation expec-

tations (πt,t+h; top charts) and one-year forward inflation expectations (πt+h−12,t+h;

bottom charts) for two dates: February 2005 and April 2016 for the euro area

and January 2005 and January 2016 for the US.22 The figure also displays the 5th

and 95th quantiles associated with the conditional distributions.23 The top charts

demonstrate that survey-based inflation expectations declined over the last decade,

the decline being more marked for shorter horizons.

[Insert Figure 6 about here.]
18The covariance matrix of the smoothed values of Xt (i.e. E(Xt|ST ), where T is the length of

our sample) stems from the Kalman smoothing algorithm (Harvey, 1989). Appendix 6.3 details
the computation of the CDF of future inflation rates.

19While the inflation targeted by the SPF is πt,t+12 in the euro area, it is π̄t,t+12 in the US (see
Subsection 2.1).

20This is also documented in Rich, Song, and Tracy (2012), who find that uncertainty mea-
sures stemming from the ECB-SPF display countercyclical behavior and find evidence of increased
inflation uncertainty since 2007.

21See https://www.federalreserve.gov/newsevents/press/monetary/20120125c.htm.
22These dates are the same as for Figure 5.
23The quantiles are derived from closed-form formulas (exploiting the affine property of the

model) given in Appendix 6.3.
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Figure 7 displays the term structure of model-implied variances of inflation fore-

casts (πt,t+h; top charts) and one-year forward inflation forecasts (πt+h−12,t+h; bottom

charts) for the same two dates as in Figure 6.24 As discussed in Subsection 2.3, we

interpret these variances as inflation uncertainty measures. According to the top

charts, the uncertainty associated with average future inflation, i.e. between t and

t + h, has been higher in the United States than in the euro area at all horizons

h in earlier parts of our sample, in particular in early 2005. Towards the end of

our sample, the term structure of US inflation uncertainties is close to the euro-area

one. By contrast, the euro-area area uncertainty increased over the same period,

for all horizons. The lower row of charts focuses on shorter future periods (between

t+h−12 and t+h). To a certain extent, the inflation measure targeted by the first

row of charts is the average, over future horizons, of the inflation targeted by the

lower plots. With this in mind, the second row of charts suggests that the previ-

ously mentioned decrease in average US uncertainty is essentially accounted for by a

substantial decrease in short-term inflation uncertainty. This substantial decrease in

short-term uncertainty more than compensates the increase in long-run uncertainty

associated with far-ahead inflation rates between 2005 and 2016.

[Insert Figure 7 about here.]

Figure 8 shows the time series of date-t model-implied conditional means (left-

hand side) and variances (right-hand side) for the following selected inflation rates:

πt+48,t+60 (1Y4F), πt+108,t+120 (1Y9F), and πt+60,t+120 (5Y5F).25 US Inflation forecasts

kept declining almost steadily throughout our sample, more drastically for 1Y4F and

5Y5F than for 1Y9F. Overall, while inflation forecasts are around 2.5 percent in the

beginning of our sample, they are close to 2 percent at the end of our sample.

Euro-area inflation increases from 1.8 percent at the beginning of the sample to

2.1 percent around 2008, and then declines to about 1.8 percent at the end of our
24Note that these conditional variances were partially reflected by the width of the 90% confidence

bands displayed in Figure 6.
25The notation xYzF is by analogy with the notation used for forward interest rates.
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sample.26 One prominent feature is that the gap between inflation forecasts in

the two areas narrowed considerably towards the end of our sample, pointing to

more commonalities in the macroeconomic conditions in the euro area and US. The

right-hand side charts show that conditional variances are higher in the US than in

the euro area, reflecting higher US inflation uncertainty. The US future inflation

measures encompassing medium-run horizons (i.e. 1Y4F and 5Y5F) feature more

volatile conditional variances than the far-ahead inflation rate (1Y9F). In particular,

the former variances spiked during the 2007-2008 financial crisis, which is not the

case for the uncertainty associated with the far-ahead inflation rate. For both the

euro area and the US, the uncertainty associated with far-ahead inflation is higher at

the end of the sample than at the beginning. However, while the uncertainty levels

associated with 1Y4F and 5Y5F inflations have also increased over the estimation

period for the euro area, their US equivalent return to their pre-crisis level at the

end of our sample.27

Our finding that, overall, inflation uncertainty is higher in the US than in the

euro area echoes the results of Beechey, Johannsen, and Levin (2011) who show

that (a) US expectations show much greater dispersion across survey respondents’

long-term forecasts and that (b) euro-area daily changes of the market-based in-

flation compensation measures (inflation swaps and/or breakeven inflation) are less

responsive to macroeconomic news than their US counterparts.

[Insert Figure 8 about here.]

4.3 Anchoring of the inflation expectations

This section proposes a new measure of the degree to which inflation expectations

are anchored. We define this measure in terms of the conditional probability of
26Market-based measures of inflation compensation also suggest declining inflation expectations

in the post-crisis period relative to the 2004 pre-crisis period. See, e.g. D’Amico, Kim, and Wei
(2016) and Chen, Engstrom, and Grishchenko (2016). However, these measures are affected by
inflation risk premiums and/or liquidity issues and, therefore, may not reflect inflation expectations
accurately.

27Using ECB-SPF data, Abel, Rich, Song, and Tracy (2016) also find higher inflation uncertainty
(along with GDP and unemployment uncertainties) at all horizons since 2007.
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inflation forecasts falling in a certain range:

P(πt+h−m,t+h ∈ I|Xt), (15)

where h is the forecast horizon (in months), m is the tenor of the future infla-

tion rate, and the interval of inflation outcomes I can be defined according to the

economic conditions/inflation target of a specific economy. We suggest that these

conditional probabilities of future inflation rates, which can be computed for any

horizon, capture the spirit of the anchoring of inflation expectations while accounting

for uncertainty around inflation expectations. We thus propose using these prob-

abilities to gauge the anchoring of inflation expectations. Figure 9 reports time-

series of conditional probabilities of future inflation rates being in a certain range,

I = [1.5%, 2.5%].28 Our chosen range I is consistent with the inflation targets spec-

ified by the ECB and the Fed. In particular, the ECB clarified the medium-term

inflation target in May 2003, formulated as follows: “The primary objective of the

ECB’s monetary policy is to maintain price stability. The ECB aims at inflation

rates of below, but close to, 2 percent over the medium term.”29 The Fed specified

the longer-run inflation target in January 2012, stated as follows: “The Committee

judges that inflation at the rate of 2 percent, as measured by the annual change in the

price index for personal consumption expenditures, is most consistent over the longer

run with the Federal Reserve’s statutory mandate.”30 Thus, the ECB and the Fed

target inflation over somewhat different periods. We interpret the “medium-term”

as the one-year four years ahead inflation (1Y4F) and the “long-term” as the average

annual inflation five-year five years ahead (5Y5F). We plot conditional probabilities

eq. (15) for 1Y4F, 1Y9F, and 5Y5F inflation rates.31

28Since an econometrician does not perfectly observe Xt, Figure 9 actually displays an estimate
of P(π

(i)
t+h−m,t+h ∈ I|Xt). To make it clear, let us denote by f(Xt) the function that is such that

f(Xt) = P(π
(i)
t+h−m,t+h ∈ I|Xt); then Figure 9 displays f(E(Xt|ST )) where T is the length of our

sample and E(Xt|ST ) therefore is the Kalman-smoothed estimate of Xt (Harvey, 1989).
29See https://www.ecb.europa.eu/mopo/html/index.en.html.
30See https://www.federalreserve.gov/newsevents/press/monetary/20120125c.htm.
31The latter horizon was notably used by Beechey, Johannsen, and Levin (2011) to study the

anchoring of inflation expectations as the sensitivity of interest rates and inflation compensation
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Figure 9 conveys a few interesting findings. First, the probability of inflation

expectations being in the [1.5%, 2.5%] range has been higher in the euro area than

in the US throughout our sample, suggesting that inflation expectations are better

anchored in the euro area. Second, the euro-area probability declined by up to 10

percent since the end of 2008, more so for medium horizon (1Y4F) than for longer

horizons (1Y9F and 5Y5F). This points to a mild de-anchoring of inflation expecta-

tions in the euro area over the recent period.32 Third, US anchoring measures are on

average higher at the end of the sample than during its first half: for the 1Y4Y and

1Y9Y measures, the measures have increased by about 20 percent (from about 40 to

60 percent), and the 5Y5F probabilities have gained 30 percent (from about 50 to 80

percent). As the grey lines on the three charts show, the difference in our anchoring

measures between the two areas has been diminishing almost monotonically since

the early 2000s, though in a more volatile manner for the 5Y5F inflation. At the

end of the sample, the difference is small and not significant for the 5Y5F measure.

Interestingly, the 1Y4F and 5Y5F US probabilities have steadily increased since the

Fed’s specification of the inflation target in 2012 (vertical red solid line in Figure 9).

[Insert Figure 9 about here.]

Figure 10 essentially reproduces Figure 9 but adds single-area model-based an-

choring probabilities.33 This figure serves as a robustness check to show that our

conclusions about the anchoring of inflation expectations in each area are not con-

voluted by the joint use of surveys. Indeed two-area-based probabilities (solid lines)

and single-area-based probabilities (dotted lines) are relatively close to each other.

There are some differences for the US probabilities depending on the model used,

which is likely due to the sample difference: the sample period for the US single-area

estimation starts from 2007 due to the unavailability of long-term density projections

to various macroeconomic news releases.
32To some extent, this finding of a decrease in euro-area anchoring is in line with Łyziak and

Paloviita (2016), who find that euro-area long-term inflation forecasts became more sensitive to
realized HICP inflation and to shorter-term forecasts in the post-crisis period.

33By “single-area" we mean that either euro-area or US surveys have only been used in estimation.
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(via SPD), prior to that date.34 Note that when single-area models are estimated,

we cannot compute confidence intervals around differences in anchoring measures.

[Insert Figure 10 about here.]

5 Conclusion

In this paper, we construct inflation expectations, inflation uncertainty, and inflation

anchoring measures for the US and the euro area using several prominent surveys of

professional forecasters. To that end, we build a dynamic latent factor model with

stochastic volatility for the joint estimation of inflation expectations and inflation

uncertainty in the US and the euro area. We estimate our model using Kalman

filtering techniques, using different types of survey-based inflation forecasts to fit the

first and second moments of distributions of future inflation rates. The measures

we obtain are directly comparable across the two economies, they are available on

a regular (monthly) frequency, and can be computed for any horizon.

Our results suggest that following the Great Recession, inflation anchoring im-

proved in the US, while mild de-anchoring occurred in the euro-area. As of our

sample end, both areas appear to be equally anchored.
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6 Appendix

6.1 Conditional means and variances of Xt

In this appendix we compute conditional expectations and variances of linear com-
binations of future Xts. Formally, we consider the first two moments of the random
variable Σh

i=1γ
′
iXt+i conditionally on the information available as of date t (i.e. Xt).

Appendix 6.1.1 shows that Xt is an affine process. This property implies that the
first two conditional moments of Xt are affine in Xt. That is, there exist functions
ah, bh, αh and βh such that, for any set of γis:

Et

(
h∑
i=1

γ′iXt+i

)
= ah(γ1, . . . , γh) + bh(γ1, . . . , γh)

′Xt

Vt

(
h∑
i=1

γ′iXt+i

)
= αh(γ1, . . . , γh) + βh(γ1, . . . , γh)

′Xt.

Appendix 6.1.2 (Appendix 6.1.3) provides the recursive formulas that can be used
to compute ah and bh (αh and βh).

6.1.1 Affine property of Xt

Showing that Xt has an affine dynamics amounts to showing that the Laplace trans-
form of Xt+1, conditional on Xt, is exponential affine in Xt.

Lemma 6.1 The Laplace transform of Xt+1, conditional on Xt, is given by:

E(exp(u′Xt+1)|Xt)

= exp(u′Y ΦY Yt + bz(uz + Θ′uY + 0.5ΓY,1u
2
Y )′zt +

az(uz + Θ′uY + 0.5ΓY,1u
2
Y )− u′Y Θz̄ + 0.5Γ′Y,0u

2
Y ), (16)

where u = (u′Y , u
′
z)
′, u2Y = uY � uY (by abuse of notation), ΓY is a q × n matrix

and where the functions az and bz define the conditional Laplace transform of zt (see
Appendix 6.2, eq. (19) and (20)).
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Proof We have:

E(exp(u′Xt+1)|Xt)

= E(exp(u′Y Yt+1 + u′zzt+1)|Xt)

= E(E[exp(u′Y Yt+1 + u′zzt+1)|Xt, zt+1]|Xt)

= exp(u′Y {ΦY Yt −Θz̄})E(exp((uz + Θ′uY )′zt+1 + 0.5u′Y diag(ΓY,0 + Γ′Y,1zt+1)uY )|Xt)

= exp(u′Y ΦY Yt + bz(uz + Θ′uY + 0.5ΓY,1u
2
Y )′zt +

az(uz + Θ′uY + 0.5ΓY,1u
2
Y )− u′Y Θz̄ + 0.5Γ′Y,0u

2
Y ),

which leads to the result. �

The fact that Xt follows an affine process implies the following result.

Lemma 6.2 The multi-horizon Laplace transforms of Xt, conditional on Xt, are
exponential affine in Xt. Specifically, for any set of vectors ui, i ∈ [1, h], we have:

E(exp(u′1Xt+1 + · · ·+ u′hXt+h)|Xt) = exp(Ah(u1, . . . , uh) +Bh(u1, . . . , uh)
′Xt),

where the functions Ai and Bi are given by:{
Ah([u

′
Y , u

′
z]
′) = az(uz + Θ′uY + 0.5ΓY,1u

2
Y )− u′Y Θz̄ + 0.5Γ′Y,0u

2
Y

Bh([u
′
Y , u

′
z]
′) = [u′Y ΦY , bz(uz + Θ′uY + 0.5ΓY,1u

2
Y )′]′

if h = 1,

and{
Ah(u1, . . . , uh) = Ah−1(u2, . . . , uh) + A1(u1 +Bh−1(u2, . . . , uh))

Bh(u1, . . . , uh) = B1(u1 +Bh−1(u2, . . . , uh))
otherwise.

Proof eq. (16) proves that Lemma 6.2 is valid for h = 1. Assume Lemma 6.2 is
valid for a given h ≥ 1, we have:

E(exp(u′1Xt+1 + · · ·+ u′h+1Xt+h+1)|Xt)

= E{exp(u′1Xt+1)E[exp(u′2Xt+2 + · · ·+ u′h+1Xt+h+1)|Xt+1]|Xt}

= E{exp(u′1Xt+1) exp(Ah(u2, . . . , uh+1) +Bh(u2, . . . , uh+1)
′Xt+1)|Xt}

= exp(Ah(u2, . . . , uh+1) + A1(u1 +Bh(u2, . . . , uh+1)) +B1(u1 +Bh(u2, . . . , uh+1)
′Xt)),

which leads to the result. �
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6.1.2 Computation of ah and bh

We have:

Et

(
h∑
i=1

γ′iXt+i

)
= Et

(
Et+1

h∑
i=1

γ′iXt+i

)
= Et (γ′1Xt+1 + ah−1(γ2, . . . , γh) + bh−1(γ2, . . . , γh)

′Xt+1)

= ah−1(γ2, . . . , γh) + a1(γ1 + bh−1(γ2, . . . , γh)) +

b1(γ1 + bh−1(γ2, . . . , γh))
′Xt,

which implies that:{
ah(γ1, . . . , γh) = ah−1(γ2, . . . , γh) + a1(γ1 + bh−1(γ2, . . . , γh))

bh(γ1, . . . , γh) = b1(γ1 + bh−1(γ2, . . . , γh)),
(17)

with a1(γ) := γ′µX and b1(γ) := Φ′Xγ.

6.1.3 Computation of αh and βh

We have:

Vt

(
h∑
i=1

γ′iXt+i

)
= Vt

(
Et+1

[
h∑
i=1

γ′iXt+i

])
+ Et

(
Vt+1

[
h∑
i=1

γ′iXt+i

])

= Vt

(
γ′1Xt+1 + Et+1

[
h∑
i=2

γ′iXt+i

])
+ Et

(
Vt+1

[
h∑
i=2

γ′iXt+i

])
= α1(bh−1(γ2, . . . , γh) + γ1) + β1(bh−1(γ2, . . . , γh) + γ1)

′Xt +

αh−1(γ2, . . . , γh) + a1(βh−1(γ2, . . . , γh)) + b1(βh−1(γ2, . . . , γh))
′Xt.

Therefore:
αh(γ1, . . . , γh) = α1(bh−1(γ2, . . . , γh) + γ1) + αh−1(γ2, . . . , γh)+

a1(βh−1(γ2, . . . , γh))

βh(γ1, . . . , γh) = β1(bh−1(γ2, . . . , γh) + γ1) + b1(βh−1(γ2, . . . , γh)),

(18)

where, with Sp =
p∑
i=1

[e
(p)
i ⊗ e

(p)
i ]e

(p)′

i :


α1(γ) = (γY ⊗ γY )′[(Θ⊗Θ)SqΓz,0 + SnΓY,0 + SnΓ′Y,1µz] + (γz ⊗ γz)′SqΓz,0

+2(γz ⊗ γY )′(Iq ⊗Θ)SqΓz,0,

β1(γ)′ = (γY ⊗ γY )′[(Θ⊗Θ)SqΓ
′
z,1 + SnΓ′Y,1Φz] + (γz ⊗ γz)′SqΓ′z,1

+2(γz ⊗ γY )′(Iq ⊗Θ)SqΓ
′
z,1.
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6.2 Auto-regressive Gamma processes

The vector zt follows a multivariate ARGν(ϕ, µ) process. This process, introduced
by Gouriéroux and Jasiak (2006), is the time-discretized Cox, Ingersoll, and Ross
(1985) process (see also Monfort, Pegoraro, Renne, and Roussellet (2017)).

Conditionally on zt−1 = {zt−1, zt−2, . . . }, the different components of zt, denoted
by zi,t, are independent and drawn from non-centered Gamma distributions, i.e.:

zi,t|zt−1 ∼ γνi(ϕ
′
izt−1, µi),

where ν, µ, ϕ1, ..., ϕq−1 and ϕq are q-dimensional vectors. (Recall that W is drawn
from a non-centered Gamma distribution γν(ϕ, µ), iif there exists an exogenous
P(ϕ)-distributed variable Z such that W |Z ∼ γ(ν + Z, µ) where ν + Z and µ are,
respectively, the shape and scale parameters of the gamma distribution.)

Importantly, it can be shown that this process is affine, in the sense that its
conditional Laplace transform is exponential affine. Formally, the conditional log-
Laplace transform of zt+1, denoted by ψt, is given by:

ψt(w) := log(Et[exp(w′zt+1)]) = az(w) + bz(w)′zt,

with

az(w) = −ν ′ log(1− µ� w) (19)

bz(w) = ϕ

(
w � µ

1− w � µ

)
, (20)

where ϕ is the q× q matrix equal to [ϕ1, . . . , ϕq], where � is the element-by-element
(Hadamard) product and where, by abuse of notations, the log and division operator
are applied element-by-element wise.

The semi-strong vector auto-regressive (VAR) form of process zt is given by:

zt = µz + Φzzt−1 + diag
(√

Γz,0 + Γ′z,1zt−1

)
εz,t,

where, conditionally on zt−1, εz,t is of mean zero and has a covariance matrix equal
to the identity matrix and where:

µz = µ�ν, Φz = (µ1′q×1)�(ϕ′), Γz,0 = µ�µ�ν and Γ′z,1 = 2[(µ�µ)1′q×1]�(ϕ′).

Assuming that the eigenvalues of Φz lie (strictly) within the unit circle, this last
formula notably implies that the unconditional mean of zt is equal to (Iq −Φz)

−1µz

whilst zt’s unconditional variance is equal to (Iq2 − Φz ⊗ Φz)
−1Sq(Γz,0 + Γ′z,1z̄).
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6.3 Computation of model-implied conditional distributions

In the model, inflation rates of different areas are equal to the linear combinations
of the affine process Xt. This implies the existence of closed-form formulas to derive
the conditional distribution functions of future inflation rates for any maturity (see
Duffie, Pan, and Singleton (2000)). Specifically, we have:

P(γ′1Xt+1 + · · ·+ γ′hXt+h < y|Xt) =
1

2
− 1

π

∫ ∞
0

Im[Ψh(ivγ, Xt)]e
−ivy

v
dv,

where Im(c) denotes the imaginary part of c ∈ C and where Ψh is the multi-horizon
Laplace transform of Xt, defined by:

Ψh(u, Xt) = E(exp(u′1Xt+1 + · · ·+ u′hXt+h)|Xt), .

with u = [u1, . . . , uh]. A simple computation of Xt’s Laplace transform is provided
by Lemma 6.2 in Appendix 6.1.1.

6.4 Survey data

6.4.1 US surveys

US surveys used in our study include the Survey of Professional Forecasters pub-
lished by the Federal Reserve Bank of Philadelphia (US-SPF), Blue Chip Financial
Forecasts (BCFF) and Blue Chip Economic Indicators (BCEI) surveys, the Survey
of Primary Dealers (SPD) published by the Federal Reserve Bank of New York and
the Consensus Economics Survey (CES). Panel A of Table 1 summarizes the data
set described below.

The US-SPF survey is conducted quarterly and provides forecasts on a wide
range of macroeconomic and financial variables since 1968:Q4.35 For the purpose of
this study, we use several inflation forecasts from the US-SPF.

First, we use density forecasts – available in the form of histograms – for the price
change in the GDP price deflator (survey variable PRPGDP) for the current and
the following calendar year.36 The density functions are available on an individual
forecaster basis and we aggregate this information by using the averaged forecast
density functions. The US-SPF defines a price change as the annual-average over

35The US-SPF survey was formerly conducted by the American Statistical Association and the
National Bureau of Economic Research and was taken over by the Philadelphia Fed in 1990:Q2.

36US-SPF started providing density projections of the core Consumer Price Index (survey vari-
able PRCCPI) and of the core Personal Consumer Expenditures Index (survey variable PRCPCE)
only in 2007:Q1. Therefore we concentrate on the density projections of the GDP price deflator
(despite small level differences with the headline CPI index) in order to have information about
the second moments of the future US inflation rates starting from the beginning of our sample,
1999:Q1. The US-SPF does not provide any density projections about headline CPI inflation.
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annual-average percent change in the level of the GDP price index that is available
quarterly (see eq. (2)). Note that forecast density functions are fixed event forecasts
(they target the current and the next calendar years), therefore, the forecast horizon
changes with the survey’s timing. Our sample for the density functions is from
1999:Q1 to 2016:Q2.37

Second, we use the US-SPF five-year average headline CPI inflation consensus
forecasts (survey variable CPI5YR) in order to identify more distant-horizon infla-
tion forecasts. This projection is defined as the annual average inflation rate over
the next five years. The “next five years” includes the year in which the survey is
conducted and the following four years. Our sample for this variable spans from
2005:Q3 (its starting point in the US-SPF) to 2016:Q2.

The BCFF and BCEI surveys are published monthly. Both Blue Chip surveys
provide individual point estimates of inflation forecasts, from which consensus and
disagreement measures can be obtained. Monthly surveys provide inflation forecasts
up to six quarters out. In addition to those, BCFF and BCEI surveys publish long-
range forecasts twice a year. These long-range forecasts contain average annual
forecasts usually five years out from the survey publication year and the average
five-year forecast five years ahead. We use five-year five years ahead consensus
inflation forecasts in our model estimation.

The SPD survey started in 2004 and, although recent, nicely complements infor-
mation from the US-SPF that only provides density inflation forecasts for shorter
horizons by providing densities for longer horizons. Prior to each FOMC meeting,
the survey asks primary dealers (currently 22) a number of questions including in-
flation density forecasts. The survey questions sometimes vary depending on the
economic environment.38 Nonetheless, certain questions such as the density fore-
casts for headline CPI inflation are routinely asked. In particular, since the FOMC
meeting of March 2007, survey participants are asked to provide a percent chance
attached to the five-year average annual CPI inflation five years ahead falling in
pre-determined bins. Since the FOMC meeting of December 2014, primary dealers
are also asked to provide the same inflation density forecasts over the next five years.

The CES survey provides inflation forecasts for a range of developed countries,
on a monthly basis. Survey participants provide point estimates for the average
annual percent change of the headline CPI index relative to the previous calendar
year. These projections are available for the current and the next calendar year,
allowing us, via weighted averages, to obtain Et(πt,t+12).

37The beginning of our sample is motivated by the onset of the euro-zone and availability of the
euro-area surveys.

38See posted questions on the website of the Federal Reserve Bank of New York: https://www.
newyorkfed.org/markets/primarydealer_survey_questions.html.
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6.4.2 Euro-area surveys

Euro-area surveys include the Survey of Professional Forecasters (ECB-SPF) pub-
lished by the European Central Bank and the Consensus Economics Survey (CES).
Panel B of Table 1 summarizes the data set described below.

The ECB-SPF survey was launched in the first quarter of 1999 and provides
GDP forecasts, inflation expectations and unemployment forecasts on a quarterly
frequency, at a forecaster level. It also provides assumptions made by different
forecasters. For the purpose of our analysis we only focus on inflation expecta-
tions. Specifically, we use probability distribution forecasts – available in the form
of histograms – for rolling horizons (one and two years ahead year-on-year forecasts)
and longer-term inflation expectations (five years ahead) defined as changes in the
Harmonized Index of Consumer Prices (HICP).

The CES survey publishes long-term forecasts on a semi-annual basis (in April
and October), in which five-year five years ahead inflation projections are available.
These forecasts are available since 1999 (in the case of the euro area). We use these
long-term forecasts to complement the ECB-SPF survey information.

6.5 Beta-smoothing methodology

6.5.1 Overview

This appendix presents the methodology used to smoothen forecasters’ views about
the probabilities of future inflation outcomes. These views are available in the form
of histograms in the ECB-SPF, the US-SPF and the SPD (see Appendix 6.4 for
details).

The spirit of the smoothing methodology broadly builds on Engelberg, Manski,
and Williams (2009) (see also Boero, Smith, and Wallis, 2014; Clements, 2014). We
consider the data associated with a specific inflation distribution, as defined by: (a)
one area, (b) one horizon (h) and (c) one measure of inflation (πt+h−12,t+h, πt,t+h or
π̄t+h−12,t+h). We then look for the parametrisation of a generalized Beta distribu-
tion that provides the closest fit to the considered data (by minimising the sum of
weighted squared deviations between the data and its “theoretical” counterpart).

The data consists of survey-based probabilities of future inflation outcomes falling
within given ranges and provides evaluations of the cumulative distribution function
(CDF) of the associated distribution at the right-hand bounds of the bins (excluding
the last bin, which usually is of the form [γ,∞[, where γ is the right-hand bound
of the penultimate bin). It is important to note that the resulting smoothed distri-
bution is fundamentally different from the model-implied distribution obtained by
the approach developed in the present paper. Indeed, the latter are coherent across
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time and horizons, which is not the case of the former. Heuristically, the smoothing
approach presented in this appendix constitutes a preliminary processing of the data
before using them in the model estimation.

6.5.2 Generalised Beta distribution

X is distributed as a generalised Beta distribution of parameters (a, b, c, d) if (X −
c)/(d − c) is distributed as B(a, b). In that case, we use the following notation:
X ∼ B(a, b, c, d). If X ∼ B(a, b, c, d), we have P(X < x) = P(Y < (x− c)/(d− c)),
where Y is distributed as B(a, b). Therefore, the CDF of X is:

F (x) =
Beta((x− c)/(d− c); a, b)

B(a, b)
,

where Beta(x; a, b) is the incomplete Beta function, defined by:

Beta(x; a, b) :=

∫ x

0

ta−1(1− t)b−1dt.

The distribution function of X then is:

f(x; a, b, c, d) := I{x∈[c,d]}
1

(d− c)B(a, b)

(
x− c
d− c

)a−1(
d− x
d− c

)b−1
.
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Table 2: Model fit

n = 3 and q = 2 n = 4 and q = 2 n = 5 and q = 2

Variable RMSE
(×100)

MSE

V ar
RMSE
(×100)

MSE

V ar
RMSE
(×100)

MSE

V ar
Nb.

EA CF Et(πt+60,t+120) 6.43 0.576 4.16 0.241 5.85 0.478 27
EA SPF Et(πt,t+12) 22.34 0.446 17.49 0.273 15.53 0.215 71
EA SPF Et(πt+12,t+24) 11.75 0.452 8.19 0.219 8.57 0.240 71
EA SPF Et(πt+48,t+60) 5.42 0.651 1.98 0.087 1.66 0.061 65
EA SPF Vart(πt,t+12) 5.18 0.180 5.39 0.195 5.33 0.191 71
EA SPF Vart(πt+12,t+24) 3.58 0.088 3.81 0.100 3.63 0.091 71
EA SPF Vart(πt+48,t+60) 2.87 0.082 2.71 0.073 2.71 0.073 65
US SPF Et(πt,t+60) 17.33 0.482 19.95 0.639 18.01 0.520 44
US BC+SPD Et(πt+60,t+120) 11.33 0.446 6.96 0.168 3.70 0.047 106
US SPD Vart(πt,t+60) 0.04 0.000 0.02 0.000 0.79 0.113 13
US SPD Vart(πt+60,t+120) 3.73 0.297 3.00 0.192 3.52 0.265 74
US CES Et(πt,t+12) 38.67 0.292 36.17 0.255 27.21 0.144 211
US SPF Et(π̄t,t+12) 47.23 1.171 40.01 0.841 22.08 0.256 18
US SPF Et(π̄t,t+15) 41.63 1.285 33.91 0.853 11.49 0.097 17
US SPF Et(π̄t,t+18) 33.08 0.873 24.74 0.488 18.76 0.281 18
US SPF Et(π̄t,t+21) 21.63 0.361 18.81 0.273 18.64 0.268 18
US SPF Et(π̄t,t+24) 22.58 0.617 15.06 0.274 13.08 0.207 18
US SPF Vart(π̄t,t+12) 3.29 0.044 4.03 0.067 3.83 0.060 18
US SPF Vart(π̄t,t+15) 4.07 0.055 2.31 0.018 2.51 0.021 17
US SPF Vart(π̄t,t+18) 5.64 0.080 3.98 0.040 4.77 0.057 18
US SPF Vart(π̄t,t+21) 9.03 0.139 7.10 0.086 6.79 0.079 18
US SPF Vart(π̄t,t+24) 10.05 0.155 11.56 0.205 7.72 0.091 18

The table reports our model fit results for three cases: (n, q) = {(3, 2), (4, 2), (5, 2)}. Columns RMSE
report the root mean-squared errors of the measurement equations, expressed in percentage points.
Columns MSE

V ar report the ratio of the mean squared error to the variance of associated survey-based
series. Column Nb. gives the number of observations of each survey-based series.



Table 3: Parameter estimates

Adjust. Value St.dev. Adjust. Value St.dev.

π(1) 1.731 − ΓY,0[1] (×103) 0.652 0.931
π(2) 2.356 − ΓY,0[2] (×103) 0.451 0.578

ΓY,0[3] (×103) 0.000 0.555
δ
(1)
1 1.000 − ΓY,0[4] (×103) 12.383 5.005
δ
(1)
2 1.000 − ΓY,0[5] (×103) 5.533 6.685
δ
(1)
3 1.000 −
δ
(1)
4 1.000 − ΓY,1[1,1] (×105) 0.000 0.775
δ
(1)
5 1.000 − ΓY,1[2,1] (×105) 0.098 1.156
δ
(2)
1 0.788 0.255 ΓY,1[3,1] (×105) 0.000 0.594
δ
(2)
2 −0.078 0.129 ΓY,1[4,1] (×105) 0.000 0.495
δ
(2)
3 3.867 0.445 ΓY,1[5,1] (×105) 1.975 0.931
δ
(2)
4 0.411 0.096 ΓY,1[1,2] (×103) 0.074 0.031
δ
(2)
5 3.072 0.223 ΓY,1[2,2] (×103) 0.550 0.200

ΓY,1[3,2] (×103) 0.127 0.070
ΦY [1,1] 0.994 0.001 ΓY,1[4,2] (×103) 0.001 0.056
ΦY [2,2] 0.999 0.000 ΓY,1[5,2] (×103) 0.243 0.099
ΦY [3,3] 0.962 0.002
ΦY [4,4] 0.915 0.003 µz[1] 0.273 0.277
ΦY [5,5] 0.694 0.035 µz[2] 0.166 0.123

Φz[1,1] 0.994 0.002
Φz[2,2] 0.969 0.003

The model is estimated by maximizing the quasi-likelihood stemming from a modified Kalman filter.
Standard deviations (in italics) are calculated from the outer product of the log-likelihood gradient,
evaluated at the estimated parameter values. For the sake of identification, different elements of δ
are set to 1. Superscripts in parentheses indicate the currency areas: 1 for the euro area and 2 for
the US.



Figure 1: Differences in inflation definitions
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This figure depicts the definitions of inflation forecasts used in various surveys. Black lines on
both charts show the realizations of the year-over-year inflation targeted by the ECB-SPF, defined
as πt−12,t = ln Pt

Pt−12
, where Pt is the price index of the corresponding economy at time t. Grey

lines show the realizations of the 4-quarter-average over 4-quarter-average inflation targeted by
the US-SPF, defined as π̃t−12,t = Pt+Pt−3+Pt−6+Pt−9

Pt−12+Pt−15+Pt−18+Pt−21
. Red crosses indicate the approximated

version of the grey lines: π̄t−12,t = 1/4(πt−21,t−9 + πt−18,t−6 + πt−15,t−3 + πt−12,t).



Figure 2: Original survey data, ECB-SPF and US-SPD surveys
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This figure shows the original survey data from the ECB-SPF and the US-SPD surveys. The left-
hand side charts show the point estimates of the 1-year 4 years ahead (πt+48,t+60) inflation forecasts
(top panel), original CDF survey results for πt+48,t+60 inflation rate forecasts along with their beta-
smoothed distribution (middle panel), and a derived uncertainty measure about πt+48,t+60 inflation
rate forecasts (bottom figure). The ECB-SPF sample is from January 1999 to June 2016. The
right-hand side charts show the point estimates of the 5-year 5 years ahead (πt+60,t+120) inflation
forecasts (top panel), raw CDF survey results for πt+60,t+120 inflation rate forecasts along with their
beta-smoothed distribution (middle panel), and a derived uncertainty measure about πt+60,t+120

inflation rate forecasts (bottom figure). The US-SPD sample is from March 2007 to June 2016.



Figure 3: Factor loadings of expectations and variances of future inflation
rates
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This figure displays, for different horizons h/12 (where h is measured in months), the factor loadings
b
(i)
h and β(i)

h for Et(π
(i)
t+h−12,t+h) and Vart(π(i)

t+h−12,t+h), see eqs. (9) and (10).



Figure 4: Fit of conditional moments of survey forecasts
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This figure illustrates the fitting properties of the model. The top charts plot realized inflation
rates, based on HICP (headline CPI), for the euro area (US). Black dots correspond to survey ob-
servations while grey lines correspond to the model-implied quantities. The left-hand (right-hand)
sides present euro-area (US) results. The euro-area survey observations correspond to ECB-SPF
surveys for both 1-year ahead and 1-year 4 years ahead horizons. The US survey observations corre-
spond to several surveys: observations for the 1-year ahead conditional expectations and variances
(Et(π̄t,t+12) and V art(π̄t,t+12), panels in rows 2 and 3) correspond to the US-SPF survey; survey
observations for Et(πt+60,t+120) (panel in row 4) correspond to BCFF/BCEI before March 2007
and to the SPD afterwards; survey observations for V art(πt+60,t+120) (panel in row 5) correspond
to the SPD survey. The grey-shaded areas represent 2-standard-deviation confidence intervals.
Pink bars indicate euro-area CEPR recessions and blue bars indicate US NBER recessions (here
and on the following figures).



Figure 5: Fit of survey forecast distributions
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This figure plots the one-year ahead ECB-SPF and US-SPF survey-based histograms, their Beta-
smoothed counterparts (dashed lines) (see Appendix 6.5), and the one-year ahead model-implied
distributions (solid lines). The grey lines reflect an early date in the sample (February 2005 and
January 2005 for the euro area and the US), the red lines reflect a late date in the sample (April 2016
and January 2016 for the euro area and the US). For the model-implied distributions, two-standard-
deviation confidence intervals are reported. These standard deviations reflect uncertainty associated
with the estimation of the latent factors Xt (using the Kalman smoothing algorithm, see e.g. Harvey
(1989)). They are obtained by applying the delta method on the function relating factors Xt to the
conditional cumulative distribution function (c.d.f.) of future inflation (see Appendix 6.3).



Figure 6: Term structure of inflation expectations
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This figure displays the term structure of model-implied expected inflation rates. The top two
(bottom two) panels display spot inflation (one-year ahead forward inflation) rates up to a horizon
of 10 years in the euro area and the Untied States. The black lines show the term structure for
February 2005 (euro area) and January 2005 (US); the red lines show the term structure for April
2016 (euro area) and January 2016 (US). The grey areas with solid (dashed) borders represent the
5th and 95th quantiles associated with the respective conditional distributions for early (late) date
in the sample. The quantiles are derived from the closed-form formulas given in Appendix 6.3.



Figure 7: Term structure of inflation uncertainty
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This figure displays the term structure of model-implied conditional variances. The top two (bot-
tom two) panels display variances of spot inflation (one-year ahead forward inflation) rates up to
a horizon of 10 years in the euro area and the US. The bottom two panels display the variances of
the one-year forward rates h periods ahead. The black lines show the term structure for February
2005 (euro area) and January 2005 (US); the red lines show the term structure for April 2016 (euro
area) and January 2016 (US).



Figure 8: Time series of conditional expectations and variances
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This figure shows the time series of the model-implied conditional means (left-hand side) and con-
ditional variances (right-hand side) for πt+48,t+60 (top charts), πt+108,t+120 (middle charts), and
πt+60,t+120 (bottom charts) inflation rates. Black (grey) lines correspond to euro area (US) mea-
sures, along with their respective ±2 standard-deviation bands reflecting the uncertainty associated
with factors Xt.



Figure 9: Measure of the anchoring of inflation expectations
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This figure displays probabilities that future inflation rates will fall in the interval I = [1.5%, 2.5%].
The panels show the time series of the conditional probabilities P(π

(i)
t+h−m,t+h ∈ I|Xt) (h denotes

the horizon, m is the tenor, both measured in months, i corresponds to the euro-area or US).
Three panels correspond to {h = 60,m = 12}, {h = 120,m = 12} and {h = 120,m = 60},
respectively. The dashed (solid) red vertical line indicates the timing of the ECB (Fed) clarification
(specification) of their inflation objectives, in May 2003 (January 2012). The black line represents
US probabilities, the grey line represents euro-area probabilities, and the dotted line – the difference
in the two probabilities (euro area − US). Grey-shaded areas are ±2 standard-deviation bands
reflecting the uncertainty associated with factors Xt.



Figure 10: Measure of the anchoring of inflation expectations, comparison
between joint and single-area models
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This figure presents both joint-area (grey (euro-area) and black (US) solid lines) and single-area
model anchoring probabilities (grey (euro-area) and black (US) dotted lines). Single-area models
are the models estimated using the data of one area only (US or euro area). For the US, the
estimation of the single-area model is based on the data spanning the period from 2007 to 2016. The
dashed (solid) red vertical line indicates the timing of the ECB (Fed) clarification (specification)
of their inflation objectives, in May 2003 (January 2012). Grey-shaded areas are ±2 standard-
deviation bands reflecting the uncertainty associated with factors Xt.
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