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Abstract

We explore the use of external instrument SVAR to identify monetary policy shocks. We

identify a forward guidance shock as the monetary shock component having zero instant

impact on the policy rate. A contractionary forward guidance shock raises both future

output and price level, stressing the relative importance of revealing policymakers’ view on

future output and price level over committing to a policy stance. We also decompose non-

monetary structural shocks, and find that positive shocks to output and price level lead to

monetary contraction. Since information on output and price level is revealed through both

monetary and non-monetary channels, some monetary and non-monetary shocks can look

alike, leading to linear dependence and violating usual instrument SVAR assumptions. We

show that some of the main findings are robust to such dependence.

∗E-mail: kyungmin.kim@frb.gov. I thank Arsenios Skaperdas for helpful comments. The paper expresses
solely my own views, not those of the Federal Reserve Board or the Federal Reserve System.



1 Introduction

We explore the use of external instrument structural vector autoregression (instrument

VAR) to identify structural shock components correlated with monetary policy announce-

ments. Following Gürkaynak et al. (2005) and Gertler and Karadi (2015), we use price

changes of selected interest rate futures contracts around monetary policy announcements

as instruments to capture the response of the economy to monetary policy.

We are not the first to identify monetary policy shocks using instrument VAR, but we

explore the methodology in depth to fully understand the implications of the model and its

potential issues. We start by describing instrument VAR in section 2. Pioneered by Stock

and Watson (2012) and Mertens and Ravn (2013), instrument VAR uses the covariance

between VAR residuals and external instruments to identify structural shocks correlated with

given instruments. This method is useful if instruments are available and other conventional

identifying restrictions such as the ‘order’ condition (see Sims (1980) and Watson (1994))

are not applicable.

We present instrument VAR primarily as a matrix operation, rather than as two-stage

least squares (2SLS), which is the norm in the literature following Mertens and Ravn (2013).

The result is, of course, equivalent, but we believe that our presentation will be more trans-

parent to some readers. Also, it directly leads to a full characterization of the instrument

VAR parameter space and our identification strategy. From our presentation, we can clearly

see that there is no need to choose variables instrumented by the instruments, which is

sometimes misunderstood, and the instruments work for the whole VAR system.

In section 3, we discuss why it is reasonable to treat monetary shocks as two-dimensional

shocks in a VAR setup, consistent with Gürkaynak et al. (2005). We discuss two distinct

approaches. First, we show that we can reject the hypothesis of weak instruments, using

the tests by Stock and Yogo (2005) and Stock et al. (2002). We use weak instrument tests

following Mertens and Ravn (2013) and Gertler and Karadi (2015), with the difference that

we use a test for two instrumented variables rather than one. Second, we directly test

the rank of the covariance matrix between instruments and VAR residuals, as it should

theoretically equal the number of structural shocks correlated with the instruments. We use

the test developed by Kleibergen and Paap (2006), and normalize the statistic so that it is

invariant to linear transformations of VAR variables or instruments. We find that the test
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does not strongly reject the hypothesis of one-dimensional monetary structural shock, and

thus conclude that both one- and two-dimensional shocks are reasonable choices.

We uniquely identify the forward guidance shock as the component of the two-dimensional

shocks that does not affect the current policy rate, which is the federal funds rate. The

residual component is defined as the policy rate shock. For our VAR model, we use the

simplest possible one with four variables. This is a simpler version of the six-variable baseline

VAR model used in Gertler and Karadi (2015). Two of the four variables are industrial

production and consumer price index (CPI), following the standard practice of including

measures of output and price level in a macroeconomic VAR model. The third variable

is the federal funds rate, which acts as the policy rate. We need to use specifically the

federal funds rate, not a rate of longer tenor such as the one-year Treasury rate, so that

we can define the forward guidance shock as the monetary shock component that has zero

instant impact on the policy rate. The fourth variable is the ‘GZ’ excess bond premium

(average excess premium on corporate bonds, due to Gilchrist and Zakraǰsek (2012)), which

we include to capture the financial market’s response to monetary policy announcements.

We follow Gertler and Karadi (2015) in including this variable in our VAR, and find that it

works better than other commonly used financial spreads such as mortgage and commercial

paper (CP) spreads.1

The impulse response of the federal funds rate to forward guidance shocks shows that

the peak response occurs with about two years of delay. Also, we find that a contractionary

forward guidance shock results in an increase, not a decrease, of future output and price level,

and has little instant impact on either of them. This outcome is consistent with the idea

that forward guidance reveals information about expected future paths of the economy (for

example, see Campbell et al. (2012), Campbell et al. (2016), and Nakamura and Steinsson

(2013)), rather than changes in future policy stance. For forward guidance, the impact of

revealed information seems to dominate the impact of revealed future policy stance. In

contrast, a contractionary policy rate shock results in a downward path for future output

and price level, as predicted by standard macroeconomic theory.

The excess bond premium increases in response to a contractionary policy rate shock,

which is the expected response to tightening credit supply. However, it decreases in response

to a contractionary forward guidance. This is again consistent with the idea that a con-

1Better in the sense of narrower confidence bands.
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tractionary foward guidance reveals a positive view about the future of the economy, with

increasing output and price level.

In section 4, we discuss novel extensions of the baseline VAR model. First, we decom-

pose non-monetary structural shocks, uncorrelated with monetary policy announcements.

We find that non-monetary shocks representing increases in output or price level have a

contractionary impact on the policy rate, consistent with how monetary policy is generally

expected to respond to such shocks.

Second, we discuss the possible existence of linear dependence between monetary and

non-monetary structural shocks. Since information channel can exist for both monetary and

non-monetary shocks, certain monetary policy shocks can look like non-monetary shocks,

implying a linear dependence between them. Alternatively, one may believe that given n

VAR variables with just one rate variable, there should be n − 1 non-monetary structural

shocks, which make the total number of shocks be n+ 1, with two monetary shocks. These

violate usual assumptions of instrument VAR. However, we show that some of our results

are robust to such problems. Moreover, we show exactly what we can infer about impulse

responses to monetary structural shocks even when these problems exist.

Third, we relate our results to those of two recent studies identifying monetary shocks

using instrument VAR, Gertler and Karadi (2015) and Lakdawala (2017). Gertler and Karadi

(2015) uses a single structural shock to capture monetary policy shocks, and Lakdawala

(2017) uses two shocks to identify forward guidance shocks, using identification restrictions

different from ours. We discuss how to relate studies using different identifying restrictions

and different numbers of instruments, and find a very close agreement between Gertler and

Karadi (2015) and our paper, but no such agreement between Lakdawala (2017) and ours.

Most interestingly, we describe how we can interpret the result of instrument VAR with just

one instrument, when there are indeed two structural shocks correlated with the instruments.

The remainder of this paper is divided into four sections: Section 2 describes instrument

VAR methodology and our identification strategy. Section 3 describes the baseline VAR

model and the impulse responses to monetary policy shocks. Section 4 discusses extensions

of the baseline VAR model. Section 5 concludes.
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2 Identification with External Instuments

We first explain how instrument VAR works. Omitted technical details are in the ap-

pendix. We explicitly construct parameter space consistent with data and restrictions from

instruments, and it directly leads to our identification strategy used later in the paper.

A simple reduced-from SVAR has the following well-known form:2

yt =
l∑

j=1

Bjyt−j + ut. (1)

yt is an n-dimensional column vector of VAR variables and Bj is an n-by-n matrix of co-

efficients. ut is the reduced-form residual in the form of ut = Bεt, where B is an n-by-n

nonsingular matrix. εt is an i. i. d. structural shock, which follows a multinomial normal

distribution of mean zero and variance In, where In is the n-by-n identity matrix.

The matrix B is key to identification, and satisfies BB′ = Σ, where Σ is the convariance

matrix of VAR residuals. Any n-by-n matrices B1 and B2 satisfying B1B
′
1 = B2B

′
2 = Σ are

rotations of each other, in the sense that B1 = B2R for an n-by-n orthonormal matrix R.

Structural shocks are identified by choosing a particular rotation R.

In the external instrument VAR model, only a subset of structural shocks are correlated

with given instruments, and the rest are uncorrelated. This places an extra restriction on

the choice of the matrix B. Formally, let Zu be the covariance between VAR residuals and

instruments, Zu ≡ E[ztu
′
t], where zt is an m-dimensional column vector of instruments. The

instruments should satisfy the following conditions:

rank(E[ztε1,t]) = k. (2)

E[ztε2,t] = 0. (3)

k is the number of structural shock components correlated with the instruments. Without

loss of generality, the first k elements of εt are those shock components correlated with the

instruments. ε1,t denotes the first k elements of εt, and ε2,t denotes its remaining n − k

elements.

2Constants are omitted from the expression, even though they are included in actual regressions. This
notational convention is typical in the literature.
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Note that these can also be regarded as rules of constructing structural shocks from

the data. The reason is that it is always possible to define n structural shocks so that

rank(E[ztε
′
1,t]) = k and E[ztε

′
2,t] = 0 if rank(Zu) = k. Equivalently, the last n − k columns

of the covariance matrix between the instruments and structural shocks,

E[ztε
′
t] = E[ztu

′
t(B

−1)′] = Zu(B
−1)′, (4)

are zero.

We can easily characterize the entire set of matrices B that are consistent with the

restrictions coming from the instruments. Any B1 and B2 such that (i) B1B
′
1 = B2B

′
2 = Σ,

and (ii) the last n−k columns of both Zu(B
−1
1 )′ and Zu(B

−1
2 )′ are zero, are related as follows:

B1 = B2

[
Rk 0

0 Rn−k

]
, (5)

where Rl is an l-by-l orthogonal matrix. For simplicity, we denote by R(k, n− k) the large

matrix composed of Rk and Rn−k.

Moreover, given any B2 such that (i) B2B
′
2 = Σ, and (ii) the last n − k columns of

Zu(B
−1
2 )′ are zero, B1 = B2R(k, n− k) satisfies both of these conditions as well. Therefore,

the relationship B1 = B2R(k, n− k) completely characterizes the space of B consistent with

given Σ and Zu for instrument VAR.

A simple procedure for actually performing instrument VAR follows directly from the

characterization of B. First, a matrix A satisfying AA′ = Σ can be found, for example, via

Cholesky decomposition. Then, we can always find an orthonormal matrix R such that the

last n − k columns of Zu((AR)−1)′ = Zu(A
−1)′R are zero. We define B = AR. Note that

these steps do not involve choosing k VAR variables that are supposedly correlated with the

instruments. It is sometimes misunderstood that such a choice is necessary in performing

instrument VAR.

To follow a common practice in the literature deriving from Mertens and Ravn (2013),

we can also write B in the following block form, even though it is unnecessary, as discussed:

B =

[
B11 B12

B21 B22

]
. (6)
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B11 is a k-by-k matrix, and B12, B21 and B22 are k-by-(n− k), (n− k)-by-k, and (n− k)-by-

(n− k), respectively. B11 and B22 are nonsingular without loss of generality.3

Our characterization of the parameter space implies that for any B consistent with data

and instruments, B11B
′
11 and B22B

′
22 are constant. This is because for any BR(k, n − k),

the diagonal blocks are B11Rk and B22Rn−k. Once we choose B11 and B22 for B11B
′
11 and

B22B
′
22 given by the data, B21 and B12 are uniquely determined.

This motivates the frequently used closed-form formulas to compute B in Mertens and

Ravn (2013): B11B
′
11, B22B

′
22, B21B

−1
11 and B12B

−1
22 can be computed as functions of Σ and

Zu, and the exact formulas are reproduced in the appendix for quick reference.

In particular, we can make diagonal blocks of B into lower triangular matrices. Let L1

be the Cholesky decomposition of B11B
′
11 and L2 be that of B22B

′
22. Then,

B =

[
L1 (B12B

−1
22 )L2

(B21B
−1
11 )L1 L2

]
. (7)

We will use this decomposition in identifying the forward guidance shock and in identifying

non-monetary structural shocks. Any other B consistent with data and instruments has the

following form: BR(k, n − k). For example, note that we can impose order restriction on

any k VAR variables among shocks correlated with instruments, not necessarily among the

first k. Similarly, we can do so on any (n − k) VAR variables among shocks uncorrelated

with instruments, not necessarily among the last (n− k).

So far, we have allowed k = rank(Zu) to be smaller than m, the number of instruments.

In practice, Zu generated from sample covariance will almost always have full row rank, as

long as m ≤ n. However, we might want to assume rank(Zu) < m due to a theoretical

reason or to the empirical observation that some linear combination of the rows in Zu is

close to zero. In such a case, a linear combination of instruments given by Mzt, where M

is k-by-m, needs to be chosen, so that the resulting covariance matrix E[Mztu
′
t] = MZu is

a full-row-rank matrix. Both Mertens and Ravn (2013) and Gertler and Karadi (2015) use

the projection of the first k estimated residuals û1,t onto the instruments zt as Mzt. This

choice of M gives i-th row of B21B
−1
11 as a 2SLS estimator of regressing the i-th element of

û2,t on û1,t projected onto zt. We follow the same routine in constructing MZu in the next

3If B11 or B22 is singular, we can apply a nonsingular linear transformation to ut in the form of Lut to
make both B11 and B22 nonsingular.
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section.4

3 Identifying Forward Guidance Shocks

3.1 Data

The data provided in the appendix of Gertler and Karadi (2015) are used in this paper,

both for VAR variables and instruments. Our VAR model includes four variables, and two of

them are the logs of industrial production and consumer price index, which represent output

and price level, respectively. It is a standard practice to include measures of output and

price level in macro VAR models.

We have the federal funds rate as the monetary policy indicator. Including the federal

funds rate is essential to identify a forward guidance shock independent from a policy rate

shock, because the federal funds rate is the policy rate. We also have the GZ excess bond

premium as one of the VAR variables. Financial spreads reflect views on the future path of

the economy, and their response to a forward guidance shock tells us how financial markets

interpret signals about the future path of monetary policy. Compared to other financial

spreads, GZ excess bond premium responds more strongly to monetary policy shocks, and

thus we choose to include it as a representative financial spread.

For instruments, we use price changes on current-month federal funds futures and three-

quarter-ahead eurodollar futures over a 30-minute window around monetary policy announce-

ments (Federal Open Market Committee statements), which are two of the five intraday price

change measures used in Gürkaynak et al. (2005). Price changes of current-month federal

funds futures are scaled to reflect the change in the expected federal funds rate due to each

monetary policy announcement.

We use monthly VAR variables, starting from 07/1979 and ending in 12/2008. We use

data only up to 12/2008 because the federal funds rate had stayed near zero between 2009

and 2015, and it is likely that the relationship between the rate and the other VAR variables

changed during the zero-lower-bound period. The instruments are available between 01/1990

and 12/2008, and the covariance matrix between the instruments and the VAR residuals

4In the baseline specification, we end up using only two instruments for two structural shocks, so there is
no need to perform projection. Still, in evaluating potential choices of estimators, we consider their goodness
in 2SLS.
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over this period is used in our instrument VAR. Gertler and Karadi (2015) has converted

the instruments into monthly variables by assigning price changes to both the current and

the next month, weighted by the proportion of the 30-day period following announcements

belonging to the current and the next calendar month, respectively.

We allow two-dimensional structural shocks, assuming rank(E[ztu
′
t]) = 2. We noted that

it is not necessary to pick two VAR variables that are supposedly correlated with the two

instruments to perform instrument VAR. However, we still pick two VAR variables most

strongly correlated with the instruments as our ‘instrumented’ variables to perform a test

of weak instrument. Also, they are defined as the first two VAR variables for notational

convenience. The federal funds rate and the GZ excess bond premium are chosen because

they are correlated with the instruments most significantly.

3.2 Test of Weak Instruments

We can reject the hypothesis of weak instrument with our chosen instruments. Following

Mertens and Ravn (2013) and Gertler and Karadi (2015), we reduce the dimension of in-

struments to the number of structural shocks, k = 2, by projecting the first k VAR residuals

onto the instruments and using the resulting k variables as the instruments. As a result, the

i-th row of B21B
−1
11 becomes a 2SLS estimator of regressing uk+i on u1, ..., uk projected onto

the instruments.

We use the minimal eigenvalue of the concentration matrix, gm, to quantify the strength

of the instruments, following Stock and Yogo (2005) and Stock et al. (2002). This can be

interpreted as the analogue of the well-known rule of thumb F > 10 for the case of two

instrumented variables.5 There is no such widely used rule of thumb in the two-instrument

case, but the appendix in Stock and Yogo (2005) suggests gm > 8 as a comparable threshold

to F > 10 for the case of two endogenous regressors.

Table 1 reports the minimal eigenvalue, as well as regression coefficients. In the first

column, the coefficient on the change in current-month federal funds futures price (CM FF)

is somewhat close to 1, as expected. In the second column, no coefficient is significant, but

we see that the change in three-quarter-ahead eurodollar futures price (3Q ED) is relatively

more important as an explanatory variable than CM FF, compared to the first column. This

5Gertler and Karadi (2015) uses this rule of thumb, for example.
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may reflect the fact that the excess bond premium captured by GZ spread takes into account

future paths of the economy.

Table 1 also reports the minimal eigenvalue and regression coefficients from using the

full set of price change measures in Gürkaynak et al. (2005), for comparison. The three

extra instruments are price changes in three-month-ahead federal funds futures (3M FF),

two-quarter- (2Q ED) and four-quarter-ahead (4Q ED) eurodollar futures. The minimal

eigenvalue shows that the full set of instruments is substantially weaker as 2SLS instruments.

3.3 Determining the Dimension of Structural Shocks

The assumption that monetary structural shocks are two-dimensional is motivated by

well-known empirical studies on forward guidance, such as Gürkaynak et al. (2005) and

Campbell et al. (2012). As we have discussed, the dimension of structural shocks correlated

with the instruments is determined by the rank of E[ztu
′
t]. In this section, we directly test

the rank of this matrix with estimated reduced-form residuals, using ‘rk-statistic’ proposed

by Kleibergen and Paap (2006). Especially, we are interested in testing whether the rank of

this matrix is one or two. We cannot statistically reject the hypothesis that its rank is one,

and thus conclude that there is a somewhat equal support for both ranks one and two.

The test is based on the idea that if the rank of an m-by-n matrix is k, its smallest

(min(m,n) − k) singular values are zero. Under the null hypothesis that the rank is k,

rk-statistic asymptotically follows chi-squared distribution with (m − k)(n − k) degrees of

freedom. If the value of this statistic is too large, the null is rejected in favor of the alternative

hypothesis that the rank is greater than k. Given the form of the matrix E[ztu
′
t], rk-statistic

can be normalized to become invariant to invertible linear transformations such as changing

the order of variables or arbitrarily scaling them. We describe the exact normalization in

the appendix.

We test whether the rank of the matrix E[ztu
′
t] is zero, one or two, versus the alternative

that the rank is greater. This can be done with either the full vectors zt and ut, or with

subvectors of zt and ut and the corresponding submatrix of E[ztu
′
t]. Mathematically, a

submatrix has a rank that is weakly smaller than that of the full matrix, but this needs

not to be the case for statistical tests of rank. Indeed, with rk-statistic, removing weakly

correlated elements of zt and ut seems to make the statistic favor hypotheses of higher rank.
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Dependent variable:
u1 u2 u1 u2(Fed funds) (GZ premium)

CM FF
1.21∗∗ 0.05 1.02∗∗ −0.66
(3.70) (0.16) (2.45) (−1.15)

3Q ED
−0.33 0.50 −1.39 −1.59

(−1.14) (1.10) (−1.02) (−0.79)

3M FF · · 0.51 0.93∗

(1.07) (1.65)

2Q ED · · 0.20 1.85
(0.18) (1.21)

4Q ED · · 0.67 0.24
(0.85) (0.25)

R2 0.13 0.02 0.14 0.04

Number of obs. 228 228

Number of inst. 2 5

gm 17.7 1.5

Numbers in ( ) are t statistics.
∗∗ Significant at 5 percent.
∗ Significant at 10 percent.

Table 1: Regression of Reduced-Form Shocks on Instruments
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Included residuals: All
Fed funds and Fed funds and
GZ premium GZ premium

Included instruments: All All CM FF and 3Q ED

H0 : rank = 0 0.32 0.04 0.05

H0 : rank = 1 0.88 0.47 0.22

H0 : rank = 2 0.92 · ·

Table 2: Tests of Matrix Rank

Table 2 lists the p-values of rk-statistics for a few different combinations of VAR residuals

and instruments. With the full matrix E[ztu
′
t], it is not possible to reject even the hypothesis

that its rank is zero. If we include only the first two VAR residuals, then we can reject the

zero rank hypothesis at five percent with either all the five instruments or with the two

chosen instruments, CM FF and 3Q ED. The hypothesis that the rank of the matrix is

one cannot be rejected at conventional significance levels even if we use just the two chosen

instruments.

3.4 Identifying Restrictions

We estimate the impulse response to the two-dimensional monetary policy shocks. Recall

that the following matrix completely characterizes the parameter space of the instrument

VAR:

B =

[
L1Rk (B12B

−1
22 )L2Rn−k

(B21B
−1
11 )L1Rk L2Rn−k

]
. (8)

In identifying the monetary policy shocks, we only care about the first k = 2 columns

of B, so we only need to determine Rk. We decompose the monetary policy shocks into a

current policy rate shock (ε1) and a forward guidance shock (ε2). We define the forward

guidance shock as the component of the montary policy shock that has zero instant effect

on the federal funds rate, y1. In other words, B(1, 2) = 0, where B(i, j) denotes the i-th row

and the j-th column of B.

This restriction determines the first and the second columns of B up to sign changes,
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and we choose the signs so that a positive shock correponds to an increase in interest rates.

This means that we assume that B(1, 1) is positive. For B(2, 2), we assume that it has a

constant sign, and determine its sign to make the impulse response of the short rate, y1,

to the forward guidance shock generally positive. It turns out that assuming B(2, 2) < 0

unambiguously achieves this purpose.

Alternatively, we can choose the sign of B(2, 2) so that the impulse response to the

forward guidance shock is positive overall. This can be stated as follows:∑
t=0,...,T

IRFt > 0, (9)

where IRFt denotes the t-month impulse response of the federal funds rate, y1, to the forward

guidance shock. For reasonable choices of T , such as 24 or 48 months, this restriction turns

out to be identical to B(2, 2) < 0, and produces similar confidence bands.6

3.5 Impulse Response to Monetary Policy Shocks

Figure 1 shows the impulse response of the four VAR variables to the two-dimensional

monetary policy shocks. Plots on the left are responses to the policy rate shock, while those

on the right are responses to the forward guidance shock. The dotted lines show 95-percent

confidence intervals.7 The impulse responses are responses to one-standard-deviation shocks.

The policy rate shock immediately affects the federal funds rate, raising it by about 0.3

percent, and converges to zero in about seven months. This is comparable to what we can

typically get from order conditions, as in Christiano et al. (1999). The shock has a weak

positive effect on the GZ excess bond premium. An unexpected increase in the interest rate

can tighten credit supply, increasing the premium.

A contractionary policy shock also has generally negative effects on output and price

level, showing no ‘price puzzle’. This contrasts with the positive responses of output and

6For alternative choices of instruments, the first restriction based on constant sign produces considerably
narrower confidence bands. This gives another reason to prefer the chosen instruments over other possible
choices.

7Following Mertens and Ravn (2013) and Gertler and Karadi (2015), we use so-called other-percentiles
(see Sims and Zha (1999)) of simulated impulse responses with wild bootstrap resampling with multiplier of
+1 or −1 with equal probability (see Wu (1986)). We use this method because it is well-known, but there
are criticisms of this method, such as Jentsch and Lunsford (2016).
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Figure 1: IRF to Monetary Policy Shocks
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price level to a contractionary forward guidance shock. Therefore, the forward guidance

shock can be interpreted as conveying an optimistic or pessimistic view on the future path

of the economy, consistent with the findings of Campbell et al. (2012). It may partly reflect

changes in the policy stance, but the net impact looks close to that of revealing information

on the future path of the economy.

The forward guidance shock has zero effect on the federal funds rate initially (t = 0)

by construction. Its hump shape reaches its peak around 2 years after the initial shock,

and its maximum magnitude is similar to that of the policy rate shock. A contractionary

forward guidance shock is identified by its negative immediate impact on GZ excess bond

premium. This is consistent with the interpretation that forward guidance signals optimism

about the future of the economy, which can increase credit supply, and thus lower excess

bond premium.

4 Discussion

4.1 Non-Monetary Shocks

In the baseline VAR model, two of the four shocks are correlated with the two instruments.

The remaining two shocks are non-monetary shocks, as they are uncorrelated with monetary

policy announcements. In section 2, we have shown how to identify the (n − k) shocks

uncorrelated with the instruments. In particular, we are interested in the right-side blocks

of the following matrix:

B =

[
L1Rk (B12B

−1
22 )L2Rn−k

(B21B
−1
11 )L1Rk L2Rn−k

]
. (10)

For identification, we place an order restriction between the two remaining shocks, ε3 and

ε4. We treat them as shocks to industrial production (ε3) and price level (ε4), and assume that

price level moves more slowly than the industrial production, following standard convention.8

Note that this places order between these two non-monetary shocks only, not between non-

monetary and montary shocks. In other words, we assume the shock to price level, ε4, does

not affect production, y3, at t = 0. Mathematically, we are choosing Rn−k to be an identity

8For example, Sims (1980) uses this ordering between price level and production.
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matrix, so that the bottom-right block is lower-triangular.

Figure 2 shows the impulse response of the VAR model to non-monetary shocks. By

construction, the initial impact of the price shock to production is zero. Also, it turns out

that the initial impact of the production shock to price is also close to zero. Therefore, we

would end up with similar impulse responses if we ordered price level before production.

Both shocks have positive initial impact on the federal funds rate. Since non-monetary

shocks are orthogonal to monetary policy actions, their impact on the federal funds rate

represents the expected response of policymakers to a surprise increase in production and

price level. Conventional wisdom states that the expected response would be contractionary,

which is what we find.

A positive shock to production has a weak negative impact on the GZ excess bond

premium. This is consistent with our interpretation of the forward guidance shock: A

contractionary forward guidance makes the market expect higher production and price level

in the future, thus decreasing the excess bond premium.

The production shock has a stronger positive impact on the federal funds rate and a

stronger negative impact on the GZ excess bond premium than the price shock. One reason

may be that the production shock has a positive delayed impact on price level, while the

price shock has a negative delayed impact on production. With both production and price

level responding positively, it is not surprising that the production shock induces more con-

tractionary monetary policy response and more relaxed credit supply than the price shock.

4.2 Dependent Monetary and Non-Monetary Shocks

Following the literature, we have assumed that the number of monetary structural shocks

and the number of non-monetary structural shocks add up to n, the number of VAR variables.

However, we can reasonably suspect that there may be some linear dependence between

these shocks: Their numbers add up to a number greater than n. The shape of IRFs to

the forward guidance shock suggests that forward guidance may work through revealing

information about the future path of the economy. If that were the case, we can imagine a

non-monetary shock that looks very similar to the forward guidance shock, because similar

types of information can be generated outside monetary policy announcements. Also, many

VAR models in the literature assume only a single monetary policy structural shock, and to
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be compatible with those models, we need to allow (n−1)-dimensional non-monetary shocks

in addition to 2-dimensional monetary shocks, with a total of (n+ 1) structural shocks.

We show that even with such problems, our baseline identification strategy produces

correct shapes for IRFs to forward guidance shocks, and gives good information on the

correct shapes of IRFs to policy rate shocks. However, we no longer can determine the

magnitude of the shocks.

Formally, the model can be stated as follows:

ut = Bεt. (11)

B is an n-by-(k + l) matrix of rank n, and k + l > n. k is the number of structural shocks

correlated with the k instruments, zt, and l is the number of structural shocks uncorrelated

with the instruments. Note that in our baseline model, we assume k + l = n.

B has to satisfy the following condition:

BB′ = E[utu
′
t] = Σ. (12)

In addition, there exists a matrix Zε ≡ E[ztε
′
t] that satisfies three conditions. First, with

given E[ztz
′
t] and E[εtε

′
t] = Ik+l, Zε forms a valid covariance matrix.9 Second, the last l

columns of Zε are zero. Finally, it satisfies the following equation:

ZεB
′ = E[ztu

′
t] = Zu. (13)

We can characterize B using the characterization for the baseline case of k+ l = n. There

exists an n-by-n nonsingular matrix B0 that satisfies all the conditions on B, with l = n− k
(See section 2). Then, B can be written as

B = B0N, (14)

for an n-by-(k + l) matrix N . In the appendix, we show that any N that is consistent with

9This was not a concern under the baseline model, because εt = B−1ut and the validity of the covariance
matrix Zu imply that Zε is valid. In the present case, B is no longer invertible.
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the data (Σ and Zu) has the following form:

N =

[
N11 N12

0 N22

]
. (15)

The n rows of N are orthonormal vectors in Rk+l: NN ′ = In. In addition, k-by-k matrix

N11 is nonsingular. N12 is k-by-l and N22 is (n− k)-by-l.

It is easy to see that the rows of N has to be orthonormal vectors, because BB′ = B0B
′
0 =

Σ. The zeros in the bottom-left block of N are necessary for the last l columns of Zε to be

zero. This is only necessary, not sufficient, because we still need to make sure that Zε is a

valid covariance matrix.

The instant response to monetary policy shocks is characterized by the first two (k = 2)

columns of B, B0[N
′
11 0]′ = [b1 b2]N11, where [b1 b2] is the first two columns of B0. With

2 + l > n, we do not try to identify B fully, because we need extra identifying restrictions to

do so.

To partially identify monetary shocks, we only assume that the instant effect of forward

guidance shock on the federal funds rate is zero, and positive shocks are contractionary, as

in the baseline model. The forward guidance shock is the linear combination of the rate and

the forward guidance shocks in the baseline model, and to make the impact on the federal

funds rate zero, the weight on the rate shock should be zero. This is true if and only if N11

is lower triangular:

N11 =

[
n11 0

n12 n22

]
. (16)

nij are entries of the 2-by2 matrix N11. Furthermore, for positive shocks to be contractionary,

we assume n11, n22 > 0.

The instant impact of the forward guidance shock is simply n22b2. Therefore, IRFs to

the forward guidance shock are identical to those in the baseline model in shape. However,

their magnitude is smaller, because n22 is (weakly) smaller than 1.

The instant impact of the policy rate shock is given by n11b1 +n12b2. The instant impact

of the policy rate shock on the federal funds rate is smaller than in the baseline, as n11 is

(weakly) smaller than 1. Also, the IRFs are given as a linear combination of IRFs to the two

monetary structural shocks in the baseline model. This means that IRFs can have any of the
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forms given in figure 4 in section 4.3. Therefore, once we allow for the possibility of linear

dependence between monetary and non-monetary shocks, IRFs to the policy rate shock can

have different shapes depending on identifying restrictions. The only exception is the shape

of the short-run response by the federal funds rate, which is quite consistent across different

potential linear combinations of b1 and b2, as can be seen in figure 4

4.3 Relationship to Alternative Instrument-Based Identification

Schemes

We first discuss the consequence of assuming that monetary policy shocks are one-

dimensional (1D), as in Gertler and Karadi (2015), when the shocks were, hypothetically,

two-dimensional (2D).10 The discussion can be easily extended to the general case of assum-

ing that there are k′-dimensional structural shocks correlated with instruments, while the

true dimension is k > k′. Under the assumption of 1D monetary policy shock, the single

monetary shock would be a linear combination of the two ‘true’ shocks:

b1 = [b̃1 b̃2]w. (17)

In the equation, b1 is the first column of the matrix B under 1D identification. b̃1 and b̃2

are the first two columns of the matrix B with correct 2D identification, and w is a vector

of unit length. Thus, if we do not have enough instruments, we only get to identify certain

rotated components of full structural shocks correlated with instruments.

The particular linear combination, w, is determined by the choice of an instrument for

1D identification. To see this, let z1D,t be the instrument used for 1D identification, which is

a nonzero linear combination of elements in zt, the vector of all potential instruments. There

exists another linear combination z2,t of elements in zt such that the rank of E[[z1D,t z2,t]
′u′t]

is 2. Based on our discussion in section 2, there exists a 2-by-n matrix Z̃ε and an n-by-n

matrix B̃ such that

E[[z1D,t z2,t]
′u′t] = Z̃εB̃

′. (18)

In addition, the last n − 2 columns of Z̃ε are zero, and B̃B̃′ = Σ. The first two columns of

B̃, denoted b̃1 and b̃2, characterize the structural shocks correlated with the instruments.

10As we have said earlier, the data seem to support both dimensions somewhat equally.
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With only z1D,t as the instrument, we need to find B satisfying the following equation

for a 1-by-n matrix Z0, whose elements are all zero except for the first column:

E[z1D,tu
′
t] = Z0B

′, (19)

with BB′ = B̃B̃′ = Σ. At the same time, taking the first row of the matrix equation (18),

we have

E[z1D,tu
′
t] = ZεB̃

′ = ZεRR
′B̃′, (20)

with Zε being the first row of Z̃ε, and for any orthonormal matrix R. 1D identification is

done simply by solving for R that makes all the columns of ZεR zero except for the first one.

Since only the first two columns of Zε can be nonzero, it is always possible to find a solution

R in the following form:

R =

[
w w⊥ 0

0 0 In−2

]
, (21)

where [w w⊥] is a 2-by-2 orthonormal matrix. The first column of B = B̃R represents the

1D monetary policy shock, which is [b̃1 b̃2]w.

With our VAR model, we try 1D identification with an instrument defined as the projec-

tion of the estimated reduced-form residual of the federal funds rate onto the two baseline

instruments (current-month fed funds futures and three-quarter-ahead eurodollar futures).

The identified monetary policy shock is 0.99× (policy rate shock) +(−0.15)× (forward guid-

ance shock). The resulting impulse response functions, shown by figure 3, is remarkably

similar to those in Gertler and Karadi (2015), despite differences in the choice of VAR vari-

ables used to identify monetary policy shocks (fed funds rate in our paper vs. 1-year Treasury

rate in Gertler and Karadi (2015)) and the choice of instruments (CM FF and 3Q ED in our

paper vs. 3M FF in Gertler and Karadi (2015)).11

Impulse responses to 1D policy shock under the 2SLS instrument are close to those to

the policy rate shock under 2D identification, as figure 4 shows. Under 1D identification, the

impulse responses are linear combinations of those to the policy rate shock and the forward

guidance shock, and the composition is determined by the choice of the instrument for 1D

identification.

11In addition, the baseline VAR model in Gertler and Karadi (2015) has additional VAR variables.
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To see how important the choice of instrument is, we show how much the shape of

the IRFs can vary with 1D identification under different linear combinations of the two

instruments, CM FF and 3Q ED. The exercise is done by first creating a grid on all possible

values of vector w, which is easy because |w| = 1. Then, for each linear combination w,

we determine which combination of the two instruments will produce 1D structural shock

in the form of [b̃1 b̃2]w. Then, we check if the instrument is not too weak by making sure

that F > 10, for the regression of the federal funds rate residual on the instrument. Finally,

we pick two instruments that are not week and give most extreme combinations, the largest

positive (instrument N) and negative (instrument P) weights on the forward guidance shock.

A simpler interpretation of the exercise is that instrument P is constructed as (CM FF)

+x× (3Q ED), where x is roughly the positive number with the largest absolute value such

that instrument P is not a weak instrument under the rule of thumb F > 10 (Stock et al.

(2002) and Stock and Yogo (2005)). This interpretation is possible because CM FF is a

much stronger instrument for the federal funds rate than 3Q ED, and thus, larger |x| tends

to make the instrument weaker. Similarly, instrument N is constructed for negative x.

More explicitly, the instruments are constructed as follows:

Instrument P: (CM FF) +5.09× (3Q ED), F = 11.6.

Instrument N: (CM FF) −1.18× (3Q ED), F = 11.1.

The impulse responses for different instruments show differing shapes, because each in-

strument choice leads to impulse responses that are distinct composites of those to policy

rate and forward guidance shocks. In particular, the monetary policy shock identified with

instrument P is 0.79× (policy rate shock) +(−0.61)× (forward guidance shock), while that

identified with instrument N is 0.90× (policy rate shock) +0.44× (forward guidance shock).

The only highly consistent response across different instruments is the magnitude and du-

ration of the fed funds rate’s short-run response. Any reasonable instrument for the federal

funds rate gives the policy rate shock a weight close to 1, leading to similar short-run re-

sponses given that the forward guidance shock generates only a weak initial response in the

federal funds rate.

Another paper that identifies 2D monetary policy shocks is Lakdawala (2017). We note

that the impulse response functions in the paper look somewhat different from ours. More-

over, this difference does not seem to be coming just from the difference in identification

schemes, as we cannot find rotations of our shocks that look alike the shocks in the paper;
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note that from the characterization of the matrix B in section 2, we expect to find such a

rotation if our model and the other paper’s model were essentially different representations

of the same model.

5 Conclusion

Monetary policy announcements occur at fixed times, and instrument VAR can be used

to measure the impact of monetary policy announcements on macroeconomic variables, using

instruments that capture the response of different short-term rates to those announcements.

We identify forward guidance shocks as the component of the structural shocks that are

correlated with such instruments and have zero instant impact on the federal runds rate.

This is different from identifying restrictions used in previous studies that identifed monetary

policy shocks using instrument VAR, such as Gertler and Karadi (2015) and Lakdawala

(2017).

Given the shapes of IRFs, contractionary forward guidance seems to accompany expecta-

tions of future increase in output and price level. This suggests that contractionary forward

guidance identified through instrument VAR mainly represents a positive view on the future

increase of output and price level, rather than unexpected changes in future monetary pol-

icy stance. Expectation of future interest rate seemingly adjusts to reflect new information

on the future path of the economy after monetary policy announcements, not to take into

account unexpected changes in monetary policy stance.

We extend the baseline model in a few novel ways: First, we decompose non-monetary

structural shocks, and find that the response of the federal funds rate to shocks to output and

price level are what we expect under standard macroeconomic theory. Second, we consider

the possibility of linear dependence between monetary and non-monetary structural shocks.

This is a reasonable concern given that forward guidance seems to reflect mainly the release

of information about the future of the economy, and a similar form of information can be

revealed outside monetary policy announcements. We show that our conclusions about the

shape of the IRFs (but not magnitude) are still largely valid under this violation of usual

instrument VAR assumptions. Finally, we discuss the relationship between our model and

those in Gertler and Karadi (2015) and Lakdawala (2017). In doing so, we describe exactly

what happens to identification if we use fewer VAR instruments than the number of structural
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shocks.

We hope that our presentation of the instrument VAR methodology, combined with these

extensions, will be a useful reference for many economists interested in applying it.
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6 Appendix

6.1 Supplementary Discussion for Section 2

We provide some technical details for section 2.

First, we show that given rank(Zu) = k, it is possible to define structural shocks so that

rank(E[ztε
′
1,t]) = k and E[ztε

′
2,t] = 0. Let B1 be an n-by-n matrix such that B1B

′
1 = Σ. For

ut = B1εt, E[ztε
′
t] = Zu(B

−1
1 )′. Since any B = B1R with an orthonormal n-by-n matrix R

represents an equivalent VAR model with ut = Bεt, we only need to show that there exists

R such that E[ztε
′
t] = Zu(B

−1)′ = Zu(B
−1
1 )′R satisfies the required properties. It is enough

to show that there exists R such that the last n− k columns of E[ztε
′
t] is zero, because the

nonsingularity of B1 and R guarantees that once the last n − k columns are zero, the first

k columns are independent. It follows from standard results in linear algebra that we can

find R that makes the last n− k columns zero. Also, there is no R such that only the first l

columns of Zu(B
−1
1 )′R are nonzero, for l < k. There exists R such that the statement holds

for l > k, but the first l columns would not be independent in that case.

Second, we show that B1 = B2R(k, n−k) completely characterizes observationally equiv-

alent models, those with identical Σ and Zu. Given any B1 and B2 such that B1B
′
1 = B2B

′
2 =

Σ, B1 = B2R for an n-by-n orthonormal matrix R. Then, Zu(B
−1
1 )′ = Zu(B

−1
2 )′R. In addi-

tion, if the last n− k columns of both Zu(B
−1
1 )′ and Zu(B

−1
2 )′ are zero, their first k columns

must be nonzero and independent. Therefore, the top-right k-by-(n − k) submatrix of R

must be zero. Similarly, Zu(B
−1
2 )′ = Zu(B

−1
1 )′R′ holds, and this implies that the bottom-left

(n − k)-by-k submatrix of R is zero. Therefore, R has to take the form R(k, n − k) as a

necessary condition for equivalence betweeen B1 and B2.

The converse that B1 = B2R(k, n− k) is consistent with the restrictions from the data,

given that B2 is so, is even more obvious. R(k, n − k) is an n-by-n orthonormal matrix by

construction, and the last n−k columns of Zu(B
−1
1 )′ = Zu(B

−1
2 )′R(k, n−k) are zero because

they are linear combinations of the last n− k columns of Zu(B
−1
2 )′, which are zero.

Given the block representation of B with Bij, i, j = 1, 2 as in equation (6), the four matrix

products B11B
′
11, B22B

′
22, B21B

−1
11 and B12B

−1
22 are invariant to multiplying B by R(k, n− k)

from the right. The reason is that this multiplication makes Bi1 into Bi1Rk and Bi2 into

Bi2Rn−k.

Also, these four matrix products uniquely determine B up to multiplication by R(k, n−k)
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from the right. B11 can be determined from B11B
′
11 uniquely up to multiplication by Rk from

the right, and B21 can be determined from B21B
−1
11 and B11. B22 and B12 can be similarly

determined uniquely up to multiplication by Rn−k from the right.

6.2 Computing B

In section 2, we have seen that to determine B, it is enough to determine

B11B
′
11, B22B

′
22, B21B

−1
11 and B12B

−1
22 , where Bij is a submatrix of B as in equation (6).

Here, we reproduce formulas in the appendix of Mertens and Ravn (2013) computing these

matrix products in terms of Σ and Zu.

First, if m > k, choose any k independent rows (or k independent linear combinations of

rows) of Zu and eliminate the rest, so that Zu has the full row rank. Then, let Zu,1 denote the

first k columns of Zu and Zu,2 denote its last n− k columns. Without any loss of generality,

we assume that Zu,1 is nonsingular, because if it is not, we can change the order of VAR

variables to make Zu,1 nonsingular. Then,

B21B
−1
11 = Z ′u,2(Z

′
u,1)
−1. (22)

From BB′ = Σ, we obtain the following three equations:

B11B
′
11 + bB22B

′
22b
′ = Σ11. (23)

B11B
′
11a
′ + bB22B

′
22 = Σ12. (24)

aB11B
′
11a
′ +B22B

′
22 = Σ22. (25)

The subscripts on Σ denote its submatrices in the same way as they denote the submatrices

of B, and a ≡ B21B
−1
11 and b ≡ B12B

−1
22 . By solving these equations, we get:

bB22B
′
22b
′ = (Σ12 − Σ11a

′)(Σ22 + aΣ11a
′ − aΣ12 − Σ21a

′)−1(Σ21 − aΣ11). (26)

B11B
′
11 = Σ11 − bB22B

′
22b
′. (27)

B22B
′
22 = Σ22 − aB11B

′
11a
′. (28)

b = (Σ12 −B11B
′
11a
′)(B22B

′
22)
−1. (29)
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6.3 Normalization of rk-Statistic

Normalization is done by properly defining F and G in equation (16) in Kleibergen and

Paap (2006):

Θ̂ = GΠ̂F ′. (30)

We use the following G and F , where G is m-by-m and F is n-by-n:

G′G ≡ 1

T

T∑
t=1

ztz
′
t, (31)

F ′F ≡ 1

T

T∑
t=1

utu
′
t. (32)

These formulas do not uniquely determine G and F because for any orthonormal matrices

Rm and Rn, RmG and RnF also satisfy these two equations. However, any G and F satisfying

these formulas can be used, as all possible choices lead to the same value for rk-statistic.

In cases where we use only subvectors of zt and ut, we use corresponding subvectors in the

definition G and F as well. Following the construction of rk-statistic outlined in Kleibergen

and Paap (2006), this choice of G and F can be shown to lead to the same value of rk-statistic

under any invertible linear transformations of zt and ut. In other words, for any nonsingular

m-by-m matrix Am and nonsingular n-by-n matrix An, replacing zt and ut by Amzt and

Anut does not change the value of rk-statistic. We do not reproduce the computational steps

because they follow from standard results in linear algebra.

6.4 Characterization of a Model with Linearly Dependent Mone-

tary and Non-Monetary Shocks

As stated in section 4.2, the parameter B of the VAR model is characterized by several

conditions. As discussed in section 2, B has to satisfy the following condition:

BB′ = E[utu
′
t] = Σ. (33)

In addition, there exists a matrix Zε ≡ E[ztε
′
t] that satisfies three conditions. First, with

given E[ztz
′
t] and E[εtε

′
t] = Ik+l, Zε forms a valid covariance matrix. Second, the last l
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columns of Zε are zero. Finally, it satisfies the following equation:

ZεB
′ = E[ztu

′
t] ≡ Zu. (34)

There exists an n-by-n nonsingular matrix B0 that satisfies all the conditions on B, with

l = n− k (See the discussion in section 2). Then, B can be written as

B = B0N, (35)

for an n-by-(k + l) matrix N .

The equation BB′ = Σ is equivalent to NN ′ = (B0)
−1Σ(B′0)

−1 = In, because Σ = B0B
′
0.

Therefore, the n rows of N are orthonormal vectors in Rk+l.

Let Z0 ≡ Zu(B
′
0)
−1. By definition, the last n− k columns of Z0 are zero. Also, equation

(34) can be written as follows:

ZεB
′ = ZεN

′B′0 = Z0B
′
0. (36)

Therefore, the third condition on Zε can be stated in terms of N : ZεN
′ = Z0. Along with

the second condition on Zε that the last l columns of Zε be zero, this implies that N has the

following form:

N =

[
N11 N12

0 N22

]
. (37)

N11 is k-by-k, N12 is k-by-l, and N22 is (n−k)-by-l. The first k columns of Zε are independent

because rank(ZεN
′) = rank(Z0) = k. Since the last n − k columns of Z0 = ZεN

′ are zero,

the bottom-left (n − k)-by-k submatrix of N must be zero. Since the first k columns of

Z0 = ZεN
′ are the first k columns of Zε multplied by N11 from the right, and the first k

columns of Z0 are independent, N11 is nonsingular.

Conversely, for any N in the form given by equation (37), Zε that satisfies the second

and third conditions can be found. This can be simply done by defining the first k columns

of Zε as the first k columns of Z0 multiplied by (N ′11)
−1 from the right, and by defining the

remaining l columns of Zε as zero.

Therefore, as long as Zε forms parts of a valid covariance matrix of [z′t ε
′
t]
′, the following

conditions on N characterizes B = B0N : NN ′ = In and N11 is nonsingular. NN ′ = In

32



implies that the rows of N22 are orthonormal and each row of N12 is in the null space of N22.
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