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Abstract

We develop a parsimonious model to study the equilibrium structure of financial

markets and its efficiency properties. We find that regulations aimed at improving

market outcomes can cause inefficiencies. The welfare benefit of such regulation stems

from endogenously improving market access for some participants, thus boosting com-

petition and lowering prices to the ultimate consumers. Higher competition, however,

erodes profits from market activities. This has two effects: it disproportionately hurts

more efficient market participants, who earn larger profits, and it reduces the incen-

tives of all market participants to invest ex-ante in efficient technologies. The general

equilibrium effect can therefore result in a welfare cost to society. Additionally, this

economic mechanism can explain the resistance by some market participants to the

introduction of specific regulation which could appear to be unambiguously beneficial.
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1 Introduction

Many markets operate through market makers or similar intermediaries. Two elements are

most important for market making, counterparty risk and the cost of holding inventories.

Both elements have been or will be affected by the G20-led reform to the over-the-counter

(OTC) derivatives market following the financial crisis. As part of this reform, G20 Leaders

agreed in 2009 to mandate central clearing of all standardized OTC derivatives. Currently,

although central clearing rates have increased globally, there still is a significant proportion

of OTC derivatives that is not cleared centrally.1 As the regulatory framework is being

implemented, and as changes in the infrastructure landscape for trading and settlement take

place (e.g. due to Brexit), little is known about the effects of these reforms on the structure

of the markets in which they are implemented.

In this paper, we analyze the effects of introducing measures aimed at reducing coun-

terparty risk and improving liquidity, such as central clearing (FSB [2017], pg. 7), on the

structure of financial markets. One may expect that initiatives aimed at reducing such risk

would bring uncontested benefits. However, in line with the theory of the second best, we

show that such initiatives may to some extent “back-fire”: market makers may take actions

that can yield to inefficient outcomes. For instance, they may have too little incentive to

innovate. Our results are consistent with empirical findings on the effects of mandatory cen-

tral clearing for Credit Default Swaps indexes in the United States. Studying separately the

effects of each implementation phase of the Dodd Frank reform, Loon and Zhong [2016] find

that the effect of central clearing on a measure of transaction-level spread is significantly dif-

ferent according to the category of market participants affected by the reform. In particular,

central clearing is correlated with an increase in spreads for swap dealers and with a decrease

in spreads for commodity pools and all other swap market participants.2 In our model, the

final general equilibrium effect of introducing an insurance mechanism against counterparty

risk (e.g. central clearing) crucially depends on features of the market participants involved.

We use a simple set-up with market makers intermediating trades between buyers and

sellers. Dealers are heterogeneous, as they can be more or less efficient at making mar-

1See FSB [2017] Review of OTC derivatives market reforms, June 2017, pg. 2-14, Figures 2,3.
2See Loon and Zhong [2016], Table 10 and Appendix A.2.1, pg. 667-9.
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kets. For a (fixed) cost they can invest into a market making technology which lowers their

expected cost of intermediating a transaction between buyers and sellers. This technology

stands in for more efficient balance sheet management, a larger network of investors, etc.

Once they whether or not to invest, dealers post and commit to bid and ask prices.

Buyers and sellers sample dealers randomly and decide whether to trade at the posted bid or

ask, or whether they should carry on searching for a dealer next period. The search friction

implies that the equilibrium bid-ask spreads will be positive. Also, even less efficient dealers

will be active because buyers and sellers may be better off accepting an offer which they

know is not the best on the market rather than waiting for a better offer. Therefore, our

search friction defines the structure of the market measured by how many and which dealers

are operating, and its liquidity measured by the distribution of bid-ask spreads.

Contrary to Duffie et al. [2005], dealers are exposed to the risk of having to hold invento-

ries. To make markets, dealers have to accommodate buy-orders with sell-orders. However

we assume that buyers (and sellers) can default after placing their orders. If dealers can

perfectly forecast how many buyers will default, they will just acquire fewer assets. Other-

wise they may find themselves with too many assets in inventory for longer than expected.

For simplicity, we make the extreme assumption that market makers cannot sell the asset

if the buyer defaults. In this sense, the asset is bespoke. Dealers maximize their expected

profit by posting bid-ask spreads that depend on the inventory risk as well as on their cost

of intermediating transactions (in the model, a dealer’s idiosyncratic transaction cost). In

particular less efficient dealers may find optimal to stay out of market making activities.

We then analyze the effects of a set of regulations aimed at lowering counterparty risk

and improving pricing3 on the liquidity and the structure of intermediated markets. In

particular, we focus on (i) the measure of active dealers, buyers and sellers, (ii) the share of

the market that each dealer services, and (iii) the equilibrium distribution of bid-ask spreads.

Such a comprehensive characterization of the equilibrium allows the identification of gainers

and losers from such regulations.

3 See the Commodity Futures Trading Commission (CFTC) reports on the swap regulation introduced
by Title VII, Part II of the Dodd-Frank Wall Street Reform and Consumer Protection Act, and FSB [2017]
pg.3, 22.
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1.1 Model and results

We model regulations as a reduction in the severity of counterparty risk which affects dealers’

inventory risk. Intuitively, dealers should benefit from a reduction or elimination of inventory

risk. This could be implemented by the introduction of central clearing in the market for an

asset, for example, a more liquid secondary market for the asset, a better functioning of the

inter-dealer market as in Duffie et al. [2005], or the use of an insurance mechanism between

market makers (e.g. credit default swaps (CDS) market).4

Everything else constant, a reduction in counterparty risk will result in a reduction of the

bid-ask spread. Two distinct mechanisms are responsible for the lower spread, a direct and

an indirect one. First, facing a lower default risk, dealers prefer to charge a lower mark up

per transaction and execute a larger volume. Second, lower counterparty risk induces less

efficient dealers to enter the market thus increasing competition. As a result, more buyers

and sellers are served, and the measure of dealers active on the market increases. More

efficient dealers however have a lower profit because they lose some market share to lesser

efficient dealers. In fact, the most efficient dealers would prefer some counterparty risk as

long as other dealers are not fully insured against such risk.

We also analyze the impact of a reduction in counterparty risk on dealers’ incentive to

adopt a market-making technology that lowers their ex-ante intermediation cost. Protection

against risk can induce dealers to opt for a worse market making technology, which can be

inefficient. As discussed, reducing risk allows less efficient dealers to enter the market. This

additional competition reduces profits of more efficient dealers (ex-post). Since the benefit

of becoming a more efficient dealer is smaller, the incentives to invest in the better market-

making technology decrease. If the fixed cost of the better technology is too high, dealers will

prefer not to invest to become ex-ante more efficient. In turn the entire pool of dealers become

worse. This adversely impacts buyers and sellers who face worse terms of trade on average.

As a consequence, the introduction of a seemingly beneficial insurance mechanism against

counterparty risk reduces welfare of buyers and sellers, unless dealers receive a transfer that

compensate their investment into more efficient market making technologies.

This paper thus makes two contributions: first it offers a perspective that can explain

4In Appendix D we provide a full characterization of the mapping from a reduction in counterparty risk
to the introduction of central clearing.
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the opposition of some dealers to tighter regulation, such as mandatory central clearing

for all standardized derivatives traded OTC.5 Second, it argues that forcing the adoption

of seemingly beneficial regulation has consequences for the incentives of some market par-

ticipants. This effect, in general equilibrium, can ultimately have adverse effects on other

agents’ welfare.

1.2 Related literature

The literature on the microstructure of markets is large and has been mostly interested with

explaining bid-ask spreads. It is not our intention to cover this literature here, and we refer

the interested reader to O’hara [1995]. Among the first to study the inventory problem

of market makers are Amihud and Mendelson [1980]. Here, we are not interested in the

inventory management problem per-se as much as in how the cost of managing inventories

affects liquidity. In particular, we normalize the optimal size of inventory to zero and we

analyze how the probability to experience deviations from this optimal inventory level affects

liquidity.

Our paper, by focusing on the effect of competition on the adoption of better market-

making technologies, is also related to Dennert [1993] and Santos and Scheinkman [2001].

Following the seminal contribution of Kyle [1985], Dennert [1993] analyzes the effect of com-

petition on bid-ask spreads and liquidity, and shows that liquidity traders might prefer to

trade with a monopolist market maker. Santos and Scheinkman [2001] study the effects of

competing platforms when there is a risk of default. They show that a monopolist interme-

diary may ask for relatively little guarantee against the risk of default.

The papers that are most related to ours are the equilibrium search models of Spulber

[1996] and Rust and Hall [2003], which we extend by introducing inventory risk through the

default of buyers. Duffie et al. [2005] present an environment where market makers are able

to trade their inventory imbalances with each other after each trading rounds. Therefore,

market makers never carry any inventory in equilibrium. We depart from Duffie et al. [2005]

by assuming that market markets may have to hold inventories and we study the effect of

5Dodd-Frank Act for example, Dudley [March 22, 2012]. European financial markets legislation has also
been moving in the same direction.
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regulations, whose goal is to make market makers closer to the set-up in Duffie et al. [2005],

on the structure of the market. In an environment similar to Duffie et al. [2005], Weill

[2007] shows that competitive market makers offer the socially optimal amount of liquidity,

provided they have access to sufficient capital to hold inventories. Weill [2011] shows that if

market makers face a capacity constraint on the number of trades which they can conduct,

then delays in reallocating assets among investors emerge, thus creating a time-varying bid

ask spread, widening and narrowing as market makers build up and unwind their inventories.

In contrast to the last papers, we analyze the incentives of dealers to enter market making

activities in the first place. In this respect, our paper is also related to Atkeson et al. [2015],

who study the incentives of ex-ante heterogenous banks to enter and exit an OTC market.

This allows Atkeson et al. [2015] to identify the banks which behave as end users versus the

banks which intermediate transactions, and thus behave as dealers. In contrast, we analyze

the impact of current OTC market reforms on dealers’ entry and investment decisions, and

on the efficiency of the resulting equilibrium allocation.

Section 2 describes the basic structure of the model. To understand the basic mechanism

underlying our main results, we analyze the equilibrium with no counterparty risk (i.e.

settlement fails) in Section 3 and the equilibrium with counterparty risk/settlement fails in

Section 4. Section 5 contains our result about the incentives of market makers to invest in

a more efficient market making technology ex-ante. Section 6 concludes.

2 A Model of Dealers and Risk

We base our analysis on a modified version of the equilibrium search models in Spulber

[1996] and Rust and Hall [2003]. The presentation of the model follows closely the one in

Rust and Hall [2003]. There are three types of agents: traders, who can be either buyers or

sellers, and dealers. To be consistent with Spulber [1996] and Rust and Hall [2003], we will

also sometimes refer to buyers as consumers and to sellers as producers. Buyers and sellers

cannot trade directly an asset and all trades must be intermediated by dealers.

There is a continuum [0, 1] of heterogeneous, infinitely-lived, and risk neutral buyers,
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sellers, and dealers.6 A seller of type v can sell at most one unit of the asset at an opportunity

cost v. A buyer of type v can hold at most one unit of the asset and is willing to pay at

most v to hold it.

Dealers face no counterparty risk in Rust and Hall [2003], as dealers’ clients exit the

market after they settle their claim. Contrary to Rust and Hall [2003], we introduce coun-

terparty risk for dealers by assuming that buyers first place orders with dealers, but then

exit the market with probability λ, before they have the chance to settle their orders. A

buyer who exits the market is replaced with a new buyer whose v is drawn from the uniform

distribution over [0, 1]. We do not consider strategic default and λ is exogenous. This is

akin to the risk that a counterparty goes bust for reasons that are independent of its trading

activities, and we refer to it as settlement risk. Contrary to buyers, sellers always settle their

orders.7

In and of itself, this type of counterparty risk is aggregate and not interesting: There is

nothing a dealer can do to insure against it. So we also assume that dealers face idiosyncratic

risk: Nature does not allocate buyers perfectly across dealers who can be in two states, s = 1

and s = −1. In state s = 1, a dealer has a measure λ− ε of his buyers exiting the market,

while in state s = −1 a measure λ+ ε of his buyers exit. This default shock is independent

of whether the buyers placed an order at the bid-ask spread posted by the dealer. Dealers

cannot observe state s before it occurs: They only observe the actual measure of buyers

exiting the market once that is realized. This shock is i.i.d. and each state occurs with

probability 1/2 , so that there is no aggregate uncertainty. Notice also that on average

buyers exit the market before settlement with probability λ.

At time t = 0, the initial distribution of types of buyers and sellers is v ∼ U [0, 1].

Since the type of newborn agents is drawn randomly over the same distribution, then the

distribution of types will also be U [0, 1] in all subsequent periods t = 1, 2, 3, .... Therefore

U [0, 1] is the unique invariant distribution of types in each subsequent period t = 1, 2, 3, ....

There is a continuum of dealers indexed by their trading cost k which is the marginal

cost of taking a seller’s order before the seller actually pays for the good.8 Trading costs

6In Appendix E we analyze a version of this model with risk averse traders.
7This asymmetry between buyers and seller is not substantial. Analogous results would arise if sellers

exited the market before settlement.
8This introduces an asymmetry regarding the cost of dealing with a buyer or a seller, which can be
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are uniformly distributed over the interval [k, 1], where k is the marginal cost of the most

efficient dealer.

In equilibrium, only dealers who can make a profit will operate a trading post and there

will be a threshold level of trading cost, k̄ ≤ 1, such that no dealer with a cost greater than k̄

operates a post. A dealer of type k ∈
[
k, k̄
]

chooses a pair of bid-ask prices (b (k) , a (k)) that

maximizes his expected discounted profits. A dealer is willing to buy the asset at price b (k)

from a seller and is willing to sell the asset at the ask price a (k). We consider a stationary

equilibrium so that b(k) and a(k) will be constant through time.

Buyers and sellers engage in search for a dealer. Each period, if he decides to search, a

trader gets a price quote from a random dealer. Since dealers post stationary bid and ask

prices depending on their types, traders face distributions F (a) and G (b) of ask and bid

prices. These distributions are equilibrium objects. Traders discount the future at rate β.

Timing, also shown in Figure 1, is as follows: At time 0, dealers k ∈
[
k, k̄
]

choose a bid

and ask quote. ∀t ≥ 0, buyers and sellers decide whether they want to search or not. If so,

they contact a dealer at random, and they either accept the quoted price or keep searching.

If they agree, they place an order to buy/sell a unit of the asset. Then each buyer exits

with probability λ. Moreover, if a dealer is in state s ∈ {−1, 1}, then a measure λ − sε of

his buyers exit before settlement. Finally, settlement occurs: Each operating dealer receives

assets from the sellers who placed an order and delivers one asset to each of the (1− λ+ sε)

buyers who settle their orders. Dealers must dispose of the surplus of assets.9

The main difference from Spulber [1996] is that buyers do not give up on future options

by trading in a given period. In Spulber [1996], buyers exit the market after they trade.

Here, trading today does not exclude traders from future trading opportunities. Hence,

their trading decision is simpler in Spulber [1996], and dealers do not compete but behave as

monopolists. A common feature between Spulber [1996] and our set-up is that each active

dealer has a higher probability of intermediating funds whenever few dealers operate. This

justified in real contracts as the cost of handling the good underlying the contract. The result would not be
substantially modified if we introduced a handling cost of the buyer as well, kb as long as kb < k. Here we
set kb = 0. For financial contracts, this is the cost of designing the contracts.

9We could assume that dealers gets some value p̄ for each unit of asset they hold and we normalize p̄ = 0,
so that the asset fully depreciates in the hand of the dealers. This low holding-value also stands in for high
regulatory costs of holding some assets (such as higher capital requirements).
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t

Measure λ
of buyers

and sellers
is born

Dealer k
chooses
a(k), b(k)

Buyers and Sellers
choose:

- randomly
contact a dealer

- never search

Buyers and Sellers
who contacted

a dealer choose:

- accept b(k), a(k)
(i.e. place an order)

- reject and search
next period if no exit

Buyers
die

w.p. λ

Settlement
and

consumption
take place

t+ 1

Figure 1: Timing

is key to our result.

3 No settlement risk

To gain some intuition, in this section we study the benchmark economy where there is no

settlement risk so that λ = 0. The decision of buyers/consumers is simply to accept the

selected ask price a whenever v ≥ a and reject otherwise. Their payoff is

Vc(v) =

ˆ v

a

(v − a)dF (a) + βVc(v)

where a is the lowest ask price. The decision of sellers/producers is to accept the selected

bid price b whenever v ≤ b and reject otherwise. Their payoff is

Vp(v) =

ˆ b̄

v

(b− v)dG(b) + βVp(v)

Dealers that post an ask-price a face the following demand

D(a) =
1

N

ˆ 1

a

dv =
1

N
(1− a) (1)

where N is the measure of active dealers. Only those consumers with a value greater than

the posted price will accept the offer. Similarly, dealers that post a bid-price b face the
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following demand

S(b) =
1

N

ˆ b

0

dv =
1

N
b (2)

A dealer of type k maximizes his profit by choosing a and b, subject to the resource constraint,

or

Π(k) = max
a,b
{aD(a)− (b+ k)S(b)}

subject to D(a) ≤ S(b). The resource constraint will bind, so that b = 1 − a and a dealer

chooses a to maximize

Π(k) = (1− a)(2a− 1− k)

with solution

a(k) =
3 + k

4
(3)

b(k) =
1− k

4
(4)

Notice that, as in the models of Spulber [1996] and Rust and Hall [2003], the distribution

of bid and ask prices are uniform on
[
a(0), a(k̄)

]
and

[
b(k̄), b(0)

]
because the bid and ask

prices are linear and the distribution of dealer cost is uniform.

In equilibrium, all dealers with intermediation cost k such that Π(k) ≥ 0 will be active.

Therefore, all dealers with k ≤ k̄, where k̄ is defined so that Π(k̄) = 0, will be active. So

the measure of active dealers is N = k̄. It is easy to see that k̄ = 1 and that a(k̄) = 1 and

b(k̄) = 0. Therefore the least efficient dealer is indifferent between operating and staying out

of the market. In fact, dealer k̄ would face a measure zero demand at the price a(k̄) = 1.

Any dealer k < k̄ = 1 makes strictly positive profits:

Π(k) =
(1− k)2

8N
=

(1− k)2

8k̄
.

Then we can find the extremes of the support of the bid and ask price distributions:

a = a(k̄) =
3 + k̄

4
= 1 a = a(0) =

3

4
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b = b(0) =
1

4
b = b(k̄) =

1− k̄
4

= 0

Clearly, each dealer charges its monopoly price, as there is no competition: The bid/ask

prices posted by other dealers do not influence the decision of traders to accept or reject

the price they obtain as traders can anyway search again next period, independently of their

decision today. So, contrary to the model in Spulber [1996], agents do not forfeit the option

of getting a better deal tomorrow if they accept the proposed deal today. Since dealers

charge the monopoly price, even inefficient dealers can make profits, which implies that they

have the incentive to enter the market: Hence we should expect that the equilibrium number

of active dealers is too high relative to what a planner would choose. We analyze this next.

To define the optimal number of dealers, we now define the surplus of dealers, consumers

and producers as a function of k̄. Total economy-wide profits, or surplus of dealers, are:

Sd(k̄) =

ˆ k̄

0

Π(k)dk =

ˆ k̄

0

(1− k)2

8k̄
dk

=
3− (3− k̄)k̄

24

which are always decreasing in k̄ ≤ 1. The surplus of consumers is:

Sc(k̄) =

ˆ 1

a(0)

[ˆ a(k̄)∨v

a(0)

(v − a)

a(k̄)− a(0)
da

]
dv

=
(3− (3− k̄)k̄)

96
=
Sd(k̄)

4

Hence, Sc(k̄) is always decreasing in k̄. Finally, the surplus of producers is

Sp(k̄) =

ˆ b(0)

0

[ˆ b(0)

b(k̄)∧v

(b− v)

b(0)− b(k̄)
db

]
dv

=
(3− (3− k̄)k̄)

96
=
Sd(k̄)

4

Hence Sp(k̄) is always decreasing in k̄. Therefore, as expected, neither dealers, nor consumers
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or producers benefit from the entry of relatively inefficient dealers. Given that intermediation

is needed, the best solution is to have only the most efficient dealers, those with k = 0,

intermediate all trades. Notice that this is the case because the most efficient dealer charges

the same bid and ask prices independent of the presence of other dealers. This is not true

in a model like Spulber [1996], where even the most efficient dealers may wish to lower their

price when other dealers are operating. In the next section we introduce settlement risk.

4 Settlement risk

In this section we introduce settlement risk for dealers. A settlement fail occurs when the

consumer fails to collect and pay for his buyer order. We assume that this happens on average

with probability λ, so that, on average, a measure λ of consumers will fail to settle. However,

dealers are also subject to an idiosyncratic settlement shock s with support S = {−1,+1}
and probability density Pr[s = −1] = Pr[s = +1] = 1

2
. This settlement shock describes

our notion of counterparty risk: given ε ∈ (0, λ), a dealer experiences a fraction λ+ ε of its

consumers failing to settle in state s = −1 and a fraction λ−ε failing to settle in state s = 1.10

The cost of settlement fails for dealers is that they still have to honor their obligations toward

sellers. The cost of settlement fails for buyers is that they cannot consume the good. We

assume that the settlement shock is i.i.d across dealers and across time. We interpret an

increase (decrease) in dealers’ idiosyncratic settlement risk as an increase (decrease) in ε.

The decision problems of consumers and producers are the same as in the previous section,

so that D(a) = (1−a)
N

and S(b) = b
N

. Dealers’ decision problem is:

Π(k;λ, ε) = max
{a,b}

Es {a (1− λ+ sε)D (a)− (b+ k)S (b)} (5)

s.t. (1− λ+ sε)D (a) ≤ S (b) ∀s ∈ {−1, 1} (6)

The resource constraint (6) binds when s = 1. Therefore

S(b) = (1− λ+ ε)D (a) ≡ λεD(a).

10We can extend this to a symmetrically distributed ε around [−ε̄, ε̄], where ε̄ < λ and E(ε) = 0. Then
everything below holds with ε = ε̄.
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Notice that dealers expect to have to deliver (1 − λ)D(a) assets. However, dealers have to

purchase more securities than they expect will be necessary, as they have to satisfy their buy

orders in all possible states. Hence, settlement risk implies that dealers over-buy the asset.

Substituting out for D(a) and S(b) yields:

Π(k;λ, ε) = max
{a}
{a (1− λ)− [λε (1− a) + k]λε}

1

N
(1− a) (7)

Taking the number of operating dealers as given, Figure 2 shows the profit of a dealer when

ε = 0 and as ε increases: the direct effect of increasing risk is to reduce dealers’ profits.

Thus, dealers’ best response is to increase their ask price (i.e. a′(ε) > 0). The mechanism

driving this result is intuitive: If he posts ask price a, a dealer receives D(a) buy orders but

expects only (1−λ)D(a) buyers to collect the asset and pay for it. However, he needs to buy

sufficient assets to cover effective demand in state s = 1. Because such demand increases

in ε, an increase in ε reduces dealers’ profits. To account for this, dealers adjust their ask

price upwards. As a consequence they face fewer buy orders, which, in turn, results in lower

effective demand in state s = 1.

The first order conditions to dealers’ decision problem imply:

a(k) = 1− 1− λ− kλε
2 (1− λ+ λ2

ε)
=

1− λ+ 2λ2
ε + kλε

2(1− λ+ λ2
ε)

(8)

b(k) = λε(1− a(k)) = λε
1− λ− kλε

2 (1− λ+ λ2
ε)

(9)

It is worth emphasizing the effect of increasing risk on the bid-ask spread. Since the ask

price is increasing with risk, dealers do not need to serve as many consumers as before, so

they should decrease their bid price to purchase a lower quantity of the asset. However,

notice the factor λε which multiplies 1− a(k) in (9): the indirect effect of higher settlement

risk is that dealers have to over-buy the security, which pushes the bid price up. The overall

effect on the bid price is therefore uncertain, and depends on which effects dominates. It

turns out that if λ and ε are sufficiently small, then the bid price will increase in the risk of
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Figure 2: Dealer’s profits as a function of ε

settlement failure for some k. Indeed, we have

∂b(k)

∂λε
=

(1− λ)

2 (1− λ+ λ2
ε)

2

(
1− λ− 2kλε − λ2

ε

)
and as Figure 3 shows, the bid price of dealer k increases with settlement risk if and only if:

k <
1− λ− λ2

ε

2λε
≡ κ(ε). (10)

Notice that κ(ε) = 0 whenever ε =
√

1− λ
(
1−
√

1− λ
)
. In general, one can easily
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Figure 3: Bid prices as a function of ε for different dealers
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prove the following result.

Lemma 1. For all ε ≤ ε̄ ≡
√

1− λ
(
1−
√

1− λ
)
, b(k) is increasing in ε whenever k < κ(ε)

and decreasing otherwise. For all ε > ε̄ the bid price is always decreasing in ε for all k ≤ k̄.

We can now characterize the demand and supply for each dealer:

D(a) = 1
N

(1− a) =
1

2N

1− λ− kλε
(1− λ+ λ2

ε)
(11)

S(b) = 1
N
λε(1− a) =

1

2N
λε

1− λ− kλε
(1− λ+ λ2

ε)
(12)

Substituting out for a(k) and b(k) from(8) and (9), as well as N = k̄ in the profit function

of dealer k, we obtain:

Π(k;λ, ε) =
λε(1− λ− kλε)2

4(1− λ) (1− λ+ λ2
ε)

(13)

Finally, the marginal active dealer k is such that Π(k̄;λ, ε) = 0, which yields:

k̄ =
1− λ
λε

< 1. (14)

It is then easy to see that a
(
k
)

= 1. In the sequel, we show the main result of this section.

Lemma 2. The dealers’ surplus is decreasing in settlement risk. However, the most efficient

dealers always benefit from an increase in settlement risk if and only if such risk is sufficiently

small.

Proof. Appendix A.1 shows that dealers’ surplus is simply

Sd(ε) =

ˆ k̄

0

Π(k;λ, ε)dk =
1

12

(1− λ)2(
1− λ+ λε

2
)

which is always decreasing in ε. To see that the most efficient dealers benefit from an increase

in settlement risk, notice that (13) implies that the marginal profits for dealer k = 0 are:

∂Π(0;λ, ε)

∂ε
=

(1− λ)

[4 (1− λ+ λ2
ε)]

2

{
1− λ− λ2

ε

}
15



which is increasing in ε whenever ε is small enough. In fact, the sign of ∂Π(0;λ, ε)/∂ε is the

sign of 1− λ− λ2
ε. Hence, for all ε such that ε < ε =

√
1− λ(1−

√
1− λ) the profit of the

most efficient dealer will be increasing.

The surplus of consumers now has to take into account that consumers may not obtain

the good if they fail to settle. Therefore, their surplus is scaled down by the probability of

being hit by a settlement fail, λ. In Appendix A.6 we show that:

Sc(k̄) = (1− λ)

ˆ 1

a(0)

[ˆ a(k̄)∨v

a(0)

(v − a)

a(k̄)− a(0)
da

]
dv

=
1

6
(1− λ)(1− a(0))2

where a(0) = 1 − 1−λ
2(1−λ+λ2ε)

. Hence, the consumers’ surplus is strictly decreasing with ε.11

the following Lemma formalizes this result.

Lemma 3. The consumers’ surplus is decreasing with settlement risk.

Finally, using the results in Appendix A.6, we compute the surplus of producers, as

Sp(k̄) =

ˆ b(0)

0

[ˆ b(0)

b(k̄)∧v

(b− v)

b(0)− b(k̄)
db

]
dv =

b(0)2

6

where b(0) = λε
1−λ

2(1−λ+λ2ε)
. Recall that Lemma 1 implies ∂b(0)

∂λε
> 0 for λε small enough, and

∂b(0)
∂λε

< 0 otherwise. Therefore, the surplus of producers is increasing when there is little

settlement risk, while it is decreasing otherwise. The following Lemma formalizes this result.

Lemma 4. The producers’ surplus is increasing with settlement risk whenever ε is small and

it is decreasing otherwise.

We now analyze whether the surplus for the entire economy is increasing in settlement

risk. Hence, we define aggregate surplus as Sd(k̄) + Sp(k̄) + Sc(k̄). It is more convenient

to operate a change of variable to compute the surplus of dealers. In Appendix A we show

11This can be simplified to Sc(k̄) = 1
6

(1−λ)3

4(1−λ+λ2
ε)2

.
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that Sd(k̄) = 2(1−λ+λ2ε)
2

3(1−λ)
(1 − a(0))3. Therefore, using results from Appendix A.6, aggregate

surplus is simply:

Sd(k̄) + Sp(k̄) + Sc(k̄) =
2(1− λ+ λ2

ε)
2

3(1− λ)
(1− a(0))3

+
b(0)2

6
+

1

6
(1− λ)(1− a(0))2

and using b(k) = λε(1− a(k)) and simplifying, we obtain

S ≡ Sd(k̄) + Sp(k̄) + Sc(k̄) =
(1− λ)2

8(1− λ+ λ2
ε)

which is strictly decreasing in ε.

We summarize these results in the following proposition.

Proposition 1. The consumers’ expected surplus is decreasing with settlement risk as mea-

sured by ε. The producers’ surplus is increasing in ε if ε is small enough, and it is decreasing

otherwise. Aggregate dealers’ surplus is decreasing in ε. However, the most efficient dealers

always benefit from an increase in settlement risk. The overall welfare as measured by the

equally weighted sum of all expected surplus is decreasing in ε.

To conclude this section, we should stress that while it is efficient to reduce risk as much

as possible, this is detrimental to the most efficient dealers. Less risk implies that less efficient

dealers can profitably enter the market, thus making the market tighter for the most efficient

dealers. In the next section, we analyze how these results affect dealers’ decision to adopt a

better market making technology.

5 Model with dealers’ ex-ante fixed investment

In this section we study whether dealers have incentives to invest ex-ante into a technology

that allows them to be more efficient in intermediating transactions between consumers and

producers. Specifically, we assume that if dealers pay an effort cost γ then they draw their

trading cost from a distribution which places larger probability on more efficient values of

the support.
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Because we interpret the trading cost k as a technology to intermediate transactions

between consumers and producers, we refer to dealers’ decision to exert effort as dealers’

investment in the low cost technology. If, on the other hand, dealers do not exert effort then

they draw their trading cost from a distribution with truncated support from the bottom.

We refer to dealers’ decision to not exert effort as dealers not investing, or adopting the high

cost technology.

Intuitively, because a dealer is more efficient the lower its trading cost k and more efficient

dealers earn larger profits from both a larger bid ask spread and from larger volume of

intermediated transactions, then dealers have an incentive to invest in the more efficient

technology as long as the cost γ is not too large. Because both consumers and producers

benefit from being matched with more efficient dealers, dealers ex-ante investment also has

benefits on the economy as a whole.12 The introduction of a CCP, or of an interdealer

market, however, by allowing more dealers to be profitable for a given level of counterparty

risk (ε) may have the unintended consequence of reducing dealers’ incentive to invest in the

low cost technology, as more efficient dealers lose from the entry of relatively less efficient

dealers who reduce their market share. When that happens, consumers and producers may

also be worse off because they are less likely to be matched with efficient dealers and to

trade.

5.1 Dealers’ incentives to invest

We modify the benchmark model of the previous sections simply by adding an ex-ante

choice for dealers. Because we want to maintain the tractable characteristics of the model

developed in the previous sections, we maintain the assumption of uniform distribution of

dealers’ trading costs. We model dealers’ choice as follows: if dealers invest ex ante by

paying γ then they draw their trading cost from a uniform distribution on [0, 1], which is

the benchmark model analyzed in the previous sections. If dealers do not pay γ then they

draw their trading cost from a uniform distribution on [km, 1], with km > 0. Therefore

the benchmark model represents the economy with the low cost technology, whereas the

12The fact that dealers do not necessarily rip those benefits turns out to not be crucial, since their incentives
to invest in the low cost distribution is preserved under some assumptions.
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characterization we derive below denotes the equilibrium in the economy with the high cost

technology.

As in the benchmark model the marginal active dealer is the one who makes zero profits.

We let kM ≤ 1 denote the type of such dealer, and

N = kM − km

denote the measure of active dealers. As in the benchmark model, D (a) , S (b) denote the

demand and supply of assets for each dealer when he posts ask price a and bid price b,

Π (k;λ, ε) denote the profits for a dealer with trading cost k and idiosyncratic risk ε ∈ (0, λ)

when consumers exit the economy with probability λ. Thus, with the measure of active

dealers possibly different from the one in the benchmark model, we have

Π (k;λ, ε) =
1

N

(1− λ− kλε)2

4 (1− λ+ λ2
ε)

kM = {k ∈ (km, 1) : Π (k;λ, ε) = 0}

and km > 0 given.

Lemma 5. kM = k = 1−λ
λε

.

Proof. It follows from the derivation of k in the benchmark model (14) where N is replaced

by kM − km rather than by k.

The surplus of dealers before they draw their type from a distribution [km, 1] is the

conditional expectation of their profits given by

Sd (ε; km) =

ˆ k

km

Π (k;λ, ε)
dk

1− km

=

{
(1− λ)2N − λε (1− λ)

(
k + km

)
N + λ2ε

3

(
k

3 − k3
m

)}
N (1− km) 4 (1− λ+ λ2

ε)
(15)

In equation (15) the relevant distribution of dealers’ transaction costs has been substi-

tuted out. When dealers do not invest in the low cost technology then they draw their k
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from a uniform distribution over the support [km, 1], with km > 0. Therefore, the prob-

ability that each dealer draws a specific k ∈ [km, 1] is simply 1
1−km . In other words, the

distribution of dealers’ transaction costs is truncated at km > 0. As a consequence, dealers’

expected surplus ex-ante (i.e. before they draw their k) is the integral of a dealer’s k profit

over that probability measure. Similarly, with insurance against the idiosyncratic risk (recall

λε = 1− λ+ ε):

Sd (0; km) =
1− λ

4N (1− km) (2− λ)

N (1− k − km)+

(
k

3 − k3
m

)
3

 (16)

Given some ε > 0 dealers have an incentive to invest in the low cost technology if and only

if the ex-ante payoff from the investment in the low cost technology for a given idiosyncratic

risk ε > 0, SLd (ε) = Sd (ε; 0), net of the effort cost, exceeds the ex-ante payoff from not

investing SHd (ε) = Sd (ε; km), with km > 0, and drawing the trade cost from the high cost

technology,

SLd (ε)− γ > SHd (ε)

Similarly, with full insurance against idiosyncratic risk, dealers lose the incentive to invest

in the low cost distribution if and only if

SLd (0)− γ < SHd (0)

where, similarly to the case where ε > 0, SLd (0) = Sd (0; 0) denotes the dealers’ ex-ante sur-

plus from investing in the low cost technology in an economy with no idiosyncratic risk, and

where SHd (0) = Sd (0; km), with km > 0, denotes the surplus from not investing and drawing

the trade cost from the high cost technology in the same economy with no idiosyncratic risk.

Then dealers invest in the technology when there is risk iff the investment cost is small

enough, but they do not invest when there is no risk iff the investment cost is too large. The

following proposition shows that these bounds characterize a well defined and non-empty set

of economies.
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Proposition 2. Given ε ∈ (0, λ], assume km ∈
(

0, k̂
)

with

k̂ =

[
2 (2− λ)λε − (3− λ) (1− λ)− λ2

ε

λ2
ε − (1− λ)2

]
(1− λ) (17)

Then SLd (ε)− SHd (ε) > γ > SLd (0)− SHd (0) if and only if

γ1(km, ε) ≡ (1−λ)(2λε−(1−λ))km−(λεkm)2

12(1−km)(1−λ+λ2ε)
> γ >

(1− λ)

12 (2− λ)
km (18)

Proof. Consider first SLd (ε)−SHd (ε) > γ. Substituting out the equilibrium condition k = 1−λ
λε

yields

γ1 (km, ε) =
(1− λ) km (2λε − (1− λ))− (λεkm)2

12 (1− km) (1− λ+ λ2
ε)

> γ (19)

Consider now γ > SLd (0)− SHd (0). Substituting out the equilibrium k = 1−λ
λε

yields

γ >
(1− λ)

12 (2− λ)
km (20)

Thus, a necessary condition for (19) and (20) to be satisfied is

(1− λ) (2λε − (1− λ)) km − (λεkm)2

12 (1− km) (1− λ+ λ2
ε)

>
(1− λ)

12 (2− λ)
km (21)

which can be rearranged as

km <

[
2 (2− λ)λε − (3− λ) (1− λ)− λ2

ε

λ2
ε − (1− λ)2

]
(1− λ)

and, more compactly, as km < k̂, with k̂ defined in (17).13

Equation (17) defines an upper bound on km such that there exists a non degenerate set of

economies indexed by γ > 0 – including the equilibrium described in proposition 2 – in which

13See Appendix B for full derivation of (19), (20) and (21).
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dealers invest in the low cost technology in equilibrium if and only if they are not insured

against idiosyncratic risk. That is to say that there exist economies such that condition (18)

is satisfied. In Appendix 8, we show that such upper bound is never a binding constraint. In

particular, it shows that in economies without insurance (i.e. ε > 0) the relevant upper bound

on km for the assumptions in proposition 2 to be satisfied is kε = 1−λ
λε

, while in economies

with insurance (i.e. ε = 0) it is k̂ defined in (17). Thus, because the distribution of active

dealers is U [km, kε] in economies without insurance, then km < kε < k̂ < 1. Furthermore,

because our goal is to compare equilibrium outcomes in two economies which differ only with

respect to insurance against idiosyncratic risk, then the assumption km < k̂ in proposition 2

is always satisfied.

5.2 Equilibrium

An equilibrium is defined as in the benchmark model, except that dealers now have an

additional decision to make. Before they draw their trading cost k they choose whether to

incur a fixed cost of investing in the low-cost technology, for a given ε. If they do, then they

pay a fixed effort cost γ and draw their k from a uniform distribution over [0, 1], if they do

not, then they draw their k from a uniform distribution over [km, 1], with km > 0.

In the previous section we characterized the set of economies where an equilibrium is such

that dealers prefer to invest in the low-cost technology if and only if they are not insured

against idiosyncratic risk. These economies are characterized by intermediate values of the

investment cost γ, as defined by condition (18). The investment cost needs to be sufficiently

small to induce dealers to make the investment when they face idiosyncratic risk, but not

too small so that dealers would still prefer to save on the effort cost when they are insured

against idiosyncratic risk.

Moreover, we showed that if km < k̂ then there always exists γ > 0 such that the

conditions in proposition 2 are satisfied. Finally, lemma 8 in the Appendix implies that

k̂ > kε. Therefore there exists a non degenerate set of economies, indexed by γ > 0, such

that the conditions in proposition 2 are satisfied. The following proposition formalizes results

about existence and uniqueness of the equilibrium in these economies.

Proposition 3. Let γ1 (km, ε) defined in (19) and assume γ1 (km, ε) > γ > (1−λ)
12(2−λ)

km for
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km > 0. Then there exists a unique equilibrium such that dealers invest in the low cost

technology if and only if ε > 0.

Proof. Because γ1 (km, ε) > γ > (1−λ)
12(2−λ)

km by assumption, then condition (18) in proposition

2 are satisfied, implying that SLd (ε)− SHd (ε) > γ > SLd (0)− SHd (0). Thus dealers invest in

the low cost technology if and only if ε > 0. Existence and uniqueness of the equilibrium

follow from the same arguments as in the benchmark model of the previous section.

5.3 Social planner’s investment choice

Consider now the decision problem of a social planner who is constrained by the market

mechanism14 but can choose whether to pay the cost γ to invest in the technology that draws

dealers’ trading cost k from the distribution U [0, 1] rather than the distribution U [km, 1].

Because dealers are the agents who can invest in the low cost technology, then the planner

is essentially choosing whether dealers should pay γ or not. In what follows we are agnostic

about the issue of designing transfers that compensate dealers for their effort when the

solution to the planner’s problem involves paying γ.

The social planner maximizes ex-ante welfare of each type of agent, equally weighted.

Thus, for a given ε ≥ 0 the social planner chooses to pay γ if and only if∑
j=d,c,p

[
SLj (ε)− SHj (ε)

]
> γ.

In the previous section we showed conditions under which dealers choose to pay γ when

ε > 0 but do not when ε = 0. Intuitively, both consumers and producers benefit from

dealers’ investment in drawing from the low cost technology, as they are matched with more

efficient dealers and less often with less efficient dealers. Because a dealer’s efficiency maps

into her bid-ask spread and because more efficient dealers charge smaller bid-ask spreads,

then both consumers and producers gain by dealers being more efficient on average. When

ε > 0 and km satisfies (17), condition (19) implies that the increase in dealers’ surplus from

investing is sufficient to compensate them for paying γ. Then it is easy to show that the

14That is the social planner is subject to dealers having to intermediate transactions between consumers
and producers, as they are permanently separated from each other.
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social planner’s solution also involves paying γ. When ε = 0, however, the social planner’s

allocation involves paying γ if and only if the resulting surplus of consumers and producers

more than compensate the decrease in dealers’ surplus net of γ, or:

SLc (0)− SHc (0) + SLp (0)− SHp (0) > γ −
(
SLd (0)− SHd (0)

)
Because the low cost technology draws dealers from U [0, 1] then SLc (0) and SLp (0) are the

same as in the benchmark model. The characterization of the surplus of consumers and

producers under the high cost technology for dealers requires a few additional steps, which

are described below.

5.3.1 Consumers’ surplus

Here we show that consumers always benefit from dealers investing in the most efficient

technology. Consider consumers’ surplus first, for a given ε ≥ 0:

Sc (a, a; ε) =
(1− λ)

(a− a)

[ˆ a

a

ˆ v

a

(v − a) dadv +

ˆ 1

a

ˆ a

a

(v − a) dadv

]

for a = a (km) and a = a
(
k
)

where the ask price function is characterized in (8)

a (k) =
1− λ+ 2λ2

ε + kλε
2 (1− λ+ λ2

ε)

As in the benchmark model, because a dealer must purchase the asset from producers be-

fore selling it to consumers, and because a dealer must pay the trading cost for each asset

purchased, then the lowest ask price is offered by the most efficient dealer and the largest

by the least efficient dealer. Efficient dealers make higher profits per transaction than less

efficient dealers, thus they can afford being paid a lower price per asset sold to a consumer

than less efficient dealers. In the appendix we show that Sc (a, a; ε) can be rewritten as

Sc (a, a; ε) =
1− λ

6

[
3 + (a+ a) (a− 3) + a2

]
(22)
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In the appendix we also show that the increase in the consumers’ surplus from dealers’

investment in the low cost technology is positive, as

SLc (ε)− SHc (ε) = Sc (a (0) , 1; ε)− Sc (a, 1; ε)

=
(1− λ) kmλε

24 (1− λ+ λ2
ε)

2 [2 (1− λ)− kmλε] > 0 (23)

where the last inequality follows from 2 (1− λ) > kmλε since ε ∈ (0, λ) and km < 1−λ
λε

= kε.

To ease notation, as in the case of dealers’ surplus, we define SHc (ε) = Sc (a = a (km) , 1; ε)

with km > 0 as the consumers’ surplus when dealers do not invest in the low cost technology

for a given pair km > 0, ε > 0. Analogously, SLc (ε) = Sc (a = a (0) , 1; ε) is the consumers’

surplus when dealers invest in the low cost technology, resulting in km = 0, for a given ε > 0.

In particular, in the case where ε = 0, the increase in consumers’ surplus is:

SLc (0)− SHc (0) =
km (1− λ) (2− km)

24 (2− λ)2 (24)

Therefore, combining (23) with (24) we conclude that consumers always benefit from the

investment in the low cost technology, for all ε ≥ 0.

5.3.2 Producers’ surplus

In this section we show that producers always benefit from the investment in the low cost

technology for all ε ≥ 0. For any ε ≥ 0, the producers’ surplus is

Sp
(
b, b; ε

)
=

1(
b− b

) [ˆ b

b

ˆ b

v

(b− v) dbdv +

ˆ b

0

ˆ b

b

(b− v) dbdv

]

for b = b
(
kε
)

and b = b (km) where the bid price function is characterized in (9)

b (k) = = λε (1− a (k)) = λε
(1− λ− kλε)
2 (1− λ+ λ2

ε)

Again, as in the benchmark model, the lowest bid price is offered by the least efficient

dealer and the highest by the most efficient dealer. Efficient dealers make higher profits
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per transaction than less efficient dealers, thus they can afford to pay a higher price per

asset purchased from a producer than less efficient dealers. In the appendix we show that

Sp
(
b, b; ε

)
can be rewritten as

Sp
(
b, b; ε

)
=

b
2

+ bb+ b2

6

Notice that b = b
(
kε
)

= 0 , since even inefficient dealers can afford to purchase the asset

owned by a producer with valuation for the assets v = 0. On the other hand b = b (km) =

λε
(1−λ−kmλε)
2(1−λ+λ2ε)

. Then, substituting out b = 0 in the producers’ surplus yields Sp
(
0, b; ε

)
= b

2

6
,

with b = b (km). Because b = 0 regardless of the distribution dealers are drawn from, then

also SLp
(
0, b; ε

)
= b

2

6
, with b = b (0). The gain in the surplus of producers from dealers’

investment into the low cost technology is then:

Sp (0, b (0) ; ε)− Sp (0, b (km) ; ε) =
b (0)2 − b (km)2

6
.

In the appendix we show that

Sp (0, b (0) ; ε)− Sp (0, b (km) ; ε) =
kmλ

3
ε [2 (1− λ)− kmλε]
24 (1− λ+ λ2

ε)
2 (25)

where, by feasibility, km < k = 1−λ
λε

. Thus

Sp (0, b (0) ; ε)− Sp (0, b (km) ; ε) >
kmλ

3
ε

[
2 (1− λ)− 1−λ

λε
λε

]
24 (1− λ+ λ2

ε)
2 > 0 (26)

To ease notation as in the previous cases of dealers’ and consumers’ surpluses, we define

SLp (ε) = Sp (0, b (0) ; ε) as the producers’ surplus when dealers invest in the low cost technol-

ogy, resulting in km = 0, for a given ε > 0. Analogously, we define SHp (ε) = Sp (0, b (km) ; ε)

as the producers’ surplus when dealers do not invest in the low cost technology, for a given
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pair km > 0, ε > 0. Equation (25) implies that when ε = 0 the gain in producers’ surplus is

SLp (0)− SHp (0) =
km (1− λ)2 (2− km)

24 (2− λ)2 (27)

Combining (26) with (27) we conclude that producers always benefit from the investment in

the low cost technology for all ε ≥ 0.

5.3.3 Social planner’s solution

We now analyze the decision problem of a social planner who can choose whether to force

dealers to invest in the low cost technology. We consider two sets of economies: one with

no idiosyncratic risk (i.e. ε = 0) and one with idiosyncratic risk (i.e. ε > 0). The aim

of this exercise is to check the efficiency of the equilibrium characterized in the previous

section, where dealers do not invest in the low cost technology when their idiosyncratic

risk is insured. We will perform the same exercise for an economy with idiosyncratic risk

(i.e. ε > 0). Intuitively, in these economies, if dealers invest in the low cost technology in

equilibrium, then it must be efficient. In fact, for investment to be part of an equilibrium, it

must be that the cost of investing in the low cost technology is lower than dealers’ net gain

from such investment (γ < SLd (ε) − SHd (ε)). Because (23) and (26) imply that the gain in

consumers’ and producers’ surpluses from dealers’ investment is always positive for all ε > 0,

a social planner would also choose to invest in the low cost technology. Thus the equilibrium

is efficient. However, in equilibrium dealers do not account for the effects of their investment

decision on the surplus of consumers and producers. So there may be a set of economies

where γ is too large for dealers to invest in the technology, while still low enough for the

social planner to prefer investing. Then, these economies will be inefficient.

Consider first an economy with no idiosyncratic risk (i.e. ε = 0). The solution to the

social planner’s problem is to invest if and only if the sum of the gains in consumers’ and

producers’ surplus exceeds the loss in dealers’ surplus net of the investment cost:

SLc (0)− SHc (0) + SLp (0)− SHp (0) > γ −
[
SLd (0)− SHd (0)

]
Using the characterizations of the gains in agents’ surpluses derived in the previous sections,
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this inequality simplifies to:

γ2 (km, 0) ≡ km (1− λ) (4− km)

24 (2− λ)
> γ (28)

γ2 (km, 0) sets an upper bound on γ, which is increasing in km: since for higher values of km

the gains from adopting the better technology are higher for all agents, then the planner is

willing to pay a higher price for it.15 For all economies such that γ is too large for dealers

to be willing to invest (i.e. γ > γ1 (km, ε) as defined in (19)) but sufficiently small for the

planner to invest (i.e. γ2 (km, 0) ≥ γ), the equilibrium is inefficient. We summarize these

results in the following proposition.

Proposition 4. Consider economies where ε = 0. As in (20), assume γ > (1−λ)
12(2−λ)

km and

km ∈ (0, k̂), with k̂ defined in (17). The equilibrium is inefficient if and only if γ2 (km, 0) ≥ γ.

Proof. Inequality (28) defines the upper bound for γ such that the social planner chooses to

invest. Since dealers prefer not to invest if γ > (1−λ)
12(2−λ)

km, then an equilibrium where dealers

are insured against idiosyncratic risk is inefficient iff

γ2 (km, 0) > γ >
(1− λ)

12 (2− λ)
km (29)

Necessary and sufficient condition (29) can be rearranged as:

km
(1− λ) (4− km)

24 (2− λ)
> γ >

(1− λ)

12 (2− λ)
km

A necessary condition for the existence of γ > 0 such that the above inequality is satisfied

is km
(1−λ)(4−km)

24(2−λ)
> (1−λ)

12(2−λ)
km, which is always satisfied since km < k < 1.

Consider now economies with idiosyncratic risk (i.e. ε > 0). The solution to the social

planner’s problem is to invest if and only if the sum of the gains in consumers’ and producers’

15This upper bound must be consistent with the upper bound set by (19) for an equilibrium to be also
such that dealers invest in the low cost technology when ε > 0, rather than having dealers never willing
to invest in equilibrium. This is simply to have a trade off between insurance and incentives to invest in
equilibrium.
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surplus exceeds the loss in dealers’ surplus net of the investment cost:

SLc (ε)− SHc (ε) + SLp (ε)− SHp (ε) + SLd (ε)− SHd (ε) > γ

In the appendix we show that this can be rearranged as:

γ2 (km, ε) ≡
(1− km) kmλε [2 (1− λ)− kmλε]

24 (1− km) (1− λ+ λ2
ε)

+

(1− λ) km4λε − 2 (1− λ)2 km − 2 (λεkm)2

24 (1− km) (1− λ+ λ2
ε)

> γ (30)

Then the following proposition characterizes necessary and sufficient conditions for invest-

ment in the low cost technology to solve the social planner’s problem.

Proposition 5. Consider economies where ε > 0. The solution to the social planner’s

problem is to invest in the low cost technology if and only if γ2 (km, ε) ≥ γ.

Proof. It follows from (30).

Now we can compare γ2 (km, ε) with the relevant threshold of γ for dealers to invest in

the low cost technology, γ1 (km, ε), defined in (19). Intuitively, the threshold of γ defining

the maximum effort cost for dealers such that the social planner invests in the low cost

technology should be larger than the threshold of γ above which dealers no longer invest

in the low cost technology. In fact, in the previous sections we showed that the gain in

both consumers’ and producers’ surplus from the investment is always strictly positive for

all ε ≥ 0. Because the gain in both consumers’ and producers’ surplus is relevant for the

decision of the social planner but not for the decision of dealers individually, then it must

be that the maximum effort cost γ such that the social planner invests in the low cost

technology, γ2 (km, ε) is larger than the maximum effort cost such that dealers invest in the

low cost technology, γ1 (km, ε). The following lemma formalizes this intuition.

Lemma 6. γ2 (km, ε) > γ1 (km, ε) for all λ ∈ (0, 1), ε ∈ (0, λ).

Proof. The left hand side of (30) defines γ2 (km, ε) and (19) defines γ1 (km, ε). So γ2 (km, ε) >
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γ1 (km, ε) if and only if:

(1− km) kmλε [2 (1− λ)− kmλε]
24 (1− km) (1− λ+ λ2

ε)
+

(1− λ) km4λε − 2 (1− λ)2 km − 2 (λεkm)2

24 (1− km) (1− λ+ λ2
ε)

>

(1− λ) (2λε − (1− λ)) km − (λεkm)2

12 (1− km) (1− λ+ λ2
ε)

which can be rearranged as

(1− km) kmλε [2 (1− λ)− kmλε]
24 (1− km) (1− λ+ λ2

ε)
> 0

and is always satisfied because [2 (1− λ)− kmλε] > 0.

Finally, we can conclude this section with our main result, which is merely a corollary to

Proposition 6.

Corollary 1. Consider economies where ε > 0. This equilibrium is inefficient if and only if

γ2 (km, ε) > γ > γ1 (km, ε).

Proof. In equilibrium dealers do not invest in the low cost technology, because γ > γ1 (km, ε).

However, because γ2 (km, ε) > γ, the solution to the social planner is to invest. Therefore

the equilibrium is inefficient. Conversely, if the equilibrium is inefficient, it must be that the

social planner chooses to invest, which is the case if and only if γ2 (km, ε) > γ, as shown in

the proposition 5.

Corollary 1 states conditions under which the economy with risk is inefficient, because

dealers prefer to keep an inefficient market making technology while the planner would rather

have them invest in a better one. Finally, let us stress that Proposition 3 implies that the

economy could be efficient for ε > 0 but inefficient for ε = 0, so that reducing risk can make

a representative investor worse off.

5.4 Average bid-ask spreads

Consider economies where the assumptions of Proposition 3 are satisfied. This guarantees

that, in equilibrium, dealers invest in the low cost technology if and only if they face some
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risk (i.e. ε > 0). With insurance (i.e. ε = 0) dealers do not invest in the low cost technology.

This has consequences for the equilibrium average bid-ask spread observed in the market

where dealers intermediate transactions between buyers and sellers.

In this section we show that, due to the general equilibrium effect of insurance on dealers’

incentives to invest in ex-ante efficient technologies, the impact of central clearing on average

bid-ask spreads is ambiguous and depends on the ex-ante characteristics of dealers.16 In

particular, comparing the economy with insurance to the economy without, we are able

to characterize a necessary and sufficient condition on dealers’ distribution of transaction

costs for the bid-ask spread to be smaller in the economy with insurance. This requires the

minimum transaction cost for dealers (km) to be sufficiently small. Intuitively, insurance

causes bid-ask spreads to shrink which, in turn, fosters competition by allowing less efficient

dealers to enter the market and be profitable. On the other hand, insurance has a perverse

indirect effect on the incentives of dealers to invest ex-ante in a more efficient technology. As

the ex-ante pool of dealers becomes worse (from [0, k] to [km, 1]), the average bid-ask spread

may increase in equilibrium, as a dealer’s quoted bid-ask spread depends on its transaction

cost, as implied by (8) and (9), with the bid-ask spread decreasing in the efficiency of a dealer

(i.e. the most efficient dealer charges the smallest bid-ask spread). As a result, the general

equilibrium effect of central clearing on bid-ask spreads is negative (i.e. central clearing is

associated with smaller bid-ask spreads) if the first effect dominates. This happens when

the pool of dealers does not become too worse when dealers stop investing in the ex-ante

efficient technology.

The following proposition formalizes this results.

Proposition 6. Maintain the assumptions in Proposition 3. Then average bid-ask spread is

smaller is the economy with insurance and the high cost technology if and only if:

λ2
ε − λε (1− λ)

(1− λ+ λ2
ε)

> km (31)

Proof. See appendix.

16See Appendix D for a characterization of the mapping between a reduction in settlement risk and the
introduction of central clearing.
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Proposition 6 is particularly relevant in light of recent empirical findings by Loon and

Zhong [2016] who study the effect of central clearing on a measure of transaction-level

spreads. They analyze individually the three phases of mandatory central clearing implemen-

tation by the CFTC, with each phase covering a different category of market participants.

Loon and Zhong [2016] find that central clearing is associated with an increase in spreads

for swap dealers (Phase 1), while it is associated with a decrease in spreads for commodity

pools (Phase 2) and all other swap market participants (Phase 3).17 Our results suggest

that differences in dealers’ ex-ante characteristics, such as the support of the distribution of

trading costs, are responsible for differences in bid-ask spreads as the provision of insurance

via central clearing affects equilibrium prices directly and indirectly in opposite directions.

6 Conclusion

Market makers are useful to solve several frictions prevalent in financial markets. In this

paper we concentrated on the effect of search frictions. The presence of frictions in general

implies that market makers can earn a rent. Not surprisingly, this rent is proportional to

a dealer’s efficiency in making market. The more efficient a dealer is the higher his rent.

However, this rent may be declining in the working efficiency of markets. For example,

introducing an insurance against inventory risk (which arises from settlement risk in our

model) can reduce the rent of the most efficient dealers because less efficient dealers can

now operate thus increasing competition. While this looks like a desirable outcome, we

show that this can be detrimental to welfare whenever the decision to be “more efficient”

is endogenous. By lowering the benefit of being better at making markets, technological

innovations in the structure of market can induce market makers to stop investing in better

market making technologies, thus hampering the effects of the innovations. The paper thus

offers a perspective on the opposition of some dealers to the recent pressure for improving

market structures, such as clearing all derivatives traded OTC on central counterparties.

Second, it argues that forcing the adoption of seemingly better market infrastructure has

consequences for the incentives of some market participants, which can adversely impact

17See Loon and Zhong [2016], Appendix A.2.1, pg. 669.
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other agents. Controlling for these incentives, possibly through transfers, is key to rip the

entire gains from the better market structure.
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A Derivations

A.1 Derivation of Sd (ε)

Sd (ε) =

ˆ k

km

Π (k;λ, ε)
dk

N

=
1

N24 (1− λ+ λ2
ε)

ˆ k

km

(1− λ− kλε)2 dk

=
1(

k − km
)2

4 (1− λ+ λ2
ε)

ˆ k

km

(1− λ− kλε)2 dk

=
1(

k − km
)2

4 (1− λ+ λ2
ε)

ˆ k

km

(
(1− λ)2 + (kλε)

2 − 2 (1− λ) kλε
)
dk

=
1(

k − km
)2

4 (1− λ+ λ2
ε)

{
(1− λ)2 (k − km)− 2 (1− λ)λε

k
2 − k2

m

2
+ λ2

ε

k
3 − k3

m

3

}

=
1(

k − km
)2

4 (1− λ+ λ2
ε)

{
(1− λ)2N − λε (1− λ)

(
k + km

)
N +

λ2
ε

3

(
k

3 − k3
m

)}
(32)

Thus

Sd (0) =
1

N24 (1− λ) (2− λ)

{
(1− λ)2N − λε (1− λ)

(
k + km

)
N +

(1− λ)2

3

(
k

3 − k3
m

)}
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=
1− λ

4N2 (2− λ)

N (1− k − km)+

(
k

3 − k3
m

)
3

 (33)

A.2 Derivation of (19)

Consider SLd (ε)− Sd (ε) > γ . Equation (15) can be rearranged as:

Sd (ε) =
(1− λ)

[
1− λ− λε

(
k + km

)]
4N (1− λ+ λ2

ε)
+

λ2
ε

(
k

3 − k3
m

)
12N2 (1− λ+ λ2

ε)

=
(1− λ)

[
1− λ− λε

(
1−λ
λε

+ km

)]
4
(

1−λ
λε
− km

)
(1− λ+ λ2

ε)
+

λ2
ε

(
(1−λ)3

λ3ε
− k3

m

)
12
(

(1−λ)
λε
− km

)2

(1− λ+ λ2
ε)

= − λεkm (1− λ)

4
(

1−λ
λε
− km

)
(1− λ+ λ2

ε)
+

(1−λ)3

λε
− λ2

εk
3
m

12
(

(1−λ)
λε
− km

)2

(1− λ+ λ2
ε)

=
1

4
(

1−λ
λε
− km

)
(1− λ+ λ2

ε)

−λεkm (1− λ) +
(1− λ)3 − λ3

εk
3
m

3λε

(
(1−λ)
λε
− km

)


=
λε

4 (1− λ− λεkm) (1− λ+ λ2
ε)

{
(1− λ)3 − λ3

εk
3
m

3 (1− λ− λεkm)
− λεkm (1− λ)

}
(34)

where k = 1−λ
λε

has been substituted out.

Thus SLd (ε)− Sd (ε) > γ if and only if

(1− λ)2

12 (1− λ+ λ2
ε)
− λε

4 (1− λ− λεkm) (1− λ+ λ2
ε)

{
(1− λ)3 − (λεkm)3

3 (1− λ− λεkm)
− λεkm (1− λ)

}
> γ

which can be rewritten as

(1− λ)2 − λε
(1−λ−λεkm)

[
(1−λ)3−(λεkm)3

(1−λ−λεkm)
− 3λεkm (1− λ)

]
12 (1− λ+ λ2

ε)
> γ

(1− λ)2 − λε
(1−λ−λεkm)2

[
(1− λ)3 − (λεkm)3 − 3λεkm (1− λ)2 + 3λεkm (1− λ)λεkm

]
12 (1− λ+ λ2

ε)
> γ
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(1− λ)2 − λε(1−λ−λεkm)3

(1−λ−λεkm)2

12 (1− λ+ λ2
ε)

> γ

and which finally yields (19):

(1− λ)2 − λε (1− λ− λεkm)

12 (1− λ+ λ2
ε)

> γ

A.3 Derivation of (20)

Consider γ > SLd (0)−Sd (0). Equation (15) can be rearranged using k = 1−λ
λε

as (34), which,

evaluated at ε = 0 yields:

Sd (0) =
1− λ

4
(

1−λ
λε
− km

)2

(2− λ)


(

1− λ
λε
− km

)(
1− 1− λ

λε
− km

)
+

(1−λ)3

λ3ε
− k3

m

3


=

1− λ
4 (1− λ− (1− λ) km)

(
1− λ+ (1− λ)2)

{
(1− λ)3 − (1− λ)3 k3

m

3 (1− λ− (1− λ) km)
− (1− λ)2 km

}

=
1− λ

4 (1− λ)2 (1− km) (2− λ)

{
(1− λ)3 − (1− λ)3 k3

m

3 (1− λ) (1− km)
− (1− λ)2 km

}

=
(1− λ)

4 (1− km) (2− λ)

{
1− k3

m

3 (1− km)
− km

}
From the benchmark model SLd (0) is obtained by evaluating dealers’ surplus defined in (15)

at ε = 0, yielding:

SLd (0) =
(1− λ)2

12
(
1− λ+ (1− λ)2) =

(1− λ)

12 (2− λ)

where k = 1−λ
λε

has been substituted out. Then γ > SLd (0)− Sd (0) is:

γ >
(1− λ)

12 (2− λ)
− (1− λ)

4 (1− km) (2− λ)

{
1− k3

m

3 (1− km)
− km

}
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=
(1− λ)

4 (2− λ)

{
1

3
− 1

(1− km)

[
1− k3

m

3 (1− km)
− km

]}
=

(1− λ)

4 (2− λ)

{
1

3
− 1

(1− km)

[
1− k3

m − 3km + 3k2
m

3 (1− km)

]}
=

(1− λ)

4 (2− λ)

{
1

3
− (1− km)3

3 (1− km)2

}
=

(1− λ)

12 (2− λ)
km

A.4 Derivation of k̂

The left hand side of (19) is larger than the right hand side of (20) only if

1

12 (1− λ+ λ2
ε)

{
(1− λ)2 − λε (1− λ− λεkm)

}
>

(1− λ)

12 (2− λ)
km

Because (1− λ+ λ2
ε) > 0, since λε = 1−λ+ ε and ε ∈ (0, λ), then this can be rearranged as

(2− λ)
{

(1− λ)2 − λε (1− λ− λεkm)
}

> (1− λ)
(
1− λ+ λ2

ε

)
km

(2− λ) (1− λ) (1− λ− λε) >
[
(1− λ)2 − λ2

ε

]
km

(2− λ) (1− λ) (1− λ− λε) > (1− λ+ λε) (1− λ− λε) km

because (1− λ− λε) < 0 then we can rearranged the last inequality as

(2− λ) (1− λ) < (1− λ+ λε) km

which yields km > (1−λ)(2−λ)
(1−λ+λε)

= k̂.

A.5 Derivation of k̂ < k

From the definitions of k̂ = (2−λ)
2+ ε

(1−λ)
and k = 1−λ

λε
we have that k̂ < k if and only if:

(2− λ)λε < 2 (1− λ) + ε
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which, using the definition of λε = (1− λ+ ε), can be rearranged as:

2 (1− λ)− λ (1− λ) < 2 (1− λ) + ε (λ− 1)

−λ (1− λ) < −ε (1− λ)

λ > ε

which is always true by the definition of ε ∈ (0, λ).

A.6 Derivation of consumers’ and producers’ surplus with km

In order to obtain (22) consider the definition of consumers’ surplus:

Sc (a, a; ε) =
(1− λ)

(a− a)

[ˆ a

a

ˆ v

a

(v − a) dadv +

ˆ 1

a

ˆ a

a

(v − a) dadv

]

for a = (km) and a = a
(
k
)

with a (k) = 1−λ+2λ2ε+kλε
2(1−λ+λ2ε)

.

Consistently with the results in the previous sections we have Sc
(
k
)

= (1−λ)(1−a(0))2

6
. This

follows form Sc (a, a; ε) evaluated at a = (0):

Sc (a, a; ε) =
(1− λ)

(a− a)

[ˆ a

a

(
v (v − a)− (v2 − a2)

2

)
dv +

ˆ 1

a

(
v (a− a)− (a2 − a2)

2

)
dv

]
=

(1− λ)

(a− a)

[ˆ a

a

(
(v2 + a2)

2
− va

)
dv +

ˆ 1

a

(
v (a− a)− (a2 − a2)

2

)
dv

]
=

(1− λ)

(a− a)

[
(a3 − a3)

6
− a(a2 − a2)

2
+
a2

2
(a− a) +

(1− a2)

2
(a− a)− (a2 − a2)

2
(1− a)

]
=

(1− λ)

(a− a)

[
(a3 − a3)

6
− (a2 − a2)

2
(a+ 1− a) +

(1− (a2 − a2))

2
(a− a)

]
=

(1− λ)

(a− a)

[
(a3 − a3)

6
− (a− a) (a+ a)

2
(1− (a− a)) +

(1− (a− a) (a+ a))

2
(a− a)

]
= (1− λ)

[
(a3 − a3)

6 (a− a)
+

1− (a− a) (a+ a)− (a+ a) (1− (a− a))

2

]
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= (1− λ)

[
(a3 − a3)

6 (a− a)
+

1− (a+ a)

2

]
= (1− λ)

[
(a2 + a2 + aa)

6
+

1− (a+ a)

2

]
=

(1− λ)

6

[
a2 + a2 + aa+ 3− 3 (a+ a)

]
=

(1− λ)

6

[
a (a+ a) + 3− 3 (a+ a) + a2

]
=

(1− λ)

6

[
3 + (a− 3) (a+ a) + a2

]
Evaluating this at a = a (0) and a = a

(
k
)

with a (k) = 1−λ+2λ2ε+kλε
2(1−λ+λ2ε)

and k = 1−λ
λε

yields:

a = 1

a =
1− λ+ 2λ2

ε

2 (1− λ+ λ2
ε)

So that

Sc
(
a (0) , a

(
k
)

; ε
)

=
(1− λ)

6

[
3− 2

(
1 +

1− λ+ 2λ2
ε

2 (1− λ+ λ2
ε)

)
+

(
1− λ+ 2λ2

ε

2 (1− λ+ λ2
ε)

)2
]

=
(1− λ)

6

[
3− 2

(
3 (1− λ) + 4λ2

ε

2 (1− λ+ λ2
ε)

)
+

(1− λ+ 2λ2
ε)

2

4 (1− λ+ λ2
ε)

2

]

=
(1− λ)

12 (1− λ+ λ2
ε)

[
6
(
1− λ+ λ2

ε

)
− 2

(
3 (1− λ) + 4λ2

ε

)
+

(1− λ+ 2λ2
ε)

2

2 (1− λ+ λ2
ε)

]

=
(1− λ)

12 (1− λ+ λ2
ε)

[
(1− λ+ 2λ2

ε)
2

2 (1− λ+ λ2
ε)
− 2λ2

ε

]

=
(1− λ)

12 (1− λ+ λ2
ε)

[
(1− λ)2 + 4 (1− λ)λ2

ε + 4λ4
ε − 4λ2

ε (1− λ+ λ2
ε)

2 (1− λ+ λ2
ε)

]

=
(1− λ)3

24 (1− λ+ λ2
ε)

2

This is the consumers’ surplus from the low cost distribution, that is the same as in the
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benchmark model.

For the calculation of consumers’ surplus with the high cost distribution we have instead:

Sc
(
a (km) , a

(
k
)

; ε
)

=
1− λ

6

[
3 +

(
a
(
k
)

+ a (km)
) (
a
(
k
)
− 3
)

+ a (km)2]
using a

(
k
)

= 1 and letting a (km) = a as above, we then have

Sc (a, 1; ε) =
1− λ

6

[
3− 2 (1 + a) + a2

]
=

1− λ
6

[
1− 2a+ a2

]
=

(1− λ)

6
(1− a)2

Using then a (k) = 1−λ+2λ2ε+kλε
2(1−λ+λ2ε)

we have

Sc (a, 1; ε) =
(1− λ)

24 (1− λ+ λ2
ε)

2

[
2
(
1− λ+ λ2

ε

)
−
(
1− λ+ 2λ2

ε + kλε
)]2

=
(1− λ)

24 (1− λ+ λ2
ε)

2 (1− λ− kλε)2

from which it is easy to see that Sc (a, 1; ε) < Sc (a (0) , 1; ε) = SLc (ε) for all km > 0. In fact

we have that the difference in consumers’ surplus from investing in the low cost distribution

is SLc (ε)− SHc (ε) = Sc (a (0) , 1; ε)− Sc (a, 1; ε):

SLc (ε)− SHc (ε) =
(1− λ)3

24 (1− λ+ λ2
ε)

2 −
(1− λ)

24 (1− λ+ λ2
ε)

2 (1− λ− kmλε)2

=
(1− λ)

24 (1− λ+ λ2
ε)

2

[
(1− λ)2 − (1− λ− kmλε)2]

=
(1− λ) kmλε

24 (1− λ+ λ2
ε)

2 [2 (1− λ)− kmλε]

which is always strictly positive because 2 (1− λ) > kmλε since ε ∈ (0, λ) and km < 1−λ
λε

.

Similarly, for producers, we have that the bid price (9) is

b (k) = λε (1− a (k)) = λε

(
1− 1− λ+ 2λ2

ε + kλε
2 (1− λ+ λ2

ε)

)
42



= λε
(1− λ)− kλε
2 (1− λ+ λ2

ε)

So that b = b (0) = λε(1−λ)
2(1−λ+λ2ε)

and b = b
(
k
)

= 0. Then, producers’ surplus is

Sp
(
b, b; ε

)
=

1(
b− b

) [ˆ b

b

ˆ b

v

(b− v) dbdv +

ˆ b

0

ˆ b

b

(b− v) dbdv

]

=
1(

b− b
) [ˆ b

b

b
2 − v2

2
− v

(
b− v

)
dv +

ˆ b

0

b
2 − b2

2
− v

(
b− b

)
dv

]

=
1(

b− b
)
b2

2

(
b− b

)
+

(
b

3 − b3
)

6
− b

(
b

2 − b2
)

2
+

(
b

2 − b2
)

2
b− b2

2

(
b− b

)
=

1(
b− b

)

(
b

2 − b2
)

2

(
b− b

)
+

(
b

3 − b3
)

6
−
(
b− b

) (b2 − b2
)

2


=

1(
b− b

)
(
b

3 − b3
)

6
=
b

2
+ bb+ b2

6
=
b

2

6

Then, the gain in producers’ surplus from dealers’ investment into the low cost technology

is

SLp (0, b (0) ; ε)− Sp (0, b (km) ; ε) =
b (0)2 − b (km)2

6

=

(
λε

(1−λ)
2(1−λ+λ2ε)

)2

−
(
λε

(1−λ−kmλε)
2(1−λ+λ2ε)

)2

6

=
λ2
ε

24 (1− λ+ λ2
ε)

2

[
(1− λ)2 − (1− λ− kmλε)2]

=
λ2
ε

24 (1− λ+ λ2
ε)

2

[
2 (1− λ) kmλε − (kmλε)

2]
=

λ3
εkm

24 (1− λ+ λ2
ε)

2 [2 (1− λ)− kmλε] > 0
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where the last inequality follows from km < k = 1−λ
λε

. In fact

SLp (0, b (0) ; ε)− Sp (0, b (km) ; ε) > SLp (0, b (0) ; ε)− Sp
(
0, b
(
k
)

; ε
)

=
λ3
εkm [2 (1− λ)− (1− λ)]

24 (1− λ+ λ2
ε)

2 > 0.

B Model with ex-ante fixed investment

B.1 Derivation of Sd (ε)

Sd (ε) =

ˆ k

km

Π (k;λ, ε)
dk

(1− km)

=
1

N (1− km) 4 (1− λ+ λ2
ε)

ˆ k

km

(1− λ− kλε)2 dk

=
1(

k − km
)

(1− km) 4 (1− λ+ λ2
ε)

ˆ k

km

(1− λ− kλε)2 dk

=
1(

k − km
)

(1− km) 4 (1− λ+ λ2
ε)

ˆ k

km

(
(1− λ)2 + (kλε)

2 − 2 (1− λ) kλε
)
dk

=
1(

k − km
)

(1− km) 4 (1− λ+ λ2
ε)

{
(1− λ)2 (k − km)− 2 (1− λ)λε

k
2 − k2

m

2
+ λ2

ε

k
3 − k3

m

3

}

=
1(

k − km
)

(1− km) 4 (1− λ+ λ2
ε)

{
(1− λ)2N − λε (1− λ)

(
k + km

)
N +

λ2
ε

3

(
k

3 − k3
m

)}
(35)

Thus

Sd (0) =
1

N (1− km) 4 (1− λ) (2− λ)

{
(1− λ)2N − λε (1− λ)

(
k + km

)
N +

(1− λ)2

3

(
k

3 − k3
m

)}

=
1− λ

4N (1− km) (2− λ)

N (1− k − km)+

(
k

3 − k3
m

)
3

 (36)
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B.2 Derivation of (19)

Consider SLd (ε)− Sd (ε) > γ . Equation (15) can be rearranged as:

Sd (ε) =
1

(1− km) 4 (1− λ+ λ2
ε)

(1− λ)2 − λε (1− λ)
(
k + km

)
+
λ2
ε

3

(
k

3 − k3
m

)
(
k − km

)


=
1

(1− km) 4 (1− λ+ λ2
ε)

{
(1− λ)2 − λε (1− λ)

(
k + km

)
+
λ2
ε

3

(
k

2
+ kkm + k2

m

)}
Substituting out k = 1−λ

λε
yields

Sd (ε) =

{
(1− λ)2 − λε (1− λ)

(
(1−λ)
λε

+ km

)
+ λ2ε

3

(
(1−λ)2

λ2ε
+ (1−λ)

λε
km + k2

m

)}
(1− km) 4 (1− λ+ λ2

ε)

=

{
(1− λ)2 − (1− λ)2 − λε (1− λ) km + (1−λ)2

3
+ λε

3
(1− λ) km + λ2ε

3
k2
m

}
(1− km) 4 (1− λ+ λ2

ε)

=
1

(1− km) 4 (1− λ+ λ2
ε)

{
−2λε

3
(1− λ) km +

(1− λ)2

3
+
λ2
ε

3
k2
m

}
=

1

12 (1− km) (1− λ+ λ2
ε)

{
−2λε (1− λ) km + (1− λ)2 + λ2

εk
2
m

}
=

1

12 (1− km) (1− λ+ λ2
ε)

{
λεkm (λεkm − 2 (1− λ)) + (1− λ)2} (37)

Thus SLd (ε)− SHd (ε) > γ if and only if

(1− λ)2

12 (1− λ+ λ2
ε)
−
{
λεkm (λεkm − 2 (1− λ)) + (1− λ)2}

12 (1− km) (1− λ+ λ2
ε)

> γ

which can be rewritten as

(1− km) (1− λ)2 − λεkm (λεkm − 2 (1− λ))− (1− λ)2

12 (1− km) (1− λ+ λ2
ε)

> γ

km
− (1− λ)2 − λε (λεkm − 2 (1− λ))

12 (1− km) (1− λ+ λ2
ε)

> γ
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km
2λε (1− λ)− (1− λ)2 − λ2

εkm
12 (1− km) (1− λ+ λ2

ε)
> γ

which is (19).

Just to ease interpretation with respect to the lower extreme on the support of the high

cost technology for dealers, km, we can express (19) as a sufficient condition on km as a

function of γ. To do so, rearrange (19) as

−λ2
εk

2
m +

[
12
(
1− λ+ λ2

ε

)
γ + (1− λ) (2λε − (1− λ))

]
km − 12

(
1− λ+ λ2

ε

)
γ > 0

which is violated for km = 0, and for km = 1 it becomes

2 > λε (1− λ) = (1− λ)2 + ε (1− λ)

the largest value that the right hand side can take is

(1− λ)2 + λ (1− λ) = (1− λ)

thus the inequality is always satisfied at km = 1 . For km = k it becomes

[
12
(
1− λ+ λ2

ε

)
γ − (1− λ)2 + (1− λ) 2λε

] (1− λ)

λε
− 12

(
1− λ+ λ2

ε

)
γ − (1− λ)2 > 0[

12
(
1− λ+ λ2

ε

)
γ − (1− λ)2]((1− λ)

λε
− 1

)
> 0

which, because (1−λ)
λε

< 1, is satisfied if and only if

γ <
(1− λ)2

12 (1− λ+ λ2
ε)

Then SLd (ε)− Sd (ε) > γ for all km ∈ (k1, k2) with

k1 (γ) =
− [12 (1− λ+ λ2

ε) γ + (1− λ) (2λε − (1− λ))]

−2λ2
ε

+
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−

√
[12 (1− λ+ λ2

ε) γ + (1− λ) (2λε − (1− λ))]2 − 4λ2
ε12 (1− λ+ λ2

ε) γ

−2λ2
ε

k2 (γ) =
− [12 (1− λ+ λ2

ε) γ + (1− λ) (2λε − (1− λ))]

−2λ2
ε

+

+

√
[12 (1− λ+ λ2

ε) γ + (1− λ) (2λε − (1− λ))]2 − 4λ2
ε12 (1− λ+ λ2

ε) γ

−2λ2
ε

B.3 Derivation of (20)

Consider γ > SLd (0)−Sd (0). Equation (15) can be rearranged using k = 1−λ
λε

as (37), which,

evaluated at ε = 0 yields:

Sd (0) =
1

12 (1− km)
(
1− λ+ (1− λ)2) {(1− λ) km ((1− λ) km − 2 (1− λ)) + (1− λ)2}

=
(1− λ) (1− 2km + k2

m)

12 (1− km) (2− λ)
=

(1− λ) (1− km)

12 (2− λ)

From the benchmark model SLd (0) is obtained by evaluating dealers’ surplus defined in (37)

at km = 0 and ε = 0, yielding:

SLd (0) =
(1− λ)

12 (2− λ)

Then γ > SLd (0)− Sd (0) is:

γ >
(1− λ)

12 (2− λ)
− (1− λ) (1− km)

12 (2− λ)

=
(1− λ)

12 (2− λ)
km

which is (20).
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B.4 Derivation of k̂

The left hand side of (19) is larger than the right hand side of (20) only if

(1− λ) (2λε − (1− λ)) km − (λεkm)2

12 (1− km) (1− λ+ λ2
ε)

>
(1− λ)

12 (2− λ)
km (38)

Because (1− λ+ λ2
ε) > 0, since λε = 1−λ+ ε and ε ∈ (0, λ), then this can be rearranged as

[
(1− λ) (2λε − (1− λ)) km − λ2

εk
2
m

]
>

(1− λ)

(2− λ)

(
1− λ+ λ2

ε

) (
km − k2

m

)
that can be rewritten as[

(1− λ) (2λε − (1− λ))− (1− λ)2

(2− λ)
− λ2

ε

(1− λ)

(2− λ)

]
km +

(
(1− λ)2

(2− λ)
+ λ2

ε

(
(1− λ)

(2− λ)
− 1

))
k2
m > 0

[
2λε −

(3− λ) (1− λ) + λ2
ε

(2− λ)

]
(1− λ) km +

(
(1− λ)2 − λ2

ε

(2− λ)

)
k2
m > 0(39)

Lemma 7. The first term in square brackets in (39),
[
2λε − (3−λ)(1−λ)+λ2ε

(2−λ)

]
, is always posi-

tive.

Proof. Rearrange
[
2λε − (3−λ)(1−λ)+λ2ε

(2−λ)

]
as

−λ2
ε + 2 (2− λ)λε − (3− λ) (1− λ) > 0

which is satisfied for all λε ∈ (x1, x2) where

x2 =
− (2− λ)−

√
(2− λ)2 − (3− λ) (1− λ)

−1

= (2− λ) +
√

(4− 4λ+ λ2)− 3− 4λ+ λ2

= (2− λ) + 1 = (3− λ) > 1

x1 = (2− λ)− 1 = (1− λ)
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Because λε ∈ ((1− λ) , 1), and because x2 > 1, then it is always the case that λε ∈ (x1, x2).

We use this result in the following argument to characterize the values of km such that

(39) is satisfied.

Let f (k) =
[
2λε − (3−λ)(1−λ)+λ2ε

(2−λ)

]
(1− λ) k +

(
(1−λ)2−λ2ε

(2−λ)

)
k2, that is the left hand side of

(39) as a function of k. Then f (k) = 0 for k = k1 = 0 and for k = k2 defined by[
2 (2− λ)λε − (3− λ) (1− λ)− λ2

ε

(2− λ)

]
(1− λ) =

λ2
ε − (1− λ)2

(2− λ)
k2

which can be rewritten as[
2 (2− λ)λε − (3− λ) (1− λ)− λ2

ε

λ2
ε − (1− λ)2

]
(1− λ) = k2 (40)

Notice that k2 > 0 because λε > (1− λ) and because, by lemma 7, the numerator in the

definition of k2 is strictly positive.

Thus, (38) is satisfied for any km ∈ (k1, k2), with k1 = 0 and k2 defined in (40). Because

by definition km > 0 then the only relevant constraint on km is km < k2. Let k̂ = k2 defined

in (40) and we have the result.

B.5 Properties of k̂

Lemma 8. Let k̂ be defined in (17) and kε = 1−λ
λε

, k0 = 1. Then km ∈ (kε, k0) for all

λ ∈ (0, 1) and ε ∈ (0, λ).

Proof. Consider economies with ε > 0. In this case k = kε = 1−λ
λε

. From (17) and the

definition of k, it follows that k̂ > k if and only if[
2 (2− λ)λε − (3− λ) (1− λ)− λ2

ε

λ2
ε − (1− λ)2

]
(1− λ) >

(1− λ)

λε

which, because λ2
ε − (1− λ)2 > 0, can be rearranged as

λε
[
2 (2− λ)λε − (3− λ) (1− λ)− λ2

ε

]
> λ2

ε − (1− λ)2
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and further as

[
− (λε − (1− λ))2] (λε − 1) > 0

Because by definition of λε we have λε ∈ ((1− λ) , 1) then the above inequality is always

satisfied. Consider now economies with ε = 0. In this case k = k0 = 1. Thus k̂ > 1 if and

only if

[
2 (2− λ)λε − (3− λ) (1− λ)− λ2

ε

]
(1− λ) > λ2

ε − (1− λ)2

which, substituting out λ2
ε1− λ+ ε, simplifies to

(1− λ)2 + 2ε (1− λ) > (1− λ)2 + 2ε (1− λ) + ε2

The above inequality is never satisfied.

B.6 Derivation of consumers’ and producers’ surplus with km

B.6.1 Consumers: low cost technology

In order to obtain (22) consider the definition of consumers’ surplus:

Sc (a, a; ε) =
(1− λ)

(a− a)

[ˆ a

a

ˆ v

a

(v − a) dadv +

ˆ 1

a

ˆ a

a

(v − a) dadv

]

for a = a (km) and a = a
(
k
)

with a (k) = 1−λ+2λ2ε+kλε
2(1−λ+λ2ε)

.

Consistently with the results in the previous sections we have Sc
(
k
)

= (1−λ)(1−a(0))2

6
. This

follows form Sc (a, a; ε) evaluated at a = (0):

Sc (a, a; ε) =
(1− λ)

(a− a)

[ˆ a

a

(
v (v − a)− (v2 − a2)

2

)
dv +

ˆ 1

a

(
v (a− a)− (a2 − a2)

2

)
dv

]
=

(1− λ)

(a− a)

[ˆ a

a

(
(v2 + a2)

2
− va

)
dv +

ˆ 1

a

(
v (a− a)− (a2 − a2)

2

)
dv

]
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=
(1− λ)

(a− a)

[
(a3 − a3)

6
− a(a2 − a2)

2
+
a2

2
(a− a) +

(1− a2)

2
(a− a)− (a2 − a2)

2
(1− a)

]
=

(1− λ)

(a− a)

[
(a3 − a3)

6
− (a2 − a2)

2
(a+ 1− a) +

(1− (a2 − a2))

2
(a− a)

]
=

(1− λ)

(a− a)

[
(a3 − a3)

6
− (a− a) (a+ a)

2
(1− (a− a)) +

(1− (a− a) (a+ a))

2
(a− a)

]
= (1− λ)

[
(a3 − a3)

6 (a− a)
+

1− (a− a) (a+ a)− (a+ a) (1− (a− a))

2

]
= (1− λ)

[
(a3 − a3)

6 (a− a)
+

1− (a+ a)

2

]
= (1− λ)

[
(a2 + a2 + aa)

6
+

1− (a+ a)

2

]
=

(1− λ)

6

[
a2 + a2 + aa+ 3− 3 (a+ a)

]
=

(1− λ)

6

[
a (a+ a) + 3− 3 (a+ a) + a2

]
=

(1− λ)

6

[
3 + (a− 3) (a+ a) + a2

]
Evaluating this at a = a (0) and a = a

(
k
)

with a (k) = 1−λ+2λ2ε+kλε
2(1−λ+λ2ε)

and k = 1−λ
λε

yields:

a = 1

a =
1− λ+ 2λ2

ε

2 (1− λ+ λ2
ε)

So that

Sc
(
a (0) , a

(
k
)

; ε
)

=
(1− λ)

6

[
3− 2

(
1 +

1− λ+ 2λ2
ε

2 (1− λ+ λ2
ε)

)
+

(
1− λ+ 2λ2

ε

2 (1− λ+ λ2
ε)

)2
]

=
(1− λ)

6

[
3− 2

(
3 (1− λ) + 4λ2

ε

2 (1− λ+ λ2
ε)

)
+

(1− λ+ 2λ2
ε)

2

4 (1− λ+ λ2
ε)

2

]

=
(1− λ)

12 (1− λ+ λ2
ε)

[
6
(
1− λ+ λ2

ε

)
− 2

(
3 (1− λ) + 4λ2

ε

)
+

(1− λ+ 2λ2
ε)

2

2 (1− λ+ λ2
ε)

]
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=
(1− λ)

12 (1− λ+ λ2
ε)

[
(1− λ+ 2λ2

ε)
2

2 (1− λ+ λ2
ε)
− 2λ2

ε

]

=
(1− λ)

12 (1− λ+ λ2
ε)

[
(1− λ)2 + 4 (1− λ)λ2

ε + 4λ4
ε − 4λ2

ε (1− λ+ λ2
ε)

2 (1− λ+ λ2
ε)

]

=
(1− λ)3

24 (1− λ+ λ2
ε)

2

This is the consumers’ surplus from the low cost distribution, that is the same as in the

benchmark model.

B.6.2 Consumers: high cost technology

For the calculation of consumers’ surplus with the high cost technology we have instead:

Sc
(
a (km) , a

(
k
)

; ε
)

=
1− λ

6

[
3 +

(
a
(
k
)

+ a (km)
) (
a
(
k
)
− 3
)

+ a (km)2]
using a

(
k
)

= 1 and letting a (km) = a as above, we then have

Sc (a, 1; ε) =
1− λ

6

[
3− 2 (1 + a) + a2

]
=

1− λ
6

[
1− 2a+ a2

]
=

(1− λ)

6
(1− a)2

Using then a (k) = 1−λ+2λ2ε+kλε
2(1−λ+λ2ε)

we have

Sc (a, 1; ε) =
(1− λ)

24 (1− λ+ λ2
ε)

2

[
2
(
1− λ+ λ2

ε

)
−
(
1− λ+ 2λ2

ε + kλε
)]2

=
(1− λ)

24 (1− λ+ λ2
ε)

2 (1− λ− kλε)2

from which it is easy to see that Sc (a, 1; ε) < Sc (a (0) , 1; ε) for all km > 0, where, we

denote the consumers’ surplus for a given ε in the economy with the low and high cost

technologies, respectively, as SLc (ε) = Sc (a (0) , 1; ε) and SHc (ε) = Sc (a, 1; ε). In fact, the

difference in consumers’ surplus from investing in the low cost technology is SLc (ε)−SHc (ε) =
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Sc (a (0) , 1; ε)− Sc (a, 1; ε):

SLc (ε)− SHc (ε) =
(1− λ)3

24 (1− λ+ λ2
ε)

2 −
(1− λ)

24 (1− λ+ λ2
ε)

2 (1− λ− kmλε)2

=
(1− λ)

24 (1− λ+ λ2
ε)

2

[
(1− λ)2 − (1− λ− kmλε)2]

=
(1− λ) kmλε

24 (1− λ+ λ2
ε)

2 [2 (1− λ)− kmλε]

which is always strictly positive because 2 (1− λ) > kmλε since ε ∈ (0, λ) and km < 1−λ
λε

.

B.6.3 Producers

Similarly, for producers, we have that the bid price is

b (k) = λε (1− a (k)) = λε

(
1− 1− λ+ 2λ2

ε + kλε
2 (1− λ+ λ2

ε)

)
= λε

(1− λ)− kλε
2 (1− λ+ λ2

ε)

So that b = b (0) = λε(1−λ)
2(1−λ+λ2ε)

and b = b
(
k
)

= 0. Then, producers’ surplus is

Sp
(
b, b; ε

)
=

1(
b− b

) [ˆ b

b

ˆ b

v

(b− v) dbdv +

ˆ b

0

ˆ b

b

(b− v) dbdv

]

=
1(

b− b
) [ˆ b

b

b
2 − v2

2
− v

(
b− v

)
dv +

ˆ b

0

b
2 − b2

2
− v

(
b− b

)
dv

]

=
1(

b− b
)
b2

2

(
b− b

)
+

(
b

3 − b3
)

6
− b

(
b

2 − b2
)

2
+

(
b

2 − b2
)

2
b− b2

2

(
b− b

)
=

1(
b− b

)

(
b

2 − b2
)

2

(
b− b

)
+

(
b

3 − b3
)

6
−
(
b− b

) (b2 − b2
)

2


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=
1(

b− b
)
(
b

3 − b3
)

6
=
b

2
+ bb+ b2

6
=
b

2

6

Let SLp (ε) = Sp (0, b (0) ; ε) and SHp (ε) = Sp (0, b (km) ; ε) denote the producers’ surplus, for

a given ε, in the economy with the low and high cost technologies respectively. Then, the

gain in producers’ surplus from dealers’ investment into the low cost technology is simply:

SLp (0, b (0) ; ε)− Sp (0, b (km) ; ε) =
b (0)2 − b (km)2

6

=

(
λε

(1−λ)
2(1−λ+λ2ε)

)2

−
(
λε

(1−λ−kmλε)
2(1−λ+λ2ε)

)2

6

=
λ2
ε

24 (1− λ+ λ2
ε)

2

[
(1− λ)2 − (1− λ− kmλε)2]

=
λ2
ε

24 (1− λ+ λ2
ε)

2

[
2 (1− λ) kmλε − (kmλε)

2]
=

λ3
εkm

24 (1− λ+ λ2
ε)

2 [2 (1− λ)− kmλε] > 0

where the last inequality follows from km < k = 1−λ
λε

. In fact

SLp (0, b (0) ; ε)− Sp (0, b (km) ; ε) > SLp (0, b (0) ; ε)− Sp
(
0, b
(
k
)

; ε
)

=
λ3
εkm [2 (1− λ)− (1− λ)]

24 (1− λ+ λ2
ε)

2 > 0.

B.7 Derivation of social planner’s investment choice in (30)

In an economy with idiosyncratic risk (i.e. ε > 0) the social planner invests if and only if:

SLc (ε)− SHc (ε) + SLp (ε)− SHp (ε) + SLd (ε)− SHd (ε) > γ

That is to say

(1− λ) kmλε

24 (1− λ+ λ2
ε)

2 [2 (1− λ)− kmλε] +
λ3
εkm

24 (1− λ+ λ2
ε)

2 [2 (1− λ)− kmλε] +
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(1− λ) (2λε − (1− λ)) km − (λεkm)2

12 (1− km) (1− λ+ λ2
ε)

> γ

which can be rearranged as

kmλε [2 (1− λ)− kmλε] [(1− λ) + λ2
ε]

24 (1− λ+ λ2
ε)

2 +

(1− λ) km2λε − (1− λ)2 km − (λεkm)2

12 (1− km) (1− λ+ λ2
ε)

> γ

and further as

kmλε [2 (1− λ)− kmλε]
24 (1− λ+ λ2

ε)
+

(1− λ) km2λε − (1− λ)2 km − (λεkm)2

12 (1− km) (1− λ+ λ2
ε)

> γ

and

(1− km) kmλε [2 (1− λ)− kmλε]
24 (1− km) (1− λ+ λ2

ε)
+

(1− λ) km4λε − 2 (1− λ)2 km − 2 (λεkm)2

24 (1− km) (1− λ+ λ2
ε)

> γ

C Average bid-ask spreads

Proof of Proposition 6.

Proof. The average bid ask spread is:

sL (0, ε)− sH (km, 0) =

ˆ aL

aL
a

da

aL − aL
−
ˆ aH

aH
a

da

aH − aH
−[ˆ b

L

bL
b

db

b
L − bL

−
ˆ b

H

bH
b

db

b
H − bH

]

where aL = aH = 1 and bL = bH = 0 because these are the prices that the least efficient
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dealer charges, which is dealer k = k in the economy without insurance and the low cost

technology, and it is dealer k = 1 in the economy with insurance and the high cost technology.

Then the average bid ask spread is

sL (0, ε)− sH (km, 0) =

ˆ 1

aL
a

da

1− aL
−
ˆ 1

aH
a |ε=0

da

1− aH
−[ˆ b

L

0

b
db

b
L
−
ˆ b

H

0

b |ε=0
db

b
H

]

where a = a (km), with a (k) = 1−λ+2λ2ε+kλε
2(1−λ+λ2ε)

, implies that

aH = a (km, ε = 0) =
(1− λ) + 2 (1− λ)2 + km (1− λ)

2 (1− λ) (2− λ)

=
1 + 2 (1− λ) + km

2 (2− λ)

=
(3− 2λ) + km

2 (2− λ)

where we also used the fact that ε = 0 because there is insurance in the economy with the

high cost technology.

Similarly aL = a (0, ε > 0), which, with with a (k) = 1−λ+2λ2ε
2(1−λ+λ2ε)

and ε > 0 because there is

no insurance in the economy with the low cost technology, implies that

aL =
1− λ+ 2λ2

ε

2 (1− λ+ λ2
ε)

=
1

2
+

λ2
ε

2 (1− λ+ λ2
ε)

Analogously the bid price can be rearranged as: b (k) = λε (1− a (k)) = λε

(
1− 1−λ+2λ2ε+kλε

2(1−λ+λ2ε)

)
which, for the economy with the high cost technology and insurance, implies b

H
= (1− λ) (1− a (km, ε = 0))

that yields

b
H

= (1− λ)
(
1− aH

)
=

(1− λ) (1− km)

2 (2− λ)
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and

b
L

= λε (1− a (0, ε > 0)) = λε
(
1− aL

)
= λε

(
1− 1− λ+ 2λ2

ε

2 (1− λ+ λ2
ε)

)
= λε

(1− λ)

2 (1− λ+ λ2
ε)

Therefore, we have that the difference in average bid ask spreads is

sL (0, ε)− sH (km, 0) =

ˆ 1

aL
a

da

1− aL
−
ˆ 1

aH
a |ε=0

da

1− aH
−

[ˆ b
L

0

b
db

b
L
−
ˆ b

H

0

b |ε=0
db

b
H

]

=
1−

(
aL
)2

2 (1− aL)
−

(
1−

(
aH
)2

2 (1− aH)

)
−

(
b
L − bH

2

)

=

(
1 + aL

)
2

−
(
1 + aH

)
2

−

(
b
L − bH

2

)

=
aL − aH − bL + b

H

2
=
aL − bL −

(
aH − bH

)
2

which is the average between the bid ask spreads charged by the most efficient dealer in the

economies with low and high cost technology. Substituting out from the equilibrium values

for aL, b
L
, aH , b

H
explicitly, the difference in average bid ask spreads is

sL (0, ε)− sH (km, 0) =
1

2

{
1− λ+ 2λ2

ε

2 (1− λ+ λ2
ε)
−
(
λε

(1− λ)

2 (1− λ+ λ2
ε)

)}
−1

2

(
1 + 2 (1− λ) + km

2 (2− λ)
− (1− λ) (1− km)

2 (2− λ)

)
=

1

2

{
(1− λ) + 2λ2

ε − λε (1− λ)

2 (1− λ+ λ2
ε)

− (1 + km)

2

}
Then, the average bid ask spread is lower in the economy without insurance but with the
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high cost technology if and only if:

(1− λ) + 2λ2
ε − λε (1− λ)− (1− λ+ λ2

ε)

(1− λ+ λ2
ε)

< km

λ2
ε − λε (1− λ)

(1− λ+ λ2
ε)

< km

D Central clearing implementation

We consider the simplest implementation of central clearing in the model of Section 4, which

we modify simply by introducing a continuum [0, 1] of dealers for each type k. Notice that this

modification leaves all the derivations and results in the previous sections unchanged. If all

dealers clear their transactions centrally via a Central Counterparty (CCP), then they must

post collateral in the form of (margins, default fund contributions, and) default assessment.
18 Because the settlement shock ε is i.i.d. across dealers in each period, then it is i.i.d. also

across the [0, 1] continuum of dealers of a given type k.

Suppose that all dealers are insured against the settlement shock ε, as we later verify.

Therefore, they post bid and ask prices under the expectation that they face no such shock

and that only a fraction λ of buyers will fail to settle their buy orders. This is equivalent to a

version of the model with no settlement risk, described in Section 3, with the only difference

being λ 6= 0. Let a(k), b(k) denote the ask and bid prices posted by dealers of type k, and

let D(a(k)), S(b(k)) denote the demand and supply for the asset which dealers of type k face

from buyers and sellers respectively. Consistently with the analysis carried out in Section

3, each dealer chooses a(k), b(k) to maximize expected profits Π(k) subject to the feasibility

constraint (1− λ)D(a(k)) = S(b(k)). As in Section 3, if a dealer posted ask and bid prices

a, b then its demand and supply, at the stage where buy and sell orders are placed, satisfy

18For a description of the risk management practices of CCPs see BIS, and, for examples of default waterfall
in CCPs currently operating in OTC markets, see ISDA [2013], EUR [2017], ICE [2017], DTC [2017] and
LCH [2017]. For a rigorous modeling of the economic functions of a CCP, among which insurance against
counterparty risk, see Acharya and Bisin [2014], Koeppl and Monnet [2013], Koeppl et al. [2012], Biais et al.
[2016] and Biais et al. [2012].
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D(a) = (1−a)
N

and S(b) = b
N

. Then, a dealer with transaction cost k chooses a, b to solve:

Π(k) = maxa,b {a(1− λ)D(a)− (b+ k)S(b)} (41)

s.t. (1− λ)D(a) ≤ S(b) (42)

As in Section 3, the feasibility constraint yields b = (1 − λ)(1 − a), which substituted back

into the objective function yields:

Π(k) = max
a
{a(2− λ)− k − (1− λ)} (1− λ)D(a) (43)

Substituting out for D(a) and taking first order conditions yields:

a(k) =
3 + k − 2λ

2(2− λ)
(44)

b(k) =
(1− λ)(1− k)

2(2− λ)
(45)

After the settlement shock is realized, a measure 1
2

of dealers of type k receives shock

s = −1 and its effective demand for the asset is (1 − λ − ε)D(a(k)). Let S1(k) denote the

set of such dealers. Analogously, a measure 1
2

of dealers of type k receives shock s = 1 and

its effective demand for the asset is: (1 − λ + ε)D(a(k)). Let S2(k) denote the set of such

dealers. Finally, let dk(s) denote the default assessment of dealer k towards the CCP when

its idiosyncratic state is s, where dk : {−1,+1} → R. 19 Under the rules of a CCP default

waterfall, clearing members must contribute financial resources, so-called assessments, when

necessary to avoid the CCP’s default on any given position. Thus, a dealer i ∈ S1(k) faces

effective demand (1 − λ − ε)D(a(k)), but purchased S(b(k)) = (1 − λ)D(a(k)) assets from

sellers. As a consequence, such a dealer holds an excess of εD(a(k)) assets purchased from

sellers and unsold to buyers. On the contrary, a dealer j ∈ S2(k) faces effective demand

(1 − λ + ε)D(a(k)), but purchased only S(b(k)) = (1− λ)D(a(k)) assets from sellers. As a

19Notice that, because we have no collateral in the model, the default fund contribution by each CCP
member takes place ex-post. In this respect the contribution is more similar to a default assessment, which
usually occur after the margins and default fund contributions of defaulting and non-defaulting members
have already been utilized.
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consequence, such a dealer does not hold a sufficient inventory of assets to serve all of its

buyers, and is short εD(a(k)) assets. The CCP assessment mechanism can then insure both

dealers ex-ante, by charging dealers i ∈ S1(k) an assessment dk(−1) = εD(a(k)) and dealers

j ∈ S2(k) an assessment dk(+1) = −εD(a(k)). In other words, the former dealer makes a

transfer of εD(a(k)) assets to the latter. This process is described in Figure 4.

Dealer	
  k	
  

Buyers:	
  D(a)	
   Sellers:	
  S(b)	
  

Dealer	
  k	
  

Buyers:	
  D(a)	
   Sellers:	
  S(b)	
  

Nova4on	
   Nova4on	
  

€ 

S(b)
−εD(a)

€ 

S(b)
+εD(a)

€ 

εD(a)

Buyers	
   Sellers:	
  S(b)	
   Buyers:	
   Sellers:	
  S(b)	
  

€ 

(1− λ −ε )D(a)

€ 

(1− λ +ε )D(a)

CCP	
  

Figure 4: Implementation of central clearing in the model

In order to verify that (44) and (45) are indeed dealers’ optimal response to the default

assessment rule dk, notice that dealers’ k feasibility constraint in state s = −1 and s = 1

are, respecticely:

(1− λ− ε)D(a) = S(b)− dk(−1) = S(b)− εD(a)

(1− λ+ ε)D(a) = S(b)− dk(+1) = S(b) + εD(a)

Notice that the feasibility constraints (6) boil down to (42) independent of the value of the
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settlement shock s. Moreover, the objective function (5) is simply:

Π(k;λ, ε) = Es{a(1− λ+ sε)D(a)− (b+ k)S(b)} (46)

Since Ess = 0 then the objective function of dealers k is simply (41). Therefore, the solution

to dealers’ k maximization problem yields (44) and (45).

E Risk aversion

We now consider the case where traders are risk averse in the following sense: The surplus

from trade of a buyer is x = v − a(k) whenever he accepts the bid price a(k). Similarly the

surplus from trade of a seller is x = b(k)− v. We assume that traders value the surplus from

trade according to a CRRA utility function,

u(x) =
(x+ c)1−σ − c1−σ

(1− σ)
,

where σ > 1 and c > 0 is small. We need c > 0 so that traders prefer to trade than to exit

the market without searching.20 This specification implies that their decision to accept a bid

or an ask price is the same as in the previous section. Therefore, the optimal bid and ask

prices set by dealers (8)-(9) are unchanged. As a consequence, the least efficient dealer in

operation is still k̄ defined by (14). Also, the effect of settlement risk on the bid-ask prices

is unchanged: Increased settlement risk makes entry less profitable so that the least efficient

dealers exit the market. As a consequence, the distribution of ask-prices becomes more

concentrated. While they face higher ask price, buyers face a lower dispersion of ask price.

Since they are risk averse, they may prefer that dealer face a little more risk. Obviously,

buyers face a trade-off as on one hand they face a higher average ask-price, but on the other

hand, the distribution of ask price is more compressed.

It is tedious to compute the overall buyers’ welfare with c > 0 and we do so in the

20This is the case if σ > 1 as x1−σ/(1 − σ) < 0 for all x ≥ 0, and this affects the decision of traders to
accept or reject an offer.
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Appendix where we show that with c > 0,

Uc =
(1− λ)

(1− σ)

{
(1− a(0) + c)3−σ − c3−σ

(1− a(0)) (2− σ) (3− σ)
− c1−σ

2
(1− a(0))− c2−σ

2− σ

}

Hence, we obtain

∂Uc
∂ε

=
(1− λ)

(1− σ)

{
− (1− a(0) + c)2−σ

(1− a(0))(2− σ)
+

(1− a(0) + c)3−σ − c3−σ

(1− a(0))2(2− σ)(3− σ)
+
c1−σ

2

}
∂a(0)

∂ε

Computation with different values for σ reveals that the payoff of consumers is always de-

creasing with an increasing in settlement risk. Therefore, concavity of the buyer’s payoff

function is not enough to generate the desirability of settlement risk. We turn next to

different distribution of the dealers’ cost.

E.1 Distribution function for dealers transaction cost

In this section of the paper we assume that dealers are distributed according to a beta

probability distribution f (k;α, β) = αkα−1(1−k)β−1

B(α,β)
with support [0, 1]. Let β = 1 so that

B (α, β) = 1. Then the cdf associated with it is

F (k) =

ˆ k

0

αsα−1ds = kα

Now, because only k = 1−λ
λε

< 1 are active, then21

Fk (k) =
kα

k
α

and the probability distribution function is then simply fk (k) = αk
α−1

k
α .

Notice that ask prices are an affine transformation of the dealer’s cost of the form a(k) =

21Or, similarly, from F (k) = kα we have that the truncated distribution Fk (k) = Pr
(
s ≤ k | s ≤ k

)
=

Pr(s≤k∩s≤k)
Pr(s≤k)

= F (k)

F(k)
.
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a(0) + ξk where a(k̄) = 1 and ξ = λε
2(1−λ+λ2ε)

, then the cdf of a (k) is derived from Fk (k):

Fa (â) =

(
â−a(0)

ξ

)α
k
α

fa (a) =
1

ξ
fk̄

(
a− a(0)

ξ

)
Similarly for the bid price

b (k) = b (0)− λεξk

And

Fb

(
b̂
)

= 1−

(
b(0)−b̂
λεξ

)α
k
α

fb (b) =
1

λεξ
fk̄

(
b (0)− b
λεξ

)

E.2 Consumers’ surplus

Then consumers’ surplus (with linear preferences), using integration by parts, is:

Sc =

ˆ 1

a(0)

[ˆ v

a(0)

(v − a)fa(a)da

]
dv

=
(1− a (0))α+2

ξαk
α

(α + 1) (α + 2)

Using a(k) = 1− 1−λ−kλε
2(1−λ+λ2ε)

, ξ = λε
2(1−λ+λ2ε)

and k = 1−λ
λε

we then have:

Sc =

(
1−λ

2(1−λ+λ2ε)

)2

(α + 1) (α + 2)

which is decreasing in ε. Also notice that the smaller α is the faster Sc decreases in ε.
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E.3 Producers’ surplus

Similarly for producers’ surplus, using integration by parts:

Sp =

ˆ b(0)

0

[ˆ b(0)

v

(b− v)fb(b)db

]
dv

=
b (0)α+2

(α + 1) (α + 2)
(
λεξk

)α
Using b(k) = λε

1−λ−kλε
2(1−λ+λ2ε)

we then have:

Sp = λ2
εSc

which is increasing22 in ε if and only if ε ∈ [0, ε] (where ε = − (1− λ) +
√

1− λ as defined

above). Also notice that the smaller α is the faster Sp increases in ε.

E.4 Dealers’ surplus

For dealers let us rewrite the expected demand and supply faced in their decision problem:

D (a) =

ˆ rc

a

h̃ (r) dr

22Where

∂Sp
∂ε

=
(1− λ)

2

4 (α+ 1) (α+ 2)

∂
(

λε

(1−λ+λ2
ε)

)2

∂ε

=
(1− λ)

2

4 (α+ 1) (α+ 2)

2λε
(1− λ+ λ2

ε)

(
1− λ+ λ2

ε − 2λ2
ε

(1− λ+ λ2
ε)

2

)

=
λε (1− λ)

2

2 (α+ 1) (α+ 2)

(
1− λ− λ2

ε

)
(1− λ+ λ2

ε)
3

which is always strictly positive if and only if ε is such that 1− λ− λ2
ε > 0.
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where h̃ (r) is the conditional probability density of consumers’ reservation prices among the

fraction 1− vc who chose to participate in the dealers’ market. Therefore, h̃ (r) is derived as

follows: the reservation price of a consumer with valuation v, denoted rc (v), is simply that

specific consumer’s valuation:

rc (v) = v

Now, v ∼ U [vc, 1] therefore

Pr (rc (v) ≤ r) = Pr (v ≤ r)

=
r − vc
1− vc

and the probability density function associated with it is simply h (r) = 1
1−vc

. Then the

per dealer k density of consumers is (1− vc) fk (k)h (r). So that the mass of consumers who

place an order when the ask price they face is a (i.e. demand faced by a dealer who posts ask

price a if his type is k -because here the mass of consumers that contact him is a function

of k) is simply

D (a (k)) =

ˆ rc

a(k)

(1− vc) fk (k)h (r) dr

= (1− a (k)) fk (k)

And similarly for the supply:

S (b (k)) = b (k) fk (k)

For dealers, we also need to take into account the constraint of meeting demand period by

period, so that substituting the expected demand and supply per dealer k into the objective

function of a dealer we have, as before, that expected profits of dealer k with the optimal

choice of a, are
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π (k;λ, ε) = fk (k) {a (k) (1− λ)− [λε (1− a (k)) + k]λε} (1− a (k))

= α
kα−1

k
α

(1− λ− kλε)2

4 (1− λ+ λ2
ε)

Then aggregate dealers’ surplus is given by the total discounted profits of all dealers partic-

ipating in the dealer market are:

Sd(ε) =

ˆ k̄

0

Π(k;λ, ε)dk

=
1

4 (α + 1) (1− λ+ λ2
ε)

{(
1− λ− λεk̄

) [
(α + 1) (1− λ) + [2λε − (α + 1)λε] k̄

]
+

2λ2
εk̄

2

(α + 2)

}
And using k = 1−λ

λε
we then have:

Sd =
(1− λ)2

2 (α + 1) (α + 2) (1− λ+ λ2
ε)

Also notice that the smaller α is the faster Sd decreases in ε.

Overall we have the following result:

Claim 1. Sd decreases in ε. The smaller α is the larger is the decrease in Sd. Sp increases in

ε, for ε ∈ [0, ε], and decreases in ε, for ε ∈ [ε, λ]. The smaller α is the larger is the increase

(decrease) in Sd. Sc is decreasing in ε. The smaller α is the faster Sc decreases in ε.

E.5 Total welfare

Summing up consumers’, producers’ and dealers’ welfare we have:

W = Sc + Sp + Sd

=
(1− λ)2 (3 + 3λ2

ε − 2λ)

4 (α + 1) (α + 2) (1− λ+ λ2
ε)

2
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And:

∂W

∂ε
=

(1− λ)2 λε
2 (α + 1) (α + 2)

(λ− 3 (1 + λ2
ε))

(1− λ+ λ2
ε)

3

which is always negative since

λ− 3
(
1 + λ2

ε

)
< 0

Claim 2. Total welfare is always decreasing in ε regardless of the value of α.

E.6 Different parameters for beta distribution

In this section of the paper we assume that dealers are distributed according to a beta

probability distribution f (k;α, β) = βkα−1(1−k)β−1

B(α,β)
with support [0, 1]. Let α = 1 so that

f (k;α, β) = β (1− k)β−1 and the cdf associated with it is

F (k) = 1− (1− k)β

Now, because only k = 1−λ
λε

< 1 are active, then23

Fk (k) =
1− (1− k)β

1−
(
1− k

)β
and the probability distribution function is then simply fk (k) = β (1−k)β−1

1−(1−k)
β .

Notice that ask prices are an affine transformation of the dealer’s cost of the form a(k) =

a(0) + ξk where a(k̄) = 1 and ξ = λε
2(1−λ+λ2ε)

, then the cdf of a (k) is derived from Fk (k):

Fa (â) =
1−

(
1− â−a(0)

ξ

)β
1−

(
1− k

)β
23Or, similarly, from F (k) = kα we have that the truncated distribution Fk (k) = Pr

(
s ≤ k | s ≤ k

)
=

Pr(s≤k∩s≤k)
Pr(s≤k)

= F (k)

F(k)
.
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fa (a) =
1

ξ
fk̄

(
a− a(0)

ξ

)
Similarly for the bid price

b (k) = b (0)− λεξk

And

Fb

(
b̂
)

=

(
1− b(0)−b̂

λεξ

)β
−
(
1− k

)β
1−

(
1− k

)β
fb (b) =

1

λεξ
fk̄

(
b (0)− b
λεξ

)
E.6.1 Consumers’ surplus

Then consumers’ surplus (with linear preferences), using integration by parts, is:

Sc =

ˆ 1

a(0)

[ˆ v

a(0)

(v − a)fa(a)da

]
dv

=
1− a(0)[

1−
(
1− k

)β] (1− a(0)

2
− ξ

β + 1

)
−

ξ
β+1

ξ
β+2[

1−
(
1− k

)β]
[(

1− 1− a(0)

ξ

)β+2

− 1

]

And using a(k) = 1 − 1−λ−kλε
2(1−λ+λ2ε)

, ξ = λε
2(1−λ+λ2ε)

and k = 1−λ
λε

we then have that for

λ = 0.3, β = 0.2 consumers’ surplus as a function of ε is increasing for small values of ε, as

Figure 5 shows.

Let ε∗ denote the threshold such that ∀ε ≤ ε∗ we have that ∂Sc
∂ε

> 0 and ∀ε > ε∗ we have

that ∂Sc
∂ε

< 0. Then as β > 0 decreases we have that ε∗ increases. Also, for the same value

of β, ε∗ is decreasing in λ. Figure 6 shows Sc as a function of ε for λ = 0.1, β = 0.2.
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Figure 5: Consumers’ surplus as a function
of ε: λ = 0.3, β = 0.2
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Figure 6: Consumers’ surplus as a function
of ε: λ = 0.1, β = 0.2

And substituting out a(k) = 1− 1−λ−kλε
2(1−λ+λ2ε)

, ξ = λε
2(1−λ+λ2ε)

and k = 1−λ
λε

we then have that:

Sc =
(β + 2) (1− λ) (β + 1) (1− λ)− 2λ2

ε

(
1− 1−λ

λε

)β+2

+ 2λε (λε − (β + 2) (1− λ))

8 (β + 1) (1− λ+ λ2
ε)

2

[
1−

(
1− 1−λ

λε

)β]
(β + 2)

The whole positive effect of ε comes from

[
1−

(
1− 1−λ

λε

)β]
at the denominator which is

coming form k through the distribution of ask prices. Figure 7 shows the pdf of the ask

price, fa (a), for β = 0.2, λ = 0.3, ε = 0.02. Notice that when ε increases, the mass on every

surviving dealer increases. Figure 8 shows the pdf of the ask price, fa (a), for β = 0.2, λ =

0.3, ε = 0.05. Figure 9 shows the pdf of the ask price, fa (a), for β = 0.2, λ = 0.3, ε = 0.2.
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Figure 7: fa (a): β =
0.2, λ = 0.3, ε = 0.02
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Figure 8: fa (a): β =
0.2, λ = 0.3, ε = 0.05
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Figure 9: fa (a): β =
0.2, λ = 0.3, ε = 0.2
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E.6.2 Producers’ surplus

Similarly for producers’ surplus, using integration by parts:

Sp =

ˆ b(0)

0

[ˆ b(0)

v

(b− v)fb(b)db

]
dv

=
1[

1−
(
1− k

)β]
{
b(0)2

2
− λεξ

β + 1
b(0) +

λεξ

β + 1

λεξ

β + 2

[
1−

(
1− b (0)

λεξ

)β+2
]}

Using b(k) = λε
1−λ−kλε

2(1−λ+λ2ε)
, ξ = λε

2(1−λ+λ2ε)
and k = 1−λ

λε
,we then have:

Sp =
λ2
ε[

1−
(

1− 1−λ
λε

)β] (β + 1) (1− λ)2 + 2λ2ε
(β+2)

(
1−

(
1− 1−λ

λε

)β+2
)
− 2λε (1− λ)

4 (β + 1) (1− λ+ λ2
ε)

2

Interestingly, also the producers’ surplus is decreasing in ε for large values of β: for example

for β = 2, λ = 0.3 it is decreasing, but for β = 1, λ = 0.3 it is hump shaped with a threshold

ε∗such that ∀ε ≤ ε∗we have that ∂Sp
∂ε

> 0 and ∀ε > ε∗we have that ∂Sp
∂ε

< 0. As in the

consumers’ surplus case, as β > 0 decreases we have that ε∗ increases. Figure 10 shows

producers’ surplus, Sp, as a function of ε when β = 0.7, λ = 0.1. Notice that for sufficiently

small values of λ producers’ surplus is strictly increasing in ε, while for sufficiently large values

of λ, as long as β is small enough, then producers’ surplus is hump shaped as a function of

ε. Figure 11 shows producers’ surplus Sp as a function of ε when β = 0.7, λ = 0.9. In order

to gain insight on what is going on with the distribution of bid prices, Figure 12 shows the

pdf of the bid price, fb (b), for β = 0.2, λ = 0.3, ε = 0.02.

Therefore there is a lot of mass on inefficient dealers so that when they exit all that mass

gets thrown onto more efficient dealers: recall that more efficient dealers are the ones who

charge the highest (lowest) bid (ask) price because they are the only ones who can afford

to do so. Therefore the above picture means that few dealers (the efficient ones) charge the

highest bid prices, whereas many dealers (the inefficient ones) charge the lowest bid prices.

Notice that when ε increases, the mass on bid prices offered by very efficient dealers
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0.2, λ = 0.3, ε = 0.02

increases. Figure 13 (red) shows the pdf of fb (b) for β = 0.2, λ = 0.3, ε = 0.02 and Figure

14 (green) for β = 0.2, λ = 0.3, ε = 0.05.

Notice that b = 0 is unchanged because it is the bid price quoted by the marginal

operating dealer (which is making zero profits); however b increases with ε because it is the

bid price quoted by the most efficient dealer whose demand and supply change as ε increases

because there are less dealers who are active (since k decreases). Therefore the most efficient

dealer is more likely to get a random call by a buyer and a seller (fk (k = 0) increases) and

he is efficient enough that it is profitable for him to increase the bid price and serve a larger

share of the market.

E.6.3 Dealers’ surplus

If we take into account that expected demand and supply are D (a) = (1− a (k)) fk (k) and

S (b (k)) = b (k) fk (k)then expected profits are π (k;λ, ε) = β (1−k)β−1

1−(1−k)
β

(1−λ−kλε)2
4(1−λ+λ2ε)

. Either way

we know that the calculation of aggregate dealers’ surplus is the same regardless of which
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Figure 13: fb (b): β = 0.2, λ = 0.3, ε = 0.02

Out[100]=

0.05 0.10 0.15 0.20

4

6

8

10

12

Figure 14: fb (b): β = 0.2, λ = 0.3, ε = 0.05
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interpretation we give (matching or probability). Therefore aggregate dealers’ surplus is:

Sd(ε) =

ˆ k̄

0

Π(k;λ, ε)dk

=
(1− λ)(

1−
(
1− k

)β)
4 (1− λ+ λ2

ε)

{
(1− λ)− 2λε

β + 1
+

(
2λεk̄ − (1− λ) +

2λε
β + 1

(
1− k̄

)) (
1− k̄

)β}
+

+
λ2
ε(

1−
(
1− k

)β)
4 (1− λ+ λ2

ε)

 2

(β + 1) (β + 2)
−
(
1− k̄

)β k̄2 +
2
((

1− k̄
)2

+ (β + 2)
(
1− k̄

)
k̄
)

(β + 1) (β + 2)


Dealers’ surplus for a given λ is inverse U-shaped in ε: in general the smaller λ the larger

the value of β∗, where β∗ =
{
β > 0 : ∂Sd

∂ε
> 0,∀β < β∗

}
. For a given λ, as we increase β the

peak of the inverse U shaped function is reached at a value ε̂ < 0; analogously for β small

the peak of the inverse U shaped function is reached at a value ε̂ > λ, therefore in these two

polar cases we have that dealers’ surplus is either decreasing, increasing or hump-shaped in

any feasible value of ε ∈ [0, λ], as we can see from the figures below.
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In[100]:= kbar = H1 - lL � H1 - l + eL;
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Plot@g1k g2k + g3k g4k, 8e, 0, l<D
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Figure 15: Sd(ε): β =
2, λ = 0.3
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g1k = H1 - lL � HH1 - H1 - kbarL^b L 4 H1 - l + lame^2LL; e
g2k = H1 - lL - H2 lame� Hb + 1LL + H2 lame kbar - H1 - lL + 2 lame H1 - kbarL � Hb + 1LL H1 - kbarL^b;
g3k = lame^2� HH1 - H1 - kbarL^b L 4 H1 - l + lame^2LL;
g4k = 2 � HHb + 1L Hb + 2LL -

H1 - kbarL^b Hkbar^2 + 2 HH1 - kbarL^2 + Hb + 2L kbar H1 - kbarLL � HHb + 1L Hb + 2LLL;
Plot@g1k g2k + g3k g4k, 8e, 0, l<D
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Figure 16: Sd(ε): β =
0.2, λ = 0.1
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Plot@g1k g2k + g3k g4k, 8e, 0, l<D

Out[131]= e

Out[135]=

0.05 0.10 0.15 0.20 0.25

0.0155

0.0160

0.0165

0.0170

0.0175

0.0180

0.0185

16   Sd_correct.nb

Figure 17: Sd (ε): β =
0.2, λ = 0.3
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