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Abstract

This paper constructs individual-specific density forecasts for a panel of firms or households

using a dynamic linear model with common and heterogeneous coefficients and cross-sectional

heteroskedasticity. The panel considered in this paper features a large cross-sectional dimension

N but short time series T . Due to the short T , traditional methods have difficulty in disen-

tangling the heterogeneous parameters from the shocks, which contaminates the estimates of

the heterogeneous parameters. To tackle this problem, I assume that there is an underlying

distribution of heterogeneous parameters, model this distribution nonparametrically allowing for

correlation between heterogeneous parameters and initial conditions as well as individual-specific

regressors, and then estimate this distribution by pooling the information from the whole cross-

section together. Theoretically, I prove that both the estimated common parameters and the

estimated distribution of the heterogeneous parameters achieve posterior consistency, and that

the density forecasts asymptotically converge to the oracle forecast. Methodologically, I de-

velop a simulation-based posterior sampling algorithm specifically addressing the nonparametric

density estimation of unobserved heterogeneous parameters. Monte Carlo simulations and an

application to young firm dynamics demonstrate improvements in density forecasts relative to

alternative approaches.
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1 Introduction

Panel data, such as a collection of firms or households observed repeatedly for a number of periods,

are widely used in empirical studies and can be useful for forecasting individuals’ future outcomes,

which is interesting and important in many applications. For example, PSID can be used to an-

alyze income dynamics (Hirano, 2002; Gu and Koenker, 2017b), and bank balance sheet data can

help conduct bank stress tests (Liu et al., 2017). This paper constructs individual-specific density

forecasts using a dynamic linear panel data model with common and heterogeneous parameters and

cross-sectional heteroskedasticity.

In this paper, I consider young firm dynamics as the empirical application. For illustrative

purposes, let us consider a simple dynamic panel data model as the baseline setup:

yit︸︷︷︸
performance

= βyi,t−1 + λi︸︷︷︸
skill

+ uit︸︷︷︸
shock

, uit ∼ N
(
0, σ2

)
, (1.1)

where i = 1, · · · , N , and t = 1, · · · , T + 1. yit is the observed firm performance such as the log

of employment,1 λi is the unobserved skill of an individual firm, and uit is an i.i.d. shock. Skill

is independent of the shock, and the shock is independent across firms and times. β and σ2 are

common across firms, where β represents the persistence of the dynamic pattern and σ2 gives the

size of the shocks. Based on the observed panel from period 0 to period T , I am interested in

forecasting the future performance of any specific firm in period T + 1, yi,T+1.2

The panel considered in this paper features a large cross-sectional dimension N but short time

series T .3 This framework is appealing to the young firm dynamics example because the number of

observations for each young firm is restricted by its age.4 Good estimates of the unobserved skill

λis facilitate good forecasts of yi,T+1s. Because of the short T , traditional methods have difficulty

in disentangling the unobserved skill λi from the shock uit, which contaminates the estimates of λi.

The naive estimators that only utilize the firm-specific observations are inconsistent, even if N goes

to infinity.

1Employment is one of the standard measures in the firm dynamics literature (Akcigit and Kerr, 2016; Zarutskie
and Yang, 2015).

2In the main body of the paper, I consider a more general specification that accommodates many important
features of real-world empirical studies, such as strictly exogenous and predetermined covariates, correlated random
coefficients, and cross-sectional heteroskedasticity.

3Which T can be considered small depends on the dimension of individual heterogeneity (which can be multi-
dimensional in the general model), the cross-sectional dimension, and the size of the shocks. There can still be a
significant gain in density forecasts even when T exceeds 100 in simulations with fairly standard data generating
processes. Roughly speaking, the proposed predictor would provide a sizable improvement as long as the time series
for individual i is not informative enough to fully reveal its individual effects.

4Although I describe the econometric intuition using the young firm dynamics application as an example, the
method can be applied to many other economic and financial analyses that feature panel data with relatively large
N and small T , such as microeconomic panel surveys (e.g. PSID, NLSY, and Consumer Expenditure Survey (CE)),
macroeconomic sectoral and regional panel data (e.g. Industrial Production (IP) and State and Metro Area Employ-
ment, Hours, and Earnings (SAE)), and financial institution performance (e.g. commercial bank and holding company
data).
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To tackle this problem, I assume that λi is drawn from an underlying skill distribution f and

estimate this distribution by pooling the information from the whole cross-section. In terms of

modeling f , the parametric Gaussian density misses many features in real-world data, such as

asymmetricity, heavy tails, and multiple peaks. For example, as good ideas are scarce, the skill

distribution of young firms may be highly skewed. In this sense, the challenge now is how we can

model f more carefully and flexibly. Here I estimate f via a nonparametric Bayesian approach

where the prior is constructed from a mixture model and allows for correlation between λi and the

initial condition yi0 (i.e. a correlated random effects model).

Conditional on f , we can, intuitively speaking, treat it as a prior distribution and combine it

with firm-specific data to obtain the firm-specific posterior. In a special case where the common

parameters are set to β = 0 and σ2 = 1, the firm-specific posterior is characterized by Bayes’

theorem,

p (λi |f, yi,0:T ) =
p (yi,1:T |λi) f (λi |yi0 )´
p (yi,1:T |λi) f (λi |yi0 ) dλi

. (1.2)

This firm-specific posterior helps provide a better inference about the unobserved skill λi of each

individual firm and a better forecast of the firm-specific future performance, thanks to the underlying

distribution f that integrates the information from the whole panel in an efficient and flexible way.5

It is natural to construct density forecasts based on the firm-specific posterior. In general,

forecasting can be done in point, interval, or density fashion, with density forecasts giving the

richest insight regarding future outcomes. By definition, a density forecast provides a predictive

distribution of firm i’s future performance and summarizes all sources of uncertainties; hence, it is

preferable in the context of young firm dynamics and other applications with large uncertainties and

nonstandard distributions. In particular, for the dynamic panel data model as specified in equation

(1.1), the density forecasts reflect uncertainties arising from the future shock ui,T+1, individual

heterogeneity λi, and estimation uncertainty of common parameters
(
β, σ2

)
and skill distribution

f . Moreover, once the density forecasts are obtained, one can easily recover the point and interval

forecasts.

The contributions of this paper are threefold. First, I establish the theoretical properties of the

proposed Bayesian predictor when the cross-sectional dimension N tends to infinity. To begin, I

provide conditions for identifying both the parametric component and the nonparametric compo-

nent.6 Then, I prove that both the estimated common parameters and the estimated distribution of

the individual heterogeneity achieve posterior consistency in strong topology. Compared with pre-

vious literature on posterior consistency, there are several challenges in the panel data framework:

(1) a deconvolution problem disentangling unobserved individual effects and independent shocks,

5Note that this is only an intuitive explanation why the skill distribution f is crucial. In the actual implementation,
the estimation of the correlated random effect distribution f , the estimation of common parameters

(
β, σ2

)
, and the

inference of firm-specific skill λi are all done simultaneously.
6In the baseline model, the parametric component is

(
β, σ2

)
, and the nonparametric component is f .
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(2) an unknown common shock size in cross-sectional homoskedastic cases, (3) unknown individual-

specific shock sizes in cross-sectional heteroskedastic cases, (4) strictly exogenous and predetermined

variables (including lagged dependent variables) as covariates, and (5) correlated random effects7

addressed by flexible conditional density estimation.

Building on the posterior consistency of the estimates, we can bound the discrepancy between

the proposed density predictor and the oracle to be arbitrarily small, where the oracle predictor

is an (infeasible) benchmark that is defined as the individual-specific posterior predictive distribu-

tion under the assumption that the common parameters and the distribution of the heterogeneous

parameters are known.

Second, I develop a posterior sampling algorithm specifically addressing nonparametric density

estimation of the unobserved individual effects. For a random effects model, which is a special

case where the individual effects are independent of the conditioning variables,8 the f part becomes

a relatively simple unconditional density estimation problem. I adopt a Dirichlet Process Mixture

(DPM) prior for f and construct a posterior sampler building on the blocked Gibbs sampler proposed

by Ishwaran and James (2001, 2002). For a correlated random effects model, I further adapt the

proposed algorithm to the much harder conditional density estimation problem using a probit stick-

breaking process prior suggested by Pati et al. (2013).

Third, Monte Carlo simulations demonstrate improvements in density forecasts relative to al-

ternative predictors with various parametric priors on f , evaluated by the log predictive score. An

application to young firm dynamics also shows that the proposed predictor provides more accurate

density predictions. The better forecasting performance is largely due to three key features (in order

of importance): the nonparametric Bayesian prior, cross-sectional heteroskedasticity, and correlated

random coefficients. The estimated model also helps shed light on the latent heterogeneity structure

of firm-specific coefficients and cross-sectional heteroskedasticity, as well as whether and how these

unobserved heterogeneous features depend on the initial condition of the firms.

Moreover, the method proposed in this paper is applicable beyond forecasting. Here estimating

heterogeneous parameters is important because we want to generate good forecasts, but in other

cases, the heterogeneous parameters themselves could be the objects of interest. For example, the

technique developed here can be adapted to infer individual-specific treatment effects.

Related Literature First, this paper contributes to the literature on individual forecasts in a

panel data setup, and is closely related to Liu et al. (2017) and Gu and Koenker (2017a,b). Liu

et al. (2017) focus on point forecasts. They utilize the idea of Tweedie’s formula to steer away

from the complicated deconvolution problem in estimating λi and establish the ratio optimality

of point forecasts. Unfortunately, the Tweedie shortcut is not applicable to the inference of the

7In heteroskedastic cases, the terminologies “random effects” and “correlated random effects” also apply to
individual-specific σ2

i , which is slightly different from the traditional definitions focusing on λi.
8The conditioning set can include initial values of predetermined covariates and entire sequences of strictly exoge-

nous covariates.
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underlying λi distribution and therefore not suitable for density forecasts. In addition, this paper

addresses cross-sectional heteroskedasticity where σ2
i is an unobserved random quantity, while Liu

et al. (2017) incorporate cross-sectional and time-varying heteroskedasticity via a deterministic

function of observed conditioning variables.9

Gu and Koenker (2017b) address the density estimation problem, but with a different method.

This paper infers the underlying λi distribution via a full Bayesian approach (i.e. imposing a prior

on the λi distribution and updating the prior belief by the observed data), whereas they employ an

empirical Bayes procedure (i.e. picking the λi distribution by maximizing the marginal likelihood

of data). In principle, the full Bayesian approach is preferable for density forecasts, as it captures

all kinds of uncertainties, including estimation uncertainty of the underlying λi distribution, which

has been omitted by the empirical Bayes procedure. In addition, this paper features correlated ran-

dom effects allowing for cross-sectional heterogeneity (including cross-sectional heteroskedasticity)

interacting with the initial conditions, whereas the Gu and Koenker (2017b) approach focuses on

random effects models without this interaction.

In their recent paper, Gu and Koenker (2017a) also compare their method with an alternative

nonparametric Bayesian estimator featuring a Dirichlet Process (DP) prior under a set of fixed

scale parameters. There are two major differences between their DP setup and the DPM prior used

in this paper. First, the DPM prior provides continuous individual effect distributions, which is

the case in many empirical setups. Second, unlike their set of fixed scale parameters, this paper

incorporates a hyperprior for the scale parameter and updates it via the observed data, hence let

the data choose the complexity of the mixture approximation, which can essentially be viewed as

an “automatic” model selection.10

There have also been empirical works on the DPM model with panel data,11 such as Hirano

(2002), Burda and Harding (2013), Rossi (2014), and Jensen et al. (2015), but they focus on empirical

studies rather than theoretical analysis. Hirano (2002) and Jensen et al. (2015) use linear panel

models with setups being slightly different from this paper. Hirano (2002) considers flexibility in the

uit distribution instead of the λi distribution. Jensen et al. (2015) assume random effects instead of

correlated random effects. Burda and Harding (2013) and Rossi (2014) implement nonlinear panel

data models via either a probit model or a logit model, respectively.

Among others, Li and Vuong (1998), Delaigle et al. (2008), Evdokimov (2010), and Hu (2017)

have studied the similar deconvolution problem and estimated the λi distribution in a frequentist

9Note that, in this paper, the identification restriction to ensure unobserved random σ2
i can only permit time-

varying distribution for vit while keeping zero mean and unit variance (see Remark 3.2 (iv)). However, considering
that this paper focuses on the scenarios with a short time dimension, lack of time-varying heteroskedasticity would
not be a major concern.

10Section 5 shows the simulation results comparing the DP prior vs the DPM prior, where both incorporate a
hyperprior for the scale parameter.

11For earlier works regarding full Bayesian analyses with parametric priors on λi, see Lancaster (2002) (orthogonal
reparametrization and a flat prior), Chamberlain and Hirano (1999), Chib and Carlin (1999), Sims (2000) (Gaussian
prior), and Chib (2008) (student-t and finite mixture priors).

4



way. Also see Compiani and Kitamura (2016) for a review of frequentist applications of mixture

models. However, the frequentist approach misses estimation uncertainty, which matters in density

forecasts, as mentioned previously.

Second, in terms of asymptotic properties, this paper relates to the literature on posterior con-

sistency of nonparametric Bayesian methods in density estimation problems. See the handbooks,

Ghosh and Ramamoorthi (2003), Hjort et al. (2010), and Ghosal and van der Vaart (2017), for a

more thorough review and discussion on posterior consistency in Bayesian nonparametric problems.

In particular, Canale and De Blasi (2017) relax the tail conditions to accommodate multivariate

location-scale mixtures for unconditional density estimation. To handle conditional density estima-

tion, the mixing probabilities can be characterized by a multinomial choice model (Norets, 2010;

Norets and Pelenis, 2012), a kernel stick-breaking process (Norets and Pelenis, 2014; Pelenis, 2014;

Norets and Pati, 2017), or a probit stick-breaking process (Pati et al., 2013). I adopt the Pati

et al. (2013) approach to offer a more coherent nonparametric framework that is more flexible in

the conditional measure. This paper builds on these previous works and establishes the strong con-

sistency for a multivariate conditional density estimator featuring infinite location-scale mixtures

with a probit stick-breaking process. Then, this paper further takes into account the deconvolution

and dynamic panel data structure, as well as obtains the convergence of the proposed predictor to

the oracle predictor in strong topology.

Third, the algorithms constructed in this paper build on the literature on the posterior sampling

schemes for DPM models. The vast Markov chain Monte Carlo (MCMC) algorithms can be divided

into two general categories. One is the Pólya urn style samplers that marginalize over the unknown

distribution (Escobar and West, 1995; Neal, 2000). The other resorts to the stick-breaking process

(Sethuraman, 1994) and directly incorporates the unknown distribution into the sampling procedure.

This paper utilizes a sampler from the second category, the blocked Gibbs sampler by Ishwaran and

James (2001, 2002), as a building block for the proposed algorithm. It incorporates truncation

approximation and augments the data with auxiliary component probabilities, which breaks down

the complex posterior structure and thus enhances mixing properties as well as reduces computation

time.12 I further adapt the proposed algorithm to the conditional density estimation for correlated

random effects using the probit stick-breaking process prior suggested by Pati et al. (2013).

Last but not least, the empirical application in this paper also links to the young firm dynamics

literature. Akcigit and Kerr (2016) document the fact that R&D intensive firms grow faster, and

such boosting effects are more prominent for smaller firms. Robb and Seamans (2014) examine

the role of R&D in capital structure and performance of young firms. Zarutskie and Yang (2015)

present some empirical evidence that young firms experienced sizable setbacks during the recent

recession, which may partly account for the slow and jobless recovery. See the handbook by Hall

12Robustness checks have been conducted with the more sophisticated slice-retrospective sampler (Dunson, 2009;
Yau et al., 2011; Hastie et al., 2015), which does not involve hard truncation but is more complicated to implement.
Results from the slice-retrospective sampler are comparable to the simpler truncation sampler.
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and Rosenberg (2010) for a thorough review on young firm innovation. The empirical analysis of this

paper builds on these previous findings. Besides more accurate density forecasts, we can also obtain

the latent heterogeneity structure of firm-specific coefficients and cross-sectional heteroskedasticity.

The rest of the paper is organized as follows. Section 2 introduces the general panel data model,

the predictors for density forecasts, and the nonparametric Bayesian priors. Section 3 characterizes

identification conditions and large sample properties. Section 4 proposes the posterior sampling

algorithms. Section 5 examines the performance of the semiparametric Bayesian predictor using

simulated data, and Section 6 applies the proposed predictor to the confidential microdata from

the Kauffman Firm Survey and analyzes the empirical findings on young firm dynamics. Finally,

Section 7 concludes and sketches future research directions. Notations, proofs, as well as additional

algorithms and results are in the Appendix.

2 Model

2.1 General Panel Data Model

The general panel data model with (correlated) random coefficients and potential cross-sectional

heteroskedasticity can be specified as

yit = β′xi,t−1 + λ′iwi,t−1 + uit, uit ∼ N
(
0, σ2

i

)
(2.1)

where i = 1, · · · , N , and t = 1, · · · , T + 1. Similar to the baseline setup in equation (1.1), yit is the

observed individual outcome, such as young firm performance. The main goal of this paper is to

estimate the model using the sample from period 1 to period T and forecast the future distribution

of yi,T+h for any individual i. In the remainder of the paper, I focus on the case where h = 1 (i.e.

one-period-ahead forecasts) for notation simplicity, but the discussion can be extended to multi-

period-ahead forecasts via either a direct or an iterated approach (Marcellino et al., 2006).

wi,t−1 is a vector of observed covariates that have heterogeneous effects on the outcomes, with

λi being the unobserved heterogeneous coefficients. wi,t−1 is strictly exogenous and captures the

key sources of individual heterogeneity. The simplest choice would be wi,t−1 = 1, where λi can be

interpreted as an individual-specific intercept, i.e. firm i’s skill level in the baseline model (1.1).

Moreover, it is also helpful to include other key covariates of interest whose effects are more diverse

cross-sectionally; for example, R&D activities may benefit the young firms in different magnitudes.

Furthermore, the current setup can also take into account deterministic or stochastic aggregate

effects; for example, different young firms may respond differently to the financial crisis. For notation

clarity, I partition wi,t−1 =
[
1, wA′t−1, w

I′
i,t−1

]′
, where wAt−1 stands for a vector of aggregate variables,

and wIi,t−1 is composed of individual-specific variables.

xi,t−1 is a vector of observed covariates that have homogeneous effects on the outcomes, and

β is the corresponding vector of common parameters. xi,t−1 can be either strictly exogenous or
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predetermined, which can be further denoted as xi,t−1 =
[
xO′i,t−1, x

P ′
i,t−1

]′
, where xOi,t−1 is the strictly

exogenous part and xPi,t−1 is the predetermined part. The one-period-lagged outcome yi,t−1 is a

typical candidate for xPi,t−1 in the dynamic panel data literature, which captures the persistence

structure. In addition, both xOi,t−1 and xPi,t−1 can incorporate other general control variables, such

as firm characteristics as well as local and national economic conditions, which help control for

other sources of variation and facilitate forecasts. In addition, we let xP∗i,t−1 denote the subgroup

of xPi,t−1 excluding lagged outcomes and decompose β =
[
βO′, βP∗′, ρ

]′
, where

(
βO′, βP∗′, ρ

)
are

the coefficients corresponding to
(
xO′i,t−1, x

P∗′
i,t−1, yi,t−1

)
, respectively. Here, the distinction between

homogeneous effects β′xi,t−1 versus heterogeneous effects λ′iwi,t−1 reveals the latent nonstandard

structures for the key effects while avoiding the curse-of-dimensionality problem.

uit is an individual-time-specific shock characterized by zero mean and potential cross-sectional

heteroskedasticity σ2
i ,

13 with cross-sectional homoskedasticity being a special case where σ2
i = σ2.

In a unified framework, denote ϑ as the common parameters, hi as the individual heterogeneity,

and f as the underlying distribution of hi.

ϑ =
(
β, σ2

)
, hi = λi, in cross-sectional homoskedastic cases,

ϑ = β, hi =
(
λi, σ

2
i

)
, in cross-sectional heteroskedastic cases.

We can define the conditioning set at period t to be

ci,t−1 =
(
xPi,0:t−1, x

O
i,0:T , w

A
0:T , w

I
i,0:T

)
. (2.2)

Note that as xPi,t−1 is predetermined, the sequences of xPi,t−1 in the conditioning set ci,t−1 start from

period 0 to period t − 1; xOi,t−1, wAt−1, and wIi,t−1 are strictly exogenous, so the conditioning set

ci,t−1 contains their entire sequences. Moreover, we can define the part of ci,t−1 that is composed

of individual-specific variables as c∗i,t−1 =
(
xPi,0:t−1, x

O
i,0:T , w

I
i,0:T

)
. Then, we can further denote

D =
(
{Di}Ni=1 , DA

)
as a shorthand for the data sample used for estimation, which constitutes the

conditioning set for posterior inference. Di = c∗i,T contains the observed data for individual i, and

DA = wA0:T contains the aggregate regressors with heterogeneous effects.

As stressed in the motivation, the underlying distribution of individual effects is the key to better

density forecasts. In the literature, there are usually two kinds of assumptions imposed on this

distribution. One is the random coefficients model, where the individual effects hi are independent

of the conditioning variables ci0, which include initial values of predetermined covariates and full

sequences of strictly exogenous covariates.14 The other is the correlated random coefficients model,

where hi and ci0 could be correlated with each other. This paper considers both random coefficients

13In many empirical applications, such as the young firm analysis in Section 6, risk may largely vary over the
cross-section, which also contributes considerably to more precise density forecasts.

14In the baseline setup as a special case, the conditioning set is a singleton with the initial outcome yi0 being the
only element.
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and correlated random coefficients models while focusing on the latter. The random coefficients

model is more parsimonious and easier to implement, but the correlated random coefficients model

is more realistic for young firm dynamics as well as many other empirical setups,15 and random

coefficients can be viewed as a special case of correlated random coefficients with zero dependence.

In practice, it is not necessary to incorporate all initial values of the predetermined variables

and the whole series of the strictly exogenous variables. It is more feasible to only take into account

a subset of ci0 or a function of ci0 that is relevant for the specific analysis.

Extension: Unbalanced Panels The above setup can be extended to unbalanced panels with

randomly omitted observations, which incorporates more data into the estimation and elicits more

information for the prediction. Conditional on the covariates, the common parameters, and the dis-

tributions of individual heterogeneities, yi,t+1s are cross-sectionally independent, so the theoretical

argument and numerical implementation are still valid in like manner.

Let Ti denote the longest chain for individual i that has complete observations, from t0i to t1i.

That is, (yit, wi,t−1, xi,t−1) are observed for all t = t0i, · · · , t1i. Then, I discard the unobserved

periods and redefine the conditioning set at time t = 1, t0i, · · · , t1i, T + 1 to be

ci,t−1 =
(
xPi,τi,t−1

, xOi,τiT , w
A
τiT
, wIi,τiT

)
, (2.3)

where the set for time periods τi,t−1 = {0, t0i − 1, · · · , t1i − 1, T} ∩ {0, · · · , t− 1}. Note that ti0 can

be 1, and ti1 can be T , so this structure is also able to accommodate balanced panels. Accordingly,

the individual-specific component of ci,t−1 is c∗i,t−1 =
(
xPi,τi,t−1

, xOi,τiT , w
I
i,τiT

)
.

2.2 Oracle and Feasible Predictors

This subsection formally defines the infeasible optimal oracle predictor and the feasible semipara-

metric Bayesian predictor proposed in this paper. The kernel of both definitions relies on the

conditional predictor,

f condi,T+1 (y|ϑ, f) =

ˆ
p (y|hi, ϑ, wiT , xiT )︸ ︷︷ ︸

future shock

· p (hi |ϑ, f,Di, DA )︸ ︷︷ ︸
individual heterogeneity

dhi, (2.4)

which provides the density forecasts of yi,T+1 conditional on the common parameters ϑ, underlying

distribution f , and individual i’s and aggregate data (Di, DA). The first term p (y|hi, ϑ, wiT , xiT )

captures individual i’s uncertainty due to the future shock ui,T+1. The second term

p (hi |ϑ, f,Di, DA ) =

∏T
t=1 p (yit|hi, ϑ, wi,t−1, xi,t−1) f (hi |ci0 )´ ∏T
t=1 p (yit|hi, ϑ, wi,t−1, xi,t−1) f (hi |ci0 ) dhi

15In the baseline setup, the correlated random coefficients model can be interpreted as saying that a young firm’s
initial performance may reflect its underlying skill, which is a more sensible assumption.
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is the individual-specific posterior. It characterizes individual i’s uncertainty due to heterogeneity

that arises from insufficient time-series information to infer individual hi. The common distribution

f helps in formulating this source of uncertainty and hence contributes to individual i’s density

forecasts.

The infeasible oracle predictor is defined as if we knew all the elements that can be consistently

estimated. Specifically, the oracle knows the common parameters ϑ0 and the underlying distribution

f0, but not the individual effects hi. Then, the oracle predictor is formulated by plugging the true

values (ϑ0, f0) into the conditional predictor in equation (2.4),

foraclei,T+1 (y) = f condi,T+1 (y|ϑ0, f0) . (2.5)

In practice, (ϑ, f) are all unknown and need to be estimated, thus introducing another source

of uncertainty. I adopt a conjugate prior for the common parameters ϑ (mulitvariate normal in-

verse gamma for cross-sectional homoskedastic cases and mulitvariate normal for cross-sectional

heteroskedastic cases) in order to stay close to the linear regression framework. I resort to the

nonparametric Bayesian prior (specified in the next subsection) to flexibly model the underlying

distribution, which could better approximate the true distribution f0, and the resulting feasible

predictor would be close to the oracle. Then, I update the prior belief using the observations from

the whole panel and obtain the posterior. The semiparametric Bayesian predictor is constructed by

integrating the conditional predictor over the posterior distribution of (ϑ, f),16

fspi,T+1 (y) =

ˆ
f condi,T+1 (y|ϑ, f)︸ ︷︷ ︸

shock & heterogentity

· dΠ (ϑ, f |D )︸ ︷︷ ︸
estimation uncertainty

dϑdf. (2.6)

The conditional predictor reflects uncertainties due to future shock and individual heterogeneity,

whereas the posterior of (ϑ, f) captures estimation uncertainty. Note that the inference of (ϑ, f)

pools information from the whole cross-section; once conditioned on (ϑ, f) and the aggregate observ-

ables DA, individuals’ outcomes are independent across i, and only individual i’s data are further

needed for its density forecasts.

2.3 Nonparametric Bayesian Priors

A prior on the distribution f can be viewed as a distribution over a set of distributions. Among other

options, I choose mixture models for the nonparametric Bayesian prior, because mixture models can

effectively approximate a general class of distributions (see Section 3) while being relatively easy

to implement (see Section 4). The specific functional form of the nonparametric Bayesian prior

depends on whether f is characterized by a random coefficients model or a correlated random

coefficients model. The correlated random coefficients setup is more involved but can be crucial in

16The superscript “sp” stands for “semiparametric”.
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some empirical studies, such as the young firm dynamics application in this paper.

In cross-sectional heteroskedastic cases, I incorporate another flexible prior on the distribution of

σ2
i . Define li = log

σ̄2(σ2
i−σ2)

σ̄2−σ2
i

, where σ2 is some small positive number and σ̄2 is some large positive

number. Then, the support of fσ
2

0 is bounded by
[
σ2, σ̄2

]
and thus satisfies the requirement for the

asymptotic convergence of the Bayesian estimates and density forecasts in Propositions 3.10, 3.13,

and 3.14. This transformation ensures an unbounded support for li so that we can employ similar

prior structures to λi and li. Note that because λi and σ2
i are independent with respect to each

other, their mixture structures are completely separate. For a concise exposition, I define a generic

variable z that can represent either λ or l, and then include z as a superscript to indicate whether

a specific parameter belongs to the λ part or the l part.

2.3.1 Random Coefficients Model

In the random coefficients model, the individual heterogeneity zi (= λi or li) is assumed to be inde-

pendent of the conditioning variables ci0, so the inference of the underlying distribution f can be

considered an unconditional density estimation problem.

The first candidate is the Dirichlet Process (DP), which casts a distribution over a set of discrete

distributions. We denote G ∼ DP (α,G0), where the base distribution G0 characterizes the center

of the DP, and the scale parameter α represents the precision (inverse-variance) of the DP. 17

However, considering the baseline model, imposing a DP prior on the distribution f means

restricting firms’ skills to some discrete levels, which may not be very appealing for young firm

dynamics as well as some other empirical applications. A natural extension is to assume zi follows

a continuous parametric distribution f (z; θ) where θ are the parameters, and adopt a DP prior for

the distribution of θ.18 Then, the parameters θ are discrete while the individual heterogeneity z

enjoys a continuous distribution. This additional layer of mixture leads to the idea of the Dirichlet

Process Mixture (DPM) model. For variables supported on the whole real space, like the individual

heterogeneity z here, a typical choice of the kernel of f (z; θ) is a (multivariate) normal distribution

with θ = (µ,Ω) being the mean and covariance matrix of the normal.

With component label k, component probability pk, and component parameters (µk,Ωk), one

draw from the DPM prior can be written as an infinite location-scale mixture of (multivariate)

normals,

zi ∼
∞∑
k=1

pkN (µk,Ωk) . (2.7)

Different draws from the DPM prior are characterized by different combinations of {pk, µk,Ωk},
and different combinations of {pk, µk,Ωk} lead to different shapes of f . That is why the DPM

17See Appendix A for a formal definition of DP.
18Here and below, I suppress the superscript z in the parameters when there is no confusion.
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prior is flexible enough to approximate many distributions. The component parameters (µk,Ωk) are

directly drawn from the DP base distribution G0, which is chosen to be the conjugate multivariate-

normal-inverse-Wishart distribution (or a normal-inverse-gamma distribution if zi is a scalar). The

component probability pk is constructed via the stick-breaking process governed by the DP scale

parameter α.

(µk,Ωk) ∼ G0,

pk ∼ ζk
∏
j<k

(1− ζj) , where ζk ∼ Beta (1, α) . (2.8)

The stick-breaking process distinguishes the roles of G0 and α in that the former governs component

value θk while the latter guides the choice of component probability pk. From now on, for conciseness,

I denote the pk part in equation (2.8) as pk ∼ SB (1, α) , where the function name SB is the acronym

for “stick-breaking”, and the two arguments are from the parameters of the Beta distribution for

“stick length” ζk’s.

One virtue of the nonparametric Bayesian framework is its ability to flexibly elicit the tuning

parameter from the data. Namely, we can set up a relatively flexible hyperprior for the DP scale

parameter, α ∼ Ga (aα0 , b
α
0 ) , and update it based on the observations. Roughly speaking, the DP

scale parameter α is linked to the number of unique components in the mixture density and thus

determines and reflects the flexibility of the mixture density. Let K∗ denote the number of unique

components. As derived in Antoniak (1974), we have E [K∗|α] ≈ α log
(
α+N
α

)
, V ar [K∗|α] ≈

α
[
log
(
α+N
α

)
− 1
]
.

2.3.2 Correlated Random Coefficients Model

To accommodate the correlated random coefficients model where the individual heterogeneity zi (= λi or li)

can be potentially correlated with the conditioning variables ci0, it is necessary to consider a non-

parametric Bayesian prior that is compatible with the much harder conditional density estimation

problem. One issue is associated with the uncountable collection of conditional densities, and Pati

et al. (2013) circumvent it by linking the properties of the conditional density to the corresponding

ones of the joint density without explicitly modeling the marginal density of ci0. As suggested in

Pati et al. (2013), I utilize the Mixtures of Gaussian Linear Regressions (MGLRx) prior, a gen-

eralization of the Gaussian-mixture prior for conditional density estimation, and extend it to the

multivariate setup. Conditioning on ci0,

zi|ci0 ∼
∞∑
k=1

pk (ci0)N
(
µk
[
1, c′i0

]′
,Ωk

)
. (2.9)

Similar to the DPM prior, the component parameters can be directly drawn from the base distri-

bution, θk = (µk,Ωk) ∼ G0. G0 is again specified as a conjugate form with a multivariate normal
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distribution for vec (µk) and an inverse Wishart distribution for Ωk (or a multivariate-normal-

inverse-gamma distribution if zi is a scalar). Now the mixture probabilities are characterized by the

probit stick-breaking process

pk (ci0) = Φ (ζk (ci0))
∏
j<k

(1− Φ (ζj (ci0))) , (2.10)

where stochastic function ζk is drawn from the Gaussian process ζk ∼ GP (0, Vk) for k = 1, 2, · · · .19

This setup has three key features: (1) component means are linear in ci0; (2) component co-

variance matrices are independent of ci0; and (3) mixture probabilities are flexible functions of ci0.

This framework is general enough to accommodate a broad class of conditional distributions due to

the flexibility in the mixture probabilities. Intuitively, the current setup is similar to approximating

the conditional density via Bayes’ theorem, but does not explicitly model the distribution of the

conditioning variables ci0, and thus allows for more relaxed assumptions on it.20

3 Theoretical Properties

3.1 Background

Generally speaking, a Bayesian analysis starts with a prior belief and updates it with data. It is

desirable to ensure that the prior belief does not dominate the posterior inference asymptotically.

Namely, as more and more data have been observed, one would have weighed more on the data

and less on prior, and the effect from the prior would have ultimately been washed out. For pure

Bayesians who have different prior beliefs, the asymptotic properties ensure that they will eventually

agree on similar predictive distributions (Blackwell and Dubins, 1962; Diaconis and Freedman, 1986).

For frequentists who perceive that there is an unknown true data generating process, the asymptotic

properties act as frequentist justification for the Bayesian analysis—as the sample size increases, the

updated posterior recovers the unknown truth. Moreover, the conditions for posterior consistency

provide guidance in choosing better-behaved priors.

In the context of infinite dimensional analysis such as density estimation, posterior consistency

cannot be taken as given. On the one hand, Doob’s theorem (Doob, 1949) indicates that the

Bayesian posterior will achieve consistency almost surely under the prior measure. On the other

hand, the null set for the prior can be topologically large, and hence the true model can easily

fall beyond the scope of the prior, especially in nonparametric analysis. Freedman (1963) gives

a simple counterexample in the nonparametric setup, and Freedman (1965) further examines the

combinations of the prior and the true parameters that yield a consistent posterior, and proves that

such combinations are meager in the joint space of the prior and the true parameters. Therefore,

19See Appendix A for the definition of Gaussian process.
20See Appendix B.1 for a more detailed explanation.
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for problems involving density estimation, it is crucial to find reasonable conditions on the joint

behavior of the prior and the true density to establish the posterior consistency argument.

In this section, I show the asymptotic properties of the proposed semiparametric Bayesian pre-

dictor when the time dimension T is fixed and the cross-sectional dimension N tends to infinity.

Basically, under reasonably general conditions, the joint posterior of the common parameters and

the individual effect distribution concentrates in an arbitrarily small region around the true data

generating process, and the density forecasts concentrate in an arbitrarily small region around the

oracle.

3.2 Identification

To establish the posterior consistency argument, we first need to ensure identification of both the

common parameters and the (conditional) distribution of individual effects. Here, I present the

identification result in terms of the correlated random coefficients model with cross-sectional het-

eroskedasticity, where random coefficients and cross-sectional homoskedasticity can be viewed as

special cases.

Assumption 3.1. (Identification: General Model)

1. Model setup:

(a) Conditional on wA0:T ,
(
c∗i0, λi, σ

2
i

)
are i.i.d. across i.

(b) For all t, conditional on (yit, ci,t−1), xP∗it is independent of
(
λi, σ

2
i , β
)
.

(c)
(
xOi,0:T , wi,0:T

)
are independent of

(
λi, σ

2
i , β
)
.

(d) Conditioning on ci0, λi and σ2
i are independent of each other.

(e) Let uit = σivit. vit is i.i.d. across i and t and independent of ci,t−1.

2. Identification:

(a) The characteristic functions for λi|ci0 and σ2
i |ci0 are non-vanishing almost everywhere.21

(b) For all i, wi,0:T−1 has full rank dw.

(c) After orthogonal forward differencing,

x̃i,t−1 = xi,t−1 − w′i,t−1

(
T∑

s=t+1

wi,s−1w
′
i,s−1

)−1 T∑
s=t+1

wi,s−1xi,s−1.

Then, the matrix E
[∑T−dw

t=1 x̃i,t−1x̃
′
i,t−1

]
has full rank dx.

Remark 3.2. (i) Condition 1-a characterizes the correlated random coefficients model, where there

can be a potential correlation between the individual heterogeneity
(
λi, σ

2
i

)
and the conditioning

variables ci0. Therefore, despite the conditional independence in condition 1-d, λi and σ2
i can

potentially relate to each other through ci0. For example, a young firm’s initial performance may

reveal its underlying ability and risk.

21This assumption can be relaxed based on Evdokimov and White (2012).
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(ii) For the random coefficients case, condition 1-a can be altered to “
(
λi, σ

2
i

)
are independent of ci0

and i.i.d. across i”. Together with condition 1-d, it implies that
(
λi, σ

2
i , ci0

)
are independent among

one another.

(iii) “vit is i.i.d. across i and t” in condition 1-e implies that vit is independent of
(
λi, σ

2
i

)
, because

the individual effects λi and σ2
i are time invariant.

(iv) It is possible to allow some additional flexibility in the distribution of the shock uit. For ex-

ample, the identification argument still holds as long as (1) conditional on ci,t−1, vit is i.i.d. across

i, (2) the distributions of vit, f
v
t (vit|ci,t−1), have known functional forms, such that E[vit|ci,t−1] =

0, V[vit|ci,t−1] = 1, and (3) the characteristic function for vit|ci,t−1 is non-vanishing almost ev-

erywhere. Nevertheless, as this paper studies panels with short time spans, time-varying shock

distribution may not play a significant role. I will keep the normality assumption in the rest of this

paper to streamline the arguments.

Proposition 3.3. (Identification: General Model)

Under Assumption 3.1, the common parameters β and the conditional distribution of individual

effects, fλ(λi|ci0) and fσ
2
(σ2
i |ci0), are all identified.

See Appendix B.2 for the proof. Assumption 3.1 and Proposition 3.3 are similar to Assumption

2.1-2.2 and Theorem 2.3 in Liu et al. (2017)22 except for the treatment of cross-sectional het-

eroskedasticity with σ2
i being an unobserved random quantity (see the literature review for a more

detailed comparison). The rank condition supports the posterior consistency of β via orthogonal

forward differencing. 23 λi is additively separable from the shocks, so I follow the original proof

based on the characteristic function (i.e. the Fourier transform). Note that unlike λi, σ
2
i interacts

with the shocks in a multiplicative way. The Fourier transform is not suitable for disentangling

products of random variables, so I resort to the Mellin transform (Galambos and Simonelli, 2004)

to deliver the identification of fσ
2
.

Example: Baseline Model For the baseline setup in equation (1.1), we can reduce Assumption

3.1 and establish the identification result based on a simpler set of assumptions as follows.

Assumption 3.4. (Identification: Baseline Model)

1. (yi0, λi) are i.i.d. across i.

2. uit is i.i.d. across i and t.

3. The characteristic function for λi|yi0 is non-vanishing almost everywhere.

4. T ≥ 2.

Intuitively speaking, taking young firm dynamics as the example, the second condition implies that

skill is independent of shock (see Remark 3.2 (iii)) and that shock is independent across firms

22It is in turn based on early works such as Arellano and Bover (1995) and Arellano and Bonhomme (2012).
23The identification of common parameters in panel data models is standard in the literature. See textbooks and

handbook chapters, Baltagi (1995), Arellano and Honoré (2001), Arellano (2003), and Hsiao (2014).
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and times, so skill and shock are intrinsically different and distinguishable. The third condition

facilitates the deconvolution between the signal (skill) and the noise (shock) via Fourier transform.

The last condition guarantees that the time span is long enough to distinguish persistence βyi,t−1

and individual effects λi.

Extension: Unbalanced Panels For the unbalanced panels with randomly omitted observations

as specified in Subsection 2.1, we have:

Assumption 3.5. (Identification: Unbalanced Panels) For all i,

1. ci0 is observed.

2. xiT and wiT are observed.

3. wi,(t0i−1):(t1i−1) has full rank dw.

4. After orthogonal forward differencing,

x̃i,t−1 = xi,t−1 − w′i,t−1

(
t1i∑

s=t+1

wi,s−1w
′
i,s−1

)−1 t1i∑
s=t+1

wi,s−1xi,s−1.

Then, the matrix E
[∑t1i−dw

t=t0i
x̃i,t−1x̃

′
i,t−1

]
has full rank dx.

The first condition guarantees the existence of the initial conditioning set for the correlated random

coefficients model. The second condition ensures that the covariates in the forecast equation are

available in order to make predictions. The third and fourth conditions are the unbalanced panel

counterparts of Assumption 3.1 (2-b,c). They guarantee that the observed chain is long and infor-

mative enough to distinguish different aspects of common effects and individual effects. Now we

can obtain similar identification results for unbalanced panels under Assumptions 3.1 (except 2-b,c)

and 3.5.

3.3 Posterior Consistency

In this subsection, I establish the posterior consistency of the estimated common parameters ϑ and

the estimated (conditional) distribution of individual effects fz. Note that the estimated individ-

ual effects zi are not consistent because information is accumulated only along the cross-sectional

dimension but not along the time dimension.

3.3.1 Random Coefficients Model

In the random coefficients model, fz is an unconditional distribution. Let Θ be the space of the

parametric component ϑ, and let Fz be the set of densities on Rdz (with respect to Lebesgue

measure) as the space of the nonparametric component fz. Hence, Θ = Rdx × R+, f = fλ, and

F = Fλ in cross-sectional homoskedastic cases, and Θ = Rdx , f = fλf l, and F = FλF l in

cross-sectional heteroskedastic cases due to the independence between λi and σ2
i . Let Π (·, ·) be a
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joint prior distribution on Θ × F with marginal priors being Πϑ (·) and Πf (·). The corresponding

joint posterior distribution is denoted as Π (·, ·|D) with the marginal posteriors indicated with

superscripts.

The posterior consistency results are established with respect to the strong topology on f ,

which is generated by the L1-metric on integrable functions and is closely related to convergence

of the probability distribution function (pdf). Note that the strong topology is stronger than the

weak topology, and convergence of the pdf is stronger than convergence in distribution or weak

convergence. It in turn implies the convergence of quantiles.

Definition 3.6. The posterior achieves strong consistency at (ϑ0, f0) if for any ε > 0 and any δ > 0,

as N →∞,

Π ((ϑ, f) : ‖ϑ− ϑ0‖2 < δ, ‖f − f0‖1 < ε|D)→ 1

in probability with respect to the true data generating process.

To give the intuition behind the posterior consistency argument, let us first consider a simpler

scenario where we estimate the distribution of observables without the deconvolution and dynamic

panel data structure. The following lemma restates Theorem 1 in Canale and De Blasi (2017). Note

that space F is not compact, so we introduce a compact subset FN (i.e. sieve) that asymptotically

approximates F and then regularize the asymptotic behavior of FN instead of F .

Lemma 3.7. (Canale and De Blasi, 2017)

The posterior is strongly consistent at f0 under two sufficient conditions:

1. Kullback-Leibler (KL) property: f0 is in the KL support of Π, i.e. for all ε > 0,

Π (f ∈ F : dKL (f0, f) < ε) > 0,

where dKL (f0, f) =
´
f0 log f0

f is the KL divergence of f from f0.

2. Sieve property: There exists FN ⊂ F that can be partitioned as FN = ∪jFN,j such that, for

any ε > 0,

(a) For some β > 0, Π (FcN ) = O (exp (−βN)).

(b) For some γ > 0,
∑

j

√
N (ε,FN,j) Π (FN,j) = o

(
exp

(
(1− γ)Nε2

))
, where N (ε,FN,j) is

the covering number of FN,j by balls with a radius ε.24

By Bayes’ Theorem, the posterior probability of the alternative region U c = {f ∈ F : ‖f − f0‖1 ≥ ε}

24As the covering number increases exponentially with the dimension of z, a direct adoption of Theorem 2 in Ghosal
et al. (1999) would impose a strong tail restriction on the prior and exclude the case where the base distribution G0

contains an inverse Wishart distribution for component variances. Hence, I follow the idea of Ghosal and van der Vaart
(2007) and Canale and De Blasi (2017), where they relax the assumption on the coverage behavior by a summability
condition of covering numbers weighted by their corresponding prior probabilities.
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can be expressed as the ratio on the right hand side,

Π (U c|x1:N ) =

ˆ
Uc

N∏
i=1

f (xi)

f0 (xi)
dΠ (f)

/ˆ
F

N∏
i=1

f (xi)

f0 (xi)
dΠ (f) .

Intuitively speaking, for the numerator, the sieve property ensures that the sieve expands to the

entire alternative region and puts an asymptotic upper bound on the number of balls that cover

the sieve. As the likelihood ratio is small in each covering ball, the integration over the alternative

region is still sufficiently small. For the denominator, the KL property implies that the prior of

distributions puts positive weight on the true distribution, so the likelihood ratio integrated over

the whole space is large enough. Therefore, the posterior probability of the alternative region is

arbitrarily small.

Lemma 3.7 establishes posterior consistency in a density estimation context. However, as men-

tioned in the introduction, there are a number of challenges in adapting to the dynamic panel

data setting. The first challenge is, because we observe yit rather than λi, to disentangle the un-

certainty generated from unknown cross-sectional heterogeneity λi and from independent shocks

uit, i.e. a deconvolution problem.25 Second is to incorporate an unknown shock size σ2 in cross-

sectional homoskedastic cases.26 Third is to address unknown individual-specific shock sizes σ2
i in

cross-sectional heteroskedastic cases. Fourth is to take care of strictly exogenous and predetermined

variables (including lagged dependent variables) as covariates.

More specifically, in the dynamic panel data model, the posterior probability of the alternative

region can be decomposed as

Π ((ϑ, f) : ‖ϑ− ϑ0‖2 ≥ δ or ‖f − f0‖1 ≥ ε|D)

=Πϑ (‖ϑ− ϑ0‖2 ≥ δ|D) + Π (‖f − f0‖1 ≥ ε, ‖ϑ− ϑ0‖2 < δ|D) ,

and we want to show that the whole expression tends to zero as N goes to infinity. The first term

is the marginal posterior probability of the finite dimensional common parameters. Its posterior

consistency is relatively straightforward to obtain. When a candidate ϑ is far from the true ϑ0,

we can employ orthogonal forward differencing to get rid of λi (see Appendix B.2), and then apply

the traditional posterior consistency argument to a linear regression of the “residues”. The second

term accounts for the infinite dimensional underlying distribution when ϑ approaches ϑ0 but f is

separated from f0. The following two paragraphs outline the intuition behind this part of the proof.

25Some previous studies (Amewou-Atisso et al., 2003; Tokdar, 2006) estimate distributions of quantities that can be
inferred from observables given common coefficients. For example, in the linear regression problems with an unknown
error distribution, i.e. yi = β′xi + ui, conditional on the regression coefficients β, ui = yi − β′xi is inferrable from the
data. However, here the target λi intertwines with uit and cannot be easily inferred from the observed yit.

26Note that when λi and uit are both Gaussian with unknown variances, we cannot separately identify the variances
in the cross-sectional setting (T = 1). This is no longer a problem if either of the distributions is non-Gaussian or if
we work with panel data.
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Basically, we can re-establish the two conditions in Lemma 3.7 by linking the distribution of the

observables yit with the underlying distribution of λi (and σ2
i ).

The KL requirement ensures that the prior puts positive weight on the true distribution. To

satisfy the KL requirement, we need some joint assumptions on the true distribution f0 and the prior

Π. Compared to general nonparametric Bayesian modeling, the DPM structure (and the MGLRx

structure for the correlated random coefficients model) offers more regularities on the prior Π and

thus weaker assumptions on the true distribution f0 (see Assumptions 3.9 and 3.12). In terms

of deconvolution,27 the KL requirement is achieved through the convexity of the KL divergence.

Intuitively, convolution with a common distribution would reduce the difference in f . In terms

of the common parameters, the KL requirement is delivered via controlling the tail behavior of

covariates, so the continuity at ϑ0 is preserved after integrating out covariates.

The sieve property guarantees that the data are informative enough to differentiate the true

distribution from the alternatives. It relies on both the DPM setup and the strong topology charac-

terized by the L1-norm. In terms of deconvolution, (de)convolution preserves the L1-norm as well

as the number of balls that cover the sieve. In terms of the common parameters, when ϑ is close to

ϑ0 but f is far from f0, we want to make sure that the deviation generated from ϑ is small enough

so that it cannot offset the difference in f .

Now let us formally state the assumptions and main theorem for random coefficients models.

Appendix B.3 provides the complete proof.

Assumption 3.8. (Covariates)

1. wIi,0:T is bounded.

2. Let c̃i0 =
(
xPi0, x

O
i,0:T−1

)
. As C → 0,

´
‖c̃i0‖2≥C

‖c̃i0‖22 p (c̃i0 |ci0\c̃i0 ) dc̃i0 → 0.

3. As C → 0,
´
‖xP∗i,t−1‖2

≥C

∥∥∥xP∗i,t−1

∥∥∥2

2
p
(
xP∗i,t−1 |yi,t−1, ci,0:t−2

)
dxP∗i,t−1 → 0.

Considering that we have a regression model, the tail condition prevents a slight difference in β

from obscuring the difference in f , which is satisfied when xi,t−1 exhibits a tail behavior similar to

λi (see Assumption 3.9 (1-e) below). The boundedness of wIi,0:T serves the same purpose for the

heterogenous term λ′iwi,t−1.

Assumption 3.9. (Nonparametric Bayesian Prior: Random Coefficients)

1. Conditions on fz0 :

(a) fz0 (z) is a continuous density.

(b) For some 0 < M <∞, 0 < fz0 (z) ≤M for all z.

(c)
∣∣´ fz0 (z) log fz0 (z) dz

∣∣ <∞.

(d)
´
fz0 (z) log

fz0 (z)
ϕδ(z)

dz <∞, where ϕδ (z) = inf‖z′−z‖2<δ f
z
0 (z), for some δ > 0.

(e) For some η > 0,
´
‖z‖2(1+η)

2 fz0 (z) dz <∞.

27Here and below, “deconvolution” also refers to the multiplicative deconvolution for cross-sectional heteroskedas-
ticity.
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2. Conditions on Gz0 (µ,Ω):

(a) Gz0 has full support on Rdz ×S, where S is the space of dz × dz positive definite matrices

with the spectral norm.28

(b) For some c1, c2, c3 > 0, r > (dz − 1) /2, and κ > dz (dz − 1), for sufficiently large

x > 0, Gz0 (‖µ‖2 > x) = O
(
x−2(r+1)

)
, Gz0 (Λ1 > x) = O (exp (−c1x

c2)) , Gz0
(
Λdz <

1
x

)
=

O (x−c3) , Gz0

(
Λ1
Λdz

> x
)

= O (x−κ) , where Λ1 and Λdz are the largest and smallest

eigenvalues of Ω−1, respectively.

First, the KL property is obtained based on conditions 1 and 2-a. Condition 1 ensures that the true

distribution f0 is well-behaved, and condition 2-a guarantees that the DPM prior is general enough to

contain the true distribution. Then, condition 2-b further accounts for the sieve property. According

to Corollary 1 in Canale and De Blasi (2017), condition 2-b holds for a multivariate-normal-inverse-

Wishart base distribution Gz0 (or a normal-inverse-gamma base distribution if z is a scalar) as long as

the degree of freedom of the inverse Wishart component νz0 > max {2dz, (2dz + 1) (dz − 1)}, where

2dz controls the tail behavior of component mean µ and (2dz + 1) (dz − 1) regulates the eigenvalue

structure of component variance Ω.

Proposition 3.10. (Consistency: Random Coefficients)

Suppose we have:

1. Model: The random effects version of Assumption 3.1.29

2. Covariates: (xi,0:T , wi,0:T ) satisfies Assumption 3.8.

3. Common parameters: ϑ0 is in the interior of supp
(
Πϑ
)
.

4. Distributions of individual effects:

(a) fz0 and Πz satisfy Assumption 3.9.

(b) For cross-sectional heteroskedastic models, supp
(
fσ

2

0

)
is bounded above by some large

σ̄2 > 0.

Then, the posterior is strongly consistent at (ϑ0, f0).

3.3.2 Correlated Random Coefficients Model

For the correlated random coefficients model, the definitions and notations are parallel with those

in the random coefficients model with a slight adjustment considering that f is now a conditional

distribution. As in Pati et al. (2013), it is helpful to link the properties of the conditional density

to the corresponding ones of the joint density without explicitly modeling the marginal density of

ci0, which circumvents the difficulty associated with an uncountable set of conditional densities.

Let q0 (c0) be the true marginal density of the conditioning variables. Then, the induced q0-

integrated L1-distance is defined as ‖f − f0‖1 ≡
´ [´

|f (z|c0)− f0 (z|c0)| dz
]
q0 (c0) dc0, and the

induced q0-integrated KL divergence is dKL (f0, f) ≡
´ [´

f0 (z|c0) log f0(z|c0)
f(z|c0) dz

]
q0 (c0) dc0. Note

28The spectral norm is induced by the L2-norm on vectors, ‖Ω‖2 = maxx 6=0
‖Ωx‖2
‖x‖2

.
29Or Assumptions 3.1 (except 2-b,c) and 3.5 for unbalanced panels.
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that in both definitions, the conditioning variables c0 are integrated out with respect to the true q0,

so this setup does not require estimating q0 and thus relaxes the assumption on the conditioning

set.30

The main assumptions and theorem for correlated random coefficients models are stated as

follows.

Assumption 3.11. (Conditioning set)

Let C be the support of ci0. C is a compact subset of Rdc0 , and q0 (c0) > 0 for all c0 ∈ C.

The compactness fosters uniform behavior along the conditioning variables. This assumption is

stronger than Assumption 3.8 (1 and 2) for random coefficients models.

Assumption 3.12. (Nonparametric Bayesian Prior: Correlated Random Coefficients)

1. Conditions on fz0 :

(a) For some 0 < M <∞, 0 < fz0 (z|c0) ≤M for all (z, c0).

(b)
∣∣´ [´ fz0 (z|c0) log fz0 (z|c0) dz

]
q0 (c0) dc0

∣∣ <∞.

(c)
´ [´

fz0 (z|c0) log
fz0 (z|c0)
ϕδ(z|c0)dz

]
q0 (c0) dc0 < ∞, where ϕδ (z|c0) = inf‖z′−z‖2<δ f

z
0 (z|c0), for

some δ > 0.

(d) For some η > 0,
´ [´

‖z‖2(1+η)
2 fz0 (z|c0) dz

]
q0 (c0) dc0 <∞.

(e) fz0 (·|·) is jointly continuous in (z, c0).

2. Conditions on Gz0: Let dµ = dz (dc0 + 1) be the dimension of vec (µ).

(a) Gz0 has full support on Rdµ × S.

(b) Gz0 is absolutely continuous.

(c) For some c1, c2, c3 > 0, r > (dµ − 1) /2, and κ > dz (dz − 1), for sufficiently large x > 0,

Gz0 (‖vec (µ)‖2 > x) = O
(
x−2(r+1)

)
, Gz0 (Λ1 > x) = O (exp (−c1x

c2)) , Gz0
(
Λdz <

1
x

)
=

O (x−c3) , Gz0

(
Λ1
Λdz

> x
)

= O (x−κ) .

3. Conditions on the stick-breaking process: V z
k (c, c̃) = τ z exp

(
−Azk ‖c− c̃‖

2
2

)
, τ z > 0 fixed.

(a) The prior for Azk has full support on R+.

(b) There exist β, γ > 0 and a sequence δN = O
(
N−5/2 (logN)2

)
such that P (Azk > δN ) ≤

exp
(
−Nβh(β+2)/γ log h

)
.

(c) There exists an increasing sequence rN → ∞ and (rN )dc0 = o
(
N1−γ (logN)−(dc0+1)

)
such that P (Azk > rN ) ≤ exp (−N).

These conditions build on Pati et al. (2013) for posterior consistency under the conditional density

topology and further extend it to multivariate conditional density estimation with infinite location-

scale mixtures. The conditions on fz0 and Gz0 can be viewed as conditional density analogs of the

conditions in Assumption 3.9. Conditions 1, 2-a,b, and 3-a ensure the KL property, and conditions

30Denote the joint densities f̃0 (z, c0) = f0 (z|c0) ·q0 (c0) , f̃ (z, c0) = f (z|c0) ·q0 (c0) , where f̃ and f̃0 share the same
marginal density q0, but different conditional densities f and f0. Then, the induced q0-integrated L1-distance/KL
divergence of f with respect to f0 equals to the L1-distance/KL divergence of f̃ with respect to f̃0.
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2-c and 3-b,c address the sieve property. For Gz0 with a multivariate normal distribution on vec (µ)

and an inverse Wishart distribution on Ω (or an inverse gamma distribution if z is a scalar), the tail

condition on vec (µ) automatically holds, and Corollary 1 in Canale and De Blasi (2017) is satisfied

as long as the degree of freedom of the inverse Wishart component νz0 > (2dz + 1) (dz − 1).

Proposition 3.13. (Consistency: Correlated Random Coefficients)

Suppose we have:

1. Model: Assumption 3.1.31

2. Covariates: (xi,0:T , wi,0:T ) satisfy Assumption 3.8 (3) and Assumption 3.11.

3. Common parameters: ϑ0 is in the interior of supp
(
Πϑ
)
.

4. Distributions of individual effects:

(a) fz0 and Πz satisfy Assumption 3.12.

(b) For cross-sectional heteroskedastic models, supp
(
fσ

2

0

)
is bounded above by some large

σ̄2 > 0.

Then, the posterior is strongly consistent at (ϑ0, f0).

The proof in Appendix B.4 parallels the random effects case except that now both the KL property

and the sieve property are constructed on the q0-induced measure.

3.4 Density forecasts

Once the posterior consistency results are obtained, we can bound the discrepancy between the

proposed predictor and the oracle by the estimation uncertainties in ϑ and f , and then show the

asymptotical convergence of the density forecasts to the oracle forecast (see Appendix B.5 for the

detailed proof).

Proposition 3.14. (Density Forecasts)

Suppose we have:

1. For random coefficients models, conditions in Proposition 3.10.

2. For correlated random coefficients models,

(a) Conditions in Proposition 3.13.

(b) There exists q > 0 such that |q0 (c0)| > q for all c0 ∈ C.

3. In addition, for cross-sectional heteroskedastic models, supp
(
fσ

2

0

)
is bounded below by some

σ2 > 0.

Then, for any i and any ε > 0, as N →∞,

P
(∥∥∥f condi,T+1 − foraclei,T+1

∥∥∥
1
< ε
∣∣∣D)→ 1.

31Or Assumptions 3.1 (except 2-b,c) and 3.5 for unbalanced panels.
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Remark 3.15. (i) Requirement 3 ensures that the likelihood would not explode in cross-sectional

heteroskedastic models.

(ii) The asymptotic convergence of aggregate-level density forecasts can be derived by summing

individual-specific forecasts over different subcategories.

4 Numerical Implementation

In this section, I propose a posterior sampling procedure for the general panel data model introduced

in Subsection 2.1. The nonparametric Bayesian prior is specified in Subsection 2.3 and enjoys

desirable theoretical properties as discussed in Section 3.32

4.1 Random Coefficients Model

For the random coefficients model, I impose the Gaussian-mixture DPM prior on f . The posterior

sampling algorithm builds on the blocked Gibbs sampler proposed by Ishwaran and James (2001,

2002). They truncate the number of components by a large K, and prove that as long as K is large

enough, the truncated prior is “virtually indistinguishable” from the original one. Once truncation

is conducted, it is possible to augment the data with latent component probabilities, which boosts

numerical convergence and leads to faster code.

To check the robustness regarding the truncation, I also implement the more sophisticated yet

complicated slice-retrospective sampler (Dunson, 2009; Yau et al., 2011; Hastie et al., 2015), which

does not truncate the number of components at a predetermined K (see Algorithm C.4 in the

Appendix). The estimates and forecasts for the two samplers are almost indistinguishable, so I will

only show the results generated from the simpler truncation sampler in this paper.

Suppose the number of components is truncated at K. Then, the component probabilities are

constructed via a truncated stick-breaking process governed by the DP scale parameter α.

pk

∼ SB (1, α) , k < K,

= 1−
∑K−1

j=1 pj , k = K.

Note that due to the truncation approximation, the probability for component K is different from

its infinite mixture counterpart in equation (2.8). Resembling the infinite mixture case, I denote

the above truncated stick-breaking process as pk ∼ TSB (1, α,K) , where TSB stands for “truncated

stick-breaking”, the first two arguments are from the parameters of the Beta distribution, and the

last argument is the truncated number of components.

32The hyperparameters are chosen in a relatively ignorant sense without inferring too much from the data except
aligning the scale according to the variance of the data. See Appendix C.1 for details of the baseline model with
random effects.
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Below, the algorithms are stated for cross-sectional heteroskedastic models, while the adjust-

ments for cross-sectional homoskedastic scenarios are discussed in Remark 4.2 (ii). For individ-

ual heterogeneity z = λ, l, let γzi be individual i’s component affiliation, which can take values

{1, · · · ,Kz}, Jzk be the set of individuals in component k, i.e. Jzk = {i : γzi = k}, and nzk be the

number of individuals in component k, i.e. nk = #Jk. Then, the (data-augmented) joint posterior

for the model parameters is given by

p ({αz, {pzk, µzk,Ωz
k} , {γzi , zi}} , β|D) (4.1)

=
∏
i,t

p (yit |λi, li, β, wi,t−1, xi,t−1 ) ·
∏
z,i

p
(
zi

∣∣∣µzγzi ,Ωz
γzi

)
p (γzi |{pzk})

·
∏
z,k

p (µzk,Ω
z
k) p (pzk|αz) · p (αz) · p (β) ,

where z = λ, l, k = 1, · · · ,Kz, i = 1, · · ·N , and t = 1, · · · , T . The first block links observations

to model parameters {λi, li} and β. The second block links the individual heterogeneity zi to the

underlying distribution fz. The last block formulates the prior belief on (β, f).

The following Gibbs sampler cycles over the following blocks of parameters (in order): (1) com-

ponent probabilities, αz, {pzk}; (2) component parameters, {µzk,Ωz
k}; (3) component memberships,

{γzi }; (4) individual effects, {λi, li}; and (5) common parameters, β. A sequence of draws from this

algorithm forms a Markov chain with the sampling distribution converging to the posterior density.

Note that if the individual heterogeneity zi were known, only step 5 would be sufficient to

recover the common parameters. If the mixture structure of fz were known (i.e. if (pzk, µ
z
k,Ω

z
k)

for all components were known), only steps 3 to 5 would be needed to first assign individuals to

components and then infer zi based on the specific component that individual i has been assigned

to. In reality, neither zi nor its distribution fz is known, so I incorporate two more steps 1 and 2

to model the underlying distribution fz.

Algorithm 4.1. (Random Coefficients with Cross-sectional Heteroskedasticity)33

For each iteration s = 1, · · · , nsim,

1. Component probabilities: For z = λ, l,

(a) Draw αz(s) from a gamma distribution p
(
αz(s)

∣∣ pz(s−1)
Kz

)
:

αz(s) ∼ Ga
(
aα

z

0 +Kz − 1, bα
z

0 − log p
z(s−1)
Kz

)
.

(b) For k = 1, · · · ,Kz, draw p
z(s)
k from the truncated stick-breaking process

33Below, I present the formulas for the key nonparametric Bayesian steps, and leave the details of standard posterior
sampling procedures, such as drawing from a normal-inverse-gamma distribution or a linear regression, to Appendix
C.3.
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p
({
p
z(s)
k

} ∣∣∣αz(s),{nz(s−1)
k

})
:

p
z(s)
k ∼ TSB

1 + n
z(s−1)
k , αz(s) +

Kz∑
j=k+1

n
z(s−1)
j ,Kz

 .

2. Component parameters: For z = λ, l, for k = 1, · · · ,Kz, draw
(
µ
z(s)
k ,Ω

z(s)
k

)
from a multivariate-

normal-inverse-Wishart distribution (or a normal-inverse-gamma distribution if z is a scalar)

p

(
µ
z(s)
k ,Ω

z(s)
k

∣∣∣∣{z(s−1)
i

}
i∈Jz(s−1)

k

)
.

3. Component memberships: For z = λ, l, for i = 1, · · ·N , draw γ
z(s)
i from a multinomial distri-

bution p
({
γ
z(s)
i

} ∣∣∣{pz(s)k , µ
z(s)
k ,Ω

z(s)
k

}
, z

(s−1)
i

)
:

γ
z(s)
i = k, with probability pik ∝ p

z(s)
k φ

(
z

(s−1)
i ; µ

z(s)
k ,Ω

z(s)
k

)
,

Kz∑
k=1

pik = 1.

4. Individual-specific parameters:

(a) For i = 1, · · · , N , draw λ
(s)
i from a multivariate normal distribution (or a normal distri-

bution if λ is a scalar) p
(
λ

(s)
i

∣∣∣µλ(s)

γλi
,Ω

λ(s)

γλi
,
(
σ2
i

)(s−1)
, β(s−1), Di, DA

)
.

(b) For i = 1, · · · , N , draw l
(s)
i via the random-walk Metropolis-Hastings approach,

p
(
l
(s)
i

∣∣∣µl(s)
γli
,Ω

l(s)

γli
, λ

(s)
i , β(s−1), Di, DA

)
∝ φ

(
l
(s)
i ; µ

l(s)

γli
,Ω

l(s)

γli

) T∏
t=1

φ
(
yit; λ

(s)′
i wi,t−1 + β(s−1)′xi,t−1, σ

2
(
l
(s)
i

))
,

where σ2 (l) = σ̄2−σ2

1+σ̄2 exp(−l) + σ2. Then, calculate
(
σ2
i

)(s)
based on σ2 (l).

5. Common parameters: Draw β(s) from a linear regression model with “known” variance

p
(
β(s)

∣∣∣{λ(s)
i ,
(
σ2
i

)(s)}
, D
)

.

Remark 4.2. (i) With the above prior specification, all steps enjoy closed-form conditional posterior

distributions except step 4-b for σ2
i , which does not exhibit a well-known density form. Hence, I

resort to the random-walk Metropolis-Hastings algorithm to sample σ2
i . In addition, I also incor-

porate an adaptive procedure based on Atchadé and Rosenthal (2005) and Griffin (2016), which

adaptively adjusts the random walk step size and keeps acceptance rates around 30%. Intuitively,

when the acceptance rate for the current iteration is too high (low), the adaptive algorithm increases

(decreases) the step size in the next iteration, and thus potentially raises (lowers) the acceptance

rate in the next round. The change in step size decreases with the number of iterations completed,

and the step size converges to the optimal value. See Algorithm C.1 in the Appendix for details.

(ii) In cross-sectional homoskedastic cases, the algorithm would need the following changes: (1) in
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steps 1 to 4, only λi is considered, and (2) in step 5,
(
β(s), σ2(s)

)
are drawn from a linear regression

model with “unknown” variance, p
(
β(s), σ2(s)

∣∣∣{λ(s)
i

}
, D
)

.

4.2 Correlated Random Coefficients Model

To account for the conditional structure in the correlated random coefficients model, I implement

a multivariate MGLRx prior as specified in Subsection 2.3, which can be viewed as the conditional

counterpart of the Gaussian-mixture prior. The conditioning set ci0 is characterized by equation

(2.2) for balanced panels or equation (2.3) for unbalanced panels.

The major computational difference from the random coefficients model in the previous sub-

section is that now the component probabilities become flexible functions of ci0. As suggested in

Pati et al. (2013), I adopt the following priors and auxiliary variables in order to take advantage

of conjugacy as much as possible. First, the covariance function for Gaussian process Vk (c, c̃) is

specified as

Vk (c, c̃) = exp
(
−Ak ‖c− c̃‖22

)
,

where Ak = CkBk. Let η = dc0 + 1, then Bη
k follows the standard exponential distribution, i.e.

p
(
Bη
k

)
= exp

(
−Bη

k

)
, and Ck = k−2(3η+2) (log k)−1/η. This prior structure satisfies Pati et al. (2013)

Remark 5.12 that ensures strong consistency.34 Furthermore, it is helpful to introduce a set of

auxiliary stochastic functions ξk (ci0), k = 1, 2, · · · , such that

ξk (ci0) ∼ N (ζk (ci0) , 1) ,

pk (ci0) = Prob (ξk (ci0) ≥ 0, and ξj (ci0) < 0 for all j < k) .

Note that the probit stick-breaking process defined in equation (2.10) can be recovered by marginal-

izing over {ξk (yi0)}. Finally, I blend the MGLRx prior with Ishwaran and James (2001, 2002)

truncation approximation to simplify the numerical procedure while still retaining reliable results.

DenoteN×1 vectors ζk = [ζk (c10) , ζk (c20) , · · · , ζk (cN0)]′ and ξk = [ξk (c10) , ξk (c20) , · · · , ξk (cN0)]′,

as well as an N ×N matrix V k with the ij-th element being (V k)ij = exp
(
−Ak ‖ci0 − cj0‖22

)
. The

next algorithm extends Algorithm 4.1 to the correlated random coefficients scenario. Step 1 for

component probabilities has been changed, while the rest of the steps are in line with those in

Algorithm 4.1.

Algorithm 4.3. (Correlated Random Coefficients with Cross-sectional Heteroskedasticity)35

For each iteration s = 1, · · · , nsim,

34Their p is the dc0 in the notation of this paper, and their d, η1, and η can be constructed as dc0 + 1,
dc0
dc0+1

, and
1

2(dc0+1)
, respectively.

35See Remark 4.2 (ii) for cross-sectional homoskedastic models.
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1. Component probabilities: For z = λ, l,

(a) For k = 1, · · · ,Kz − 1, draw A
z(s)
k via the random-walk Metropolis-Hastings approach,36

p
(
A
z(s)
k

∣∣∣ ζz(s−1)
k , {yi0}

)
∝
(
A
z(s)
k

)η−1
exp

(
−

(
A
z(s)
k

Ck

)η)
· φ
(
ζ
z(s−1)
k ; 0, exp

(
−Az(s)k ‖ci0 − cj0‖22

))
.

Then, calculate V
z(s)
k , where

(
V
z(s)
k

)
ij

= exp
(
−Az(s)k ‖ci0 − cj0‖22

)
.

(b) For k = 1, · · · ,Kz − 1, and i = 1, · · · , N , draw ξ
z(s)
k (ci0) from a truncated normal

distribution p
(
ξ
z(s)
k (ci0)

∣∣∣ζz(s−1)
k (ci0) , γ

z(s−1)
i

)
:37

ξ
z(s)
k (ci0)


∝ N

(
ζ
z(s−1)
k (ci0) , 1

)
1
(
ξ
z(s)
k (ci0) < 0

)
, if k < γ

z(s−1)
i ,

∝ N
(
ζ
z(s−1)
k (ci0) , 1

)
1
(
ξ
z(s)
k (ci0) ≥ 0

)
, if k = γ

z(s−1)
i ,

∼ N
(
ζ
z(s−1)
k (ci0) , 1

)
, if k > γ

z(s−1)
i .

(c) For k = 1, · · · ,Kz−1, ζ
z(s)
k from a multivariate normal distribution p

(
ζ
z(s)
k

∣∣∣V z(s)
k , ξ

z(s)
k

)
:

ζ
z(s)
k ∼ N

(
mζ
k,Σ

ζ
k

)
, where Σζ

k =

[(
V
z(s)
k

)−1
+ IN

]−1

and mζ
k = Σζ

kξ
z(s)
k .

(d) For k = 1, · · · ,Kz, and i = 1, · · · , N , the component probabilities p
z(s)
k (ci0) are fully

determined by ζ
z(s)
k :

p
z(s)
k (yi0) =

Φ
(
ζ
z(s)
k (ci0)

)∏
j<k

(
1− Φ

(
ζ
z(s)
j (ci0)

))
, if k < K,

1−
∑Kz−1

j=1 p
z(s)
k (ci0) , if k = K.

2. Component parameters: For z = λ, l, for k = 1, · · · ,Kz,

(a) Draw vec
(
µ
z(s)
k

)
from a multivariate normal distribution p

(
µ
z(s)
k

∣∣∣∣Ωz(s−1)
k ,

{
z

(s−1)
i , ci0

}
i∈Jz(s−1)

k

)
.

(b) Draw Ω
z(s)
k from an inverse Wishart distribution (or an inverse gamma distribution if z

is a scalar) p

(
Ω
z(s)
k

∣∣∣∣µz(s)k ,
{
z

(s−1)
i , ci0

}
i∈Jz(s−1)

k

)
.

3. Component memberships: For z = λ, l, for i = 1, · · ·N , draw γ
z(s)
i from a multinomial distri-

36The first term comes from the change of variables from Bηk to Ak.
371 (·) is an indicator function.
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bution p
({
γ
z(s)
i

} ∣∣∣{pz(s)k , µ
z(s)
k ,Ω

z(s)
k

}
, z

(s−1)
i , ci0

)
:

γ
z(s)
i = k, with probability pik ∝ p

z(s)
k (ci0)φ

(
z

(s−1)
i ; µ

z(s)
k

[
1, c′i0

]′
,Ω

z(s)
k

)
,

Kz∑
k=1

pik = 1.

4. Individual-specific parameters:

(a) For i = 1, · · · , N , draw λ
(s)
i from a multivariate normal distribution (or a normal distri-

bution if λ is a scalar) p
(
λ

(s)
i

∣∣∣µλ(s)

γλi
,Ω

λ(s)

γλi
,
(
σ2
i

)(s−1)
, β(s−1), Di, DA

)
.

(b) For i = 1, · · · , N , draw l
(s)
i via the random-walk Metropolis-Hastings approach

p
(
l
(s)
i

∣∣∣µl(s)
γli
,Ω

l(s)

γli
, λ

(s)
i , β(s−1), Di, DA

)
, then calculate

(
σ2
i

)(s)
based on σ2 (l).

5. Common parameters: Draw β(s) from a linear regression model with “known” variance

p
(
β(s)

∣∣∣{λ(s)
i ,
(
σ2
i

)(s)}
, D
)

.

5 Simulation

In this section, I have conducted extensive Monte Carlo simulation experiments to examine the

numerical performance of the proposed semiparametric Bayesian predictor. Subsection 5.1 describes

the evaluation criteria for point forecasts and density forecasts. Subsection 5.2 introduces other

alternative predictors. Subsection 5.3 considers the baseline setup with random effects. Subsection

5.4 extends to the general setup incorporating cross-sectional heterogeneity and correlated random

coefficients.

5.1 Forecast Evaluation Methods

As mentioned in the model setup in Subsection 2.1, this paper focuses on one-step-ahead forecasts,

but a similar framework can be applied to multi-period-ahead forecasts. The forecasting performance

is evaluated along both the point and density forecast dimensions, with particular attention to the

latter.

Point forecasts are evaluated via the Mean Square Error (MSE), which corresponds to the

quadratic loss function. Let ŷi,T+1 denote the forecast made by the model,

ŷi,T+1 = β̂′xiT + λ̂′iwiT ,

where λ̂i and β̂ stand for the estimated parameter values. Then, the forecast error is defined as

êi,T+1 = yi,T+1 − ŷi,T+1,

with yi,T+1 being the realized value at time T + 1. The formula for the MSE is provided in the
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following equation,

MSE =
1

N

∑
i

ê2
i,T+1.

The Diebold and Mariano (1995) test is further implemented to assess whether the difference in the

MSE is significant.

The accuracy of the density forecasts is measured by the log predictive score (LPS) as suggested

in Geweke and Amisano (2010),

LPS =
1

N

∑
i

log p̂ (yi,T+1|D) ,

where yi,T+1 is the realization at T +1, and p̂ (yi,T+1|D) represents the predictive likelihood with re-

spect to the estimated model conditional on the observed data D. In addition, exp (LPSA − LPSB)

gives the odds of future realizations based on predictor A versus predictor B. I also perform the

Amisano and Giacomini (2007) test to examine the significance in the LPS difference.

5.2 Alternative Predictors

In the simulation experiments, I compare the proposed semiparametric Bayesian predictor with

alternatives. Different predictors can be interpreted as different priors on the distribution of λi. As

these priors are distributions over distributions, Figure 5.1 plots two draws from each prior – one

in red and the other in black.38

The homogeneous prior (Homog) implies an extreme kind of pooling, which assumes that all

firms share the same level of skill λ∗. It can be viewed as a Bayesian counterpart of the pooled

OLS estimator. Because λ∗ is unknown beforehand, the corresponding subgraph plots two vertical

lines representing two degenerate distributions with different locations. More rigorously, this prior

is defined as λi ∼ δλ∗ , where δλ∗ is the Dirac delta function representing a degenerate distribution

P (λi = λ∗) = 1. The unknown λ∗ becomes another common parameter, similar to β, so I adopt a

multivariate-normal-inverse-gamma prior on
(
[β, λ∗]′ , σ2

)
.

The flat prior (Flat) is specified as p (λi) ∝ 1, an uninformative prior with the posterior mode

being the MLE estimate. Roughly speaking, given the common parameters, there is no pooling

from the cross-section, so we learn firm i’s skill λi only using its own history.

The parametric prior (Param) pools the information from the cross-section via a parametric skill

distribution, such as a Gaussian distribution with unknown mean and variance. The corresponding

subgraph contains two curves with different means and variances. More explicitly, we have λi ∼
N
(
µ, ω2

)
, where a normal-inverse-gamma hyperprior is further imposed on

(
µ, ω2

)
. This prior can

be thought of as a limit case of the DPM prior when the scale parameter α → 0, so there is only

one component, and
(
µ, ω2

)
are directly drawn from the base distribution G0. The choice of the

38For easier illustration, here I consider the baseline model with univariate λi and homoskedasticity.
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Figure 5.1: Alternative Predictors

The black and red lines represent two draws from each prior.

hyperprior follows the suggestion by Basu and Chib (2003) to match the Gaussian model with the

DPM model such that “the predictive (or marginal) distribution of a single observation is identical

under the two models” (pp. 226-227).

The nonparametric discrete prior (NP-disc) is modeled by a DP where λi follows a flexible

nonparametric distribution, but on a discrete support. This paper focuses on continuous f , which

may be more sensible for the skill of young firms as well as other similar empirical studies. In this

sense, the NP-disc predictor helps examine how much can be gained or lost from the continuity

assumption and from the additional layer of mixture.

In addition, NP-R denotes the proposed nonparametric prior for random effects/coefficients

models, and NP-C for correlated random effects/coefficients models. Both of them are flexible

priors on continuous distributions, and NP-C allows λi to depend on the initial condition of the

firms.

The nonparametric predictors would reduce the estimation bias due to their flexibility while

increasing the estimation variance due to their complexity. It is not transparent ex-ante which

predictor performs better – the parsimonious parametric ones or the flexible nonparametric ones.

Therefore, it is worthwhile to implement the Monte Carlo experiments and assess which predictor

produces more accurate forecasts under which circumstances.
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Table 5.1: Simulation Setup: Baseline Model

(a) Dynamic Panel Data Model

Law of motion yit = βyi,t−1 + λi + uit, uit ∼ N
(
0, σ2

)
Common parameters β0 = 0.8, σ2

0 = 1
4

Initial conditions yi0 ∼ N (0, 1)
Sample size N = 1000, T = 6

(b) Random Effects

Degenerate λi = 0
Skewed λi ∼ 1

9N
(
2, 1

2

)
+ 8

9N
(
−1

4 ,
1
2

)
Fat tail λi ∼ 1

5N (0, 4) + 4
5N
(
0, 1

4

)
Bimodal λi ∼ (0.35N (0, 1) + 0.65N (10, 1)) /

√
1 + 102 · 0.35 · 0.65

5.3 Baseline Model

Let us first consider the baseline model with random effects. The specifications are summarized in

Table 5.1.

β0 is set to 0.8, as economic data usually exhibit some degree of persistence. σ2
0 equals 1/4, so

the rough magnitude of signal-noise ratio is σ2
0/V (λi) = 1/4. The initial condition yi0 is drawn from

a standard normal distribution, which complies with the tail condition in Assumption 3.8. Choices

of N = 1000 and T = 6 are comparable with the young firm dynamics application.

There are four experiments with different true distributions of λi, f0 (·). As this subsection

focuses on the simplest baseline model with random effects, λi is independent of yi0 in all four

experiments. The first experiment features a degenerate λi distribution, where all firms enjoy the

same skill level. Note that it does not satisfy Assumption 3.9 (1-a), which requires the true λi

distribution to be continuous. The purpose of this distribution is to learn how poorly things can

go under the misspecification that the true λi distribution is completely off from the prior support.

The second and third experiments are based on skewed and fat tail distributions, which reflect more

realistic scenarios in empirical studies. The last experiment portrays a bimodal distribution with

asymmetric weights on the two components.

I simulate 1,000 panel datasets for each setup and report the average statistics of these 1,000

repetitions. Forecasting performance, especially the relative rankings and magnitudes, is highly

stable across repetitions. In each repetition, I generate 40,000 MCMC draws with the first 20,000

being discarded as burn-in. Based on graphical and statistical tests, the MCMC draws appear to

converge to a stationary distribution. Both the Brook-Draper diagnostic and the Raftery-Lewis

diagnostic yield desirable MCMC accuracy. See Figures D.1 to D.4 for trace plots, prior/posterior

distributions, rolling means, and autocorrelation graphs of β, σ2, α, and λ1.

Table 5.2 shows the forecasting comparison among alternative predictors. For each experiment,
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Table 5.2: Forecast Evaluation: Baseline Model

Degenerate Skewed Fat Tail Bimodal
MSE* LPS*N MSE* LPS*N MSE* LPS*N MSE* LPS*N

Oracle 0.25*** -725*** 0.29*** -798*** 0.29*** -804*** 0.27*** -766***

NP-R 0.8%*** -4*** 0.04%*** -0.3*** 0.08%*** -1*** 1.2%*** -6***

Homog 0.03%*** -0.2*** 32%*** -193*** 29%*** -187*** 126%*** -424***

Flat 21%*** -102*** 1.4%*** -7*** 0.3%*** -2*** 8%*** -38***

Param 0.8%*** -4*** 0.3%*** -1*** 0.1%*** -1.5*** 7%*** -34***

NP-disc 0.03%*** -0.2*** 31%*** -206*** 29%*** -205*** 7%*** -40***

The point forecasts are evaluated by MSE together with the Diebold and Mariano (1995) test. The perfor-
mance of the density forecasts is assessed by the LPS and the Amisano and Giacomini (2007) test. Both
performance statistics are further averaged over 1,000 Monte Carlo samples. For the oracle predictor, the
table reports the exact values of MSE and LPS*N (i.e. LPS multiplied by the cross-sectional dimension N).
For other predictors, the table reports the percentage deviations from the oracle MSE and difference with
respect to the oracle LPS*N. The tests are conducted with respect to NP-R, with significance levels indicated
by *: 10%, **: 5%, and ***: 1%. The entries in bold indicate the best feasible predictor in each column.

point forecasts and density forecasts share comparable rankings. When the λi distribution is degen-

erate, Homog and NP-disc are the best, as expected. They are followed by NP-R and Param, and

Flat is considerably worse. When the λi distribution is non-degenerate, there is a substantial gain

in both point forecasts and density forecasts from employing the NP-R predictor. In the bimodal

case, the NP-R predictor far exceeds all other competitors. In the skewed and fat tailed cases,

the Flat and Param predictors are second best, yet still significantly inferior to NP-R. The Homog

and NP-disc predictors yield the poorest forecasts, which suggests that their discrete supports are

not able to approximate the continuous λi distribution, and even the nonparametric DP prior with

countably infinite support (NP-disc) is far from enough.

Therefore, when researchers believe that the underlying λi distribution is indeed discrete, the

DP prior (NP-disc) is a more sensible choice; on the other hand, when the underlying λi distribution

is actually continuous, the DPM prior (or the MGLRx prior for the correlated random effects model)

promotes better forecasts. In the empirical application to young firm dynamics, it would be more

reasonable to assume continuous distributions of individual heterogeneity in levels, reactions to

R&D, and shock sizes, and results show that the continuous nonparametric prior outperforms the

discrete DP prior in terms of density forecasts (see Table 6.2).

To investigate why we obtain better forecasts, Figure 5.2 demonstrates the posterior distribution

of the λi distribution (i.e. a distribution over distributions) for experiments Skewed, Fat Tail, and

Bimodal. In each case, the subgraphs are constructed from the estimation results of one of the

1,000 repetitions, with the left subgraph given by the Param estimator and the right one by NP-R.

In each subgraph, the black solid line represents the true λi distribution, f0. The blue bands show

the posterior distribution of f , Π (f |y1:N,0:T ).
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For the skewed λi distribution, the NP-R estimator better tracks the peak on the left and the

tail on the right. For the λi distribution with fat tails, the NP-R estimator accommodates the

slowly decaying tails, but is still not able to fully mimic the spiking peak. For the bimodal λi

distribution, it is not surprising that the NP-R estimator nicely captures the M-shape. In summary,

the nonparametric prior flexibly approximates a vast set of distributions, which helps provide more

precise estimates of the underlying λi distributions and consequently more accurate density forecasts.

This observation confirms the connection between skill distribution estimation and density forecasts

as revealed in Proposition 3.14.

I have also considered various robustness checks. In terms of the setup, I have run different cross-

sectional dimensions N = 100, 500, 1000, 105, different time spans T = 6, 10, 20, 50, different

persistences β = 0.2, 0.5, 0.8, 0.95, different sizes of the i.i.d. shocks σ2 = 1/4 and 1 (affecting

the signal-to-noise ratio), and different underlying λi distributions (including standard normal).

In general, the NP-R predictor is the overall best for density forecasts except when the true λi

comes from a degenerate distribution or a normal distribution. In the latter case, the parsimonious

Param prior coincides with the underlying λi distribution but is only marginally better than the

NP-R predictor. Intuitively, in the language of young firm dynamics, the superiority of the NP-R

predictor is more prominent when the time series for a specific firm i is not informative enough to

reveal its skill but the whole panel can recover the skill distribution and hence firm i’s uncertainty

due to heterogenous skill. That is, NP-R works better than the alternatives when N is not too

small, T is not too long, σ2 is not too large, and the λi distribution is relatively non-Gaussian.

Furthermore, as the cross-sectional dimension N increases, the blue band in Figure 5.2 gets closer

to the true f0 and eventually completely overlaps it (see Figure D.5), which resonates the posterior

consistency statement.

In terms of estimators, I have also constructed the posterior sampler for more sophisticated

priors, such as the Pitman-Yor process which allows a power law tail for clustering behaviors, as well

as DPM with skew normal components which better accommodates asymmetric data generating

processes. They provide some improvement in the corresponding situations, but call for extra

computation efforts.

5.4 General Model

The general model accounts for three key features: (i) multidimensional individual heterogeneity, (ii)

cross-sectional heteroskedasticity, and (iii) correlated random coefficients. The exact specification

is characterized in Table 5.3.

In terms of multidimensional individual heterogeneity, λi is now a 3-by-1 vector, and the cor-

responding covariates are composed of the level, time-specific w
(2)
t−1, and individual-time-specific

w
(3)
i,t−1.

In terms of correlated random coefficients, I adopt the conditional distribution following Dunson
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Figure 5.2: f0 vs Π (f |y1:N,0:T ) : Baseline Model

(a) Skewed

(b) Fat Tail

(c) Bimodal
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Table 5.3: Simulation Setup: General Model

Law of motion yit = βyi,t−1 + λ′iwi,t−1 + uit, uit ∼ N
(
0, σ2

i

)
Covariates wi,t−1 = [1, w

(2)
t−1, w

(3)
i,t−1]′,

where w
(2)
t−1 ∼ N (0, 1) and w

(3)
i,t−1 ∼ Ga (1, 1)

Common parameters β0 = 0.8
Initial conditions yi0 ∼ U (0, 1)
Correlated random coefficients λi|yi0 ∼ e−2yi0N

(
yi0v, 0.1

2vv′
)

+
(
1− e−2yi0

)
N
(
y4
i0v, 0.2

2vv′
)
,

where v = [1, 2,−1]′

Cross-sectional heteroskedasticity σ2
i |yi0 ∼

[
0.454 (yi0 + 0.5)2 · IG (51, 50) + 0.05

]
· 1
(
σ2
i ≤ 106

)
Sample size N = 1000, T = 6

and Park (2008) and Norets and Pelenis (2014). They regard it as a challenging problem because

such conditional distribution exhibits rapid changes in its shape, which considerably restricts local

sample size. The original conditional distribution in their papers is one-dimensional, and I expand

it to accommodate the three-dimensional λi via a linear transformation of the original. In Figure 5.3

panel (a), the left subgraph presents the joint distribution of λi1 and yi0, where λi1 is the coefficient

on w
(1)
i,t−1 = 1 and can be interpreted as the heterogeneous intercept. It shows that the shape of the

joint distribution is fairly complex, containing many local peaks and valleys. The right subgraph

shows the conditional distribution of λi1 given yi0 = 0.25, 0.5, 0.75. We can see that the conditional

distribution is involved as well and evolves with the conditioning variable yi0.

In addition, I also let the cross-sectional heteroskedasticity interact with the initial conditions,

and the functional form is modified from Pelenis (2014) case 2. The modification guarantees that

the σ2
i distribution is continuous with a bounded support above zero (see Propositions 3.13 and

3.14), and that the signal-to-noise ratio is not far from 1. Their joint and conditional distributions

are depicted in Figure 5.3 panel (b).

Due to cross-sectional heteroskedasticity and correlated random coefficients, the prior structures

become more complicated. Table 5.4 describes the prior setups of λi and li, with the predictor labels

being consistent with the definitions in Subsection 5.2. Note that I further add the Homosk-NP-C

predictor in order to examine whether it is practically relevant to model heteroskedasticity.

Table 5.5 assesses the forecasting performance of these predictors. Considering point forecasts,

Heterosk-NP-R and Heterosk-Param constitute the first tier, Heterosk-NP-disc and Heterosk-NP-C

can be viewed as the second tier, Homosk-NP-C is the third tier, and Homog and Heterosk-Flat are

markedly inferior. It is not surprising that more parsimonious estimators outperform Heterosk-NP-

C in terms of point forecasts, though Heterosk-NP-C is correctly specified while the parsimonious

ones are not.

Nevertheless, the focus of this paper is density forecasting, where Heterosk-NP-C becomes the

most accurate density predictor. Several lessons can be inferred from a more detailed comparison
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Figure 5.3: DGP: General Model

(a) p (λi1|yi0)

(b) p
(
σ2
i |yi0

)

Table 5.4: Prior Structures

Predictor λi prior σ2
i prior

Heterosk NP-C fλ ∼ MGLRx f l ∼ MGLRx

Homog Point mass Point mass
Homosk NP-C fλ ∼ MGLRx Point mass

Heterosk Flat Uninformative Uninformative
Param N IG
NP-disc fλ ∼ DP f l ∼ DP
NP-R fλ ∼ DPM f l ∼ DPM

See Appendix C.5 for details of Heterosk-Param.
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Table 5.5: Forecast Evaluation: General Model

MSE* LPS*N

Oracle 0.70*** -1150***

Heterosk NP-C 13.68%*** -74***

Homog 89.28%*** -503***

Homosk NP-C 20.84%*** -161***

Heterosk Flat 151.60%*** -515***

Param 11.30%*** -139***

NP-disc 13.08%*** -150***

NP-R 11.25%*** -93***

See the description of Table 5.2. Here the tests are conducted with respect to Heterosk-NP-C.

among predictors. First, based on the comparison between Heterosk-NP-C and Homog/Homosk-

NP-C, it is important to account for individual effects in both coefficients λis and shock sizes σ2
i s.

Second, comparing Heterosk-NP-C with Heterosk-Flat/Heterosk-Param, we see that the flexible

nonparametric prior plays a significant role in enhancing density forecasts. Third, the difference

between Heterosk-NP-C and Heterosk-NP-disc indicates that the discrete prior performs less sat-

isfactorily when the underlying individual heterogeneity is continuous. Last, Heterosk-NP-R is

less favorable than Heterosk-NP-C, which necessitates a careful modeling of the correlated random

coefficient structure.

6 Empirical Application: Young Firm Dynamics

6.1 Background and Data

To see how the proposed predictor works in real-world analysis, I applied it to provide density

forecasts of young firm performance. Studies have documented that young firm performance is

affected by R&D, recession, etc. and that different firms may react differently (Akcigit and Kerr,

2016; Robb and Seamans, 2014; Zarutskie and Yang, 2015). In this empirical application, I examine

this type of firm-specific latent heterogeneity from a density forecasting perspective.

To analyze firm dynamics, traditional cross-sectional data are not sufficient, whereas panel data

are more suitable as they track the firms over time. In particular, it is desirable to work with a

dataset that contains sufficient information on early firm innovation and performance, and spreads

over the recent recession. The restricted-access Kauffman Firm Survey (KFS) is the ideal candidate

for such purposes, as it offers the largest panel of startups (4,928 firms founded in 2004, nationally

representative sample) and the longest time span (2004-2011, one baseline survey and seven follow-

up annual surveys), together with detailed information on young firms. See Robb et al. (2009) for

further description of the survey design.39

39Here I do not impose KFS sample weights on firms as the purpose of the current study is forecasting individual
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6.2 Model Specification

I consider the general model with multidimensional individual heterogeneity in λi and cross-sectional

heteroskedasticity in σ2
i . Following the firm dynamics literature, such as Akcigit and Kerr (2016) and

Zarutskie and Yang (2015), firm performance is measured by employment. From an economic point

of view, young firms make a significant contribution to employment and job creation (Haltiwanger

et al., 2012), and their struggle during the recent recession may partly account for the recent jobless

recovery. Specifically, here yit is chosen to be the log of employment denoted as log empit. I adopt

the log of employment instead of the employment growth rate, as the latter significantly reduces

the cross-sectional sample size due to the rank requirement for unbalanced panels.

Below, I focus on the following model specification,40

log empit = β log empi,t−1 + λ1i + λ2iR&Di,t−1 + uit, uit ∼ N
(
0, σ2

i

)
,

where R&Dit is given by the ratio of a firm’s R&D employment over its total employment, con-

sidering that R&D employment has more complete observations compared with other innovation

intensity gauges.41

The panel used for estimation spans from 2004 to 2010 with time dimension T = 6.42 The

data for 2011 are reserved for pseudo out-of-sample forecast evaluation. The sample is constructed

as follows. First, for any (i, t) combination where R&D employment is greater than the total

employment, there is an incompatibility issue, so I set R&Dit = NA, which only affects 0.68% of

the observations. Then, I only keep firms with long enough observations according to Assumption

3.5, which ensures identification in unbalanced panels. This results in cross-sectional dimension

N = 654. The proportion of missing values are (#missing obs) / (NT ) = 6.27% . The descriptive

statistics for log empit and R&Dit are summarized in Table 6.1, and the corresponding histograms

are plotted in Figure 6.1, where both distributions are right skewed and may have more than

one peak. Therefore, we anticipate that the proposed predictors with nonparametric priors would

perform well in this scenario.

6.3 Results

The alternative priors are similar to those in the Monte Carlo simulation except for one additional

prior, Heterosk-NP-C/R, where λi can be correlated with yi0 while σ2
i is independent with respect to

firm performance. Further extensions can easily incorporate weights into the estimation procedure.
40See Appendix D.2 for other setups.
41I have also explored other measures of firm performance (e.g. the log of revenue) and innovation activities (e.g. a

binary variable on whether the firm spends any money on R&D, numbers of intellectual properties–patents, copyrights,
or trademarks–owned or licensed by the firm). The relative rankings of density forecasts are generally robust across
measures.

42Note that the estimation sample starts from period 0 (i.e. 2004) and ends at period T (i.e. 2010) with T + 1 = 7
periods in total.
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Table 6.1: Descriptive Statistics for Observable

10% mean med 90% std skew kurt

log emp 0.41 1.44 1.34 2.63 0.86 0.82 3.58
R&D 0.05 0.22 0.17 0.49 0.18 1.21 4.25

Figure 6.1: Histograms for Observables

yi0, by adopting an MGLRx prior on λi and a DPM prior on li = log
σ̄2(σ2

i−σ2)
σ̄2−σ2

i
,.43 The conditioning

set is chosen to be standardized yi0. The standardization ensures numerical stability in practice, as

the conditioning variables enter exponentially into the covariance function for the Gaussian process.

The first two columns in Table 6.2 characterize the posterior estimates of the common parameter

β. In most of the cases, the posterior means are around 0.5 ∼ 0.6, which suggests that the young firm

performance exhibits some degree of persistence, but not remarkably strong, which is reasonable as

young firms generally experience more uncertainty. For Homog and NP-disc, their posterior means

of β are much larger. This may arise from the fact that homogeneous or discrete λi structure is not

able to capture all individual effects, so these estimators may attribute the remaining individual

effects to persistence and thus overestimate β. NP-R also gives a large estimate of β. The reason

is similar – if the true data generating process is correlated random effects/coefficients, the random

effects/coefficients model would miss the effects of the initial condition and misinterpret them as the

persistence of the system. In all scenarios, the posterior standard deviations are relatively small,

which indicates that the posterior distributions are very tight.44

The last two columns in Table 6.2 compare the forecasting performance. The Heterosk-NP-C/R

43It is possible to craft other priors according to the specific heterogeneity structure of the empirical problem at
hand. For example, let λi1 correlate with yi0 while setting λi2 independent of yi0. I will leave this to future exploration.

44Comparing with the literature, the closest one is Zarutskie and Yang (2015) using traditional panel data methods,
where the estimated persistence of log employment is 0.824 and 0.816 without firm fixed effects (Table 2) which is
close to Homog, and 0.228 with firm fixed effects estimated via OLS (Table 4) which is smaller than all the estimates
here.
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Table 6.2: Parameter Estimation and Forecast Evaluation: Young Firm Dynamics

β Forecast
Mean Std MSE* LPS*N

Heterosk NP-C/R 0.52 0.01 0.20*** -228***

Homog 0.89 0.02 8%*** -74***

Homosk NP-C 0.51 0.03 9%*** -52***

Heterosk Flat 0.50 0.00 102%*** -309***

Param 0.56 0.03 7%*** -52***

NP-disc 0.84 0.04 2%*** -20***

NP-R 0.74 0.04 3%*** -16***

NP-C 0.53 0.01 0.1%*** -5***

See the description of Table 5.2 for forecast evaluation. Here Heterosk-NP-C/R is the benchmark for both
normalization and significance tests.

predictor is the benchmark for all comparisons. In terms of point forecasts, most of the estimators are

comparable according to MSE, with only Flat performing significantly poorly. Intuitively, shrinkage

in general leads to better forecasting performance, especially for point forecasts, whereas the Flat

prior does not introduce any shrinkage to individual effects
(
λi, σ

2
i

)
. Conditional on the common

parameter β, the Flat estimator of
(
λi, σ

2
i

)
is a Bayesian analog to individual-specific MLE/OLS

that utilizes only the individual-specific observations, which is inadmissible under fixed T (Robbins,

1956; James and Stein, 1961; Efron, 2012).

For density forecasts measured by LPS, the overall best is the Heterosk-NP-C/R predictor. The

main message is similar to the Monte Carlo simulation of the general model in Subsection 5.4.

In summary, it is crucial to account for individual effects in both coefficients λis and shock sizes

σ2
i s through a flexible nonparametric prior that acknowledges continuity and correlated random

effects/coefficients when the underlying individual heterogeneity is likely to possess these features.

Intuitively, the odds given by the exponential of the difference in LPS indicate that the future

realizations are on average 12% more likely in Heterosk-NP-C/R versus Homog, 60% more likely in

Heterosk-NP-C/R versus Heterosk-Flat, etc. Note that now both NP-R and NP-C are inferior to

NP-C/R where the distribution of λi depends on the initial conditions but the distribution of σ2
i

does not.45

Figure 6.2 provides the histograms of the probability integral transformation (PIT). While LPS

characterizes the relative ranks of predictors, PIT supplements LPS and can be viewed as an ab-

solute evaluation on how well the density forecasts coincide with the true (unobserved) conditional

forecasting distributions with respect to the current information set. In this sense, under the null

hypothesis that the density forecasts coincide with the true data generating process, the probability

45This result cannot be directly compared to the Gibrat’s law literature (Lee et al., 1998; Santarelli et al., 2006),
as the dependent variable here is the log of employment instead of employment growth.

39



Figure 6.2: PIT

Red lines indicate the confidence interval.

integral transforms are i.i.d. U (0, 1) and the histogram is close to a flat line.46 In each subgraph,

the two red lines indicate the confidence interval. We can see that, in NP-C/R, NP-C, and Flat,

the histogram bars are mostly within the confidence band, while other predictors yield apparent

inverse-U shapes. The reason might be that the other predictors do not take correlated random

coefficients into account but instead attribute the subtlety of correlated random coefficients to the

estimated variance, which leads to more diffused predictive distributions.

Figure 6.3 shows the predictive distributions of 10 randomly selected firms. In terms of the

Homog predictor, all predictive distributions share the same Gaussian shape paralleling with each

other. On the contrary, in terms of the NP-C/R predictor, it is clear that the predictive distributions

are fairly different in their center location, variance, and skewness.

Figure 6.4 further aggregates the predictive distributions over sectors based on the two-digit

NAICS codes (Table 6.3). It plots the predictive distributions of the log of the average employment

within each sector. Comparing Homog and NP-C/R across sectors, we can see the following several

patterns. First, NP-C/R predictive distributions tend to be narrower. The reason is that NP-C/R

tailors to each individual firm while Homog prescribes a general model to all the firms, so NP-C/R

yields more precise predictive distributions. Second, NP-C/R predictive distributions have longer

right tails, whereas Homog ones are distributed in the standard bell shape. The long right tails in

NP-C/R concur with the general intuition that good ideas are scarce. Finally, there is substantial

heterogeneity in density forecasts across sectors. For sectors with relatively large average employ-

ment, e.g. construction (sector 23), Homog pushes the forecasts down and hence systematically

underpredicts their future employment, while NP-C/R respects this source of heterogeneity and

46See Diebold et al. (1998) for details of PIT and Amisano and Geweke (2017) for formal PIT tests.
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Figure 6.3: Predictive Distributions: 10 Randomly Selected Firms

Table 6.3: Two-digit NAICS Codes

Code Sector Code Sector

11 Agriculture, Forestry, Fishing
and Hunting

52 Finance and Insurance

21 Mining, Quarrying, and Oil
and Gas Extraction

53 Real Estate and Rental and Leasing

22 Utilities 54 Professional, Scientific, and Technical Services
23 Construction 56 Administrative and Support and Waste

Management and Remediation Services
31-33 Manufacturing 61 Educational Services
42 Wholesale Trade 62 Health Care and Social Assistance
44-45 Retail Trade 71 Arts, Entertainment, and Recreation
48-49 Transportation and

Warehousing
72 Accommodation and Food Services

51 Information 81 Other Services (except Public Administration)

significantly lessens the underprediction problem. On the other hand, for sectors with relatively

small average employment, e.g. retail trade (sector 44), Homog introduces an upward bias into

the forecasts, while NP-C/R reduces such bias by flexibly estimating the underlying distribution of

firm-specific heterogeneity.

The latent heterogeneity structure is presented in Figure 6.5, which plots the joint distributions

of the estimated individual effects and the conditional variable. In all the three subgraphs, the

pairwise relationships among λi,level, λi,RD, and standardized yi0 are nonlinear and exhibit multiple

components, which reassures the utilization of nonparametric prior with correlated random coeffi-

cients. Furthermore, λi,level, λi,RD, and standardized yi0 are positively correlated with each other,

which roughly indicates that larger firms respond more positively to R&D activities within the KFS
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Figure 6.4: Predictive Distributions: Aggregated by Sectors

Subgraph titles are two-digit NAICS codes. Only sectors with more than 10 firms are shown.

Figure 6.5: Joint Distributions of λ̂i and Condition Variable

young firm sample.47

47The model here mainly serves the forecasting purpose, so we need to be careful with any causal interpretation.
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7 Concluding Remarks

This paper proposes a semiparametric Bayesian predictor, which performs well in density forecasts

of individuals in a panel data setup. It considers the underlying distribution of individual effects

and pools the information from the whole cross-section in a flexible and efficient way. Monte

Carlo simulations and an empirical application to young firm dynamics show that the keys for the

better density forecasts are, in order of importance, nonparametric Bayesian prior, cross-sectional

heteroskedasticity, and correlated random coefficients.

Moving forward, I plan to extend my research in the following directions. Theoretically, I will

continue the Bayesian asymptotic discussion with rates of convergence, which will provide more

insight into how N , T , dw, and shock size affect the performance of the proposed semiparametric

Bayesian predictor. Methodologically, I will explore some variations of the current setup. First, some

empirical studies may include a large number of covariates with potential heterogeneous effects

(i.e. more variables included in wi,t−1), so it is both theoretically and empirically desirable to

investigate a variable selection scheme in a high-dimensional nonparametric Bayesian framework.

Chung and Dunson (2012) and Liverani et al. (2015) employ variable selection via binary switches,

which may be adaptable to the panel data setting. Another possible direction is to construct a

Bayesian-Lasso-type estimator coherent with the current nonparametric Bayesian implementation.

Second, I will consider panel VAR (Canova and Ciccarelli, 2013), a useful tool to incorporate several

variables for each of the individuals and to jointly model the evolution of these variables, allowing

us to take more information into account for forecasting purposes and offer richer insights into

the latent heterogeneity structure. Meanwhile, it is also interesting to incorporate extra cross-

variable restrictions derived from economic theories and implement the Bayesian GMM method as

proposed in Shin (2014). Third, I will experiment with nonlinear panel data models, such as the

Tobit model, which helps accommodate firms’ endogenous exit choice. Such extensions would be

numerically feasible, but require further theoretical work. A natural next step would be extending

the theoretical discussion to the family of “generalized linear models”.
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A Notations

U (a, b) represents a uniform distribution with minimum value a and maximum value b. If a = 0

and b = 1, we obtain the standard uniform distribution, U (0, 1).

N
(
µ, σ2

)
stands for a Gaussian/normal distribution with mean µ and variance σ2. Its

probability distribution function (pdf) is given by φ
(
x;µ, σ2

)
. When µ = 0 and σ2 = 1 (i.e.

standard normal), we reduce the notation to φ (x). The corresponding cumulative distribution

functions (cdf) are denoted as Φ
(
x;µ, σ2

)
and Φ (x), respectively. The same convention holds for

multivariate normal, where N (µ,Σ), φ (x;µ,Σ), and Φ (x;µ,Σ) are for the distribution with the

mean vector µ and the covariance matrix Σ.

The gamma distribution is denoted as Ga (a, b) with pdf being fGa (x; a, b) = ba

Γ(a)x
a−1e−bx.

The according inverse gamma distribution is given by IG (a, b) with pdf being fIG (x; a, b) =
ba

Γ(a)x
−a−1e−b/x. The Γ (·) in the denominators is the gamma function.

The inverse Wishart distribution is a generalization of the inverse gamma distribution to

multi-dimensional setups. Let Ω be a d × d positive definite matrix following an inverse Wishart

distribution IW (Ψ, ν), then its pdf is fIW (Ω; Ψ, ν) = |Ψ|
ν
2

2
νd
2 Γd( ν

2
)
|Ω|−

ν+d+1
2 e−

1
2
tr(ΨΩ−1). When Ω

is a scalar, the inverse Wishart distribution is reduced to an inverse gamma distribution with

a = ν/2, b = Ψ/2.

Let G be a distribution drawn from the Dirichlet Process (DP). Denote G ∼ DP (α,G0) ,

if for any partition (A1, · · · , AK), (G (A1) , · · · , G (AK)) ∼ Dir (αG0 (A1) , · · · , αG0 (AK)) . Dir (·)
stands for the Dirichlet distribution, which is a multivariate generalization of the Beta distribution.

An alternative view of DP is given by the stick-breaking process, G =
∑∞

k=1 pk1 (θ = θk), where

θk ∼ G0 and pk ∼ SB (1, α). 1 (·) is an indicator function that equals 1 if the condition in the

parenthesis is satisfied and equals 0 otherwise.

For a generic variable c which can be multi-dimensional, we define a Gaussian process ζ (c) ∼
GP (m (c) , V (c, c̃)) as follows: for any finite set of {c1, c2, · · · , cn}, [ζ (c1) , ζ (c2) , · · · , ζ (cn)]′ has a

joint Gaussian distribution with the mean vector being [m (c1) ,m (c2) , · · · ,m (cn)]′ and the i,j-th

entry of the covariance matrix being V (ci, cj), i, j = 1, · · · , N .

IN is an N ×N identity matrix.

In the panel data setup, for a generic variable z, which can be v, w , x, or y, zit is a dz × 1

vector, and zi,t1:t2 = (zit1 , · · · , zit2) is a dz × (t2 − t1 + 1) matrix.

‖·‖p represents the Lp-norm, e.g. the Euclidean norm for a n-dimensional vector z = [z1, z2, · · · , zn]′

is given by ‖z‖2 =
√
z2

1 + · · ·+ z2
n, and the L1-norm for an integrable function is given by ‖f‖1 =´

|f (x)| dx.

supp (·) denotes the support of a probability measure.

vec (·) denotes matrix vectorization, and ⊗ is the Kronecker product.

A-1



B Explanations and Proofs

B.1 Intuition: MGLRx Prior

Here we give some intuition why the MGLRx Prior is general enough to accommodate a broad class

of conditional distributions.

Define a generic variable z which can represent either λ or l. By Bayes’ theorem,

f (z|c0) =
f (z, c0)

f (c0)
.

The joint distribution in the numerator can be approximated by a mixture of normals

f (z, c0) ≈
∞∑
k=1

p̃kφ
([
z′, c′0

]′
; µ̃k, Ω̃k

)
,

where µ̃k is a (dz + dc0)-element column vector, and Ω̃k is a (dz + dc0)×(dz + dc0) covariance matrix.

µ̃k =
[
µ̃′k,z, µ̃

′
k,c0

]′
,

Ω̃k =

[
Ω̃k,zz Ω̃k,zc0

Ω̃k,c0z Ω̃k,c0c0

]
.

Applying Bayes’ theorem again to the normal kernel for each component k,

φ
([
z′, c′0

]′
; µ̃k, Ω̃k

)
= φ

(
c0; µ̃k,c0 , Ω̃k,c0c0

)
φ
(
z; µk

[
1, c′0

]′
,Ωk

)
,

where µk =
[
µ̃k,z − Ω̃k,zc0Ω̃−1

k,c0c0
µ̃k,c0

]
, Ωk = Ω̃k,zz − Ω̃k,zc0Ω̃−1

k,c0c0
Ω̃′k,zc0 . Combining all the steps

above, the conditional distribution can be approximated as

f (z|c0) ≈
∞∑
k=1

p̃kφ
(
c0; µ̃k,c0 , Ω̃k,c0c0

)
φ
(
z; µk [1, c′0]′ ,Ωk

)
f (y0)

=

∞∑
k=1

pk (c0)φ
(
z; µk

[
1, c′0

]′
,Ωk

)
,

The last line is given by collecting marginals of c0 into pk (c0) =
p̃kφ(c0; µ̃k,c0 ,Ω̃k,c0c0)

f(c0) .

In summary, the current setup is similar to approximating the conditional density via Bayes’

theorem, but does not explicitly model the distribution of the conditioning variable c0, and thus

allows for more relaxed assumptions on it.
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B.2 Identification

Proof. (Proposition 3.3)

Part 2 for cross-sectional heteroskedasticity σ2
i is new. Part 3 for additive individual-heterogeneity

λi follows Liu et al. (2017), which is based on the early works such as Arellano and Bover (1995)

and Arellano and Bonhomme (2012).

1. Identify common parameters β

First, let us perform orthogonal forward differencing, i.e. for t = 1, · · · , T − dw,

ỹit = yit − w′i,t−1

(
T∑

s=t+1

wi,s−1w
′
i,s−1

)−1 T∑
s=t+1

wi,s−1yis, (B.1)

x̃i,t−1 = xi,t−1 − w′i,t−1

(
T∑

s=t+1

wi,s−1w
′
i,s−1

)−1 T∑
s=t+1

wi,s−1xi,s−1. (B.2)

Then, β is identified given Assumption 3.1 (2-d) and the following moment conditions

E
∑
t

x̃i,t−1

(
ỹit − x̃′i,t−1β

)
= 0.

2. Identify the distribution of shock sizes fσ
2

After orthogonal forward differencing, define

ũit = ỹit − β′x̃i,t−1,

σ̂2
i =

T−dw∑
t=1

ũ2
it = σ2

i k
2
i .

where k2
i ∼ χ2 (T − dw) follows an i.i.d. chi-squared distribution with (T − dw) degrees of freedom.

Note that Fourier transform (i.e. characteristic functions) is not suitable for disentangling prod-

ucts of random variables, so I resort to the Mellin transform (Galambos and Simonelli, 2004). For

a generic variable x, the Mellin transform of f (x) is specified as48

Mx (ξ) =

ˆ
xiξf (x) dx,

which exists for all ξ ∈ R.

Considering that σ2
i |ci0 and k2

i are independent, we have

Mσ̂2 (ξ|c) = Mσ2 (ξ|c)Mk2 (ξ) .

Note that the non-vanishing characteristic function of σ2 implies non-vanishing Mellin transform

48See the discussion on page 16 of Galambos and Simonelli (2004) for the generality of this specification.
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Mσ2 (ξ|c) (almost everywhere), so it is legitimate to take the logarithm of both sides,

logMσ̂2 (ξ|c) = logMσ2 (ξ|c) + logMk2 (ξ) .

Taking the second derivative with respect to ξ, we get

∂2

∂ξ∂ξ′
logMσ2 (ξ|c) =

∂2

∂ξ∂ξ′
logMσ̂2 (ξ|c)− ∂2

∂ξ∂ξ′
logMk2 (ξ) .

The Mellin transform of chi-squared distribution Mk2 (ξ) is a known functional form. In addition,

we have

logMσ2 (0|c) = logMσ̂2 (0|c)− logMk2 (0) = 0,

∂

∂ξ
logMσ2 (0|c) =

∂

∂ξ
logMσ̂2 (0|c)− ∂

∂ξ
logMk2 (0)

= i
(
E
(

log σ̂2
∣∣ c)− E

(
log k2

∣∣ c)) .
Based on Pav (2015),

E
(

log k2
∣∣ c) = log 2 + ψ

(
T − dw

2

)
,

where ψ (·) is the derivative of the log of the Gamma function.

Given logMσ2 (0|c), ∂
∂ξ logMσ2 (0|c), and ∂2

∂ξ∂ξ′ logMσ2 (ξ|c), we can fully recover logMσ2 (ξ|c)
and hence uniquely determine fσ

2
. See Theorem 1.19 in Galambos and Simonelli (2004) for the

uniqueness.

3. Identify the distribution of individual effects fλ

Define

ẙi,1:T = yi,1:T − β′xi,0:T−1 = λ′iwi,0:T−1 + ui,1:T .

Let Y̊ = ẙi,1:T , W = w′i,0:T−1, Λ = λi and U = ui,1:T . The above expression can be simplified as

Y̊ = WΛ + U.

Denote FY̊ , FΛ and FU as the conditional characteristic functions for Y̊ , Λ and U , respectively.

Based on Assumption 3.1 (2-a), FΛ and FU are non-vanishing almost everywhere. Then, we obtain

logFΛ

(
W ′ξ|c

)
= logFY̊ (ξ|c)− logFU (ξ|c) ,

where FY̊ is constructed from the observables and the common parameters identified in part 1, and

FU is based on the fσ
2

identified in part 2. Let ζ = W ′ξ and AW = (W ′W )−1W ′, then the second
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derivative of logFΛ (ζ|c) is characterized by

∂2

∂ζ∂ζ ′
logFΛ (ζ|c) = AW

(
∂2

∂ξ∂ξ′
(
logFY̊ (ξ|c)− logFU (ξ|c)

))
A′W .

Moreover,

logFΛ (0|c) = 0,

∂

∂ζ
logFΛ (0|c) = iAWE

(
Y̊
∣∣∣ c) ,

so we can pin down log Λ (ζ|c) and fλ.

The proof for unbalanced panels follows in a similar manner.

B.3 Posterior Consistency: Random Coefficients Model

Proof. (Proposition 3.10)

The proof follows ?, which is based on the early work by Barron et al. (1999) and Ghosal and

van der Vaart (2007). Now we significantly extend the discussion to take care of the deconvolution

and dynamic panel data structure.

1. Random coefficients: cross-sectional homoskedasticity

The posterior probability of the alternative region can be decomposed as

Π ((ϑ, f) : ‖ϑ− ϑ0‖2 ≥ δ or ‖f − f0‖1 ≥ ε|D)

≤Πϑ (‖ϑ− ϑ0‖2 ≥ δ|D) + Πf
(
{‖f − f0‖1 ≥ ε}

⋂
FcN
∣∣∣D)

+ Π
(
{‖f − f0‖1 ≥ ε}

⋂
FN , ‖ϑ− ϑ0‖2 < δ

∣∣∣D) .
It suffices to show that (a) for all δ > 0, Πϑ (‖ϑ− ϑ0‖2 ≥ δ|D)→ 0, (b) for all ε > 0,

Πf ({‖f − f0‖1 ≥ ε}
⋂
FcN |D)→ 0, and (c) for all ε > 0, Π ({‖f − f0‖1 ≥ ε}

⋂
FN , ‖ϑ− ϑ0‖2 < δ (ε)|D)→

0. We let δ depend on ε in part (c) because part (a) holds for all δ > 0.

(a) For all δ > 0, Πϑ (‖ϑ− ϑ0‖2 ≥ δ|D)→ 0.

After orthogonal forward differencing in equations (B.1) and (B.2), the posterior of
(
β, σ2

)
is
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given by

p
(
β, σ2|D

)
∝ φ

(
β;mβ, ψβσ2

)
fIG

(
σ2; aσ

2
, bσ

2
)
dΠϑ

(
β, σ2

)
,

ψβ =

∑
i,t

x̃i,t−1x̃
′
i,t−1

−1

,

mβ = ψβ

∑
i,t

x̃i,t−1ỹit

 ,

aσ
2

=
N (T − dw)

2

bσ
2

=
1

2

∑
i,t

ỹ2
it −mβ′

(
ψβ
)−1

mβ

 .

Then, the traditional posterior consistency argument implies that
(
β, σ2

)∣∣D converges to
(
β0, σ

2
0

)
,

given Assumption 3.1 (2-c) (E
[∑

t x̃i,t−1x̃
′
i,t−1

]
has full rank) and Proposition 3.10 condition 3 (ϑ0

is in the interior of supp
(
Πϑ
)
).

(b) For all ε > 0, Πf ({‖f − f0‖1 ≥ ε}
⋂
FcN |D)→ 0.

Based on Lemma 1 in Canale and De Blasi (2017), Assumption 3.9 (1, 2-a) ensures that the KL

property holds for the distribution of λ, i.e. for all ε > 0,

Πf

(
f ∈ F :

ˆ
f0 (λ) log

f0 (λ)

f (λ)
dλ < ε

)
> 0. (B.3)

Now, we need to establish an altered KL property specified on the observables. First, the individual-

specific likelihood function is characterized as

g
(
yi,0:T , x

∗
i,0:T−1, w

I
i,0:T−1|DA

)
=
∏
t

p
(
xP∗i,t−1 |yi,t−1, ci,0:t−2

)
p (c∗i0|DA)

ˆ ∏
t

φ
(
yit;β

′xi,t−1 + λ′iwi,t−1, σ
2
)
f (λi) dλi, (B.4)

and g0

(
yi,0:T , x

∗
i,0:T−1, w

I
i,0:T−1|DA

)
corresponds to the true data generating process

(
β0, σ

2
0, f0

)
.

Then, we would like to prove that for all ε > 0,

Π


f ∈ F ,

(
β, σ2

)
∈ Rdx × R+ :

ˆ
g0

(
yi,0:T , x

∗
i,0:T−1, w

I
i,0:T−1|DA

)
log

g0

(
yi,0:T , x

∗
i,0:T−1, w

I
i,0:T−1|DA

)
g
(
yi,0:T , x∗i,0:T−1, w

I
i,0:T−1|DA

) dyi,0:Tdx
∗
i,0:T−1dw

I
i,0:T−1 < ε

 > 0,

(B.5)
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The KL divergence of g with respect to g0 can be further decomposed as

ˆ
g0

(
yi,0:T , x

∗
i,0:T−1, w

I
i,0:T−1|DA

)
log

g0

(
yi,0:T , x

∗
i,0:T−1, w

I
i,0:T−1|DA

)
g
(
yi,0:T , x∗i,0:T−1, w

I
i,0:T−1|DA

) dyi,0:Tdx
∗
i,0:T−1dw

I
i,0:T−1

=

ˆ
g0

(
yi,0:T , x

∗
i,0:T−1, w

I
i,0:T−1|DA

)
log

´ ∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f0 (λi) dλi´ ∏

t φ (yit;β′xi,t−1 + λ′iwi,t−1, σ2) f (λi) dλi
dyi,0:Tdx

∗
i,0:T−1dw

I
i,0:T−1

=

ˆ
g0

(
yi,0:T , x

∗
i,0:T−1, w

I
i,0:T−1|DA

)
log

´ ∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f0 (λi) dλi´ ∏

t φ
(
yit;β′0xi,t−1 + λ′iwi,t−1, σ2

0

)
f (λi) dλi

dyi,0:Tdx
∗
i,0:T−1dw

I
i,0:T−1

+

ˆ
g0

(
yi,0:T , x

∗
i,0:T−1, w

I
i,0:T−1|DA

)
log

´ ∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f (λi) dλi´ ∏

t φ (yit;β′xi,t−1 + λ′iwi,t−1, σ2) f (λi) dλi
dyi,0:Tdx

∗
i,0:T−1dw

I
i,0:T−1,

where the first equality is given by crossing out common factors in the numerator and denominator.

For the first term, define h (x) = x log x, a (λi) =
∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f0 (λi), A =´

a (λi) dλi, b (λi) =
∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f (λi), B =

´
b (λi) dλi. We can rewrite the

integral over λi as

ˆ ∏
t

φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f0 (λi) dλi log

´ ∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f0 (λi) dλi´ ∏

t φ
(
yit;β′0xi,t−1 + λ′iwi,t−1, σ2

0

)
f (λi) dλi

=A · log
A

B
= B · g

(
A

B

)
= B · g

(ˆ
b (λi)

B
· f0 (λi)

f (λi)
dλi

)
≤
ˆ
b (λi) g

(
f0 (λi)

f (λi)

)
dλi

=

ˆ ∏
t

φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f0 (λi) log

f0 (λi)

f (λi)
dλi, (B.6)

where the inequality is given by Jensen’s inequality. Then, further integrating the above expression

over
(
yi,0:T , x

∗
i,0:T−1, w

I
i,0:T−1

)
, we have

ˆ
g0

(
yi,0:T , x

∗
i,0:T−1, w

I
i,0:T−1|DA

)
log

´ ∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f0 (λi) dλi´ ∏

t φ (yit;β′xi,t−1 + λ′iwi,t−1, σ2) f0 (λi) dλi
dyi,0:Tdx

∗
i,0:T−1dw

I
i,0:T−1

≤
ˆ ∏

t

p
(
xP∗i,t−1 |yi,t−1, ci,0:t−2

)
p (c∗i0|DA)

∏
t

φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
log

f0 (λi)

f (λi)
dyi,0:Tdx

∗
i,0:T−1dw

∗
i,0:T−1

·
ˆ
f0 (λi) log

f0 (λi)

f (λi)
dλi,

where the inequality follows the above expression (B.6). According to the KL property of the dis-

tribution of λ in equation (B.3), for all ε′ > 0, there exists Gfε′ =
{
f ∈ F :

´
f0 (λ) log f0(λ)

f(λ) dλ < ε′
}

such that f0 is in the interior of Gfε′ , Πf
(
Gfε′
)
> 0, and the first term is less than ε′ for all f ∈ Gfε′ .
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For the second term, we first employ the convexity of KL divergence,

ˆ
g0

(
yi,0:T , x

∗
i,0:T−1, w

I
i,0:T−1|DA

)
log

´ ∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f (λi) dλi´ ∏

t φ (yit;β′xi,t−1 + λ′iwi,t−1, σ2) f (λi) dλi
dyi,0:Tdx

∗
i,0:T−1dw

I
i,0:T−1

≤
ˆ ∏

t

p
(
xP∗i,t−1 |yi,t−1, ci,0:t−2

)
p (c∗i0|DA)

´ ∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f0 (λi) dλi´ ∏

t φ
(
yit;β′0xi,t−1 + λ′iwi,t−1, σ2

0

)
f (λi) dλi

·
∏
t

φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f (λi) log

∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)∏
t φ (yit;β′xi,t−1 + λ′iwi,t−1, σ2)

dλidyi,0:Tdx
∗
i,0:T−1dw

I
i,0:T−1.

=

ˆ ∏
t

p
(
xP∗i,t−1 |yi,t−1, ci,0:t−2

)
p (c∗i0|DA)

∏
t

φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f0 (λi)

·

[ˆ ∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f (λi)´ ∏

t φ
(
yit;β′0xi,t−1 + λ′iwi,t−1, σ2

0

)
f (λi) dλi

log

∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)∏
t φ (yit;β′xi,t−1 + λ′iwi,t−1, σ2)

dλi

]
· dλidyi,0:Tdx

∗
i,0:T−1dw

I
i,0:T−1. (B.7)

Note that

ˆ ∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f (λi)´ ∏

t φ
(
yit;β′0xi,t−1 + λ′iwi,t−1, σ2

0

)
f (λi) dλi

log

∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)∏
t φ (yit;β′xi,t−1 + λ′iwi,t−1, σ2)

dλi

=

ˆ
φ
(
λi;m (β0) ,Σ

(
σ2

0

))
f (λi)´

φ
(
λi;m (β0) ,Σ

(
σ2

0

))
f (λi) dλi

log

∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)∏
t φ (yit;β′xi,t−1 + λ′iwi,t−1, σ2)

dλi, (B.8)

where

m (β) =

(∑
t

wi,t−1w
′
i,t−1

)−1∑
t

wi,t−1

(
yit − β′xi,t−1

)
,

Σ
(
σ2
)

= σ2

(∑
t

wi,t−1w
′
i,t−1

)−1

.
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The log of the ratio of normal distributions has an analytical form,

log

∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)∏
t φ (yit;β′xi,t−1 + λ′iwi,t−1, σ2)

=
T

2

(
log σ2 − log σ2

0

)
+

1

2

∑
t

(
yit − β′xi,t−1 − λ′iwi,t−1

)2( 1

σ2
− 1

σ2
0

)

+
∑
t

(yit − β′xi,t−1 − λ′iwi,t−1)2 − (yit − β′0xi,t−1 − λ′iwi,t−1)2

2σ2
0

=
T

2

(
log σ2 − log σ2

0

)
+

1

2

∑
t

(
yit − β′xi,t−1 − λ′iwi,t−1

)2( 1

σ2
− 1

σ2
0

)

+
∑
t

(β′xi,t−1)2 − (β′0xi,t−1)2 − 2 (yit − λ′iwi,t−1) (β − β0)′ xi,t−1

2σ2
0

.

For all ε′ > 0, there exists Gσ
2

ε′ =
{
σ2 ∈ σ2

0 [1, 1 + η)
}

such that σ2
0 is on the boundary of Gσ

2

ε′ ,

Πσ2
(
Gσ

2

ε′

)
> 0, and the sum of the first two terms is less than ε′ = T

2 log (1 + η). Given that T is

finite and that wi,0:T−1 is bounded due to Assumption 3.8 (1), the last term is of order

O

((
σ2

0

)−1 ‖β − β0‖2
∑
t

(
y2
it + ‖xi,t−1‖22 + ‖λi‖22

))
. (B.9)

The term
(
σ2

0

)−1
can be ignored in cross-sectional homoskedastic cases, but I keep it here so that

the derivation is more comparable to cross-sectional heteroskedastic cases. Considering that f (λi)

is characterized by an infinite mixture of multivariate normals, we have

φ
(
λi;m (β0) ,Σ

(
σ2

0

))
f (λi)

=φ
(
λi;m (β0) ,Σ

(
σ2

0

))∑
k

pkφ (λi;µk,Ωk)

=
∑
k

wk
(
β0, σ

2
0

)
φ
(
λi;mk

(
β0, σ

2
0

)
,Σk

(
σ2

0

))
,

where

mk (β) = Σk

(
σ2
) (

Σ
(
σ2
)−1

m (β) + Ω−1
k µk

)
,

Σk

(
σ2
)

=
(

Σ
(
σ2
)−1

+ Ω−1
k

)−1
,

wk
(
β, σ2

)
= pk

∣∣Σk

(
σ2
)∣∣

(2π)dw/2 |Ωk| |Σ (σ2)|
exp

(
−1

2

(
µ′kΩ

−1
k µk +m (β)′Σ

(
σ2
)−1

m (β)

−mk

(
β, σ2

)′
Σk

(
σ2
)−1

mk

(
β, σ2

) )) .
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Therefore,

h (λi) =

ˆ
φ
(
λi;m (β0) ,Σ

(
σ2

0

))
f (λi)´

φ
(
λi;m (β0) ,Σ

(
σ2

0

))
f (λi) dλi

=
∑
k

wk
(
β0, σ

2
0

)∑
k wk

(
β0, σ2

0

)φ (λi;mk

(
β0, σ

2
0

)
,Σk

(
σ2

0

))
(B.10)

is an infinite mixture of normals as well, and there exists Gf∗ε′ ∈ G
f
ε′ such that for all f ∈ Gf∗ε′ ,

ˆ
h (λi) ‖λi‖22 dλi = O

(
‖m (β0)‖22

)
= O

(∑
t

(
y2
it + ‖xi,t−1‖22

))
. (B.11)

Combining expressions (B.9), (B.10), and (B.11), we see that (B.8) is of the order

O

((
σ2

0

)−1 ‖β − β0‖2
∑
t

(
y2
it + ‖xi,t−1‖22

))
.

Now let us proceed with the integration in expression (B.7). First, collecting terms related to

yiT |ci,T−1,

ˆ
φ
(
yiT ;β′0xi,T−1 + λ′iwi,T−1, σ

2
0

)
O
((
σ2

0

)−1 ‖β − β0‖2 y
2
iT

)
dyiT

=O
((
σ2

0

)−1 ‖β − β0‖2
(
‖xi,T−1‖22 + ‖λi‖22

))
. (B.12)

Next, collecting terms related to xP∗i,T−1 |yi,T−1, ci,0:T−2 ,

ˆ
p
(
xP∗i,t−1 |yi,t−1, ci,0:t−2

)
O
((
σ2

0

)−1 ‖β − β0‖2
∥∥xP∗i,T−1

∥∥2

2

)
.

Assumption 3.8 (3) ensures that for all ε′ > 0, there exists C > 0 such that

ˆ
‖xP∗i,T−1‖2

≥C

∥∥xP∗i,T−1

∥∥2

2
p
(
xP∗i,T−1 |yi,T−1, ci,0:T−2

)
< ε′.

When
∥∥∥xP∗i,T−1

∥∥∥
2
< C, for all ε′ > 0, there exists Gβε′,T such that β0 is in the interior of Gβε′,T ,

Πβ
(
Gβε′,T

)
> 0, and the integration with respect to xP∗i,T−1 |yi,T−1, ci,0:T−2 is less than ε′.

Now the remaining terms in expression (B.12) are of order

O
((
σ2

0

)−1 ‖β − β0‖2
(
y2
i,T−1 +

∥∥xOi,T−1

∥∥2

2
+ ‖λi‖22

))
.

As T is finite, continuing with t = T − 2, T − 3, · · · , 2, we can employ the tail conditions of

xP∗i,t−1 |yi,t−1, ci,0:t−2 to obtain Gβε′,t. Furthermore, when t = 1, Gβε′,1 is constructed via the tail

A-10



conditions of λi, x
P
i0, and xOi,0:T−1 in Assumption 3.9 (1-e) and Assumption 3.8 (2). Hence, the

relevant set of β is charaterized by Gβε′ =
⋂
tG

β
ε′,t, and we achieve the altered KL property specified

on the observables in expression (B.5).

Following Barron et al. (1999) Lemma 4, the altered KL property in expression (B.5) ensures

that for all ε′ > 0,

P∞0

ˆ ∏
i≤N

g
(
yi,0:T , x

∗
i,0:T−1, w

I
i,0:T−1|DA

)
g0

(
yi,0:T , x∗i,0:T−1, w

I
i,0:T−1|DA

)dΠ (ϑ, f) ≤ exp
(
−Nε′

)
, infinitely often

∣∣∣∣∣∣DA

 = 0,

(B.13)

where P∞0 is characterized by the true data generating process when N →∞. Based on Assumption

3.9 (2-b), we can obtain Π (FcN ) = O (exp (−βN)) for some β > 0. Therefore, Πf ({‖f − f0‖1 ≥ ε}
⋂
FcN |D)→

0 in P∞0 -probability.

(c) For all ε > 0, Π ({‖f − f0‖1 ≥ ε}
⋂
FN , ‖ϑ− ϑ0‖2 < δ (ε)|D)→ 0.49

Note that

‖g − g0‖1

=

ˆ ∣∣∣∣∣∏
t

p
(
xP∗i,t−1 |yi,t−1, ci,0:t−2

)
p (c∗i0|DA)

ˆ ( ∏
t φ
(
yit;β

′xi,t−1 + λ′iwi,t−1, σ
2
)
f (λi)

−
∏
t φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

)
f0 (λi)

)
dλi

∣∣∣∣∣
· dyi,0:Tdx

∗
i,0:T−1dw

I
i,0:T−1.

Let

A ≡
ˆ ∏

t

p
(
xP∗i,t−1 |yi,t−1, ci,0:t−2

)
p (c∗i0|DA)

∏
t

φ
(
yit;β

′xi,t−1 + λ′iwi,t−1, σ
2
)
dyi,0:Tdx

∗
i,0:T−1dw

I
i,0:T−1

·
ˆ
|f (λi)− f0 (λi)| dλi

= ‖f − f0‖1 ,

B ≡
ˆ ∏

t

p
(
xP∗i,t−1 |yi,t−1, ci,0:t−2

)
p (c∗i0|DA)

∑
t

[
t−1∏
τ=1

φ
(
yit;β

′xi,t−1 + λ′iwi,t−1, σ
2
)

·
T∏

τ=t+1

φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

) ∣∣∣∣∣ φ
(
yit;β

′xi,t−1 + λ′iwi,t−1, σ
2
)

−φ
(
yit;β

′
0xi,t−1 + λ′iwi,t−1, σ

2
0

) ∣∣∣∣∣
]

·dyi,0:Tdx
∗
i,0:T−1dw

I
i,0:T−1 · f0 (λi) dλi.

Same as the iterated integral argument for the first term in part (b) based on the tail conditions in

Assumption 3.8, we can establish that for all ε′ > 0, there exists δ > 0, such that B < ε′ as long as

49We let δ depend on ε in part (c) because part (a) holds for all δ > 0.
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‖ϑ− ϑ0‖2 < δ. Note that

‖f − f0‖1 − ε
′ < A−B ≤ ‖g − g0‖1 ≤ A+B < ‖f − f0‖1 + ε′,

then the distance between g and g0 is comparable to the distance between f and f0.

More rigorously, let ε1 = ε/9 and F1 = {f ∈ F : ‖f − f0‖1 < ε = 9ε1}. For small η ∈
(
0, 1

9

)
,

define δη (ε) such that B < ηε as long as ‖ϑ− ϑ0‖2 < δη (ε), then when f ∈ F c1 ,

‖g − g0‖1 > ‖f − f0‖1 − ηε > 8ε1.

Let G be the space induced by f ∈ F and ‖ϑ− ϑ0‖2 < δη (ε) according to the likelihood function in

equation (B.4), then the covering number

N (ε1, G) ≤ N (ε1 (1− 9η) , F ) ,

where G ∈ G induced by F ∈ F .

Further define

RN (ϑ, f) =
∏
i≤N

g
(
yi,0:T , x

∗
i,0:T−1, w

I
i,0:T−1|DA

)
g0

(
yi,0:T , x∗i,0:T−1, w

I
i,0:T−1|DA

) ,
and HN as the event where

ˆ
RN (ϑ, f) dΠ (ϑ, f) ≥ exp

(
−γ0Nε

2
1

)
, γ0 = γ (1− 9η)2 ,

for the γ in Assumption 3.9 (2-b). Equation (B.13) implies that PN0 (HN |DA)→ 1, and hence

PN0
[

Π
(
F c1
⋂
FN , ‖ϑ− ϑ0‖2 < δη (ε)

∣∣∣D)∣∣∣DA

]
=PN0

[
Π
(
F c1
⋂
FN , ‖ϑ− ϑ0‖2 < δη (ε)

∣∣∣D)1 (HN )
∣∣∣DA

]
+ op (1) .

Note that based on Ghosal and van der Vaart (2007) Corollary 1, for any setQ with infg∈Q ‖g − g0‖1 ≥
8ε1,50 for any γ1, γ2 > 0, there exists a test ϕN such that

ENg0
(ϕN |DA) ≤

√
γ2

γ1
N (ε1,Q) exp

(
−Nε21

)
and sup

g∈Q
ENg (1− ϕN |DA) ≤

√
γ1

γ2
exp

(
−Nε21

)
.

Let G1 be the induced set by F1, and GN,j be the induced set by FN,j . Therefore, we can construct

50The original Ghosal and van der Vaart (2007) Corollary 1 considers the Hellinger distance, which is defined as

dH (g, g0) =
√´ (√

g −√g0

)2
. Note that d2

H (g, g0) ≤ ‖g − g0‖1 ≤ 2dH (g, g0), so infg∈Q dH (g, g0) ≥ 4ε1.
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tests {ϕN,j}, such that

PN0
[

Π
(
F c1
⋂
FN,j , ‖ϑ− ϑ0‖2 < δη (ε)

∣∣∣D)1 (HN )
∣∣∣DA

]
≤PN0 (ϕN,j |DA) + PN0

[
(1− ϕN,j)

ˆ
RN (ϑ, f) 1

(
F c1
⋂
FN,j , ‖ϑ− ϑ0‖2 < δη (ε)

)
dΠ (ϑ, f)

∣∣∣∣DA

]
exp

(
γ0Nε

2
1

)
≤ENg0

(ϕN,j |DA) + sup
g∈Gc1

⋂
GN,j

ENg (1− ϕN,j |DA) ·Π (FN,j , ‖ϑ− ϑ0‖2 < δη (ε)) exp
(
γ0Nε

2
1

)
≤ENg0

(ϕN,j |DA) + sup
g∈Gc1

⋂
GN,j

ENg (1− ϕN,j |DA) ·Πf (FN,j) exp
(
γ0Nε

2
1

)
≤
√
γ2,j

γ1,j
N (ε1,GN,j) exp

(
−Nε21

)
+

√
γ1,j

γ2,j
Πf (FN,j) exp

(
−Nε21 (1− γ0)

)
=
√
N (ε1,GN,j) Πf (FN,j)

(
exp

(
−Nε21

)
+ exp

(
−Nε21 (1− γ0)

))
.

The last line is given by plugging in γ1,j = N (ε1,GN,j) and γ2,j = Πf (FN,j). Finally, as N (ε1,GN,j)
less than N

(
ε1

1+η ,FN,j
)

,

PN0
[

Π
(
F c1
⋂
FN , ‖ϑ− ϑ0‖2 < δη (ε)

∣∣∣D)1 (HN )
∣∣∣DA

]
≤O

∑
j

√
N (ε1,GN,j) Πf (FN,j) exp

(
−Nε21 (1− γ0)

)
≤O

∑
j

√
N (ε1 (1− 9η) ,FN,j) Πf (FN,j) exp

(
−Nε21 (1− γ0)

)
=o
(

exp
(

(1− γ) (1− 9η)2Nε21

)
exp

(
−Nε21 (1− γ0)

))
=o
(

exp
(
−Nε21

(
1− (1− 9η)2

)))
→0.

The fourth line follows the summability condition of covering numbers as in Lemma 3.7 condition

2-b, which can be deduced from Assumption 3.9 (2-b).

2. Random coefficients: cross-sectional heteroskedasticity

(a) For all δ > 0, Πϑ (‖ϑ− ϑ0‖2 ≥ δ|D)→ 0.

A-13



After orthogonal forward differencing, the posterior of β is given by

p (β|D) ∝
ˆ
φ
(
β;mβ, ψβσ2

i

)
fσ

2 (
σ2
i

)
dΠβ,fσ

2 (
β, fσ

2
)
dσ2

i ,

ψβ =

∑
i,t

x̃i,t−1x̃
′
i,t−1

−1

,

mβ = ψβ

∑
i,t

x̃i,t−1ỹit

 .

Note that
´
φ
(
β;mβ, ψβσ2

i

)
fσ

2 (
σ2
i

)
dΠfσ

2 (
fσ

2
)
dσ2

i is a scale mixture of normals, and its variance

is ψβEσ2
i ≤ ψβσ̄2, σ̄2 is the upper bound specified in Proposition 3.10 condition 4-b. Therefore,

β|D converges to β0 given Assumption 3.1 (2-c) and Proposition 3.10 condition 3.

(b) For all ε > 0, Πf ({‖f − f0‖1 ≥ ε}
⋂
FcN |D)→ 0.

As λ and σ2 are independent, we have

dKL (f0, f) = dKL

(
fλ0 f

σ2

0 , fλfσ
2
)

= dKL

(
fλ0 , f

λ
)

+ dKL

(
fσ

2

0 , fσ
2
)
.

In addition, since the KL divergence is invariant under variable transformations,

dKL

(
fσ

2

0 , fσ
2
)

= dKL

(
f l0, f

l
)
.

Assumption 3.9 (1, 2-a) ensures that the KL property holds for f .

Now the individual-specific likelihood function is

g
(
yi,0:T , x

∗
i,0:T−1, w

I
i,0:T−1|DA

)
=
∏
t

p
(
xP∗i,t−1 |yi,t−1, ci,0:t−2

)
p (c∗i0|DA)

ˆ ∏
t

φ
(
yit;β

′xi,t−1 + λ′iwi,t−1, σ
2
i

)
f
(
λi, σ

2
i

)
dλidσ

2
i ,

(B.14)

and we want to prove the altered KL property specified on the observables in expression (B.5). As

in the proof of part (1-b), similar convexity reasoning and tail conditions can be applied to bound

the KL divergency of g with respect to g0. Note that all bounds are proportional to
(
σ2
i

)−1
, which

is further integrated out via fσ
2

0

(
σ2
i

)
. This integration exists due to the integrability of f l0 (li) .

(c) For all ε > 0, Π ({‖f − f0‖1 ≥ ε}
⋂
FN , ‖ϑ− ϑ0‖2 < δ (ε)|D)→ 0.51

We can show that the distance between g and g0 is comparable to the distance between f and

f0 in a similar manner to part (1-c). The rest of the proof remains the same.

51We let δ depend on ε in part (c) because part (a) holds for all δ > 0.

A-14



B.4 Posterior Consistency: Correlated Random Coefficients Model

Proof. (Proposition 3.13)

The proof builds on Pati et al. (2013)’s study on univariate conditional density estimation and

introduces two major extensions: (1) multivariate conditional density estimation based on location-

scale mixture, and (2) deconvolution and dynamic panel data structure.

Part (a) for common parameters is the same as the random coefficients cases.

Parts (b) and (c) for the underlying distribution of individual heterogeneity need more careful

treatment. First, we replace f (·) with its conditional counterpart f (·|ci0) in the individual-specific

likelihoods in equations (B.4) and (B.14).

Second, for z = λ (and l), Assumption 3.12 condition 1 (on fz0 ), conditions 2-a,b (on Gz0), and

condition 3-a (on stick breaking process) ensure the induced q0-integrated KL property on the

conditional distribution of zi, i.e. for all ε > 0,

Πfz
(
fz ∈ Fz :

ˆ [ˆ
f0 (z|c0) log

f0 (z|c0)

f (z|c0)
dz

]
q0 (c0) dc0 < ε

)
> 0.

Pati et al. (2013) Theorem 5.3 proved it for univariate z. For multivariate z, we work with the

spectral norm for the positive definite component covariance matrices and consider ‖Ω‖2 ∈ [σ, σ̄]

as the approximating compact set in the proof of Pati et al. (2013) Lemma 5.5, Theorem 5.6, and

Corollary 5.7.

Third, Assumption 3.12 condition 2-c (on Gz0) and conditions 3-b,c (on stick breaking process)

address the sieve property stated in Lemma 3.7 (2). Now the covering number is based on the

induced q0-integrated L1-distance ‖fz − fz0 ‖1 ≡
´ [´

|fz (z|c0)− fz0 (z|c0)| dz
]
q0 (c0) dc0. Condition

2-c resembles the random coefficients cases while expands component means to include coefficients

on ci0. Comparing to Pati et al. (2013) Theorem 5.10, condition 2-c here imposes weaker tail con-

ditions on Gz0 and hence is able to accommodate multivariate normal inverse Wishart components.

Conditions 3-b,c on stick breaking process directly follow Pati et al. (2013) Remark 5.12 and Lemma

5.15. The rest of the proof parallels the random coefficients cases.

B.5 Density Forecasts

Proof. (Proposition 3.14)

1. Random coefficients: cross-sectional homoskedasticity

In this part, I am going to prove that for any i and any ε > 0, as N →∞,

P
(∥∥∥f condi,T+1 − foraclei,T+1

∥∥∥
1
< ε
∣∣∣D)→ 1.
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Following the definitions in Section 2.2, we have

ˆ ∣∣∣f condi,T+1 (y|ϑ, f)− foraclei,T+1 (y)
∣∣∣ dy

=

ˆ ∣∣∣∣ˆ p (y|hi, ϑ, wiT , xiT ) p (hi |ϑ, f,Di, DA ) dhi −
ˆ
p (y|hi, ϑ0, wiT , xiT ) p (hi |ϑ0, f0, Di, DA ) dhi

∣∣∣∣ dy
=

ˆ ∣∣∣∣´ p (y|hi, ϑ, wiT , xiT )
∏
t p (yit|hi, ϑ, wi,t−1, xi,t−1) f (hi) dhi´ ∏

t p (yit|hi, ϑ, wi,t−1, xi,t−1) f (hi) dhi

−
´
p (y|hi, ϑ0, wiT , xiT )

∏
t p (yit|hi, ϑ0, wi,t−1, xi,t−1) f0 (hi) dhi´ ∏

t p (yit|hi, ϑ0, wi,t−1, xi,t−1) f0 (hi) dhi

∣∣∣∣ dy (B.15)

=

ˆ ∣∣∣∣∣
´
φ
(
y;β′xiT + λ′iwiT , σ

2
)
φ
(
λi;m (β) ,Σ

(
σ2
))
f (λi) dλi´

φ (λi;m (β) ,Σ (σ2)) f (λi) dλi

−
´
φ
(
y;β′0xiT + λ′iwiT , σ

2
0

)
φ
(
λi;mi (β0) ,Σi

(
σ2

0

))
f0 (λi) dλi´

φ
(
λi;m (β0) ,Σ

(
σ2

0

))
f0 (λi) dλi

∣∣∣∣∣ dy.
To obtain the last equality, we first rewrite

∏
t p
(
yit
∣∣λi, β, σ2, yi,t−1

)
as a distribution of λi∏

t

p
(
yit
∣∣λi, β, σ2, yi,t−1

)
= C

(
β, σ2

)
φ
(
λi;m (β) ,Σ

(
σ2
))
,

where

m (β) =

(∑
t

wi,t−1w
′
i,t−1

)−1∑
t

wi,t−1

(
yit − β′xi,t−1

)
,

Σ
(
σ2
)

= σ2

(∑
t

wi,t−1w
′
i,t−1

)−1

,

CA
(
β, σ2

)
=

((
2πσ2

)T−dw
2

∣∣∣∣∣∑
t

wi,t−1w
′
i,t−1

∣∣∣∣∣
)−1

· exp

(
−1

2

(∑
t (yit − β′xi,t−1)2

σ2
−m (β)′

(
Σ
(
σ2
))−1

m (β)

))
,

and then cross out the common factor in the numerator and denominator. Set

A =

ˆ
φ
(
λi;m (β) ,Σ

(
σ2
))
f (λi) dλi,

B (y) =

ˆ
φ
(
y;β′xiT + λ′iwiT , σ

2
)
φ
(
λi;m (β) ,Σ

(
σ2
))
f (λi) dλi.

with A0 and B0 (y) being the counterparts for the oracle predictor. Note that both A and B (y) are
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positive by definition. Then, we want to make sure the following expression is arbitrarily small,

ˆ ∣∣∣∣B (y)

A
− B0 (y)

A0

∣∣∣∣ dy ≤ ´ B0 (y) dy · |A−A0|
A0A

+

´
|B (y)−B0 (y)| dy

A
,

and it is sufficient to establish the following four statements (with probability approaching one).

(a) |A−A0| < ε′

|A−A0|

≤
∣∣∣∣ˆ φ

(
λi;m (β) ,Σ

(
σ2
))

(f (λi)− f0 (λi)) dλi

∣∣∣∣
+

∣∣∣∣ˆ (φ (λi;m (β) ,Σ
(
σ2
))
− φ

(
λi;m (β0) ,Σ

(
σ2

0

)))
f0 (λi) dλi

∣∣∣∣ .
For the first term, ∣∣∣∣ˆ φ

(
λi;m (β) ,Σ

(
σ2
))

(f (λi)− f0 (λi)) dλi

∣∣∣∣
≤
ˆ
φ
(
λi;m (β) ,Σ

(
σ2
))
|f (λi)− f0 (λi)| dλi (B.16)

≤

∣∣∣∑twi,t−1w
′
i,t−1

∣∣∣
(2πσ2)dw/2

· ‖f − f0‖1 .

It is less than ε′/2 with probability approaching one due to the posterior consistency of f and that

φ
(
λi;m (β) ,Σ

(
σ2
))

is a bounded function in λi (given that σ2 converges to σ2
0). For the second

term,∣∣∣∣ˆ (φ (λi;m (β) ,Σ
(
σ2
))
− φ

(
λi;m (β0) ,Σ

(
σ2

0

)))
f0 (λi) dλi

∣∣∣∣
≤M

ˆ ∣∣φ (λi;m (β) ,Σ
(
σ2
))
− φ

(
λi;m (β0) ,Σ

(
σ2

0

))∣∣ dλi
≤M

√
2dKL

(
φ (λi;m (β) ,Σ (σ2)) , φ

(
λi;m (β0) ,Σ

(
σ2

0

)))
≤M

√√√√√dw

(
σ2

σ2
0

− 1− ln
σ2

σ2
0

)
+ σ−2

0 (β − β0)′

∑
t

xi,t−1w′i,t−1

(∑
t

wi,t−1w′i,t−1

)−1∑
t

wi,t−1x′i,t−1

 (β − β0).

where the second inequality follows Pinsker’s inequality that bounds the L1-distance by the KL

divergence. As
(
β, σ2

)
enjoys posterior consistency, the last expression can be arbitrarily small.

Therefore, the second term is less than ε′/2 with probability approaching one.
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(b)
´
|B (y)−B0 (y)| dy < ε′

ˆ
|B (y)−B0 (y)| dy

≤
ˆ ∣∣∣∣ˆ φ

(
y;β′xiT + λ′iwiT , σ

2
)
φ
(
λi;m (β) ,Σ

(
σ2
))

(f (λi)− f0 (λi)) dλi

∣∣∣∣ dy
+

ˆ ∣∣∣∣∣
ˆ (

φ
(
y;β′xiT + λ′iwiT , σ

2
)
φ
(
λi;m (β) ,Σ

(
σ2
))

− φ
(
y;β′0xiT + λ′iwiT , σ

2
0

)
φ
(
λi;m (β0) ,Σ

(
σ2

0

))) f0 (λi) dλi

∣∣∣∣∣ dy.
Similar to part (a), the first term is small due to the posterior consistency of f and σ2,

ˆ ∣∣∣∣ˆ φ
(
y;β′xiT + λ′iwiT , σ

2
)
φ
(
λi;m (β) ,Σ

(
σ2
))

(f (λi)− f0 (λi)) dλi

∣∣∣∣ dy
≤
ˆ
φ
(
y;β′xiT + λ′iwiT , σ

2
)
φ
(
λi;m (β) ,Σ

(
σ2
))
|f (λi)− f0 (λi)| dλidy

=

ˆ
φ
(
λi;m (β) ,Σ

(
σ2
))
|f (λi)− f0 (λi)| dλi,

which is the same as expression (B.16) in part (a). Pinsker’s inequality together with the posterior

consistency of
(
β, σ2

)
ensures a small second term,

ˆ ∣∣∣∣∣
ˆ (

φ
(
y;β′xiT + λ′iwiT , σ

2
)
φ
(
λi;m (β) ,Σ

(
σ2
))

− φ
(
y;β′0xiT + λ′iwiT , σ

2
0

)
φ
(
λi;m (β0) ,Σ

(
σ2

0

))) f0 (λi) dλi

∣∣∣∣∣ dy
≤
ˆ ∣∣φ (y;β′xiT + λ′iwiT , σ

2
)
− φ

(
y;β′0xiT + λ′iwiT , σ

2
0

)∣∣φ (λi;m (β0) ,Σ
(
σ2

0

))
f0 (λi) dλidy

+

ˆ
φ
(
y;β′xiT + λ′iwiT , σ

2
) ∣∣φ (λi;m (β) ,Σ

(
σ2
))
− φ

(
λi;m (β0) ,Σ

(
σ2

0

))∣∣ f0 (λi) dλidy

≤M

√
σ2

σ2
0

− 1− ln
σ2

σ2
0

+ σ−2
0 (β − β0)′ xiTx′iT (β − β0)

+M

√√√√√dw

(
σ2

σ2
0

− 1− ln
σ2

σ2
0

)
+ σ−2

0 (β − β0)′

∑
t

xi,t−1w′i,t−1

(∑
t

wi,t−1w′i,t−1

)−1∑
t

wi,t−1x′i,t−1

 (β − β0).

(c) There exists A > 0 such that A0 > A.

Let µλ0 and V λ
0 be the mean and variance of λi based on the true distribution f0. The moment

condition in Assumption 3.9 (1-e) ensures the existence of both µλ0 and V λ
0 . Following Chebyshev’s

inequality, we have

Pf0

(√(
λi − µλ0

)′ (
V λ

0

)−1 (
λi − µλ0

)
> k

)
≤ dw
k2
.
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Define Kλ =

{
λi :

√(
λi − µλ0

)′ (
V λ

0

)−1 (
λi − µλ0

)
≤ k

}
. Then,

A0 =

ˆ
φ
(
λi;m (β0) ,Σ

(
σ2

0

))
f0 (λi) dλi

≥
ˆ
λi∈Kλ

φ
(
λi;m (β0) ,Σ

(
σ2

0

))
f0 (λi) dλi

≥
(

1− dw
k2

)
min
λi∈Kλ

φ
(
λi;m (β0) ,Σ

(
σ2

0

))
.

Intuitively, since φ
(
λi;m (β0) ,Σ

(
σ2

0

))
and f0 (λi) share the same support on Rdw , the integral is

bounded below by some positive A. Moreover, we have |A−A0| < ε′ from (a), then A > A0 − ε′ >
A− ε′. Therefore, A is also bounded below with probability approaching one.

(d)
´
B0 (y) dy <∞

ˆ
B0 (y) dy

=

ˆ
φ
(
y;β′0xiT + λ′iwiT , σ

2
0

)
φ
(
λi;m (β0) ,Σ

(
σ2

0

))
f0 (λi) dλidy

=

ˆ
φ
(
λi;m (β0) ,Σ

(
σ2

0

))
f0 (λi) dλi

≤

∣∣∣∑twi,t−1w
′
i,t−1

∣∣∣(
2πσ2

0

)dw/2
ˆ
f0 (λi) dλi

=

∣∣∣∑twi,t−1w
′
i,t−1

∣∣∣(
2πσ2

0

)dw/2 .

2. Random coefficients: cross-sectional heteroskedasticity

Now A and B (y) become

A =

ˆ
C
(
β, σ2

i

)
φ
(
λi;m (β) ,Σ

(
σ2
i

))
fλ (λi) f

σ2 (
σ2
i

)
dλi,

B (y) =

ˆ
φ
(
y;β′xiT + λ′iwiT , σ

2
i

)
C
(
β, σ2

i

)
φ
(
λi;m (β) ,Σ

(
σ2
i

))
fλ (λi) f

σ2 (
σ2
i

)
dλidσ

2
i .

Consider Proposition 3.14 condition 3 (supp
(
fσ

2

0

)
is bounded below by some σ2 > 0), the above

statements can be derived as follows.
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(a) |A−A0| < ε′

|A−A0|

≤
∣∣∣∣ˆ C

(
β, σ2

i

)
φ
(
λi;m (β) ,Σ

(
σ2
i

)) (
fλ (λi) f

σ2 (
σ2
i

)
− fλ0 (λi) f

σ2

0

(
σ2
i

))
dλidσ

2
i

∣∣∣∣
+

∣∣∣∣ˆ C
(
β, σ2

i

) (
φ
(
λi;m (β) ,Σ

(
σ2
i

))
− φ

(
λi;m (β0) ,Σ

(
σ2
i

)))
fλ0 (λi) f

σ2

0

(
σ2
i

)
dλidσ

2
i

∣∣∣∣
+

∣∣∣∣ˆ (C (β, σ2
i

)
− C

(
β0, σ

2
i

))
φ
(
λi;m (β0) ,Σ

(
σ2
i

))
fλ0 (λi) f

σ2

0

(
σ2
i

)
dλidσ

2
i

∣∣∣∣ .
The first term∣∣∣∣ˆ C

(
β, σ2

i

)
φ
(
λi;m (β) ,Σ

(
σ2
i

)) (
fλ (λi) f

σ2 (
σ2
i

)
− fλ0 (λi) f

σ2

0

(
σ2
i

))
dλidσ

2
i

∣∣∣∣
≤
ˆ
C
(
β, σ2

i

)
φ
(
λi;m (β) ,Σ

(
σ2
i

)) ∣∣∣fλ (λi) f
σ2 (

σ2
i

)
− fλ0 (λi) f

σ2

0

(
σ2
i

)∣∣∣ dλidσ2
i (B.17)

≤
(
2πσ2

)−T/2 · ‖f − f0‖1 .

The second term∣∣∣∣ˆ C
(
β, σ2

i

) (
φ
(
λi;m (β) ,Σ

(
σ2
i

))
− φ

(
λi;m (β0) ,Σ

(
σ2
i

)))
fλ0 (λi) f

σ2

0

(
σ2
i

)
dλidσ

2
i

∣∣∣∣
≤M

ˆ
C
(
β, σ2

i

) ∣∣φ (λi;m (β) ,Σ
(
σ2
i

))
− φ

(
λi;m (β0) ,Σ

(
σ2
i

))∣∣ fσ2

0

(
σ2
i

)
dλidσ

2
i

=M

ˆ
C
(
β, σ2

i

)√
σ−2
i (β − β0)′ V2 (β − β0)fσ

2

0

(
σ2
i

)
dσ2

i

≤M2

(
σ2
)−T−dw+1

2

√
(β − β0)′ V2 (β − β0)

ˆ
fσ

2

0

(
σ2
i

)
dσ2

i

=M2

(
σ2
)−T−dw+1

2

√
(β − β0)′ V2 (β − β0),

where

M2 = M

(
(2π)

T−dw
2

∣∣∣∣∣∑
t

wi,t−1w
′
i,t−1

∣∣∣∣∣
)−1

,

V2 =
∑
t

xi,t−1w
′
i,t−1

(∑
t

wi,t−1w
′
i,t−1

)−1∑
t

wi,t−1x
′
i,t−1.
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The third term∣∣∣∣ˆ (C (β, σ2
i

)
− C

(
β0, σ

2
i

))
φ
(
λi;m (β0) ,Σ

(
σ2
i

))
fλ0 (λi) f

σ2

0

(
σ2
i

)
dλidσ

2
i

∣∣∣∣
=

ˆ ∣∣C (β, σ2
i

)
− C

(
β0, σ

2
i

)∣∣φ (λi;m (β0) ,Σ
(
σ2
i

))
fλ0 (λi) f

σ2

0

(
σ2
i

)
dλidσ

2
i (B.18)

≤M
ˆ ∣∣C (β, σ2

i

)
− C

(
β0, σ

2
i

)∣∣φ (λi;m (β0) ,Σ
(
σ2
i

))
fσ

2

0

(
σ2
i

)
dλidσ

2
i

≤M
ˆ ∣∣C (β, σ2

i

)
− C

(
β0, σ

2
i

)∣∣ fσ2

0

(
σ2
i

)
dσ2

i

≤M2

ˆ (
σ2
i

)−T−dw
2
|C3 (β0)− C3 (β)|

2σ2
i

fσ
2

0

(
σ2
i

)
dσ2

i

≤1

2
M2

(
σ2
)−T−dw+2

2 |C3 (β0)− C3 (β)| .

where C3 (β) =
∑

t (yit − β′xi,t−1)2 −m (β)
(∑

twi,t−1w
′
i,t−1

)
m (β) is continuous in β.

(b)
´
|B (y)−B0 (y)| dy < ε′

ˆ
|B (y)−B0 (y)| dy

≤
ˆ ∣∣∣∣ˆ φ

(
y;β′xiT + λ′iwiT , σ

2
i

)
φ
(
λi;m (β) ,Σ

(
σ2
i

))
C
(
β, σ2

i

) (
fλ (λi) f

σ2 (
σ2
i

)
− fλ0 (λi) f

σ2

0

(
σ2
i

))
dλidσ

2
i

∣∣∣∣ dy
+

ˆ ∣∣∣∣∣∣
ˆ φ

(
y;β′xiT + λ′iwiT , σ

2
i

)
φ
(
λi;m

λ
i (β) ,Σλ

i

(
σ2
i

))
− φ

(
y;β′0xiT + λ′iwiT , σ

2
i

)
φ
(
λi;m

λ
i (β0) ,Σλ

i

(
σ2
i

))
C

(
β, σ2

i

)
fλ0 (λi) f

σ2

0

(
σ2
i

)
dλidσ

2
i

∣∣∣∣∣∣ dy
+

ˆ ∣∣∣∣ˆ φ
(
y;β′0xiT + λ′iwiT , σ

2
i

) (
C
(
β, σ2

i

)
− C

(
β0, σ

2
i

))
φ
(
λi;m (β0) ,Σ

(
σ2
i

))
fλ0 (λi) f

σ2

0

(
σ2
i

)
dλidσ

2
i

∣∣∣∣ dy.
The first term

ˆ ∣∣∣∣ˆ φ
(
y;β′xiT + λ′iwiT , σ

2
i

)
φ
(
λi;m (β) ,Σ

(
σ2
i

))
C
(
β, σ2

i

) (
fλ (λi) f

σ2 (
σ2
i

)
− fλ0 (λi) f

σ2

0

(
σ2
i

))
dλidσ

2
i

∣∣∣∣ dy
≤
ˆ
φ
(
y;β′xiT + λ′iwiT , σ

2
i

)
φ
(
λi;m (β) ,Σ

(
σ2
i

))
C
(
β, σ2

i

) ∣∣∣fλ (λi) f
σ2 (

σ2
i

)
− fλ0 (λi) f

σ2

0

(
σ2
i

)∣∣∣ dλidσ2
i dy

=

ˆ
φ
(
λi;m (β) ,Σ

(
σ2
i

))
C
(
β, σ2

i

) ∣∣∣fλ (λi) f
σ2 (

σ2
i

)
− fλ0 (λi) f

σ2

0

(
σ2
i

)∣∣∣ dλidσ2
i ,
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which is the same as expression (B.17) in part (a). The second term

ˆ ∣∣∣∣∣∣
ˆ φ

(
y;β′xiT + λ′iwiT , σ

2
i

)
φ
(
λi;m

λ
i (β) ,Σλ

i

(
σ2
i

))
− φ

(
y;β′0xiT + λ′iwiT , σ

2
i

)
φ
(
λi;m

λ
i (β0) ,Σλ

i

(
σ2
i

))
C

(
β, σ2

i

)
fλ0 (λi) f

σ2

0

(
σ2
i

)
dλidσ

2
i

∣∣∣∣∣∣ dy
≤
ˆ ∣∣∣∣∣∣

φ
(
y;β′xiT + λ′iwiT , σ

2
i

)
φ
(
λi;m

λ
i (β) ,Σλ

i

(
σ2
i

))
− φ

(
y;β′0xiT + λ′iwiT , σ

2
i

)
φ
(
λi;m

λ
i (β0) ,Σλ

i

(
σ2
i

))
∣∣∣∣∣∣C (β, σ2

i

)
fλ0 (λi) f

σ2

0

(
σ2
i

)
dλidσ

2
i dy

=M

ˆ
C
(
β, σ2

i

)(√
σ−2
i (β − β0)′ xiTx′iT (β − β0) +

√
σ−2
i (β − β0)′ V2 (β − β0)

)
fσ

2

0

(
σ2
i

)
dσ2

i

≤M2

(
σ2
)−T−dw+1

2

(√
(β − β0)′ xiTx′iT (β − β0) +

√
(β − β0)′ V2 (β − β0)

)ˆ
fσ

2

0

(
σ2
i

)
dσ2

i

=M2

(
σ2
)−T−dw+1

2

(√
(β − β0)′ xiTx′iT (β − β0) +

√
(β − β0)′ V2 (β − β0)

)
.

The third term

ˆ ∣∣∣∣ˆ φ
(
y;β′0xiT + λ′iwiT , σ

2
i

) (
C
(
β, σ2

i

)
− C

(
β0, σ

2
i

))
φ
(
λi;m (β0) ,Σ

(
σ2
i

))
fλ0 (λi) f

σ2

0

(
σ2
i

)
dλidσ

2
i

∣∣∣∣ dy
≤
ˆ
φ
(
y;β′0xiT + λ′iwiT , σ

2
i

) ∣∣C (β, σ2
i

)
− C

(
β0, σ

2
i

)∣∣φ (λi;m (β0) ,Σ
(
σ2
i

))
fλ0 (λi) f

σ2

0

(
σ2
i

)
dλidσ

2
i dy

=

ˆ ∣∣C (β, σ2
i

)
− C

(
β0, σ

2
i

)∣∣φ (λi;m (β0) ,Σ
(
σ2
i

))
fλ0 (λi) f

σ2

0

(
σ2
i

)
dλidσ

2
i

which is the same as expression (B.18) in part (a).

(c) There exists A > 0 such that A0 > A.

Let li = log
(
σ2
i − σ2

)
, µl0 and V l

0 be the mean and variance of li based on the true distribution

f l0, and K l =

{
li :
|li−µl0|√

V l0
≤ k

}
. Then,

A0 =

ˆ
C
(
β0, σ

2
i

)
φ
(
λi;m (β0) ,Σ

(
σ2
i

))
fλ0 (λi) f

σ2

0

(
σ2
i

)
dλidσ

2
i

=

ˆ
C
(
β0, exp li + σ2

)
φ
(
λi;m (β0) ,Σ

(
exp li + σ2

))
fλ0 (λi) f

l
0 (li) dλidli

≥
ˆ
λi∈Kλ,li∈Kl

C
(
β0, exp li + σ2

)
φ
(
λi;m (β0) ,Σ

(
exp li + σ2

))
fλ0 (λi) f

l
0 (li) dλidli

≥
(

1− dw
k2

)(
1− 1

k2

)
min

λi∈Kλ,li∈Kl
C
(
β0, exp li + σ2

)
φ
(
λi;m (β0) ,Σ

(
σ2

0

))
,

where the second line is given by the change of variables, and the last line follows Chebyshev’s

inequality on both λi and li.
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(d)
´
B0 (y) dy <∞

ˆ
B0 (y) dy

=

ˆ
φ
(
y;β′0xiT + λ′iwiT , σ

2
i

)
C
(
β0, σ

2
i

)
φ
(
λi;m (β0) ,Σ

(
σ2
i

))
fλ0 (λi) f

σ2

0

(
σ2
i

)
dλidσ

2
i dy

=

ˆ
C
(
β0, σ

2
i

)
φ
(
λi;m (β0) ,Σ

(
σ2
i

))
fλ0 (λi) f

σ2

0

(
σ2
i

)
dλidσ

2
i

≤
(
2πσ2

)−T/2 ˆ
fλ0 (λi) f

σ2

0

(
σ2
i

)
dλidσ

2
i

=
(
2πσ2

)−T/2
.

3. Correlated random coefficients

Now we replace f (hi) with f (hi|ci0) in expression (B.15) that characterizes
∥∥∥f condi,T+1 − foraclei,T+1

∥∥∥
1
.

Given Proposition 3.14 condition 2-b (q0 (c0) is bounded below by some q > 0), we have

q

[ˆ
|f (z|c0)− f0 (z|c0)| dz

]
<

ˆ [ˆ
|f (z|c0)− f0 (z|c0)| dz

]
q0 (c0) dc0 < ε,

so ˆ
|f (z|c0)− f0 (z|c0)| dz < ε/q.

Therefore, we achieve the convergence of conditional distribution for any c0 and ensure that the

first term in part (a) is sufficiently small. The rest of the proof parallels the random coefficients

scenarios.

C Algorithms

C.1 Hyperparameters

Let us take the baseline model with random effects as an example, and the priors and hyperparam-

eters for more complicated models can be constructed in a similar way. The prior for the common

parameters takes a conjugate norma-inverse-gamma form,

(
β, σ2

)
∼ N

(
mβ

0 , ψ
β
0σ

2
)

IG
(
aσ

2

0 , bσ
2

0

)
.
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The hyperparameters are chosen in a relatively ignorant sense without inferring too much from the

data except aligning the scale according to the variance of the data.

aσ
2

0 = 2, (C.1)

bσ
2

0 = Êi
(
V̂ ar

t

i (yit)
)
·
(
aσ

2

0 − 1
)

= Êi
(
V̂ ar

t

i (yit)
)
, (C.2)

mβ
0 = 0.5, (C.3)

ψβ0 =
1

bσ
2

0 /
(
aσ

2

0 − 1
) =

1

Êi
(
V̂ ar

t

i (yit)
) . (C.4)

In equation (C.2) here and equation (C.5) below, Êti and V̂ ar
t

i stand for the sample mean and

variance for firm i over t = 1, · · · , T , and Êi and V̂ ar
i

are the sample mean and variance over the

whole cross-section i = 1, · · · , N . Equation (C.2) ensures that on average the prior and the data have

a similar scale. Equation (C.3) conjectures that the young firm dynamics are highly likely persistent

and stationary. Since we don’t have strong prior information in the common parameters, their priors

are chosen to be not very restrictive. Equation (C.1) characterizes a rather less informative prior

on σ2 with infinite variance, and Equation (C.4) assumes that the prior variance of β is equal to 1

on average.

The hyperpriors for the DPM prior are specified as:

G0

(
µk, ω

2
k

)
= N

(
mλ

0 , ψ
λ
0ω

2
k

)
IG
(
aλ0 , b

λ
0

)
,

α ∼ Ga (aα0 , b
α
0 ) .

Similarly, the hyperparameters are chosen to be:

aλ0 = 2, bλ0 = V̂ ar
i
(
Êti (yit)

)
·
(
aλ0 − 1

)
= V̂ ar

i
(
Êti (yit)

)
, (C.5)

mλ
0 = 0, ψλ0 = 1,

aα0 = 2, bα0 = 2. (C.6)

where bλ0 is selected to match the scale, while aλ0 , mλ
0 , and ψλ0 yields a relatively ignorant and diffuse

prior. Following Ishwaran and James (2001, 2002), the hyperparameters for the DP scale parameter

α in equation (C.6) allows for a flexible component structure with a wide range of component

numbers. The truncated number of components is set to be K = 50, so that the approximation

error is uniformly bounded by Ishwaran and James (2001) Theorem 2:∥∥∥fλ,K − fλ∥∥∥
1
∼ 4N exp

(
−K − 1

α

)
≤ 2.10× 10−18,

at the prior mean of α (ᾱ = 1) and cross-sectional sample size N = 1000.
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I have also examined other choices of hyperparameters, and results are not very sensitive to

hyperparameters as long as the implied priors are flexible enough to cover the range of observables.

C.2 Random-Walk Metropolis-Hastings

When there is no closed-form conditional posterior distribution in some MCMC steps, it is help-

ful to employ the Metropolis-within-Gibbs sampler and use the random-walk Metropolis-Hastings

(RWMH) algorithm for those steps. The adaptive RWMH algorithm below is based on Atchadé

and Rosenthal (2005) and Griffin (2016), who adaptively adjust the random walk step size in order

to keep acceptance rates around certain desirable percentage.

Algorithm C.1. (Adaptive RWMH)

Let us consider a generic variable θ. For each iteration s = 1, · · · , nsim,

1. Draw candidate θ̃ from the random-walk proposal density θ̃ ∼ N
(
θ(s−1), ζ(s)Σ

)
.

2. Calculate the acceptance rate

a.r.(θ̃|θ(s−1)) = min

(
1,

p(θ̃|·)
p(θ(s−1)|·)

)
,

where p(θ|·) is the conditional posterior distribution of interest.

3. Accept the proposal and set θ(s) = θ̃ with probability a.r.(θ̃|θ(s−1)). Otherwise, reject the

proposal and set θ(s) = θ(s−1).

4. Update the random-walk step size for the next iteration,

log ζ(s+1) = ρ
(

log ζ(s) + s−c
(

a.r.(θ̃|θ(s−1))− a.r.?
))

,

where 0.5 < c ≤ 1, a.r.? is the target acceptance rate, and

ρ (x) = min (|x|, x̄) · sgn (x) ,

where x̄ > 0 is a very large number.

Remark C.2. (i) In step 1, since the algorithms in this paper only consider RWMH on conditionally

independent scalar variables, Σ is simply taken to be 1.

(ii) In step 4, I choose c = 0.55, a.r.? = 30% in the numerical exercises, following Griffin (2016).

C.3 Details on Posterior Samplers

C.3.1 Step 2: Component Parameters

Random Coefficients Model For z = λ, l and k = 1, · · · ,Kz, draw
(
µ
z(s)
k ,Ω

z(s)
k

)
from a

multivariate-normal-inverse-Wishart distribution (or a normal-inverse-gamma distribution if z is a
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scalar) p

(
µ
z(s)
k ,Ω

z(s)
k

∣∣∣∣{z(s−1)
i

}
i∈Jz(s−1)

k

)
:

(
µ
z(s)
k ,Ω

z(s)
k

)
∼ N

(
mz
k, ψ

z
kΩ

z(s)
k

)
IW (Ψz

k, ν
z
k) ,

m̂z
k =

1

n
z(s−1)
k

∑
i∈Jz(s−1)

k

z
(s−1)
i ,

ψzk =
(

(ψz0)−1 + n
z(s−1)
k

)−1
,

mz
k = ψzk

(ψz0)−1mz
0 +

∑
i∈Jz(s−1)

k

z
(s−1)
i

 ,

νzk = νz0 + n
z(s−1)
k ,

Ψz
k = Ψz

0 +
∑

i∈Jz(s−1)
k

(
z

(s−1)
i

)2
+mz′

0 (ψz0)−1mz
0 −mz′

k (ψzk)
−1mz

k.

Correlated Random Coefficients Model Due to the complexity arising from the conditional

structure, I break the updating procedure for
(
µ
z(s)
k ,Ω

z(s)
k

)
into two steps. For z = λ, l, and

k = 1, · · · ,Kz,

(a) Draw vec
(
µ
z(s)
k

)
from a multivariate normal distribution p

(
µ
z(s)
k

∣∣∣∣Ωz(s−1)
k ,

{
z

(s−1)
i , ci0

}
i∈Jz(s−1)

k

)
:

vec
(
µ
z(s)
k

)
∼ N (vec (mz

k) , ψ
z
k) ,

m̂z,zc
k =

∑
i∈Jz(s−1)

k

z
(s−1)
i

[
1, c′i0

]
,

m̂z,cc
k =

∑
i∈Jz(s−1)

k

[
1, c′i0

]′ [
1, c′i0

]
,

m̂z
k = m̂z,zc

k

(
m̂z,cc
k

)−1
,

ψzk =

[
(ψz0)−1 + m̂z,cc

k ⊗
(

Ω
z(s−1)
k

)−1
]−1

,

vec (mz
k) = ψzk

[
(ψz0)−1 vec (mz

0) +

(
m̂z,cc
k ⊗

(
Ω
z(s−1)
k

)−1
)

vec (m̂z
k)

]
.

(b) Draw Ω
z(s)
k from an inverse Wishart distribution (or an inverse gamma distribution if z is a
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scalar) p

(
Ω
z(s)
k

∣∣∣∣µz(s)k ,
{
z

(s−1)
i , ci0

}
i∈Jz(s−1)

k

)
:

Ω
z(s)
k ∼ IW (Ψz

k, ν
z
k) ,

νzk = νz0 + n
z(s−1)
k ,

Ψz
k = Ψz

0 +
∑

i∈Jz(s−1)
k

(
z

(s−1)
i − µz(s)k

[
1, c′i0

]′)(
z

(s−1)
i − µz(s)k

[
1, c′i0

]′)′
.

C.3.2 Step 4: Individual-specific Parameters

For i = 1, · · · , N , draw λ
(s)
i from a multivariate normal distribution (or a normal distribution if λ

is a scalar) p
(
λ

(s)
i

∣∣∣µλ(s)

γλi
,Ω

λ(s)

γλi
,
(
σ2
i

)(s−1)
, β(s−1), Di, DA

)
:

λ
(s)
i ∼ N

(
mλ
i ,Σ

λ
i

)
,

Σλ
i =

((
Ω
λ(s)

γλi

)−1
+
((
σ2
i

)(s−1)
)−1

t1i∑
t=t0i

wi,t−1w
′
i,t−1

)−1

,

mλ
i = Σλ

i

((
Ω
λ(s)

γλi

)−1
µ̃λi +

((
σ2
i

)(s−1)
)−1

t1i∑
t=t0i

wi,t−1

(
yit − β(s−1)′xi,t−1

))
,

where the conditional “prior” mean is characterized by

µ̃λi =

µ
λ(s)

γλi
, for the random coefficients model,

µ
λ(s)

γλi
[1, c′i0]′ , for the correlated random coefficients model.
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C.3.3 Step 5: Common parameters

Cross-sectional Homoskedasticity Draw
(
β(s), σ2(s)

)
from a linear regression model with

“unknown” variance, p
(
β(s), σ2(s)

∣∣∣{λ(s)
i

}
, D
)

:

(
β(s), σ2(s)

)
∼ N

(
mβ, ψβσ2(s)

)
IG
(
aσ

2
, bσ

2
)
,

ψβ =

((
ψβ0

)−1
+

N∑
i=1

t1i∑
t=t0i

xi,t−1x
′
i,t−1

)−1

,

mβ = ψβ

((
ψβ0

)−1
mβ

0 +
N∑
i=1

t1i∑
t=t0i

xi,t−1

(
yit − λ(s)′

i wi,t−1

))
,

aσ
2

= aσ
2

0 +
NT

2

bσ
2

= bσ
2

0 +
1

2

(
N∑
i=1

T∑
t=1

(
yit − λ(s)′

i wi,t−1

)2
+mβ′

0

(
ψβ0

)−1
mβ

0 −m
β′
(
ψβ
)−1

mβ

)
.

Cross-sectional Heteroskedasticity Draw β(s) from a linear regression model with “known”

variance, p
(
β(s)

∣∣∣{λ(s)
i ,
(
σ2
i

)(s)}
, D
)

:

β(s) ∼ N
(
mβ,Σβ

)
,

Σβ =

((
Σβ

0

)−1
+
((
σ2
i

)(s))−1
N∑
i=1

t1i∑
t=t0i

xi,t−1x
′
i,t−1

)−1

,

mβ = Σβ

((
Σβ

0

)−1
mβ

0 +
((
σ2
i

)(s))−1
N∑
i=1

t1i∑
t=t0i

xi,t−1

(
yit − λ(s)′

i wi,t−1

))
.

Remark C.3. For unbalanced panels, the summations and products in steps 4 and 5 (Subsections

C.3.2 and C.3.3) are instead over t = t0i, · · · , t1i, the observed periods for individual i.

C.4 Slice-Retrospective Sampler

The next algorithm borrows the idea from some recent development in DPM sampling strategies

(Dunson, 2009; Yau et al., 2011; Hastie et al., 2015), which integrates the slice sampler (Walker,

2007; Kalli et al., 2011) and the retrospective sampler (Papaspiliopoulos and Roberts, 2008). By

adding extra auxiliary variables, the sampler is able to avoid hard truncation in Ishwaran and James

(2001, 2002). I experiment with it to check whether the approximation error due to truncation would

significantly affect the density forecasts or not, and the results do not change much. The following

algorithm is designed for the random coefficient case. A corresponding version for the correlated

random coefficient case can be constructed in a similar manner.
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The auxiliary variables uzi , i = 1, · · · , N , are i.i.d. standard uniform random variables, i.e.

uzi ∼ U (0, 1). Then, the mixture of components in equation (2.7) can be rewritten as

z ∼
∞∑
k=1

1 (uzi < pzik) f
z (z; θzk) ,

where z = λ, l. By marginalizing over uzi , we can recover equation (2.7). Accordingly, we can define

the number of active components as

Kz,A = max
1≤i≤N

γzi ,

and the number of potential components (including active components) as

Kz,P = min

k :

1−
k∑
j=1

pzj

 < min
1≤i≤N

uzi

 .

Although the number of components is infinite literally, we only need to care about the components

that can potentially be occupied. Therefore, Kz,P serves as an upper limit on the number of

components that need to be updated at certain iteration. Here I suppress the iteration indicator

s for exposition simplicity, but note that both Kz,A and Kz,P can change over iterations; this is

indeed the highlight of this sampler.

Algorithm C.4. (Slice-Retrospective: Random Coefficients with Cross-sectional Heteroskedastic-

ity)

For each iteration s = 1, · · · , nsim, steps 1-3 in Algorithm 4.1 are modified as follows:

For z = λ, l,

1. Active components:

(a) Number of active components:

Kz,A = max
1≤i≤N

γ
z(s−1)
i .

(b) Component probabilities: for k = 1, · · · ,Kz,A, draw pz∗k from the stick-breaking process

p
(
{pz∗k }

∣∣∣αz(s−1),
{
n
z(s−1)
k

})
:

pz∗k ∼ SB

nz(s−1)
k , αz(s−1) +

Kz,A∑
j=k+1

n
z(s−1)
j

 , k = 1, · · · ,Kz,A.

(c) Component parameters: for k = 1, · · · ,Kz,A, draw θz∗k from p

(
θz∗k

∣∣∣∣{z(s−1)
i

}
i∈Jz(s−1)

k

)
as in Algorithm 4.1 step 2.

(d) Label switching: jointly update
{
p
z(s)
k , θ

z(s)
k , γz∗i

}Kz,A

k=1
based on

{
pz∗k , θ

z∗
k , γ

z(s−1)
i

}Kz,A

k=1
by
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three Metropolis-Hastings label-switching moves:

i. randomly select two non-empty components, switch their component labels (γzi ), while

leaving component parameters (θzk) and component probabilities (pzk) unchanged;

ii. randomly select two adjacent components, switch their component labels (γzi ) and

component “stick lengths” (ζzk), while leaving component parameters (θzk) unchanged;

iii. randomly select two non-empty components, switch their component labels (γzi ) and

component parameters (θzk), as well as update their component probabilities (pzk).

Then, adjust Kz,A accordingly.

2. Auxiliary variables: for i = 1, · · · , N , draw u
z(s)
i from a uniform distribution p

(
u
z(s)
i

∣∣∣{pz(s)k

}
, γz∗i

)
:

u
z(s)
i ∼ U

(
0, p

z(s)
γz∗i

)
.

3. DP scale parameter:

(a) Draw the latent variable ξz(s) from a beta distribution p
(
ξz(s)

∣∣αz(s−1), N
)
:

ξz(s) ∼ Beta
(
αz(s−1) + 1, N

)
.

(b) Draw αz(s) from a mixture of two gamma distributions p
(
αz(s)

∣∣ξz(s),Kz,A, N
)

:Parametric

Prior for Heteroskedastic σ2
i

αz(s) ∼ pαzGa
(
aα

z
+Kz,A, bα

z − log ξz(s)
)

+
(
1− pαz

)
Ga
(
aα

z
+Kz,A − 1, bα

z − log ξz(s)
)
,

pα
z

=
aα

z
+Kz,A − 1

N
(
bαz − log ξz(s)

) .
4. Potential components:

(a) Component probabilities: start with Kz∗ = Kz,A,

i. if
(

1−
∑Kz∗

j=1 p
z(s)
j

)
< min1≤i≤N u

z(s)
i , set Kz,P = Kz∗ and stop;

ii. otherwise, let Kz∗ = Kz∗+1, draw ζzKz∗ ∼ Beta
(
1, αz(s)

)
, update p

z(s)
Kz∗ = ζzKz∗

∏
j<Kz∗

(
1− ζzj

)
,

and go to step (a-i).

(b) Component parameters: for k = Kz,A + 1, · · · ,Kz,P , draw θ
z(s)
k from the DP base distri-

bution Gz0.

5. Component memberships: For i = 1, · · ·N , draw γ
z(s)
i from a multinomial distribution

p
({
γ
z(s)
i

} ∣∣∣{pz(s)k , µ
z(s)
k ,Ω

z(s)
k

}
, u

z(s)
i , z

(s−1)
i

)
:

γ
z(s)
i = k, with probability pzik, k = 1, · · · ,Kz,P ,

pzik ∝ p
z(s)
k φ

(
z

(s−1)
i ;µ

z(s)
k ,Ω

z(s)
k

)
1
(
u
z(s)
i < p

z(s)
k

)
,

Kz,P∑
k=1

pzik = 1.
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The remaining part of the algorithm resembles steps 4 and 5 in Algorithm 4.1.

Remark C.5. Note that:

(i) Steps 1-b,c,d are sampling from “marginal” posterior of (pzk, θ
z
k, γ

z
i ) for the active components

with the auxiliary variables uzi s being integrated out. Thus, extra caution is needed in dealing with

the order of the steps.

(ii) The label switching moves 1-d-i and 1-d-ii are based on Papaspiliopoulos and Roberts (2008),

and 1-d-iii is suggested by Hastie et al. (2015). All these label switching moves aim to improve

numerical convergence.

(iii) Step 3 for DP scale parameter αz follows Escobar and West (1995). It is different from step

1-a in Algorithm 4.1 due to the unrestricted number of components in the current sampler.

(iv) Steps 4-a-ii and 4-b that update the potential components are very similar to steps 1-b and 1-c

that update the active components—just take Jzk as an empty set and draw directly from the prior.

(v) The auxiliary variable uzi also appears in step 5 that updates component memberships. The

inclusion of auxiliary variables helps determine a finite set of relevant components for each individual

i without mechanically truncating the infinite mixture.

C.5 Parametric Specification of Heteroskedasticity

For Heterosk-Param, we adopt an inverse gamma prior for σ2
i ,

σ2
i ∼ IG (a, b) .

The conjugate priors for shape parameter a and scale parameter b are based on Llera and Beckmann

(2016) Sections 2.3.1 and 2.3.2:

b ∼ Ga
(
ab0, b

b
0

)
,

p (a|b, aa0, ba0, ca0) ∝ (aa0)−1−a (b)ac
a
0

Γ(a)b
a
0

. (C.7)

Following Llera and Beckmann (2016), the hyperparameters are chosen as aa0 = 1, ba0 = ca0 = ab0 =

bb0 = 0.01, which specifies relatively uninformative priors for a and b. The corresponding segment

of the posterior sampler is given as follows.

Algorithm C.6. (Parametric Specification: Cross-sectional Heteroskedasticity)

For each iteration s = 1, · · · , nsim,

1. Shape parameter: Draw a(s) via the random-walk Metropolis-Hastings approach,

p
(
a(s)

∣∣∣b(s−1),
{
σ

2(s−1)
i

})
= p

(
a(s)|b(s−1), aa1, b

a
1, c

a
0

)
,
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which is characterized by the same kernel form as expression (C.7) with

log(aa1) = log(aa0) +
N∑
i=1

log(σ
2(s−1)
i ),

ba1 = ba0 +N,

ca1 = ca0 +N.

2. Scale parameter: Draw b(s) from a gamma distribution, p
(
b(s)

∣∣∣a(s),
{
σ

2(s−1)
i

})
:

b(s) ∼ Ga
(
ab1, b

b
1

)
,

ab1 = ab0 +Na(s),

bb1 = bb0 +
N∑
i=1

(
σ

2(s−1)
i

)−1
.

3. Heteroskedasticity: For i = 1, · · · , N , draw σ
2(s)
i from an inverse gamma distribution,

p
(
σ

2(s)
i

∣∣∣a(s), b(s), λ
(s)
i , β(s−1), Di, DA

)
:

σ
2(s)
i ∼ IG (ai, bi) ,

ai = a(s) + T/2,

bi = b(s) +
1

2

T∑
t=1

(
yit − β(s−1)′xi,t−1 − λ(s)′

i wi,t−1

)2
.

D Simulations and Empirical Application

D.1 Simulations
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Figure D.1: Convergence Diagnostics: β

For each iteration s, rolling mean is calculated over the most recent 1000 draws.
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Figure D.2: Convergence Diagnostics: σ2

For each iteration s, rolling mean is calculated over the most recent 1000 draws.

A-34



Figure D.3: Convergence Diagnostics: α

For each iteration s, rolling mean is calculated over the most recent 1000 draws.
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Figure D.4: Convergence Diagnostics: λ1

For each iteration s, rolling mean is calculated over the most recent 1000 draws.
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Figure D.5: f0 vs Π (f |y1:N,0:T ) : Baseline Model, N = 105

The black solid line represents the true λi distribution, f0. The blue bands show the posterior distribution
of f , Π (f |y1:N,0:T ).

D.2 Empirical application

Other model specifications Following the young firm dynamics literature, for the key variables

with potential heterogeneous effects (wi,t−1), I also examined the following two setups beyond the

R&D setup in Section 6:52

(i) wi,t−1 = 1, which specifies the baseline model with λi being the individual-specific intercept.

(ii) wi,t−1 = [1, rect−1]′. rect is an aggregate dummy variable indicating the recent recession. It

is equal to 1 for 2008 and 2009, and is equal to 0 for other periods.

Details on sample construction After the second step (based on Assumption 3.5 for un-

balanced panels), we have the cross-sectional dimension N = 859 for the baseline specification,

N = 794 with recession, and N = 677 with R&D. In order to compare forecasting performance

across different setups, the sample is further restricted so that all three setups share exactly the

same set of firms, and we are left with N = 654 firms.

Additional results Common parameter β: In most cases, the posterior means are around 0.4 ∼
0.6.

Point Forecasts: Most of the estimators are comparable according to MSE, with only Flat

performing poorly in all three setups.

52I do not jointly incorporate recession and R&D because such specification largely restricts the cross-sectional
sample size due to the rank requirement for unbalanced panels.
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Density Forecasts: The overall best is the Heterosk-NP-C/R predictor in the R&D setup. Com-

paring setups, the one with recession produces the worst density forecasts (and point forecasts as

well), so the recession dummy with heterogeneous effects does not contribute much to forecasting

and may even incur overfitting.

Table D.1: Common Parameter β

Baseline Recession R&D
Mean Std Mean Std Mean Std

Heterosk NP-C/R 0.48 0.01 0.46 0.02 0.52 0.01

Homog 0.85 0.02 0.85 0.02 0.89 0.02
Homosk NP-C 0.37 0.02 0.88 0.02 0.51 0.03

Heterosk Flat 0.19 0.02 0.25 0.00 0.50 0.00
Param 0.48 0.03 0.26 0.03 0.56 0.03
NP-disc 0.55 0.02 0.79 0.02 0.84 0.04
NP-R 0.47 0.03 0.30 0.03 0.74 0.04
NP-C 0.38 0.02 0.40 0.06 0.53 0.01

Table D.2: Forecast Evaluation: Young Firm Dynamics

Baseline Recession R&D
MSE* LPS*N MSE* LPS*N MSE* LPS*N

Heterosk NP-C/R 0.20*** -230*** 0.23*** -272*** 0.20*** -228***

Homog 10%*** -81*** -2%*** -41*** 8%*** -74***

Homosk NP-C 7%*** -66*** 2%*** -17*** 9%*** -52***

Heterosk Flat 22%*** -42*** 44%*** -701*** 102%*** -309***

Param 4%*** -60*** 35%*** -135*** 7%*** -52***

NP-disc 1%*** -9*** -7%*** -1*** 2%*** -20***

NP-R 1%*** -5*** 28%*** -63*** 3%*** -16***

NP-C 3%*** -6*** 3%*** -5*** 0.1%*** -5***

See the description of Table 5.2. Here Heterosk-NP-C/R is the benchmark for both normalization and
significance tests.
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