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Abstract

In a monetary economy, we show that price dispersion arises as an equilibrium

outcome without the need for costly simultaneous search or any heterogeneity in pref-

erences, production costs, or search technologies. A distribution of money holdings

among buyers makes sellers indifferent across a set of posted prices, leading to a non-

degenerate price distribution. This price distribution, in turn, makes buyers indiffer-

ent across a range of money balances, rationalizing the non-degenerate distribution

of money holdings. We completely characterize the distribution of posted prices and

money holdings in any equilibrium. Equilibria with price dispersion admit higher

maximum prices than observed in any single-price equilibrium. Also, price disper-

sion reduces welfare by creating mismatch between posted prices and money balances.

Inflation exacerbates this welfare loss by shifting the distribution towards higher prices.
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1 Introduction

Under what conditions is there price dispersion for identical goods? A well-known result

going back to Diamond (1971) is that simple search frictions do not alone suffice to generate

price dispersion. In this paper, we identify a natural and intuitive source of price dispersion:

monetary trade. In a frictional product market where buyers must carry money in order

to make purchases, we show that price dispersion arises as an equilibrium outcome without

recourse to costly simultaneous search, or any heterogeneity in production technology, pref-

erences, or search opportunities. In this sense, price dispersion can be a purely monetary

phenomenon.

We consider a random matching monetary model in which sellers post prices, and buyers

simultaneously decide on their quantity of money balances. When choosing prices, a seller

trades off revenue per sale against the chance of selling a discrete good. Similarly, when

choosing money balances, a buyer trades off the cost of holding money against the probability

of being able to afford a posted price. A non-degenerate distribution of money balances

among buyers makes sellers indifferent across a range of prices; a non-degenerate distribution

of prices, in turn, makes buyers indifferent across a range of money balances. Thus, as in any

mixed strategy equilibrium, the distribution of money balances rationalizes the distribution

of prices and vice versa.

Due to the complementarity between price posting and money holdings, the model has

many equilibria. We fully characterize the distribution of posted prices and money holdings

in any equilibrium. Our main result is a necessary and sufficient condition for a set to be

the support of an equilibrium price distribution. We derive this in three steps. First, we

show that mass points in the distribution of money holdings imply gaps in the distribution

of prices, and vice versa. Second, we provide closed-form expressions for the distributions

on any interval. Third, these two results enables us to characterize the distributions on any

closed set. We illustrate our results by describing two special cases: equilibria with a discrete

support, i.e. exactly N prices, and equilibria whose support is an interval. We also derive

expressions for average prices, real balances, and welfare.

There are three main lessons from our analysis. First, the set of equilibria is large.

Consider the interval of prices that can obtain in a single-price equilibrium and yield sellers

positive profits.1 Our results imply that any closed subset of this interval can be the support

of the price distribution in some dispersed-price equilibrium. Importantly, this does not

exhaust the possibilities for equilibria. Equilibria with price dispersion can feature prices

higher than those observed in any single-price equilibrium. This is because, in a dispersed-

price equilibrium, a chance of sometimes paying a low price compensates buyers for carrying

high money balances. In other words, price dispersion allows for higher maximum prices, a

result quite different from the predictions of other models of price dispersion, as we discuss

below.

1The fact that there is an interval of such prices is a very special case of our results and is straightforward
to show; see. e.g. Jean et al. (2010).
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Second, price dispersion reduces welfare, which depends in our model on the fraction of

meetings that result in trade. In an equilibrium with price dispersion, there are meetings

where the seller’s posted price exceeds the buyer’s money balances, and trade does not occur

despite being mutually beneficial. Price dispersion reduces welfare by creating mismatch

between posted prices and money balances.

Third, inflation reduces welfare by exacerbating the mismatch caused by price dispersion.

This welfare cost of inflation is quite different from the standard inflation tax channel,

whereby inflation lowers the demand for real balances. Instead, in our model, inflation

exacerbates the welfare loss from mismatch by shifting the weight of the equilibrium price

distribution onto higher prices. Importantly, this effect of inflation only exists in equilibria

with price dispersion, and differs substantially from menu cost driven effects. Our analysis

provides a new link between price dispersion and monetary theory.

1.1 Relationship to the literature

Our work complements the existing literature on price dispersion in non-monetary models.

In order to generate price dispersion, such models often need to assume some form of hetero-

geneity such as in outside options (as in Albrecht and Axell (1984)), in search opportunities

(as in Lester (2011), Menzio and Trachter (2018), or Kaplan et al. (2016)), or in seller size

(as in Menzio and Trachter (2015)). In contrast, all the buyers and sellers in our model are

identical in every respect, and price dispersion is entirely self-confirming. Another strand of

the literature relies on nominal rigidities, such as menu costs, to generate price dispersion,

as in Benabou (1988) and, more recently, Burdett and Menzio (2017). We have no such

rigidities, so sellers are endogenously indifferent over a range of prices. Two previous papers

deliver dispersion through purely strategic effects without any underlying heterogeneity: the

classic model of Burdett and Judd (1983), which assumes costly simultaneous search, and

the monetary model of Galenianos and Kircher (2008), which relies on auctions rather than

posted prices. Both models, however, depend on implicit competition among multiple agents

– on the seller’s side for Burdett and Judd (1983) and on the buyer’s side for Galenianos and

Kircher (2008) – and so do not directly address the paradoxical finding of Diamond (1971)

that simple sequential search leads to monopoly pricing. Here, we show that there is no

paradox if consumers must pay with money, i.e. if there are both ex ante and ex post costs

of paying higher prices.

Our model not only differs in the mechanism leading to price dispersion, but also implies

results qualitatively different from the above literature. In all of the above models, the

mechanism delivering price dispersion can not raise prices above those which obtain without

dispersion. In contrast, in our environment, dispersed-price equilibria allow for prices higher

than could be observed in any single-price equilibrium. Next, the result that price dispersion

results in some mutually beneficial trades being turned down, and therefore a welfare loss,

is present in some, but not all, models in the literature. Like Albrecht and Axell (1984)

or Menzio and Trachter (2015), and unlike, e.g. Lester (2011), our model has the property
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that some prices get rejected on the equilibrium path. In Albrecht and Axell (1984), e.g.,

exogenous heterogeneity in buyers’ willingness to pay causes them to reject prices. This

makes seller’s indifference over a range of prices. In our model, buyers would be willing to

pay, but some cannot because buyers endogenously differ in their ability to pay as a result

of choices of money holdings.

In addition to generating a novel source of price dispersion, our results contribute to the

literature on monetary search models. This literature has recognized, starting with Green

and Zhou (1998), that monetary models with price posting often possess a multiplicity of

steady-state single price equilibria; our environment is closest to Jean et al. (2010), who show

the same in the Lagos and Wright (2005) framework. Multiple single-price equilibria arise

due to a coordination problem: if sellers post high prices, buyers have an incentive to carry

large money holdings, and vice versa.2 However, the literature emanating from Green and

Zhou (1998), including Jean et al. (2010), has focused exclusively on single-price equilibria.3

The existence and multiplicity of dispersed-price equilibria has been an open question, which

we answer here.

The predictions concerning welfare and the effects of inflation are also markedly dif-

ferent from those obtained in a single-price equilibrium of a monetary model. Because of

indivisible goods, all the single-price equilibria in our model have the same level of welfare,

and, moreover, this level of welfare is independent of inflation. By contrast, not only does

price dispersion lead to a welfare loss, but also inflation is detrimental for welfare when

it affects the distribution of prices. This effect of inflation is also distinct from the well-

known effects of inflation in other monetary models. For example, it is different from the

standard inflation-tax effect on the intensive margin in e.g. Lagos and Wright (2005) or

cash-in-advance models, which is shut down here because of indivisibility. Instead, it is the

probability of trade conditional on a meeting that is affected here, due to the effect on the

distribution of posted prices.

Section 2 below lays out the model environment, and Section 3 defines a steady-state

equilibrium. Our main results concerning the characterization of the set of equilibria are in

Section 4. Section 5 then uses these insights to describe two specific classes of equilibria:

those with a discrete (finite or countably infinite) support of the price distribution, and

those with a connected support. We compute welfare and examine the effects of inflation in

Section 6. Appendix A discusses an extension of the model that allows for credit in some

2The same multiplicity of equilibria arises if money is replaced by an asset with an intrinsic value, as
in Zhou (2003) or Rabinovich (2017). This multiplicity differs from classic results on indeterminacy in
monetary models such as for exchange rates (Kareken and Wallace, 1981), or the price level (Sargent and
Wallace, 1975), because our model features a multiplicity in real prices and trade volumes instead of nominal
multiplicities.

3There exists a growing literature on monetary models with price dispersion, but these models resort
to one of the other aforementioned channels to generate price dispersion - it is not due to monetary trade
per se. For example, Head et al. (2012) rely on non-sequential search, as in Burdett and Judd (1983), and
Bethune et al. (2018) assume heterogeneity in search opportunities, as in Lester (2011). Our mechanism is
completely distinct from these.
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meetings. Proofs are in Appendix B.

2 Environment

Time is discrete and the time horizon is infinite. There is a [0, 1] continuum of ex ante

identical agents with discount factor β ∈ (0, 1). Each period is divided into two subperiods.

In the second subperiod all agents consume a general good Q and supply labor H in a

Walrasian centralized market, CM. Labor and the general good are perfectly divisible. As is

common in the literature, and without loss of generality, it is assumed that H produces Q

one-for-one. Let U (Q)−H be the utility of consuming Q and working H in the CM, where

U (Q) satisfies standard assumptions.

In the first subperiod agents produce and consume specialized goods in a decentralized

market, DM, with random bilateral matching. In a random match between two agents A and

B, the probability of a single-coincidence meeting (B wants to consume the specialized good

A can produce but not vice-versa) is σ ∈
(
0, 1

2

]
, and the probability of a double-coincidence

meeting (B wants to consume a good A can produce and vice-versa) is 0. When B wants

to consume what A produces, the former is called a buyer and the latter a seller. The

specialized good is indivisible. Let c > 0 the cost of producing one unit, and u > c be the

utility from consuming one unit, of the indivisible good, conditional on it being one that the

buyer consumes and the seller produces.

Trade in the DM requires a medium of exchange. We assume that this role is served by

fiat money, whose supply is augmented via lump-sum transfers and grows at the gross rate

γ, assumed to satisfy γ > β. Define the Fisherian nominal rate as ι = γ/β − 1.

Search in the DM is random, and the terms of trade in the DM (i.e. the price of the

indivisible good) are determined by price posting. Agents post selling prices y in units of

the CM general good.

2.1 Discussion of the environment

The mechanism developed below depends on the specification of the environment – random

matching, posted prices, indivisible goods, and money as a means of payment. We discuss

each of these assumptions in turn.

We assume that matching is random and that firms post prices. We find both assump-

tions eminently realistic. Firms post prices in most markets. In some instances, these posted

prices are merely suggestions – as, for example, with automobiles – that set the stage for a

bargaining game. Most of the time, however, employees at the point of sale are not empow-

ered to bargain, and the transaction price is the posted price. In the same vein as bargaining

frictions, information is costly. Buyers usually do not know the exact price that a given

seller will quote before contacting that seller. We show that this most natural technology

of random matching with price posting can deliver price dispersion if one acknowledges the
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endogeneity of consumers’ budget constraints.

We assume that goods are indivisible. This is again in line with almost all of the literature

on price dispersion, reviewed above. In practice, many goods are discrete, and even those

goods that are in principle divisible usually are not treated as such in practice – the grocer

will not typically carve half an orange and sell it at half the price. Of course, indivisibility

removes an important margin for adjustment which, in many models, drives the welfare

effects of inflation. We show that, with dispersed prices, inflation can have real effects

despite the lack of an intensive margin. This effect of inflation does not exist in equilibria

without price dispersion. Unless so high as to shut down all trade, inflation has no allocative

effects in any single-price equilibrium of our model, yet reduces welfare in any dispersed-price

equilibrium. This link between price dispersion and the effects of inflation is novel and made

transparent by the indivisible goods environment.

The crucial assumption is that trade requires money. In practice, while credit cards or

other forms of credit may be important in some cases, most sellers will not extend credit at

the point of sale, only 57 percent of American adults owned a general purpose credit card as

of 2015, and credit payments amount to only a fifth of transactions.4 We also show in the

Appendix A that the results reported below – in particular, the existence of self-confirming

price dispersion – are robust to the introduction of credit, as long as it is not ubiquitous, i.e.

at least some transactions require cash. One implication of our results is that the availability

of credit affects the nature and shape of price dispersion – a point that, to our knowledge,

has not been explored in the literature.5

With regard to the specific choice of monetary model, we adopt the quasi-linear prefer-

ences environment following a long literature beginning with Lagos and Wright (2005). The

quasi-linearity assumption is not critical. Essential is the fact that buyers face a cost of

earning money, not that this cost is linear. Assuming quasilinear preferences, in addition to

making the model tractable, also makes transparent the mechanism: it shuts down all other

distributional concerns, allowing us to focus on coordination as the source of equilibrium

price dispersion.6

4General purpose cards are distinguished from private-label cards in that the former can be used at a
wide variety instead of only a single firm. See Consumer Financial Protection Bureau (2015) for discussion
and data on ownership rates. No administrative data exist for the proportion of transactions involving credit
cards in the United States, the survey data reported here derive from (Greene et al., 2017, 30) and are from
2015.

5Liu et al. (2017) provide a monetary model with Burdett and Judd (1983) pricing and costly credit.
Price dispersion is the result of simultaneous search as in Burdett and Judd (1983). That study provides
further information on the data, but credit does not affect the shape of the price distribution in that model,
rather the level of prices.

6It is well known that uninsured idiosyncratic risk can generate a distribution of money holdings, which,
in a frictional product market, can lead to a distribution of prices; see e.g. Molico (2006) or Menzio et al.
(2013). We abstract from these considerations here, so as to isolate our novel mechanism.
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3 Equilibrium

We focus throughout on steady states. Let V (z, y) be the expected payoff of an agent

entering the DM with z units of real money balances (measured in units of the general good)

and a posted price of y; and W (z) the expected payoff of an agent entering the CM with z.

Note that inflation – caused by lump-sum transfers T – implies that, in order to possess z′

real balances in the next DM, one must commit γz′ of the general good today. Therefore,

we have

W (z) = max
Q,H,z′,y′

{U (Q)−H + βV (z′, y′)} (1)

s.t. Q+ γz′ = H + T + z (2)

After substituting out H using the budget constraint, one observes (as is standard in models

with quasilinear preferences) that W ′ (z) = 1, which will be used below.

Moving on to the DM, let F and G denote the cumulative distributions of posted prices

money balances, respectively. It is easy to see that a buyer with money holdings z̃ is willing

to buy at price ỹ if and only if ỹ ≤ z̃ and u + W (z̃ − ỹ) ≥ W (z̃). Since W ′ (z) = 1, this

implies

V (z, y) = W (z) + σ

∫
(−∞,z]

max {0, u− ỹ} dF (ỹ)

+σ

∫
[y,∞)

1y≤u (y − c) dG (z̃) (3)

Substituting back into (1), we obtain W (z) = z +W (0), with

(1− β)W (0) = T + max
Q
{U (Q)−Q}+ βmax

z′
ν (z′) + βmax

y′
π (y′) , (4)

where

ν (z) = −ιz + σ

∫
(−∞,z]

max {0, u− ỹ} dF (ỹ) (5)

is the utility gain from carrying z units of real balances into the DM, and

π (y) = σ

∫
[y,∞)

1y≤u (y − c) dG (z̃) (6)

is the profit from posting a selling price of y. Optimizing behavior requires that ν (z) is

maximized at all z in the support of G, henceforth denoted by G, and π (y) is maximized at

all y in the support of F , denoted by F .7

Definition 1 A steady-state equilibrium consists of distributions G and F , with supports

G and F , respectively, and numbers ν̄ ≥ 0 and π̄ ≥ 0 such that:

7The support of a distribution is the smallest closed set with probability 1.
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1. ν̄ ≥ ν (z) for all z, with equality if z ∈ G,

2. π̄ ≥ π (y) for all y, with equality if y ∈ F ,

where ν (z) and π (y) are given by (5) and (6).

4 Analysis

We are interested in characterizing the set of possible equilibrium distributions, F and G.

Beginning with some preliminary observations, we go on to consider mass points and then

continuous points of the distributions. These allow us to formulate our main result providing

necessary and sufficient conditions for equilibrium. First, we define additional notation.

4.1 Notation

For any function h (x), write h (x−) = limε↓0 h (x− ε) for the left limit of h at x; similarly,

write h (x+) for the right limit. Then, we define δF (x) = F (x)− F (x−) for the mass on x

under F ; and similarly, define δG (x) = G (x)−G (x−) for the mass on x under G. Finally,

let Ḡ (x) =
∫
[x,∞)

dG (x̃) = 1−G (x) + δG (x) be the left truncated probability.

4.2 Preliminaries

First, we establish conditions necessary for a monetary equilibrium to exist, i.e. for trade to

occur in the DM in an equilibrium. Supposing there is trade, write x = min(F ∩ G) for the

lowest transaction price.8 Individual rationality requires that both buyers and sellers make

weakly positive surplus. For sellers, this requires x ≥ c. For buyers, we need

0 ≤ ν (x) = −ιx+ σδF (x) (u− x) , (7)

in other words, buyers are at least as well off ex ante carrying x as they would be if carrying

zero. Rearranging,

x ≤ u
σδF (x)

ι+ σδF (x)
≤ u

σ

ι+ σ
since δF (x) ≤ 1. (8)

Combining these, a monetary equilibrium exists only if

c ≤ σ

ι+ σ
u (9)

Where this holds with equality, (8) implies that δF (x) = 1. In this case the only transaction

price is c = uσ/(ι+ σ) and neither buyers nor sellers derive any surplus. Indeed, Jean et al.

(2010) show that there exist equilibria with F = G = {x} for any x ∈ [c, uσ/(ι+ σ)].

8We refer to those posted prices which may lead to a sale, F ∩ G, as transaction prices.
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Lemma 1 Equilibria with DM trade exist if and only if parameters satisfy (9). If (9) holds

with equality, all equilibria with DM trade features F ∩ G = {c}.

We now examine the relationship between the support sets for the distributions of prices

and money holdings. Except for prices too high for anyone to buy, or zero money holdings,

these two sets will be equal. Furthermore, these exceptions obtain only if either some sellers

never sell, or some buyers never buy.

Lemma 2 If π̄ > 0 and ν̄ > 0, then F= G. If F 6= G and ν̄ = 0 then G \ F ⊆ {0}. If

F 6= G and π̄ = 0 then F ⊆ {c} ∪ (max(G),∞) and G ∩ F ⊆ {c}.

Proof. See Appendix B.

In equilibrium, no one can have a strict incentive to deviate. For sellers, this means that

marginally raising prices must reduce sales, so some buyers must hold money at or arbitrarily

closely above any posted price. Similarly, for every quantity of money, buyers must not want

to deviate to slightly lower, less costly, money balances. This can only occur if they would

loose buying opportunities from the lower balances, so if some seller has posted a price at

or arbitrarily close below a given balance. Equilibrium tends to drive buyers and sellers

towards each other.

Indeed, buyers and sellers can only differ from one another if they do not lose in doing

so. Hence, in the cases where F 6= G, either buyers, sellers, or both make no surplus. In

this case, they are indifferent to also playing no-trade strategies. If π̄ = 0, there can be no

dispersion in transaction prices, and if there is trade it occurs only at a price c. In this case,

there are always a continuum of equilibria which differ in the proportion of sellers who post

c versus some high price that never transacts. If ν̄ = 0, there can still exist price dispersion,

as we show in several examples in Section 5. In this case, given a set of traded prices, there

are always a continuum of equilibria which differ in the proportion of buyers who choose

to carry no money. We will ignore these multiplicities, and assume that, when indifferent,

buyers carry positive balances and sellers post a transactable price. Henceforth, explicitly

assume that F = G, denote this set by X , and refer to it as the equilibrium support. Given

this discussion, we can combine Lemmas 1 and 2 and further state

Lemma 3 If X contains more than one point, then x = minX satisfies

c < x < u
σ

ι+ σ
.

Proof. c < x follows from the last part of Lemma (2). If x = u σ
ι+σ

then (8) implies δF (x) = 1

so that X = {x}.
Henceforth, we will assume that (9) holds with strict inequality, so that dispersed price

equilibria are possible.
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4.3 Gaps and Mass Points

Mass points in the distribution of money holdings induce gaps in the equilibrium support of

the price distribution, and vice-versa.

Theorem 1 In any equilibrium, if there is a mass point in G at x > c, then the interval

(x, x+ kF (x)) does not intersect the equilibrium support X , where

kF (x) = (x− c) δG (x)

1−G (x)
. (10)

Similarly, if there is a mass point in F at x < u in the support of money holdings, then the

interval (x− kG (x) , x) does not intersect X , where

ιkG (x) = σδF (x) (u− x) . (11)

Conversely, if a < b ∈ X and (a, b) ∩ X = ∅ - a gap in the distribution - then

δF (b) =
ι

σ

b− a
u− b

> 0, and δG (a) = (1−G (a))
b− a
a− c

> 0 (12)

Proof. See Appendix B.

Mass points induce gaps because they cause discontinuities in payoffs. A mass in the

money holding distribution induces a gap below because sellers want to shade up their

prices to the mass-point. A mass in the price distribution induces a gap above because

buyers want to shade down their money holdings to the mass-point. A point with positive

mass in both distributions must, therefore, be isolated. The converse statement holds for

much the same reason. A gap (a, b) in the equilibrium support can only be supported if the

end points are sufficiently remunerative. To compensate buyers for holding b rather than

a, there must be a mass of sellers at b. The mass δF (b) is pinned down by the buyers’

indifference condition, which equalizes the benefits of extra transactions to the extra cost of

carrying higher balances.

σδF (b) (u− b) = ι (b− a) , (13)

which, rearranged, gives the expression in Theorem 1. Similarly, to make sellers indifferent

to a discrete price cut from b to a, they must make discretely more sales because of a mass

of buyers at a. By lowering the price from b to a, the seller gains δG (a) buyers at a but

loses the extra revenue (1−G (a)) (b− a) from the buyers above a, so the mass δG (a) must

satisfy

δG (a) (a− c) = (1−G (a)) (b− a) (14)

Hence, any gap in the equilibrium support must feature a mass in F at the top and a mass

in G at the bottom.
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4.4 Intervals and Continuity

Theorem 1 has characterized behavior around mass points, one conclusion being that no

interval in the equilibrium support can contain such. Now we characterize behavior on open

intervals in the equilibrium support, where the distribution must be continuous. For any

interval in the equilibrium support, sellers must be indifferent across all the prices on the

interval, and buyers must be indifferent across all the money holdings on the interval. These

indifference conditions pin down F and G. For sellers to be indifferent over all prices x in

an interval, it must be that π (x) = π̄ everywhere in that interval. Using the profit equation

π (x) = (x− c) (1−G (x−)) gives

G (x−) = 1− π̄

x− c
(15)

Moreover, on an open interval contained in the support, there can be no mass points, so

G (x−) can be replaced by G (x) in the above formula. Next, for buyers to mix over money

holdings in an interval, it must be that ν(x) = ν̄ in that region. This indifference condition

implies that F is differentiable (as formally shown in the Appendix) and therefore

0 =
dν

dx
= −ι+ σ (u− x) f (x) , (16)

where f is the density of F . The last two equations yield the following:

Theorem 2 On any open interval contained in the equilibrium support,

G (x) = 1− π̄

x− c
, (17)

and F is differentiable with density given by

f (x) =
ι

σ (u− x)
. (18)

Proof. See Appendix B.

4.5 Necessary and Sufficient Condition for Equilibrium

Our main result provides necessary and sufficient conditions for a set X to constitute the

equilibrium support in a dispersed-price equilibrium. Recall that every closed set can be

represented uniquely as the complement of a countable collection of disjoint open intervals.

Hence, write X = [x, x] \ ∪∞i=1In for some countable, disjoint collection of intervals In =

(an, bn) ⊂ [x, x] with x = minX and x = maxX. Using Theorems 1 and 2, we can fully

characterize the distribution onX, thereby obtaining a necessary condition for an equilibrium

with support X to exist. Because our proof is constructive, the necessary condition we derive

is also sufficient and the equilibrium on any support X, whenever one exists, is unique.
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Consider the finite approximations of X, letting XN = [x, x] \ ∪Nn=1In. Theorems 1 and

2 allow us to construct equilibria on each XN . These converge uniformly to limiting distri-

butions which give an equilibrium on the set X. For the distribution of real balances G, we

can write

GN(x) =


0 if x ≤ x,

1− x−c
x−c if x > x ∈ X \ ∪Ni=1[an, bn),

1− x−c
bn−c if x ∈ [an, bn) for n ≤ N,

1 if x ≥ x.

(19)

Transparently, G (x) = limN→∞GN (x) is a proper probability distribution and satisfies equal

profit on X.

To construct the distribution of posted prices, F , we first recognize that, by Theorem 1,

there must be mass points at the top of each interval, bn:

δFN
(bn) =

ι

σ

bn − an
u− bn

(20)

Next, the distribution must be constant on each In and have the density f given in Theorem

2 elsewhere. This can be expressed as

FN (x) = δFN
(x) +

N∑
n=1

δFN
(bn) 1{bn≤x} +

∫ x

x

f (y)

[
1−

N∑
n=1

1y∈In

]
dy

= δFN
(x) +

ι

σ

[
N∑
n=1

1{bn≤x}
bn − an
u− bn

+ ln

(
u− x
u− x

)
−

N∑
n=1

ln

(
u−min {an, x}
u−min {bn, x}

)]
.

(21)

The mass point δFN
(x) is pinned down by the restriction that the distribution sum up to 1:

δFN
= 1− ι

σ

[
N∑
n=1

bn − an
u− bn

+ ln

(
u− x
u− x

)
−

N∑
n=1

ln

(
u− an
u− bn

)]
. (22)

Note that (u− an) / (u− bn) = 1 + (bn − an) / (u− bn) and ln(1 + w) ≤ w for any w > −1,

so
bn − an
u− bn

− ln

(
u− an
u− bn

)
≥ 0. (23)

Hence, δFN
(x) defined by (22) is a decreasing sequence in N . Individual rationality for sellers

is guaranteed by x > c. Individual rationality for buyers requires

νN (x) = −ιx+ σδFN
(x) (u− x) ≥ 0 (24)

in other words, a buyer ex ante prefers carrying x real balances to carrying zero. Because

δFN
(x) is decreasing in N , we only need to check the limit as N → ∞. Substituting (22)
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into (24) and taking the limit, we conclude that the buyer’s individual rationality condition

is satisfied if and only if

σ

ι
≥ x

u− x
+ ln

(
u− x
u− x

)
+
∞∑
n=1

[
bn − an
u− bn

− ln

(
u− an
u− bn

)]
(25)

This is our necessary and sufficient condition that fully characterizes the set of equilibria.

Theorem 3 Given a closed set X = [x, x] \ ∪∞n=1In with In = (an, bn) disjoint and c < x <
σ
ι+σ

u, there exists a unique equilibrium with support equal to X if and only if (25) holds. G

and F are then given by the limits as N →∞ of (19)-(22).

Notice that, in a single-price equilibrium, buyer individual rationality (24) amounts to z ≤
σ
ι+σ

u, where z is the unique price posted in equilibrium. This means that any price z ∈[
c, σ

ι+σ
u
]

can constitute a single-price equilibrium. Interestingly, any combination of these

prices, excluding c, can be the support of a dispersed-price equilibrium.

Proposition 1 Let X be a closed subset of
(
c, σ

ι+σ
u
]
. There exists an equilibrium with

support X.

Proof. See Appendix B. The proof amounts to showing that x ≤ σ
ι+σ

u is a sufficient

condition for (25). The lower bound c is excluded as a result of Lemma 3: if sellers get the

same profits from posting two different prices in X, these profits cannot be zero.

The message of Proposition 1 is two-fold. First, it shows that the set of equilibria is

large. Any closed subset of the prices that can be observed in a single-price equilibrium,

while yielding sellers positive profits, can serve as the equilibrium support. Second, while

x ≤ σ
ι+σ

u is sufficient, it is not necessary since it is strictly stronger than (25): there exist

dispersed-price equilibria in which the upper bound on prices is even higher than σ
ι+σ

u,

which would be impossible in a single-price equilibrium. Price dispersion allows for higher

maximum prices.

4.6 Upper Bound on Equilibrium Prices

The above discussion raises the question of what is the maximum price x that can be observed

in any equilibrium. We characterize this maximum price by inspecting (25). First, the right-

hand side of (25) is increasing in x, so the maximum is attained when (25) holds with

equality. Second, the infinite summation term is non-negative (as observed in (23)), so that

the right-hand side of (25) is greater than or equal to x/ (u− x)+ln ((u− x) / (u− x)). This

means that if X = [x, x] \∪∞n=1In satisfies (25), then so does X ′ = [x, x]. In other words, the

maximum possible price is attained when the support is an interval - a special case that we

return to in section 5.1. Third, (25) holding with equality defines x as a decreasing function

of x, so that the upper bound x is attained when x→ c. Summing up, we conclude that the

13



upper bound on x satisfies
c

u− c
+ ln

(
u− c
u− x

)
=
σ

ι
(26)

Solving for x, we obtain

Proposition 2 The least upper bound on the set of prices that can obtain in any equilibrium

is

supx = u− (u− c) exp {c/ (u− c)− σ/ι} (27)

This upper bound is tight since x can be arbitrarily close, but not equal, to c. It is straight-

forward to verify that supx is strictly higher than σ
ι+σ

u. However, sup x is strictly lower

than u, since

u− (u− c) exp {c/ (u− c)− σ/ι} ≤ u (1− exp {−σ/ι}) < u, (28)

and equal to u (1− exp {−σ/ι}) in the limiting case c = 0. In other words, the upper

bound on equilibrium prices is higher than the maximum price attainable in any single-price

equilibrium, but still lower than the buyer’s ex post valuation.

We now provide some intuition for this finding. For any equilibrium support X , let us

denote by y∗ =
∫
X ydF (y) the average posted price. Then the utility of a buyer carrying the

maximum real balances x is ν (x) = −ιx+σ (u− y∗), since such a buyer trades at the posted

price whenever meeting a seller. The maximum possible x is obtained when ν (x) = 0, which

gives, after re-arranging,

x =
σ

ι+ σ
u+

σ

ι+ σ
(x− y∗) (29)

This is greater than or equal to σ
ι+σ

u, with equality only if x = y∗, that is, if there is no price

dispersion. Buyers get non-negative utility despite carrying high real balances, because of

the chance of sometimes paying a lower price. This also clarifies why x cannot be arbitrarily

close to u. Suppose that a high posted price, say b, coexists in equilibrium with some lower

posted price, a. The fraction of sellers posting b must be sufficiently low to ensure that

buyers carrying real balances b get non-negative utility. On the other hand, the fraction

of sellers posting b must be sufficiently high to induce some buyers to carry real balances

b rather than a. The tradeoff between these two opposing forces keeps the maximum price

bounded away from the buyer’s valuation.

5 Special cases

In this section, we apply the Theorem 3 to characterize two special classes of equilibria –

equilibria with a connected support, and those with a discrete support.
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5.1 Connected Support Equilibria

We first construct equilibria in which the equilibrium support is an interval. This is a special

case of Theorem 3 with X = [x, x̄]. By Theorem 2, π̄ = x− c implies

G (x) = 1− x− c
x− c

for x ∈ [x, x̄) (30)

And, since G (x̄) = 1 by definition, there is a mass point at the top of the money holding

distribution, with mass equal to

δG (x̄) =
x− c
x̄− c

(31)

Turning now to F , for the support to be connected, there can be no mass points in (x, x̄] by

Theorem 1, and f (x) is given by (18) on the interior by Theorem 2. Since the only possible

mass point is at x, we can write the distribution function for all x ∈ [x, x̄] as

F (x) = δF (x) +

∫
(x,x]

f (x) dx = δF (x) +
ι

σ
ln

(
u− x
u− x

)
(32)

The restriction F (x̄) = 1 then implies

δF (x) = 1− ι

σ
ln

(
u− x
u− x̄

)
(33)

Buyer utility is

ν̄ = −ιx+ σδF (x) (u− x) (34)

To ensure ν̄ ≥ 0, we need

δF (x̄) ≥ ι

σ

x

u− x
, (35)

which, by (33), requires
x

u− x
+ ln

(
u− x
u− x̄

)
≤ σ

ι
(36)

Condition (36) is a special case of of condition (25) for a connected support. We have thus

established the following:

Corollary 1 There exists a unique equilibrium with connected support equal to X = [x, x̄]

if and only if c < x and x̄ satisfies (36). The equilibrium distribution of real balances G is

given by (30) and (31), and the equilibrium distribution of prices is given by (32) and (33).

The equilibrium payoffs are given by π̄ = x− c and ν̄ = −ιx+ σδF (x) (u− x).

Figure 1 illustrates the cumulative distributions F and G in a connected-support equilibrium.

In the example shown here, we assume u = 10, c = 1, σ = 0.2, and ι = 0.05, and look at the

equilibrium with the support [2, 7.8526].

We now discuss the maximum attainable equilibrium price. The left-hand side of (36) is

increasing in both x and x. Therefore, for every x, the maximum attainable x is given by (36)
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Figure 1: Distributions of prices and real balances for u = 10, c = 1, σ = 0.2, ι = 0.05 and
X = [2, 7.8526]

holding with equality, wherefore the maximum attainable x is decreasing in x. Furthermore,

for x close to c, the highest attainable x exceeds σ
ι+σ

u, since

c

u− c
+ ln (u− c) < σ

ι
+ ln

(
u− σ

ι+ σ
u

)
(37)

The finding that the maximum attainable x is decreasing in x reflects the same intuition as

for the general case: in order to compensate buyers for carrying high real balances, there

must be a chance of paying a sufficiently low price. Finally, the upper bound on x is achieved

with (36) holding at equality at x→ c, and is given by Proposition 2.

5.2 Discrete Point Equilibria

We now construct equilibria whose support has exactly N points, where N can be finite or

infinite. Note that this is trivial for N = 1: for any x ∈
[
c, σ

ι+σ
u
]

there is an equilibrium

with X = {x}. We focus on constructing dispersed-price equilibria, i.e. those with N > 1.
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Consider a candidate equilibrium with X = {x1, x2, ..., xN}, where xi < xi+1. This is a

special case of Theorem 3 with x = x1, x = xN , and In = (xn, xn+1).

First, by Lemma 3, we must have

c < x1 ≤
σ

ι+ σ
u, (38)

since if sellers get equal profits from posting two different prices, these profits cannot be

zero. Second, we characterize G. The xi must all yield equal profit to sellers, so

π̄ = x1 − c =
N∑

j=i+1

δG (xj) (xi+1 − c) (39)

for all i ≥ 1. This immediately implies

δG (xi) =
x1 − c
xi − c

− x1 − c
xi+1 − c

(40)

for every i with 1 ≤ i < N . Note that this is simply an application of Theorem 3, with

the substitution GN (xi) =
∑i

j=1 δG (xj). We next verify that (40) results in a probability

distribution. Clearly, δG (xi) > 0 for i < N follows trivially from xi+1 > xi. For N <∞, we

set

δG (xN) = 1−
N−1∑
i=1

δG (xi) , (41)

Note that (40) leads to telescoping sums, i.e.

N−1∑
i=1

δG (xi) = 1− x1 − c
x2 − c

+
x1 − c
x2 − c

− x1 − c
x3 − c

+ . . . = 1− x1 − c
xN − c

, (42)

which implies δG (xN) > 0. For N =∞, we observe that the sequence xi is strictly increasing

and bounded, so must have a limit x∞ = lim
n→∞

xn. This implies

lim
n→∞

n∑
i=1

δG (xi) = lim
n→∞

(
1− x1 − c

xn+1 − c

)
= 1− x1 − c

x∞ − c
(43)

We therefore set

δG (x∞) = 1− lim
n→∞

n∑
i=1

δG (xi) =
x1 − c
x∞ − c

(44)

and observe that δG (x∞) > 0. This shows that G, as defined by (40) and either (41) or (44),

adds to one.
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Third, we characterize F . Applying Theorem 3 again, we have

F (x) = δF (x1) +
ι

σ

N∑
i=1

1{xi+1≤x}
xi+1 − xi
u− xi+1

(45)

In other words, there is a mass point at each xi+1 equal to

δF (xi+1) =
ι

σ

xi+1 − xi
u− xi+1

(46)

for every i ≥ 1. As above, this states that a buyer is indifferent between carrying xi real

balances and carrying xi+1, whereby the latter raises his probability of trade by δF (xi+1).

The mass δF (x1) at x1 is pinned down by

δF (x1) = 1−
N∑
i=1

δF (xi+1) (47)

Buyer utility is then given by

ν̄ = −ιx1 + σδF (x1) (u− x1) (48)

Equilibrium requires ν̄ ≥ 0, implying

x1
u− x1

+
N∑
i=1

xi+1 − xi
u− xi+1

≤ σ

ι
(49)

The restriction (49) is a special case of (25) for a discrete point support. The above analysis

can be summarized as

Corollary 2 Let X be any discrete, but not necessarily finite, increasing sequence {xi}.
There exists an equilibrium with support equal to the closure of X if and only if X satisfies

(38) and (49). The distribution of real balances G is given by (40) and either (41) if X is

finite, or (44) if X is infinite. The distribution of prices F is given by (46) and (47). The

equilibrium payoffs π̄ and ν̄ are given by (39) and (48), respectively.

Condition (49) puts an upper bound on prices. This upper bound, however, depends on

the number of prices. For a single-price equilibrium (N = 1) this condition reduces to

x1 ≤ σ
ι+σ

u. However, in dispersed-price equilibria, we can obtain prices above σ
ι+σ

u, as

shown in Proposition 2. We now derive an explicit formula for the upper bound on prices

for any N -point support.

For any given x1, consider the problem of choosing x2, ..., xN to maximize xN , subject to

the constraint (49). The necessary first-order conditions for this problem (derived in detail
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in the Appendix) imply
u− xi−1
u− xi

=
u− xi
u− xi+1

(50)

for every i = 2, ..., N − 1, which, by (46), indicates that the prices x2 through xN need to be

equally likely, i.e. δF (x2) = ... = δF (xN). At the maximum xN , the restriction (49) clearly

holds with equality; substituting (50) into (49) can then be shown to yield

xN = u− (u− x1)
(

N − 1

N − 1 + σ/ι− x1/ (u− x1)

)(N−1)

(51)

Equation (51) defines the maximum xN as a function of x1. Thus defined, xN is hump-shaped

in x1 for any N and increasing in N for any x1. As an illustration, Figure 2 plots xN defined

by (51) as a function of x1 for N = 2, 3, 4, 5.

Figure 2: Upper bound on xN for a given x1, when u = 10, c = 4.2857, σ = 0.3, ι = 0.05.

For an equilibrium with price dispersion to exist, the lowest price must strictly exceed c.

Hence, determining the highest possible xN amounts to maximizing (51) with respect to x1,

subject to the restriction x1 ≥ c.9 When the constraint x1 ≥ c does not bind, the necessary

9As explained earlier, x1 must be strictly greater than c in a dispersed-price equilibrium. Therefore, if the
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first-order condition for this problem implies x1 = uσ/ (ιN + σ) and

xN = u

(
1−

(
ιN

ιN + σ

)N)
(52)

Incidentally, in this case all the prices xi are equally likely, i.e. δF (x1) = ... = δF (xN). On

the other hand, if the restriction x1 ≥ c binds, then the maximum xN is obtained in the

limit when x1 → c, and δF (x1) is pinned down by (49) holding with equality at x1 → c. In

this case, the upper bound on prices satisfies

xN = u− (u− c)
(

N − 1

N − 1 + σ/ι− c/ (u− c)

)(N−1)

(53)

The constraint x1 ≥ c binds when c > uσ/ (ιN + σ) and does not bind otherwise. Since

c < uσ/ (ι+ σ), the constraint does not bind for small enough N , and will bind for a large

enough N unless c = 0. This then implies the following characterization of the upper bound:

Corollary 3 Let x̂N be the upper bound on the price xN that can obtain in an equilibrium

with N-price support X = {x1, ..., xN}. If c < uσ/ (ιN + σ), the upper bound is attained at

x1 = uσ/ (ιN + σ) and is given by (52). If c ≥ uσ/ (ιN + σ), the upper bound is attained in

the limit as x1 → c and is given by (53). Moreover, x̂N is strictly increasing in N and

lim
N→∞

x̂N = u− (u− c) exp {c/ (u− c)− σ/ι} (54)

Proof. See Appendix B for full proof.

Figure 3 illustrates the upper bound, x̂N , as a function of N . Note that at N = 1,

the upper bound is uσ/ (ι+ σ), which equals 8 in this numerical example. In the limit as

N →∞, xN is given by (53) rather than (52); taking the limit of (53) give (54). Note that

the expression in (54) is the same as the limit for the general case in Proposition 2.

The result that the upper bound on prices is increasing in N has a very intuitive inter-

pretation. Note that (49) is simply the restriction that buyer utility must be non-negative.

Suppose that buyers receive non-negative utility in some equilibrium with N prices. Now,

suppose that some of the sellers posting xN instead post a price between xN−1 and xN ; the

non-negativity constraint on buyer utility now holds with slack. Thus, equilibria with more

prices allow for higher prices.

6 Aggregate implications

In this section, we examine the implications of price dispersion for aggregate real balances,

profits, and welfare, and the effects of inflation on these aggregates. The model endogenously

constraint x1 ≥ c in fact binds in the price maximization problem, then the upper bound on xN is attained
only in the limit as x1 → c.
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Figure 3: Upper bound on xN as a function of N , when u = 10, c = 4, σ = 0.2, ι = 0.05.

generates inequality in income and spending. Some agents work more in the CM and carry

more money balances into the DM than others. Interestingly, agents are ex ante indifferent

among all the levels of money balances: higher money balances incur a higher inflation cost

but yield a higher probability of trade. However, this does not imply that equilibria with such

inequality are welfare-equivalent to equilibria without it. As a result of price dispersion, some

meetings do not result in trade because the posted price exceeds the buyer’s money balances

with positive probability. Thus, price dispersion generates mismatch between posted prices

and real balances, which is detrimental for overall welfare. We show this formally below.

We then show that inflation exacerbates this welfare loss from mismatch by shifting the

distribution toward higher prices.
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6.1 Real balances, price, and welfare

Given equilibrium distributions F and G on equilibrium support X , it is straightforward to

calculate aggregate real balances,

z∗ ≡
∫
X
zdG (z) , (55)

and the average posted price in the DM,

y∗ ≡
∫
X
ydF (y) . (56)

We next derive an expression for steady-state welfare. Abstractly, this is simply

W =

∫
X

∫
X
V (z, y) dG (z) dF (y) . (57)

Recall from (3) and (4) that V (z, y) is given by

V (z, y) = W (z) + ιz + ν(z) + π(y)

= (1 + ι) z +W (0) + ν(z) + π(y) (58)

where

W (0) =
1

1− β

[
T + max

Q
(U (Q)−Q) + β (ν̄ + π̄)

]
. (59)

Market clearing requires the growth of the money supply to satisfy T = (γ − 1) z∗. Substi-

tuting back into (59) and (58), integrating over z and y, and noting that γ−1 = β(1+ ι)−1,

one obtains

W =
1

1− β

[
max
Q

(U (Q)−Q) + π̄ + ν̄ + ιz∗
]

=
1

1− β

[
max
Q

(U (Q)−Q) +WDM

]
, (60)

whereWDM = π̄+ν̄+ιz∗ is the per-period social welfare in the DM. Equation (60) illustrates

that, because of quasi-linear preferences, the social surplus in the DM is all we need to know

in order to welfare-rank equilibrium allocations. The expression for WDM , in turn, simply

says that this social surplus equals the seller surplus π̄ plus the (gross) ex ante buyer surplus
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ν̄ + ιz∗. To better understand this social surplus, note that we can re-write it as

WDM = π̄ + ν̄ + ιz∗

=

∫
X
π (y) dF (y) +

∫
X

(ν (z) + ιz) dG (z)

=

∫
X

∫
X
σ1y≤z (y − c) dG (z) dF (y) +

∫
X

∫
X
σ1y≤z (u− y) dF (y) dG (z)

=

∫
X

∫
X

1y≤z [σ (y − c) + σ (u− y)] dG (z) dF (y)

= σ (u− c)
∫
X

∫
X

1y≤zdG (z) dF (y) (61)

In other words, because of indivisible goods in the DM, the social surplus in the DM depends

only on the probability that a trade takes place, since the surplus from each trade is u− c.
This surplus is maximized, moreover, when all meetings result in trade, in which case the

social surplus is simply σ (u− c).
Motivated by this observation, we examine how price dispersion impacts WDM . Notice

that π̄ = π (x) = σ (x− c) and ν̄ = ν (x̄) = −ιx̄ + σ (u− y∗), where x = minX and

x̄ = maxX . This means that

WDM = σ (x− c) + σ (u− y∗)− ιx̄+ ιz∗

= σ (u− c)− σ (y∗ − x)− ι (x̄− z∗) (62)

The first term of this expression, σ (u− c) is the maximum social surplus obtainable in the

DM, since this is the surplus that would obtain if every meeting resulted in trade. So,

(62) states that welfare equals the maximum possible welfare σ (u− c) minus a wedge that

depends on price dispersion. Intuitively, to induce trade with probability 1, a fictitious

social planner would need to subsidize each seller posting y by y − x, and subsidize each

buyer with x real balances by ι (x̄− x) ex ante, leading to an aggregate welfare loss of

σ (y∗ − x) + ι (x̄− z∗).
This intuitive expression immediately implies that price dispersion is detrimental for

welfare. Formally, let E = (π̄, ν̄, F,G) be an equilibrium with support X and let E ′ =

(π̄′, ν̄ ′, F ′, G′) be an equilibrium with support X ′. We will say that E ′ is a mean-preserving

spread of E if ∫
X
ydF (y) =

∫
X ′
ydF ′ (y) , and

∫
X
xdG (x) =

∫
X ′
xdG′ (x) ,

and either minX ′ ≤ minX or maxX ′ ≥ maxX , with at least one inequality strict. Then

we can state

Proposition 3 If an equilibrium E ′ is a mean-preserving spread of another equilibrium E,

then welfare is lower under E ′ than under E.
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The proof follows directly from inspecting (62). Fixing y∗ and z∗, welfare is lower the lower

is x, and the higher is x̄. In fact, it is straightforward to see that both buyers and sellers are

worse off as a result of higher price dispersion: fixing y∗ and z∗, a buyer wishing to buy with

maximum probability needs to carry a higher level x of real balances, and a seller wishing

to sell with maximum probability needs to post a lower price x.

Price dispersion leads to mismatch. Note that in every single-price equilibrium, we have

x = y∗ = z∗ = x̄, so that welfare equals the first-best level of welfare, σ (u− c), because

trade takes place with probability one. Price dispersion, on the other hand, allows a positive

probability of meetings in which the seller’s posted price exceeds the buyer’s money balances.

The proportion of such meetings determines the welfare loss.

6.2 Effects of inflation

We next examine the effects of inflation, captured by ι, on real balances, prices and welfare.

Proposition 3 concerned the comparison between two equilibria under a given inflation rate.

In this section, we fix an equilibrium support X and consider how a change in ι impacts the

equilibrium distributions F and G on that support.

Take F and G in turn. For G, (19) shows that a change in inflation has no effect on G

and therefore on z∗. This is because G is pinned down by the seller’s indifference condition,

which remains unaffected when ι changes. Since G is unaffected, so is z∗. F , however, is

determined by the buyer’s ex ante indifference condition and will therefore depend on the

cost of carrying money balances. Combining (21) with (22), we obtain

F (x) = 1 +
ι

σ

[
ln

(
u− x
u− x

)
+
∞∑
n=1

1{bn≤x}
bn − an
u− bn

−
∞∑
n=1

ln

(
u−min {an, x}
u−min {bn, x}

)

−
∞∑
n=1

bn − an
u− bn

+
∞∑
n=1

ln

(
u− an
u− bn

)]

= 1 +
ι

σ

[
ln

(
u− x
u− x

)
−
∞∑
n=1

1{x<bn}

(
bn − an
u− bn

− ln

(
u− an
u− bn

))

−
∞∑
n=1

1{an≤x<bn} ln

(
u− an
u− x

)]
(63)

The expression in brackets in (63) is negative, so an increase in ι lowers F (x) for any x,

and therefore shifts the cumulative distribution of prices upward in the sense of first-order

stochastic dominance. An upward shift in the distribution raises its mean, so an increase

in ι raises y∗. Inflation raises the average relative price of the good whose consumption

requires cash. For example, for the connected support example introduced in Section 5.1, it
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is straightforward to derive

y∗ = x− ι

σ
(x− x) +

ι

σ
(u− x) ln

(
u− x
u− x

)
(64)

The mechanism at work here is mixed-strategy equilibrium reasoning. In equilibrium,

buyers are indifferent among all the levels of real balances in the support. An increase in

inflation, all else equal, makes it more costly to carry high, rather than low, real balances.

To keep buyers indifferent in spite of the higher inflation, it must be that the benefit of

carrying high real balances also rises, which is only possible if high prices are now posted

with a higher probability.

Once we know the effects of inflation on z∗ and y∗, it is straightforward to determine

its effects on π̄ and ν̄. Since π̄ = σ (x− c), seller profit does not depend on inflation. On

the other hand, buyer utility equals the utility of a buyer who takes out the maximum real

balances and pays the average price: ν̄ = −ιx + σ (u− y∗). Thus, inflation unambiguously

reduces ν̄, for two reasons. First, it directly raises the cost ιx of carrying real balances.

Second, it has the equilibrium effect of shifting the price distribution toward higher prices,

thus raising the average price the buyer pays.

Finally, we deduce the effect on welfare through similar reasoning. Welfare, given by

(62), falls when ι rises, both through the direct effect of ι, and the equilibrium effect on y∗.

We can summarize our findings as follows.

Proposition 4 Fix an equilibrium support X . An increase in inflation leaves the distribu-

tion of real balances and seller profit unaffected, but raises the average DM price, and lowers

buyer utility and social welfare.

Figure 4 illustrates the effect of inflation on the average price y∗, buyer utility ν̄ and

overall welfare WDM for the connected support example introduced in Section 5.1. As

explained above, an increase in inflation shifts the price distribution so as to put more

weight on higher posted prices. Since the distribution of real balances remains unchanged,

this exacerbates the mismatch between posted prices and real balances, leading to lower

welfare. This detrimental effect of inflation is distinct from the standard inflation tax channel

present in most monetary models, including monetary search models such as Lagos and

Wright (2005), as well as their predecessors featuring either cash-in-advance constraints or

money in the utility function. There, inflation leads to a fall in demand for real balances,

which in turn lowers the quantity purchased in the decentralized market. This channel is shut

down here since the goods purchased in the decentralized market are indivisible, and hence

there is no intensive-margin quantity distortion. In fact, in our model inflation leaves the

distribution of real balances unaffected, unlike the aforementioned models where it operates

entirely through real balances. What changes instead is the distribution of posted prices,

which in turn leads to a welfare loss because it distorts the extensive-margin probability of

trade through mismatch.
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Figure 4: Average posted price y∗, buyer utility ν̄ and welfare WDM as functions of ι, for
u = 10, c = 1, σ = 0.5, and X = [2, 8.939].

7 Conclusion

The main lesson from our findings is that price dispersion can exist as an equilibrium outcome

of monetary trade combined with search frictions, in the absence of simultaneous search or

ex ante heterogeneity. This price dispersion is a purely self-confirming phenomenon: a

non-degenerate distribution of money holdings rationalizes a non-degenerate distribution of

prices, and vice versa. The fact that a distribution of money holdings rationalizes price

dispersion is a consequence of buyers being constrained, at least sometimes, by their money

holdings at the point of sale. Our analysis thus points to a new link between cash constraints

and price dispersion and a new channel through which inflation affects prices and allocations.
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A Economy with Credit

This section considers an altered version of the model where some agents have access to
credit. One might suppose that, if agents have access to credit so are not bound by their
money holdings, the mechanism at the heart of the paper would fail. The main result of
this section is that dispersed-price equilibria survive the introduction of credit as long as it
is not ubiquitous. The most striking effect of credit is to fix the profit of sellers, so this is
no longer indeterminate. Multiplicity still persists, but credit places tighter bounds on the
set of sustainable prices in addition to affecting the shape of money and price distributions.
As the analysis largely parallels the text, it is somewhat abbreviated.

Suppose that a proportion λ of buyer-seller meetings have access to costless credit. That
is, in a proportion λ of buyer-seller meetings, instead of requiring cash as a medium of
exchange, there exists some mechanism whereby the buyer can work and repay the seller in
the next centralized market. One might imagine credit cards, although these are costly in
reality. Alternately, one might imagine that some meetings are not anonymous in that the
buyer and seller know one another and can commit to meet again in the next subperiod. In
either event, we maintain the assumption of posted prices, so sellers must choose the same
price in both cash and credit meetings.

Linear production in the centralized market implies that buyers can commit to repay any
amount, so credit removes the budget constraint. Hence, in credit meetings, the buyer can
and will pay any amount up to and including u. In cash-only meetings, individual rationality
for money holdings, equation 9, still applies, so a seller posting a price y = u only sells in
credit meetings. Hence,

π(u) = σλ(u− c),

and
π(y) = σ

[
(1− λ)Ḡ(y) + λ

]
(y − c). (65)

Setting π(x) = π(u) fixes the bottom of the equilibrium support at

x = λu+ (1− λ)c. (66)

Writing y∗ as the expected price, then buyer’s value becomes

ν(z) = −ιz + σ

[
(1− λ)

∫ z

(u− x)dF (x) + λ(u− y∗)
]
. (67)

If one considers gaps in the distribution (a, b), setting ν(a) = ν(b) and π(a) = π(b) gives an
analog of Theorem 1:

δF (b) =
ι(b− a)

σ(1− λ)(u− b)
and δG(a) =

[(1− λ)(1−G(a)) + λ] (b− a)

(1− λ)(a− c)
. (68)

Similarly, one can use Equations 65 and 67 to get an analog of Theorem 2 which characterizes
distributions on the interior of the joint support:

G(x) = 1− λ(u− y)

(1− λ)(y − c)
, (69)
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and

f(x) =
ι

σ(1− λ)(u− z)
. (70)

Towards reconstructing our full characterization, let X be some closed set with minX =
x = λu + (1 − λ)c, maxX = x < u, and X = [x, x] \ (∪∞n=1(an, bn)) for some collection of
disjoint open intervals (an, bn). We will seek to construct an equilibrium with money holdings
in X and prices in X ∪ {u}. The distribution of money holdings is similar to Equation 19:

G(x) =


0 if x ≤ x,

1− λ(u−x)
(1−λ)(x−c) if x > x ∈ X \ (∪∞i=1[an, bn)) ,

1− λ(u−bn)
(1−λ)(bn−c) if x ∈ [an, bn) for n ≤ N,

1 if x ≥ x.

(71)

For the distribution of prices, there are two changes. First, the appearance of 1 − λ terms
according to Equations 68 and 70. Second, there is not full mass on X, so one must also
calculate δF (u). For x ∈ X,

F (x) = δF (x) +
∞∑
n=1

δF (bn) 1{bn≤x} +

∫ x

x

f (y)

[
1−

∞∑
n=1

1y∈In

]
dy

= δF (x) +
ln
(
u−x
u−x

)
+
∑∞

n=1

[
1{bn≤x}

bn−an
u−bn − ln

(
u−min{an,x}
u−min{bn,x}

)]
σ(1− λ)/ι

(72)

Evaluating this at x we get

1− δF (u) = δF (x) +
ι

σ(1− λ)

{
ln

(
u− x
u− x

)
+
∞∑
n=1

[
bn − an
u− bn

− ln

(
u− an
u− bn

)]}

Using this, and noting that∫ b

a

xf(x)dx =
ι

σ(1− λ)

∫ b

a

x

u− x
dx = u ln

(
u− a
u− b

)
− (b− a),

30



one can evaluate

y∗ =

∫ u

x

xdF (x) (73)

= δF (x)x+ δF (u)u+
∞∑
n=1

(
δF (bn)bn −

∫ bn

an

xf(x)dx

)
+

∫ x

x

xf(x)dx (74)

= δF (x)x+ δF (u)u+
ι

σ(1− λ)

{
∞∑
n=1

[(
bn − an
u− bn

)
bn − u ln

(
u− an
u− bn

)
+ (bn − an)

]
+u ln

(
u− x
u− x

)
− (x− x)

}
. (75)

Individual rationality for buyers requires weakly higher value from carrying positive bal-
ances over nothing, ν(x) ≥ ν(0) for all x ∈ X . Here, however, ν(0) = σλ(u − y∗). Hence,
some manipulation of 67 gives us a condition for there to exist an equilibrium which satisfies
individual rationality:

ν(x)− ν(0) = −ιx+ σ(1− λ)(u− y∗) ≥ 0.

Note, in the credit economy, the support set of money holding does not uniquely determine
equilibrium as a range of values for δF (u) and δF (x) can satisfy adding up and individual
rationality. For existence, however, one need only check at δF (u) = 0. Solving 1 = F (x) for
δF (x) with δF (u) = 0 gives

δF (x) = 1− ι

σ(1− λ)

{
ln

(
u− x
u− x

)
+
∞∑
n=1

[
bn − an
u− bn

− ln

(
u− an
u− bn

)]}
.

This makes

y∗ = x+
ι

σ(1− λ)

{
∞∑
n=1

[(
bn − an
u− bn

)
(bn − x)− (u− x) ln

(
u− an
u− bn

)
+ (bn − an)

]
+(u− x) ln

(
u− x
u− x

)
− (x− x)

}
.

Finally, substituting this and y∗ into ν(x)− ν(0) gives a condition analogous to (25):

0 ≤ −ιx+ σ(1− λ) (u− x)

− ι

{
∞∑
n=1

[(
bn − an
u− bn

)
(bn − x)− (u− x) ln

(
u− an
u− bn

)
+ (bn − an)

]
+(u− x) ln

(
u− x
u− x

)
− (x− x)

}
. (76)

If one sends x→ x in (76), one obtains a condition on x in an equilibrium with X = {x}
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reminiscent of (8).

x ≤ u
σ(1− λ)

ι+ σ(1− λ)
.

Since we know x = λu+ (1− λ)c, this can be expresed directly as a condition of underlying
parameters, similar to (9).

c ≤ u
σ(1− λ)2 − ιλ

(1− λ)ι+ σ(1− λ)2
.

This is the condition for the existence of equilibria with prices other than u. Some manipu-
lation shows that c ≥ 0 implies a bound on λ which is necessary.

(1− λ)2

λ
≥ ι

σ
.

If one returns to (76), as was true in the case without credit, the right hand side is maxi-
mized in the case with connected support (without the gaps (an, bn)). Assuming this and
rearranging gives an upper bound for x.

x ≤ u− (u− x) exp

(
x

u− x
− σ(1− λ)

ι

)
.

Substituting the value of x gives an explicit bound similar to (27).

x ≤ u− (1− λ)(u− c) exp

(
λu+ (1− λ)c

(1− λ)(u− c)
− σ(1− λ)

ι

)
.

While we have focused on dispersed-price equilibria, there exist single price equilibria as
well. First, there is always a pure credit equilibrium where no buyer brings cash because
they expect all sellers to post u and vice versa. Second, there exist pure cash equilibria so
long as the single price x satisfies (9) and π(x) ≥ π(u). Working this out, one derives a
necessary condition for the existence of pure cash equilibria.

λ ≤
u σ
ι+σ
− c

u− c
.

We conclude with the remark that, while different in some interesting ways, limited credit
does not alter the basic results we derive in the body of the paper.

B Omitted Proofs

Proof of Lemma 2. We show that, if π̄ > 0 and ν̄ > 0, then G and F are mutually dense;
because they are also closed, they must be equal. First, if π̄ > 0, then G is dense in F .
Suppose not: then there exist x ∈ F and η > 0 such that (x− η, x+ η) ∩ G = ∅. But then,
for η > ε > 0, Ḡ (x+ η − ε) = Ḡ (x), where we defined Ḡ (w) ≡ 1−G (w)+δG (w) for any w.
Hence, either G (x) = 0, which is ruled out if π̄ > 0, or π (x+ δ − ε) > π (x), contradicting
profit maximization. On the other hand, if π̄ = 0, then, since π(x) = Ḡ(x)(x− c), we must
have either x = c or Ḡ (x) = 0 for all x ∈ F .
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Next, if ν̄ > 0, then F is dense in G. Suppose not: then there exist x ∈ G and η > 0 such
that (x− η, x+ η)∩F = ∅. Then

∫
1 {x− η < y ≤ x} dF (y) = 0. Hence, ν (x− η)−ν (x) =

ιη > 0. But this contradicts utility maximization unless x−η is infeasible; the latter implies
x = 0, which would imply ν̄ = 0. This also proves that G \F ⊆ {0} if ν̄ = 0, so G \F = {0}
if G is non-empty.

Proof of Theorem 1. As above, define Ḡ (w) ≡ 1−G (w) + δG (w) for any w. For ε > 0,
we can calculate

π (x)− π (x+ ε) = (x− c) Ḡ (x)− (x+ ε− c) Ḡ (x+ ε)

= (x− c)
[
Ḡ (x)− Ḡ (x+ ε)

]
− ε
[
Ḡ (x+ ε)

]
(77)

Taking the limit, we obtain

lim
ε↓0

π (x)− π (x+ ε) = (x− c) δG (x) > 0 (78)

Hence, for ε > 0 small, pricing at x+ε is dominated by pricing at x, so there must exist some
k > 0 such that the interval (x, x+ k) does not intersect X . Hence, 1− G (x) = Ḡ (x+ k).
So we can write

π (x)− π (x+ k) = {(x− c) δG (x)− k [1−G (x)]} (79)

Setting this equal to zero – as would be required for constant profit – we derive the formula
for kF (x) in (10).

Similarly, if there is a mass point in F at z, we can calculate, for ε > 0 small,

ν (z)− ν (z − ε) = −ιz + σ

∫
[0,z]

(u− x) dF (x)

−
{
−ι (z − ε) + σ

∫
[0,z−ε]

(u− x) dF (x)

}
(80)

= −ιε+ σ

∫
(z−ε,z]

(u− x) dF (x)

Taking the limit, we obtain

lim
ε↓0

ν (z)− ν (z − ε) = σδF (z) (u− z) > 0 (81)

Hence, for ε small, carrying z − ε is dominated by carrying z, so there must exist some
k > 0 such that the interval (z − k, z) does not intersect X . This implies that F (z − k) =
F (z)− δF (z). Given this, we have

ν (z)− ν (z − k) = −ιk + σδF (z) (u− z) (82)

Setting this equal to zero and solving gives our formula for kG (z) in (11).
That there must be mass points on opposite ends whenever there is a gap follows from

the same calculations in reverse. Suppose that a, b ∈ X but (a, b) does not intersect X . This
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implies G (a) = G (b)− δG (b). Now, we know that

π (a) = (1−G (a) + δG (a)) (a− c) (83)

and

π (b) = (1−G (b) + δG (b)) (b− c)
= (1−G (a)) (b− c) (84)

Setting π (b) = π (a) then immediately yields the expression for δG (a) in (12). Similarly, the
same calculations that yielded (80) imply ν (b)− ν (a) = −ι (b− a) + σδF (b) (u− b); setting
this to zero gives the expression for δF (b) in (12).

Proof of Theorem 2. The derivation of expression (17) for G is in the text. We next
derive the expression for F . For agents to be indifferent over money holdings in a region, it
must be that ν (x) = ν̄. Because F is continuous, one can apply integration by parts to the
integral defining ν in (5), and rearranging to obtain

F (z) =
1

σ (u− z)

[
ν̄ + ιz − σ

∫ z

0

F (x) dx.

]
(85)

From this we can see that, by the fundamental theorem of calculus, on any interval where
F is continuous, it must also be differentiable. Differentiating (85) gives (18).
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Proof of Proposition 1. We want to show that x ≤ σ
ι+σ

u implies (25). Without loss of
generality, let us label b0 = x, and aN+1 = x. Then, observe that

ln

(
u− x
u− x

)
−

N∑
n=1

ln

(
u− an
u− bn

)
= ln (u− b0)− ln (u− aN+1)−

N∑
n=1

(ln (u− an)− ln (u− bn))

=
N+1∑
n=1

ln

(
u− bn−1
u− an

)

=
N+1∑
n=1

ln

(
an − bn−1
u− an

− 1

)

<

N+1∑
n=1

an − bn−1
u− an

(86)

Adding x
u−x +

∑N
n=1

bn−an
u−bn to both sides, we get

x

u− x
+ ln

(
u− x
u− x

)
+

N∑
n=1

bn − an
u− bn

−
N∑
n=1

ln

(
u− an
u− bn

)

<
x

u− x
+

N∑
n=1

bn − an
u− bn

+
N+1∑
n=1

an − bn−1
u− an

<
x

u− x
+

N∑
n=1

bn − an
u− x

+
N+1∑
n=1

an − bn−1
u− x

=
x

u− x
+

N∑
n=1

bn − bn−1
u− x

+
x− bN
u− x

(87)

=
x

u− x
+
x− x
u− x

=
x

u− x
≤ σ

ι

where the last line is assured by x ≤ σ
ι+σ

u.
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Proof of Corollary 3. We consider the problem of maximizing xN subject to (25) and
subject to x1 ≥ c. First, observe that (25) is equivalent to

u

u− x1
+

N−1∑
i=1

u− xi
u− xi+1

≤ N +
σ

ι
(88)

Let η be the Lagrange multiplier on the constraint (88) and let µ be the Lagrange multiplier
on the constraint x1 ≥ c. Note that (88) clearly binds, so η > 0. For every i = 2, ..., N − 1,
the first-order necessary condition for xi is

u− xi−1
(u− xi)2

=
1

u− xi+1

(89)

Rearranging, we get
u− xi−1
u− xi

=
u− xi
u− xi+1

(90)

for every i = 2, ..., N − 1. Substituting back into the binding constraint (88), we get

u− x1
u− x2

=
N + σ/ι− u/ (u− x1)

N − 1

=
N − 1 + σ/ι− x1/ (u− x1)

N − 1
(91)

But (90) also implies

u− x1
u− xN

=

(
u− x1
u− x2

)N−1
(92)

Using (91), we then obtain

xN = u− (u− x1)
(

N − 1

N − 1 + σ/ι− x1/ (u− x1)

)N−1
(93)

Next, the first-order condition for x1 is

1

u− x2
− u

(u− x1)2
= µ (94)

If x1 ≥ c binds, then we have x1 = c, and then (93) evaluated at x1 = c implies (53). If
x1 ≥ c does not bind, then µ = 0 and hence (94) simplifies to

u

u− x1
=
u− x1
u− x2

, (95)

which, combined with (90) and (92), gives us

u

u− x1
=
N + σ/ι

N
(96)
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and
u− x1
u− xN

=

(
u

u− x1

)N
(97)

Combining the last two equations implies that x1 satisfies x1 = uσ/ (ιN + σ) and xN satisfies
(52). This also means that x1 ≥ c binds if and only if c < uσ/ (ιN + σ). If c > 0, this means
that for large enough N , xN is determined by (53). Finally, if c = 0, both (52) and (53)
converge to u (1− exp {−σ/ι}).
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