
Finance and Economics Discussion Series
Divisions of Research & Statistics and Monetary Affairs

Federal Reserve Board, Washington, D.C.

Reliably Computing Nonlinear Dynamic Stochastic Model
Solutions: An Algorithm with Error Formulas

Gary S. Anderson

2018-070

Please cite this paper as:
Anderson, Gary S. (2018). “Reliably Computing Nonlinear Dynamic Stochastic Model
Solutions: An Algorithm with Error Formulas,” Finance and Economics Discussion
Series 2018-070. Washington: Board of Governors of the Federal Reserve System,
https://doi.org/10.17016/FEDS.2018.070.

NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS) are preliminary
materials circulated to stimulate discussion and critical comment. The analysis and conclusions set forth
are those of the authors and do not indicate concurrence by other members of the research staff or the
Board of Governors. References in publications to the Finance and Economics Discussion Series (other than
acknowledgement) should be cleared with the author(s) to protect the tentative character of these papers.



Reliably Computing Nonlinear Dynamic Stochastic
Model Solutions: An Algorithm with Error Formulas

Gary S. Anderson∗

Friday 28th September, 2018: 11:18am

Abstract

This paper provides a new technique for representing discrete time nonlinear dy-
namic stochastic time invariant maps. Using this new series representation, the paper
shows how to augment a solution strategy based on projection methods with an ad-
ditional set of constraints thereby enhancing its reliability. The paper also provides
general formulas for evaluating the accuracy of proposed solutions. The technique can
readily accommodate models with occasionally binding constraints and regime switch-
ing. The algorithm uses Smolyak polynomial function approximation in a way which
makes it possible to exploit a high degree of parallelism.
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1 Introduction
This paper provides a new technique for the solution of discrete time dynamic stochastic
infinite-horizon economies with bounded-time-invariant solutions. It describes how to obtain
decision rules satisfying a system of first-order conditions, “Euler Equations”, and how to
assess their accuracy.1 For an overview of techniques for solving nonlinear models, see (Judd,
1992; Christiano and Fisher, 2000; Doraszelskiy and Judd, 2004; Gaspar and Judd, 1997;
Judd et al., 2014; Marcet and Lorenzoni, 1999; Judd et al., 2011; Maliar and Maliar, 2001;
Binning and Maih, 2017; Judd et al., 2017b).

This new series representation for bounded time series, adapted from (Anderson, 2010),

x(xt−1, εt) = Bxt−1 + φψεε+ (I − F )−1φψc +
∞∑
ν=0

F νφZt+ν(xt−1, εt)

makes it possible to construct a series representation for any bounded time invariant discrete
time map. As yet, the author has found no comparable use of a linear reference dynamical
system for conveniently transforming one bounded infinite dimensional series into another.

It turns out that this representation provides a way to use Euler equation errors to
approximate the error in components of decision rules.2 This paper provides approximation
formulas explicitly relating the Euler equation errors to the components of errors in the
decision rule.

In addition, the series representation provides exploitable constraints on model solutions
that enhance an algorithm’s reliability. Practitioners using projection methods and other
techniques have often found models difficult to solve. They find that it can be difficult to
find an initial guess for a solution so that the calculations converge and that sometimes
the convergent decision rules lack appropriate long run properties like stability. Further-
more, economists have an increasing interest in crafting models with occasionally binding
constraints and regime switching where, unfortunately, these problems seem to arise more
often. The series representation overcomes these problems by making it easier to choose an
initial guess that converges and by ensuring that the solutions have appropriate long run
properties.

The numerical implementation of the algorithm builds upon the work of (Judd et al., 2011,
2017b). In particular it uses the an-isotropic Smolyak Method, the adaptive parallelotope
method (Judd et al., 2014) and precomputes all integrals required by the calculations (Judd
et al., 2017b). The algorithm should scale well to large models as many of the algorithm’s
components can be computed in parallel with limited amounts of information flowing between
compute nodes.

The paper is organized as follows. Section 2 presents a useful new series representation for
any bounded time series. Section 3 shows how to use this series representation to represent
characterize time invariant maps. Section 4 provides formulas for approximating dynamic
stochastic model errors in proposed solutions. Section 5 presents a new solution algorithm for

1The series representation presented here should also prove useful for applications based on value function
iteration but I defer treating this topic for future work.

2 Others have also studied approximation error for dynamic stochastic models (Judd et al., 2017a; Santos
and Peralta-alva, 2005; Santos, 2000).
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improving proposed solutions. Section 6 applies the technique to a model with occasionally
binding constraints. Section 7 concludes.
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2 A New Series Representation For Bounded Time Se-
ries

Since (Blanchard and Kahn, 1980) numerous authors have developed solution algorithms
and formulas for solving linear rational expectations models. It turns out that the solutions
associated with these linear saddle point models, by quantifying the potential impact of
anticipated future shocks, can play a new and somewhat surprising role in characterizing the
solutions for highly nonlinear models. In preparation for discussing how these calculations
can be useful for representing time invariant maps, this section describes the relationship
between linear reference models and bounded time series.

2.1 Linear Reference Models and a Formula for “Anticipated Shocks”
For any linear homogeneous L dimensional deterministic system that produces a unique
stable solution,

H−1xt−1 +H0xt +H1xt+1 = 0,

inhomogeneous solutions

H−1xt−1 +H0xt +H1xt+1 = ψεε+ ψc

can be computed as

xt = Bxt−1 + φψεε+ (I − F )−1φψc

where

φ = (H0 +H1B)−1 and F = −φH1.

(Anderson, 2010)

It will be useful to collect the components of this linear reference model solution,L ≡
{H,ψε, ψc;B, φ, F}, for later use.3

Theorem 2.1 Consider any bounded discrete time path

xt ∈ RL with ‖xt‖∞ ≤ X ∀t > 0. (1)

Now, given the trajectories 1, define zt as

zt ≡ H−1xt−1 +H0xt +H1xt+1 − ψc − ψεεt
3In Section 2.2, I will use these matrices to construct a series representation for any bounded path and

in 5 compute improvements in proposed model solutions.
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One can then express the xt solving

H−1xt−1 +H0xt +H1xt+1 = ψεε+ ψc + zt

using

xt = Bxt−1 + φψεε+ (I − F )−1φψc +
∞∑
ν=0

F sφzt+ν (2)

and

xt+k+1 = Bxt+k + (I − F )−1φψc +
∞∑
ν=0

F νφzt+k+ν+1 ∀t, k ≥ 0.

Proof See (Anderson, 2010),

Consequently, given a bounded time series 1, and a stable linear homogeneous system,
L, one can easily compute a corresponding series representation like 2 for xt. Interestingly,
the linear model, H, the constant term ψc and the impact of the stochastic shocks ψε can be
chosen rather arbitrarily – the only constraints being the existence of a saddle-point solution
for the linear system and that all z-values fall in the row space of H1. Note that since the
eigenvalues of F are all less than one in magnitude, the formula supports the intuition that
distant future shocks influence current conditions less than imminent shocks.

The transformation {xt, xt, xt+1, xt+2 . . .} → L(xt−1, εt)→ {zt, zt+1, zt+2, . . .} is invertible.
{zt, zt+1, zt+2, . . .} → L(xt−1, εt)−1 → {xt, xt, xt+1, xt+2 . . .} and the inverse can be interpreted
as giving the impact of “fully anticipated future shocks” on the path of xt in a linear perfect
foresight model. Note that the reference model is deterministic, so that the zt(xt−1, εt)
functions will fully account for any stochastic aspects encountered in the models I analyze.

A key feature to note is that the series representation can accommodate arbitrarily com-
plex time series trajectories, so long as these trajectories are bounded. Later, this observation
will give us some confidence in the robustness of the algorithm for constructing series rep-
resentations for unknown families of functions satisfying complicated systems of dynamic
non-linear equations.

2.2 The Linear Reference Model in Action: Arbitrary Bounded
Time Series

Consider the following matrix constructed from “almost” arbitrary coefficients
[
H−1 H0 H1

]
=

0.1 0.5 -0.5 1. 0.4 0.9 1. 1. 0.9

0.2 0.2 -0.5 7. 0.4 0.8 3. 2. 0.6

0.1 -0.25 -1.5 2.1 0.47 1.9 2.1 2.1 3.9
(3)

with ψc = ψε = 0, ψz = I. I have chosen these coefficients so that the linear model has
a unique stable solution and, since H1 is full rank, its column space will span the column
space for all non zero values for zt ∈ R3.4 It turns out that the algorithm is very forgiving
about the choice of L.

4The flexibility in choosing L will become more important in later in the paper where we must choose a
linear reference model in a context where we will have little guidance about what might make a good choice.
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The solution for this system is

B =
-0.0282384 -0.0552487 0.00939369

-0.0664679 -0.700462 -0.0718527

-0.163638 -1.39868 0.331726

φ =
0.0210079 0.15727 -0.0531634

1.20712 -0.0553003 -0.431842

2.58165 -0.183521 -0.578227

F =
-0.381174 -0.223904 0.0940684

-0.134352 -0.189653 0.630956

-0.816814 -1.00033 0.0417094

It is straightforward to apply 2 to the following three bounded families of time series
paths

x1,t = ‖xt−1‖
1 + ‖εt‖

Dπ(t)

where Dπ(t) gives the t-th digit of π

x2,t = ‖xt−1‖
(1 + ‖εt‖)2 (−1)t

ax3,t = εt

and the εt are a sequence of pseudo random draws from the uniform distributions U(−4, 4)
produced subsequent to the selection of a random seed.

randomseed(‖xt−1‖+ ‖εt‖)

The three panels in Figure 1 display these three time series generated for a particular initial
state vector and shock value. The first set of trajectories characterizes a function of the digits
in the decimal representation of π. The second set of trajectories oscillates between two values
determined by a nonlinear function of the initial conditions, xt−1 and the shock. The third
set of trajectories characterizes a sequence of uniformly distributed random numbers based
on a seed determined by a nonlinear function of the initial conditions and the shock. These
paths were chosen to emphasize that continuity is not important for the existence of the
series representation, that the trajectories need not converge to a fixed point, and need not
be produced by some linear rational expectations solution or by the iteration of a discrete-
time map. The spanning condition and the boundedness of the paths are sufficient conditions
for the existence of the series representation based on the linear reference model,L.5

Though unintuitive and perhaps lacking a compelling interpretation, the values for zt
exist, provide a series for the xt and are easy to compute. One can apply the calculations
for any given initial condition to produce a z series exactly replicating any bounded set of
trajectories. Consequently, these numerical linear algebra calculations can easily transform
a zt series into an xt series and vice versa. Since this can be done for any path starting from
any particular initial conditions, any discrete time invariant map that generates families of
bounded paths has a series representation.

5Although potentially useful in some contexts, this paper will not investigate representations for families
of unbounded, but slowly diverging trajectories.
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Figure 1: Arbitrary Bounded Time Series Paths

2.3 Assessing xt Errors
The formula 2 computes the impact on the current state of fully anticipated future shocks.
It characterizes the impact exactly. However one can contemplate the impact of at least two
deviations from the exact calculation: one could truncate a series of correct values of zt or
one might have imprecise values of zt along the path.

2.3.1 Truncation Error

The series representation can compute the entire series exactly if all the terms are included,
but, it will at times be useful to exploit the fact that the terms for state vectors closer to
the initial time have the most important impact. One could consider approximating Xt by
truncating the series at a finite number of terms.

x̂t ≡ Bxt−1 + φψεε+ (I − F )−1φψc +
k∑
s=0

F sφzt

We can bound the series approximation truncation errors:

∞∑
s=k+1

F sφψz = (I − F )−1F k+1φψz

‖x(xt−1, ε)− x̂(xt−1, ε, k)‖∞ ≤
∥∥∥(I − F )−1F k+1φψz

∥∥∥
∞

(‖H−1‖∞ + ‖H0‖∞ + ‖H1‖∞)
∥∥∥X ∥∥∥

∞

Figure 2 shows that this truncation error can be a very conservative measure of the
accuracy of the truncated series. The orange line represents the computed approximation
of the infinity norm of the difference between xt from the full series and a truncated series
for different lengths of the truncation. The blue line shows the infinity norm of the actual
difference between the xt computed using the full series and the value obtained using a
truncated series. The series requires only the first 20 terms to compute the initial value of
the state vector to high precision.
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Figure 2: xt Error Approximation Versus Actual Error

2.3.2 Path Error

We can assess the impact of perturbed values for zt by computing the maximum discrepancy,∆zt,
impacting the zt and applying the partial sum formula. One can approximate Xt using

x̂t ≡ Bxt−1 + φψεε+ (I − F )−1φψc +
∞∑
s=0

F sφ(zt + ∆zt)

Note, yet again, that for approximating x(xt−1, ε), the impact of a given realization along
the path declines for those realizations which are more temporally distant. However, we can
conservatively bound the series approximation errors by using the largest possible ∆zt in the
formula:

‖x(xt−1, ε)− x̂(xt−1, ε, k)‖∞ ≤
∥∥∥(I − F )−1φψz

∥∥∥
∞
‖∆zt‖∞
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3 Dynamic Stochastic Time Invariant Maps
Many dynamic stochastic models have solutions that fall in the class of bounded time invari-
ant maps. Consequently, if we take care (see Section 3.2), we can apply the law of iterated
expectations, to compute conditional expected solution paths forward from any initial value
and realization of (xt−1, εt).6 As a result, we can use the family of conditional expectations
paths along with a contrived linear reference model to generate a series representation for
the model solutions and to approximate errors.

So long as the trajectories are bounded, the time invariant maps can be represented using
the framework from section 2. The series representation will provide a linearly weighted sum
of zt(xt−1, εt) functions that give us an approximation for the model solutions. This section
presents a familiar RBC model as an example.7

3.1 An RBC Example
Consider the model described in (Maliar and Maliar, 2005)8

max
{
u(ct) + Et

∞∑
t=1

δtu(ct+1)
}

ct + kt = (1− d)kt−1 + θtf(kt)
f(kt) = kαt

u(c) = c1−η − 1
1− η

The first order conditions for the model are

1
cηt

= αδkα−1
t Et

(
θt+1

cηt+1

)
ct + kt = θt−1k

α
t−1

θt = θρt−1e
εt

It is well known that when η = d = 1, we have a closed form solution (Lettau, 2003):

xt(xt−1, εt) ≡ D(xt−1, εt) ≡

ct(xt−1, εt)
kt(xt−1, εt)
θt(xt−1, εt)

 =

(1− αδ)θtkαt−1
αδθtk

α
t−1.

θρt−1e
εt .


6Economists have long used similar manipulation of time series paths for dynamic models. Indeed, Potter

constructs his generalized impulse response functions using differences in conditional expectations paths
(Potter, 2000; Koop et al., 1996).

7 Later, in order to handle models with regime switching and occasionally binding constraints, I will need
to consider more complicated collections of equation systems with Boolean gates. I will show how to apply
the series formulation and to approximate the errors for these models as well.

8Here, I set their β = 1 and do not discuss quasi-geometric discounting or time-inconsistency.
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For mean zero iid εt we can easily compute the conditional expectation of the model variables
for any given θt+k, kt+k

D(xt+k+1) ≡

Et(ct+k+1|θt+k, kt+k)
Et(kt+k+1|θt+k, kt+k)
Et(θt+k+1|θt+k, kt+k)

 =


(1− αδ)kαt+ke

σ2
2 θρt+k

αδkαt+ke
σ2
2 θρt+k

e
σ2
2 θρt+k


For any given values of kt−1, θt−1, εt, the model decision rule, (D), and decision rule

conditional expectation, (D), can generate a conditional expectations path forward from any
given initial (xt−1, εt):

xt(xt−1, εt) = D(xt−1, εt)
xt+k+1(xt−1, εt) = D(xt+k(xt−1, εt))

and corresponding paths for {(z1t(xt−1, εt), z2t(xt−1, εt), z3t(xt−1, εt)), . . .}

zt+k ≡ H−1xt+k−1 +H0xt+k +H1xt+K+1

Formula 2 requires that

x(xt−1, εt) = B

ct−1
kt−1
θt−1

+ φψεεt + (I − F )−1φψc +
∞∑
ν=0

F sφzt+ν(kt−1, θt−1, εt)

For example, using d = 1 and the following parameter values and using the arbitrary
linear reference model (3) we can generate a series representation for the model solutions.

alpha → 0.36
delta → 0.95
rho → 0.95
sigma → 0.01

we have

csskss
θss

 =
[
0.360408

0.187324

1.001

]

kt−1
θt−1
εt

 =
[
0.18

1.1

0.01

]
(4)

Figure 3 shows, from top to bottom, the paths of θt, ct, and kt from the initial values
given in Equation 4.

By including enough terms we can compute the solution for xt exactly. Figure 4 shows
the impact that truncating the series has on approximation of the time t values of the
state variables. The approximated magnitude for the error, Bn, shown in red is again very
pessimistic compared to the actual error, Zn = ‖xt − x?t‖∞, shown in blue. With enough
terms, even using an “almost” arbitrarily chosen linear model, the series approximation
provides a machine precision accurate value for the time t state vector.

Figure 5 shows that using a linearization that better tracks the nonlinear model paths,
improves the approximation Zn, shown in blue and the approximate error Bn shown in red.
Using the linearization of the RBC model around the ergodic mean produces a tighter but
still pessimistic bound on the errors for the initial state vector. Again, the first few terms
make most of the difference in approximating the value of the state variables.
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3.2 A Model Specification Constraint
For convenience of notation in what follows, I will focus on models built up from components
of the form

hi(xt−1, xt, xt+1, εt) = hdetio (xt−1, xt, εt) +
pi∑
j=1

[hdetij (xt−1, xt, εt)hnondetij (xt+1)] = 0

This is a very broad class of models including most widely used macroeconomics models.
This constraint will make it easier to write down and manipulate the conditional expectations
expressions in the description of the algorithms in subsequent sections. For example, the
Euler equations for the neoclassical growth model can be written as

h10det(·) = 1
cηt
, hdet11 () = αδkα−1

t , hnondet11 (·) = Et

(
θt+1

cηt+1

)
hdet20 (·) = ct + kt − θtkαt−1, h

det
21 (·) = 0

hdet30 (·) = ln θt − (ρ ln θt−1 + εt), hdet31 (·) = 0

Since we need to compute the conditional expectation of nonlinear expressions, this setup
will make it possible for us to use auxiliary variables to correctly compute the required
expected values. We will be working with models where expectations are computed at time
t, with εt known. We can construct a linear reference model for the modified RBC system
by augmenting the RBC model with the equation

Nt = θt
ct
,

substituting Nt+1 for θt+1
ct+1

in the first equation and linearizing the RBC model about the
ergodic mean.

This leads to: [
H−1 H0 H1

]
=

0. 0. 0. 0. -7.6986 9.47963 0. 0. 0. 0. -0.999 0.

0. -1.05263 0. 0. 1. 1. 0. -0.547185 0. 0. 0. 0.

0. 0. 0. 0. 7.7063 0. 1. -2.77463 0. 0. 0. 0.

0. 0. 0. -0.949953 0. 0. 0. 1. 0. 0. 0. 0.

with

ψε =


0
0
1
0

 , ψz = I

These coefficients produce a unique stable linear solution.
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B =
0. 0.692632 0. 0.342028

0. 0.36 0. 0.177771

0. -5.33763 0. 0.

0. 0. 0. 0.949953

, φ =
-0.0444237 0.658 0. 0.360048

0.0444237 0.342 0. 0.187137

0.342342 -5.07075 1. 0.

0. 0. 0. 1.

F =
0. 0. -0.0443793 0.

0. 0. 0.0443793 0.

0. 0. 0.342 0.

0. 0. 0. 0.

ψc =
-3.7735

-0.197184

2.77741

0.0500976

Recomputing the truncation errors with the expanded model produces nearly identical results
for variable approximation errors.
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4 Approximating Model Solution Errors
This section shows how to use the model equation errors to construct an approximate error
for the components of any proposed model solution.9

4.1 Approximating a Global Decision Rule Error Bound
Consider a bounded region, A, that contains all iterated conditional expectations paths. By
bounding the largest deviation in the paths for the ∆zpt , we can bound the largest deviation
in a proposed solution from the exact solution.

Given an exact solution x?t = g?(xt−1, εt) define the conditional expectations function,

G?(x) ≡ E [g?(x, ε)]

then with

Etx
?
t+1 = G?(g?(xt−1, εt))

we have

M(x?t−1, x
?
t , Etx

?
t+1, εt) = 0 ∀(xt−1, εt)

x?t (xt−1, εt) ∈ RL ‖x?t (xt−1, εt)‖2 ≤ X ∀t > 0

Now consider a proposed solution for the model, xpt = gp(xt−1, εt) define Gp(x) ≡
E [gp(x, ε)] so that

Etxt+1 = Gp(gp(xt−1, εt))
ept (xt−1, ε) ≡M(xt−1, x

p
t , Etx

p
t+1, εt)

‖x?t (xt−1, ε)− xpt (xt−1, ε)‖∞ ≤ max
{x−,ε}

∥∥∥(I − F )−1φM(x−, gp(x−, ε), Gp(gp(x−, ε)), ε)
∥∥∥

2

which can be approximated by

max
xt−1,εt

(φept (xt−1, ε))2

For proof see Appendix A.
9This work contrasts with the analysis provided in (Judd et al., 2017a; Peralta-Alva and Santos, 2014;

Santos and Peralta-alva, 2005; Santos, 2000). Their approaches identify Euler Equation Errors, but use
statistical techniques to estimate the impact of these errors on solution accuracy. Here I provide a formula
for the approximate error that does not require statistical inference.
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4.2 Approximating Local Decision Rule Errors
Given a proposed model solution define the error in xt at (xt−1, εt)

e(xt−1, εt) ≡ x?(xt−1, εt)− xp(xt−1, εt)

compute the conditional expectations functions for the decision rule and use them to generate
a path to use with a linear reference model L ≡ {H,ψε, ψc;B, φ, F} in 2 to approximate e.

Xp(x) ≡ E [xp(x, ε)].

xt+k+1 = Xp(xt+k) k = 1, . . . , K

We can define functions zpt by

zpt ≡M(xt−1, xt, xt+1, εt)
zpt+k ≡M(xt+k−1, xt+k, xt+k+1, 0)

ê(xt−1, εt) ≡
K∑
ν=0

F sφzpt+ν

4.3 Assessing the Error Approximation
This section reports on the results of an experiment evaluating how well the formula performs.
I compute the known decision rule for the RBC model with parameters {α = 0.36, δ =
0.95, η = 1, ρ = 0.95, σ = 0.01}. I consider this the fixed “true” model.

I generate 10 other settings for the model parameters by choosing parameters from the
following ranges.

0.20 < α < 0.40, 0.85 < δ < 0.99, 0.85 < ρ < 0.99, 0.005 < σ < 0.015

producing the following 10 model specifications:

α δ η ρ σ
0.35 0.92875 1. 0.957188 0.00875
0.275 0.9725 1. 0.906875 0.01375
0.375 0.8675 1. 0.924375 0.01125
0.225 0.94625 1. 0.891563 0.00625
0.325 0.91125 1. 0.944063 0.006875
0.2625 0.922187 1. 0.98125 0.011875
0.3625 0.887187 1. 0.85875 0.014375
0.2125 0.965938 1. 0.965938 0.009375
0.3125 0.860938 1. 0.878438 0.008125
0.2375 0.904688 1. 0.933125 0.013125
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I linearized each of the ten models at their respective stochastic steady states producing
10 linear reference models Li and 10 decision rules based on the linearization. As a result
I have 100 = 10 × 10 combinations of (inaccurate by design ) decision rule functions and
linear reference models to use in the error formula experiments.

I generate 30 representative points, (ki,t−1, θi,t−1, εi,t), from the ergodic set for the fixed
true reference model using the Niederreiter quasi-random algorithm. For each of the 100
pairings of decision rule and linear reference model, I compute the error approximation at
each of the 30 representative points and regress the actual error, computed using the known
analytic solution, and the predicted error from the error formula.

ei = α + βêi + ui

Although the true model and the true decision rule stays fixed in the experiment, the pro-
posed decision rules and the linear reference model both change.

Figures 6 and 7 present the 100 R2 and estimated variance and Figures 8 and 9 presents
the 100 resulting regression coefficients for a variety of values for K, of number of terms in the
error formula, ( K = 0, 1, 10, 30)10 The regressions with K = 0 correspond to the maximand
of the global error formula. The figures show that the formula does a good job of predicting
the error produced by the inaccurate decision rule functions. Even with K = 0, using only
one term in the error formula, still provides useful information about the magnitude of the
discrepancy between the proposed decision rules values and true values. The R2 values are
all above 60 percent and are often near one. The β coefficients are generally close to one
and the constant tends to be close to zero.

10I don’t display results for θt because the formula predicts the error in θt perfectly since it is determined
by a backward looking equation.
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Figure 6: ct (σ̂2, R2)
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Figure 7: kt (σ̂2, R2)
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Figure 8: ct (α, β)
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Figure 9: kt (α, β)
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5 Improving Proposed Solutions

5.1 Some Practical Considerations for Applying the Series For-
mula

I assume that all models of interest can be characterized by a finite number of equations
systems. I will require that, for any given (xt−1, εt), this collection of equation systems
produces a unique solution for xt. This formulation will allow us to apply the technique to
models with occasionally binding constraints and models with regime switching. I will only
consider time invariant model solutions xt = x(xt−1, ε). Given a decision rule x(xt−1, ε),
denote its conditional expectation X(xt−1) ≡ E [x(xt−1, ε)]. Using the convention described
in section 3.2, I will include enough auxiliary variables so that I can correctly compute
expected values for model variables by applying the law of iterated expectations.

It will be convenient for describing the algorithms to write the models in the form

{{C1, . . . ,CM},d(xt−1, ε, xt, E [xt+1])|(b., c.)}

where, each

Ci ≡ {(bi(xt−1, εt),Mi(xt−1, ε, xt, E [xt+1]) = 0, ci(xt−1, ε, xt, E [xt+1]))}

represents a set of model equations, Mi, with Boolean valued gate functions, bi, ci. In
the algorithm’s implementation, the bi will be a Boolean function precondition and the ci
will be a Boolean function post-condition for a given equation system. If some bi is false,
then there is no need to try to solve model i. If ci is false, the system has produced an
unacceptable solution which should be ignored. I suggest organizing equations using pre and
post conditions as this can help with parallelizing a solution regardless of whether or not one
uses my series representation. The d will be a function for choosing among the candidate
xt(xt−1, εt) values. The function d uses the truth values from the (b., c.) and the possible
values of the state variables to select one and only one xt. Thus, we will have an equation
system and corresponding gatekeeper logical expressions indicating which equation system
is in force for producing the unique solution for a given (xt−1, εt).

Examples of such systems include the simple RBC model from Section 3.2. Other exam-
ples include models with occasionally binding constraints where solutions exhibit comple-
mentary slackness conditions, or models with regime switching. See Section 6 for a model
with occasionally binding constraints and Section B for an example of a specification for
regime switching.

5.2 How My Approach Differs From the Usual Approach
It may be worthwhile at this point to briefly compare and contrast the approach I propose
here with what is typically done for solving dynamic stochastic models. As with the stan-
dard approach, I characterize the solutions using a linearly weighted sums of orthogonal
polynomials and solve the model equations at predetermined collocation points. However, in
this new algorithm, I augment the model Euler equations with equations based on 2 linking
the conditional expectations for future values in the proposed solution with the time t value
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of the model variables. As a result, the algorithm determines linearly weighted polynomials
characterizing the trajectories for the usual variables xt(xt−1, εt) as well as new zt(xt−1, εt)
variables. These new constraints help keep proposed solutions bounded during the solution
iterations thus improving algorithm reliability and accuracy.

5.3 Algorithm Overview
I closely follow the techniques outlined in (Judd et al., 2013, 2014). As a result, much of what
must be done to use this algorithm is the same as for the usual approach. One must specify
an initial guess for decision rule x̂(xt−1, ε, k) and obtain conditional expectations functions.
I use the an-isotropic Smolyak Lagrange interpolation with adaptive domain. I precompute
all of the conditional expectations for the integrals as outlined in (Judd et al., 2017b) so that
the time t computations 5.1 are all deterministic.

There are number of new steps. One must specify a linear reference model. One must
choose a value for K the number of terms in the series representation. There are trade-offs.
Fewer means more truncation error. More terms corresponds to more accuracy when the
decision rule is accurate but More terms is computationally more expensive. The initial guess
is typically some distance away from the solution. Consequently the terms in the series will
be incorrect. The Smolyak grid adds more error to the calculation. If there are many grid
points it is more likely that increasing the K can improve the quality of the solution. If the
grid is too sparse, increasing K will likely be less useful.

5.3.1 Single Equation System Case

For now, consider a single model equation system case with no Boolean gates. A description
of the actual, multi-system implementation follows. We seek

M(xt−1,x?(xt−1, εt),X?(x?(xt−1, εt)), εt) = 0 ∀(xt−1, εt).

Given a proposed model solution

xt = xp(xt−1, εt)

compute

Xp(xt−1) ≡ E [xp(xt−1, εt)].

We will use a linear reference model L ≡ {H,ψε, ψc;B, φ, F} to construct a series of zp
functions that help improve the accuracy of the proposed solution.

We can define functions zp,Zp by

zp(xt−1, ε) ≡ H

 xt−1
xp(xt−1, ε)

Xp(x(xt−1, ε))

+ φεεt + φc

Zp(xt−1) ≡ E [zp(xt−1, ε)]
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• Algorithm loop begins here. Define conditional expectations paths for xt, zt

xt+k+1 = X(xt+k), zt+k+1 = Z(xt+k) ∀k ≥ 0

Using the zp(xt−1, ε) Series

• We get expressions for xt, E [x]t+1 consistent with L and the conditional expectations path

Xt = Bxt−1 + φψεε+ (I − F )−1φψc +
∞∑
ν=0

F sφZ(xt+ν)

E [Xt+1] = BXt + (I − F )−1φψc +
∞∑
ν=0

F ν−1φZ(xt+ν) ∀t, k ≥ 0

• Use the model equations, M(xt−1, xt, E [xt+1], ε) = 0 and xt(xt−1, εt) = Xt(xt−1, εt)
to determine xp′(xt−1, ε), zp

′(xt−1, ε)

• xp(xt−1, ε) = xp′(xt−1, ε), zp(xt−1, ε) = zp′(xt−1, ε) – Repeat loop.

5.3.2 Multiple Equation System Case

An outline of the current Mathematica implementation of the algorithm follows. Table 1
provides notation. Figure 10 provides a graphic depiction of the function call tree. For more

L ≡ {H,ψε, ψc;B, φ, F} The linear reference model

xp(xt−1, εt) The proposed decision rule xt components

zp(xt−1, εt) The proposed decision rule zt components

Xp(xt−1) The proposed decision rule conditional expectations xt components

Zp(xt−1) The proposed decision rule their conditional expectations zt components

κ One less than the number of terms in series representation(κ >= 0)

S Smolyak an-isotropic grid polynomials (p1(x, ε), . . . , pN(x, ε)) and their conditional expec-
tations (P1(x), . . . , PN(x))

T Model evaluation points Neidereiter sequence in the model variable ergodic region.

γ {x(xt−1, εt), z(xt−1, εt)} collects the decision rule components

G {x(xt−1, εt), z(xt−1, εt)} collects the decision rule conditional expectations components

H {γ,G} collects decision rule information

{{C1, . . . ,CM},d(xt−1, ε, xt, E [xt+1])|(b., c.)} The equation system R3Nx+Nε+Nx → RNx

Table 1: Algorithm Notation
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algorithmic detail, see Appendix C. The current implementation has a couple of atypical
features. Many of the calculations exploit Mathematica’s capability to blend numerical
and symbolic computation and to easily use functions as arguments for other functions. In
addition, the implementation exploits parallelism at several points. The parallel features
also apply when employing the usual technique for solving the set types of models. Below,
I note where these features play a role.

nestInterp

doInterp

genFindRootFuncs

genFindRootWorker

genZsForFindRoot genLilXkZkFunc

fSumC genXtOfXtm1 genXtp1OfXt

makeInterpFuncs

genInterpData

evaluateTriple

interpDataToFunc

Figure 10: Function Call Tree

nestInterp — Computes a sequence of decision rule and conditional expectation rule func-
tions terminating when the evaluation of the decision rule functions at the tests points
no longer changes much.

doInterp — Symbolically generates functions that return a unique xt for any value of
(xt−1, εt) for the family model equations, {{C1, . . . ,CM},d(xt−1, ε, xt, E [xt+1])|(b., c.)}
and uses these functions to construct interpolating functions approximating the deci-
sion rules.

genFindRootFuncs — The function can use 2 or omit it thus implementing the usual
approach for solving these models.
The routine symbolically generates a collection of function triples and an outer model
solution selection function. Each of the function constructions can be done in par-
allel. Each of the triples returns the Boolean gate values and a unique value for xt
for any given value of (xt−1, εt) the selection function chooses one solution from the
set of model equations. The routine subsequently uses these functions to construct
interpolating functions approximating the decision rules. Sub-components of this step
exploit parallelism.
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genLilXkZkFunc — Symbolically creates a function that uses an initial Zt path to gen-
erate a function of (xt−1, εt, zt) providing (potentially symbolic ) inputs xt−1

xt
Et(xt+1), εt)


for model system equations M. This routine provides the information for constructing
xt(xt−1, εt) using the series expression 2.

makeInterpFuncs — Solves model equations at collocation points producing interpolation
data and subsequently returns the interpolating functions for the decision rule and
decision rule conditional expectation. This can be done in parallel.

5.4 Approximating a Known Solution: η = 1, U(c) = Log(c)
This subsection uses the series representation to compute the solution for the case when the
exact solution is known and to compare the various approximations to the known actual so-
lution. In what follows, both the traditional and the new approach use an-isotropic Smolyak
polynomial function approximation with precomputed expectations. Figure 11 characterizes
the use of the parallelotope transformation described in (Judd et al., 2013). The left panel
shows the 200 values of kt and θt resulting from a stochastic simulation of the the known
decision rule. The right panel shows the transformed variables that constitute an improved
set of variables for constructing function approximation values.
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Figure 11: The Ergodic Values for kt, θt
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maxU =
3.02524

0.199124

3.

minU =
-3.16879

-0.17629

-3.

Table 2 shows the evaluation points when the Smolyak polynomial degrees of approxima-
tion were (1,1,1). Table 3 shows the decision rule prescription for (ct, kt, θt) at each evaluation
point. Table 4 shows the log of the absolute value of the actual error in the decision rule
at each evaluation point. Table 5 shows the log of the absolute value of the estimated er-
ror in the decision rule at each evaluation points. Note that the formula provides accurate
estimates of the error component by component.

Table 6 shows the evaluation points when the Smolyak polynomial degrees of approxima-
tion were (2,2,2). Table 7 shows the decision rule prescription for (ct, kt, θt) at each evaluation
point. Table 8 shows the log of the absolute value of the actual error in the decision rule
at each evaluation point. Table 9 shows the log of the absolute value of the estimated er-
ror in the decision rule at each evaluation points. Note that the formula provides accurate
estimates of the error component by component.

Each of the estimated errors were computed with K = 5. Table 10 shows the effect of
increasing value of K. Generally increasing K increases the accuracy of the solution. The
value of K has more effect when the Smolyak grid is more densely populated with collocation
points.
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
k1 θ1 ε1

...
k30 θ30 ε30


0.16818 0.942376 −0.0251104
0.210392 1.08282 0.0232085
0.181393 0.968212 −0.0090041
0.1949 1.017 0.0111288

0.188668 1.00876 −0.0210838
0.20145 1.06007 0.0272351
0.17245 0.945462 −0.00497752
0.214179 1.0876 0.0191819
0.195059 1.03442 −0.0130307
0.182278 0.983104 0.00307563
0.208273 1.06025 −0.029137
0.166906 0.916853 0.00106234
0.20192 1.05244 −0.0311503
0.187205 1.00787 0.0171686
0.213199 1.08502 −0.015044
0.17147 0.942887 0.0252218
0.179847 0.985589 −0.00699081
0.194563 1.03016 0.00911549
0.165563 0.915543 −0.0230971
0.20705 1.05852 0.0211952
0.173322 0.954406 −0.0110174
0.2136 1.1016 0.00508892

0.184601 0.986988 −0.0271237
0.198833 1.03324 0.0131421
0.20721 1.07594 −0.0190705
0.166932 0.928749 0.0292484
0.192926 1.0059 −0.00296424
0.179118 0.958169 0.0141487
0.172672 0.949185 −0.0180639
0.212949 1.09638 0.030255

Table 2: RBC Known Solution: Model Evaluation Points d=(1,1,1)
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
c1 k1 θ1

...
c30 k30 θ30


0.318386 0.16551 0.9202
0.413447 0.214841 1.10215
0.341848 0.177697 0.960777
0.375209 0.195014 1.02742
0.35634 0.185242 0.987273
0.400686 0.208232 1.08481
0.329563 0.171293 0.943165
0.416315 0.216325 1.1025
0.372502 0.193618 1.01959
0.351946 0.182927 0.98707
0.384948 0.200107 1.02813
0.31841 0.165481 0.92202
0.377048 0.196011 1.01878
0.368995 0.19178 1.02495
0.402167 0.209001 1.06547
0.339185 0.176282 0.97149
0.347449 0.180596 0.979286
0.378776 0.196859 1.03785
0.308332 0.160276 0.896658
0.401836 0.208829 1.07707
0.330982 0.172039 0.945622
0.415597 0.215941 1.10137
0.343927 0.178809 0.960659
0.384305 0.199732 1.04488
0.393281 0.204401 1.05291
0.332894 0.173006 0.962198
0.36484 0.189639 1.00262
0.345376 0.179513 0.974651
0.326232 0.169582 0.933652
0.422656 0.219618 1.12227

Table 3: RBC Known Solution: Values at Evaluation Points d=(1,1,1)
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
ln(|ec,1|) ln(|ek,1|) ln(|eθ,1|)

...
ln(|ec,30|) ln(|ek,30|) ln(|eθ,30|)


−6.86423 −7.61023 −6.2776
−6.77469 −7.25654 −6.193
−8.27193 −9.26988 −7.90952
−9.53366 −9.94641 −9.07674
−9.70109 −11.0692 −10.8193
−7.01131 −7.52677 −6.4226
−8.62144 −9.43568 −8.12434
−6.93069 −7.36841 −6.2991
−8.82105 −9.39136 −7.96867
−9.48549 −9.94897 −9.04695
−6.83337 −7.45765 −6.41963
−11.193 −13.9426 −8.33167
−7.13458 −7.70834 −6.51919
−9.46667 −10.6151 −10.154
−7.13317 −7.97018 −6.71715
−6.76168 −7.44531 −6.20438
−9.46294 −10.7345 −8.60101
−8.99962 −9.32606 −8.36754
−6.5744 −7.28112 −6.0606
−7.26443 −7.74753 −6.65645
−7.95047 −8.75065 −7.34261
−7.90465 −8.02499 −7.40682
−7.78668 −8.88177 −7.3262
−8.44035 −8.86441 −7.83514
−7.21479 −7.97368 −6.58639
−6.40774 −7.09877 −5.86537
−11.8365 −11.1009 −11.8397
−7.81106 −8.43094 −7.01803
−7.28745 −8.06534 −6.74087
−6.33557 −6.84989 −5.76803

Table 4: RBC Known Solution: Actual Errors d=(1,1,1)
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
ln(| ˆec,1|) ln(| ˆek,1|) ln(| ˆeθ,1|)

...
ln(| ˆec,30|) ln(| ˆek,30|) ln(| ˆeθ,30|)


−6.84011 −7.59703 −6.2776
−6.79189 −7.33194 −6.193
−8.27296 −9.26585 −7.90952
−9.54759 −9.96466 −9.07674
−9.72214 −11.142 −10.8193
−7.019 −7.58967 −6.4226
−8.61034 −9.41771 −8.12434
−6.95566 −7.44593 −6.2991
−8.83746 −9.43331 −7.96867
−9.48388 −9.95406 −9.04695
−6.8561 −7.50703 −6.41963
−10.8845 −13.6119 −8.33167
−7.15654 −7.75234 −6.51919
−9.48715 −10.5641 −10.154
−7.16809 −8.02412 −6.71715
−6.74694 −7.43005 −6.20438
−9.46173 −10.7234 −8.60101
−9.00034 −9.36818 −8.36754
−6.55256 −7.25512 −6.0606
−7.28911 −7.80039 −6.65645
−7.93653 −8.73939 −7.34261
−7.87653 −8.13406 −7.40682
−7.79071 −8.88802 −7.3262
−8.45665 −8.89927 −7.83514
−7.25059 −8.02416 −6.58639
−6.38709 −7.07562 −5.86537
−11.9887 −11.1639 −11.8397
−7.8057 −8.42757 −7.01803
−7.27379 −8.05278 −6.74087
−6.35248 −6.93629 −5.76803

Table 5: RBC Known Solution: Error Approximations d=(1,1,1)
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
k1 θ1 ε1

...
k30 θ30 ε30


0.175411 1.00081 −0.00861854
0.182233 1.01265 −0.00121566
0.181807 0.987487 −0.00615091
0.183086 0.994888 −0.00306638
0.179142 1.00488 −0.00800163
0.179142 1.01672 −0.000598756
0.178715 0.991558 −0.00553401
0.184685 1.00636 −0.00183257
0.179142 1.0108 −0.00676782
0.179142 0.998959 −0.00430019
0.185538 0.997479 −0.00923544
0.180208 0.980456 −0.00460865
0.18138 1.00821 −0.0095439
0.177969 1.00821 −0.00214102
0.184365 1.00673 −0.00707627
0.178396 0.991928 −0.000907209
0.176263 1.00821 −0.00584246
0.179675 1.00821 −0.00337483
0.179248 0.983046 −0.00831008
0.184792 0.999329 −0.00152412
0.177436 0.997479 −0.00645937
0.180847 1.02116 −0.00399174
0.180421 0.995999 −0.00892699
0.182979 0.998959 −0.00275793
0.180847 1.01524 −0.00769318
0.177436 0.991558 −0.000290303
0.183832 0.990077 −0.00522555
0.18202 0.984526 −0.0026037
0.178049 0.994426 −0.00753895
0.18146 1.01811 −0.000136076

Table 6: RBC Known Solution: Model Evaluation Points d=(2,2,2)
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
k1 θ1 ε1

...
k30 θ30 ε30


0.175411 1.00081 −0.00861854
0.182233 1.01265 −0.00121566
0.181807 0.987487 −0.00615091
0.183086 0.994888 −0.00306638
0.179142 1.00488 −0.00800163
0.179142 1.01672 −0.000598756
0.178715 0.991558 −0.00553401
0.184685 1.00636 −0.00183257
0.179142 1.0108 −0.00676782
0.179142 0.998959 −0.00430019
0.185538 0.997479 −0.00923544
0.180208 0.980456 −0.00460865
0.18138 1.00821 −0.0095439
0.177969 1.00821 −0.00214102
0.184365 1.00673 −0.00707627
0.178396 0.991928 −0.000907209
0.176263 1.00821 −0.00584246
0.179675 1.00821 −0.00337483
0.179248 0.983046 −0.00831008
0.184792 0.999329 −0.00152412
0.177436 0.997479 −0.00645937
0.180847 1.02116 −0.00399174
0.180421 0.995999 −0.00892699
0.182979 0.998959 −0.00275793
0.180847 1.01524 −0.00769318
0.177436 0.991558 −0.000290303
0.183832 0.990077 −0.00522555
0.18202 0.984526 −0.0026037
0.178049 0.994426 −0.00753895
0.18146 1.01811 −0.000136076

Table 7: RBC Known Solution: Values at Evaluation Points d=(2,2,2)
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
ln(|ec,1|) ln(|ek,1|) ln(|eθ,1|)

...
ln(|ec,30|) ln(|ek,30|) ln(|eθ,30|)


−13.6548 −13.6548 −14.1969
−18.0614 −13.7477 −14.7744
−17.2538 −16.064 −17.1189
−18.2334 −14.931 −18.4609
−14.9375 −15.0484 −18.06
−13.3718 −13.4466 −14.3339
−15.3357 −15.1409 −16.6528
−13.4818 −17.055 −18.6856
−16.5151 −17.974 −16.0224
−16.8629 −17.1652 −16.9262
−15.0336 −13.0546 −15.0929
−14.8104 −15.1068 −17.0829
−13.9454 −15.0733 −15.3665
−17.0059 −15.0225 −16.8123
−14.3533 −13.6955 −16.1402
−14.697 −15.2052 −15.5889
−15.6999 −16.5298 −16.5502
−15.469 −15.8159 −16.1557
−12.9005 −17.0451 −15.5094
−13.407 −14.5127 −15.9061
−15.605 −15.0689 −15.5069
−14.5434 −14.4278 −15.1171
−14.8235 −14.8132 −16.6327
−15.0699 −15.1443 −17.7803
−13.5813 −14.7228 −14.6813
−15.1304 −15.2556 −15.467
−17.3355 −17.4808 −20.5415
−13.2332 −15.2877 −16.1059
−15.668 −14.9417 −15.2354
−14.2264 −12.8483 −14.2733

Table 8: RBC Known Solution: Actual Errorsd=(2,2,2)
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
ln(| ˆec,1|) ln(| ˆek,1|) ln(| ˆeθ,1|)

...
ln(| ˆec,30|) ln(| ˆek,30|) ln(| ˆeθ,30|)


−13.5994 −13.7316 −14.1969
−19.713 −13.7563 −14.7744
−17.8538 −15.9394 −17.1189
−18.4186 −14.9247 −18.4609
−14.9453 −15.0569 −18.06
−13.3661 −13.4484 −14.3339
−15.2186 −15.0483 −16.6528
−13.4591 −16.4547 −18.6856
−16.6757 −17.4658 −16.0224
−16.7507 −17.3581 −16.9262
−17.6809 −13.212 −15.0929
−14.8476 −15.0629 −17.0829
−14.1282 −15.8166 −15.3665
−16.8176 −14.9953 −16.8123
−14.7882 −13.8997 −16.1402
−14.5928 −15.0521 −15.5889
−15.8049 −16.3126 −16.5502
−15.479 −15.8001 −16.1557
−12.8385 −15.3986 −15.5094
−13.3789 −14.598 −15.9061
−15.6645 −15.1186 −15.5069
−14.4965 −14.459 −15.1171
−14.7832 −14.7719 −16.6327
−15.0335 −15.1856 −17.7803
−13.7298 −15.3206 −14.6813
−15.2349 −15.1718 −15.467
−17.3423 −17.473 −20.5415
−13.2297 −15.3227 −16.1059
−15.7978 −15.0212 −15.2354
−14.0272 −12.8995 −14.2733

Table 9: RBC Known Solution: Error Approximationsd=(2,2,2)

35



[
K d = (1, 1, 1) d = (2, 2, 2) d = (3, 3, 3)

]

NonSeries −6.51367 −12.2771 −16.8947
0 −6.0793 −6.26833 −6.29843
1 −6.00805 −6.24202 −6.49835
2 −6.52219 −7.43876 −7.04785
3 −6.57578 −8.03864 −8.32589
4 −6.62831 −9.1522 −9.49314
5 −6.77305 −10.5516 −10.4247
6 −6.38499 −11.6399 −11.455
7 −6.63849 −11.3627 −13.0213
8 −6.38735 −11.7288 −13.9976
9 −6.46759 −11.9826 −15.3372
10 −6.45966 −12.1345 −15.4157
10 −6.77776 −11.5025 −15.8211
15 −6.67778 −12.4593 −15.8899
20 −6.40802 −11.7296 −17.1652
25 −6.53265 −12.1441 −17.1518
30 −6.81949 −11.6097 −16.3748
35 −6.33508 −12.1446 −16.6963
40 −6.52442 −11.4042 −15.6302

Table 10: RBC Known Solution: Impact of Series Length on Approximation Error

36



5.5 Approximating an Unknown Solution: η = 3
Table 11 shows the evaluation points when the Smolyak polynomial degrees of approximation
were (1,1,1). Table 12 shows the decision rule prescription for (ct, kt, θt) at each evaluation
point. Table 13 shows the log of the absolute value of the estimated error in the decision rule
at each evaluation points. Note that the formula provides accurate estimates of the error
component by component.

Table 14 shows the evaluation points when the Smolyak polynomial degrees of approx-
imation were (2,2,2). Table 15 shows the decision rule prescription for (ct, kt, θt) at each
evaluation point. Table 9 shows the log of the absolute value of the estimated error in the
decision rule at each evaluation points. Note that the formula provides accurate estimates
of the error component by component.
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
k1 θ1 ε1

...
k30 θ30 ε30


0.1489 0.887266 −0.044574

0.233573 1.16936 0.0595096
0.175324 0.939453 −0.00987946
0.202434 1.03737 0.0334887
0.18999 1.02063 −0.0359003
0.215667 1.12355 0.0681832
0.157417 0.893645 −0.00120583
0.241135 1.17907 0.0508359
0.202828 1.07209 −0.0185531
0.177152 0.96917 0.0161414
0.229252 1.12428 −0.0532476
0.146251 0.836349 0.0118046
0.21657 1.10837 −0.0575844
0.187072 1.01878 0.0464991
0.239172 1.17389 −0.0228899
0.155454 0.888463 0.0638464
0.172322 0.973989 −0.00554264
0.201821 1.06358 0.0291519
0.143572 0.833667 −0.0402371
0.226812 1.12076 0.0551727
0.159193 0.911511 −0.0142163
0.240045 1.20694 0.0204782
0.181795 0.977034 −0.0489108
0.210338 1.06995 0.0378255
0.227206 1.15548 −0.0315635
0.146355 0.86005 0.07252
0.198455 1.01516 0.00313098
0.170749 0.919322 0.0399939
0.157874 0.901074 −0.0293951
0.238725 1.19651 0.0746884

Table 11: RBC Approximated Solution: Model Evaluation Points d=(1,1,1)
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
c1 k1 θ1

...
c30 k30 θ30


0.21611 0.208557 0.847027
0.452893 0.269857 1.22393
0.267239 0.230108 0.931775
0.35028 0.251768 1.07036
0.299961 0.240849 0.983569
0.420887 0.262256 1.18984
0.243253 0.217177 0.896521
0.459129 0.272277 1.22374
0.340827 0.250513 1.04998
0.294783 0.234714 0.986909
0.368953 0.260446 1.06547
0.221402 0.20607 0.854741
0.349843 0.25471 1.04621
0.339335 0.244203 1.0664
0.416676 0.267429 1.14247
0.27496 0.218765 0.960064
0.283425 0.231206 0.96923
0.360306 0.252522 1.09083
0.193846 0.200678 0.799735
0.420092 0.266042 1.17298
0.245256 0.218836 0.900489
0.456834 0.270845 1.21817
0.26908 0.233193 0.929114
0.373581 0.256909 1.10605
0.393659 0.262194 1.11644
0.264319 0.211099 0.942148
0.321357 0.247159 1.01754
0.281918 0.228897 0.964162
0.232855 0.216163 0.875304
0.479992 0.272575 1.26627

Table 12: RBC Approximated Solution: Values at Evaluation Points d=(1,1,1)
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
ln(| ˆec,1|) ln(| ˆek,1|) ln(| ˆeθ,1|)

...
ln(| ˆec,30|) ln(| ˆek,30|) ln(| ˆeθ,30|)


−4.38747 −5. −5.01321
−5.68045 −5.805 −4.89809
−5.10224 −5.33003 −6.6064
−6.34158 −6.62031 −7.87535
−5.60248 −5.64831 −9.6263
−5.7969 −6.18996 −5.11512
−4.92963 −5.07008 −6.83086
−5.88332 −5.88269 −5.01359
−6.63272 −6.15415 −6.68716
−5.69579 −5.56877 −7.76351
−6.081 −5.72439 −5.16437
−4.82324 −4.80882 −7.05272
−6.86202 −5.74095 −5.25257
−6.47222 −6.25808 −9.00805
−5.96599 −6.66276 −5.44834
−8.66584 −4.99997 −4.90498
−5.4139 −5.50185 −7.33409
−6.42036 −7.03866 −7.08005
−4.13978 −4.80089 −4.78296
−6.06664 −6.39354 −5.377
−4.86241 −5.1415 −6.06258
−7.33554 −6.38356 −6.11469
−5.02079 −5.37422 −6.04755
−6.43212 −7.99418 −6.57026
−6.17638 −6.42884 −5.31385
−6.75784 −4.79589 −4.56474
−5.93264 −5.92418 −10.3455
−5.92431 −5.29301 −5.71515
−4.62067 −5.0846 −5.46376
−5.22287 −5.41884 −4.46492

Table 13: RBC Approximated Solution: Error Approximations d=(1,1,1)
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
k1 θ1 ε1

...
k30 θ30 ε30


0.154714 0.909409 0.0583516
0.238295 1.1837 −0.0441935
0.181916 0.956081 0.0241699
0.208439 1.05216 −0.0185573
0.195384 1.03868 0.0498062
0.220186 1.14073 −0.052739
0.163808 0.913113 0.0156245
0.246242 1.19138 −0.0356481
0.207785 1.08971 0.0327153
0.182983 0.987658 −0.00146639
0.234987 1.13638 0.0668971
0.153414 0.855121 0.00280632
0.221646 1.1239 0.0711698
0.192257 1.03778 −0.0313754
0.244262 1.1865 0.036988
0.161828 0.908228 −0.0484663
0.177563 0.994718 0.0198972
0.206952 1.08084 −0.0142845
0.150574 0.853223 0.0540789
0.232434 1.13348 −0.0399208
0.165188 0.931842 0.0284426
0.244182 1.22206 −0.00573911
0.187804 0.994441 0.0626243
0.216046 1.08454 −0.02283
0.231781 1.17103 0.0455335
0.152787 0.880818 −0.0570117
0.204792 1.02954 0.0113518
0.177553 0.935951 −0.0249663
0.164075 0.921007 0.0433971
0.243068 1.21122 −0.0591481

Table 14: RBC Approximated Solution: Model Evaluation Points d=(2,2,2)
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
k1 θ1 ε1

...
k30 θ30 ε30


0.274683 0.220094 0.968634
0.40339 0.266729 1.12301
0.296394 0.23513 0.981672
0.335137 0.250659 1.03019
0.358182 0.247172 1.08965
0.365685 0.257823 1.07502
0.263846 0.22194 0.931716
0.417917 0.27018 1.13964
0.3831 0.253685 1.12112

0.299405 0.23603 0.986824
0.451246 0.26553 1.20725
0.23049 0.209622 0.864261
0.437392 0.260092 1.19978
0.312821 0.241638 1.00386
0.465984 0.26895 1.22073
0.236754 0.21458 0.869437
0.309625 0.235153 1.01498
0.350497 0.251486 1.06137
0.246402 0.212757 0.907811
0.376735 0.263313 1.08232
0.277956 0.225197 0.962114
0.454981 0.269165 1.20294
0.337604 0.2424 1.059
0.352851 0.255287 1.05577
0.454299 0.264058 1.21595
0.219639 0.206105 0.837304
0.337981 0.249525 1.03978
0.26425 0.227363 0.9159
0.27897 0.224894 0.965819
0.410798 0.268804 1.13077

Table 15: RBC Approximated Solution: Values at Evaluation Points d=(2,2,2)
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
ln(| ˆec,1|) ln(| ˆek,1|) ln(| ˆeθ,1|)

...
ln(| ˆec,30|) ln(| ˆek,30|) ln(| ˆeθ,30|)


−5.34255 −5.33875 −11.8565
−6.15664 −6.15255 −12.3108
−5.41646 −5.41585 −13.8565
−5.64275 −5.64369 −18.1473
−5.9222 −5.92211 −16.0029
−5.87248 −5.86293 −12.0622
−5.20976 −5.20965 −13.8815
−6.26734 −6.27376 −13.3781
−6.11431 −6.11424 −13.5244
−5.43751 −5.43768 −14.3313
−6.84735 −6.83506 −13.4062
−4.96411 −4.96311 −15.7406
−6.74538 −6.74996 −13.0128
−5.51523 −5.51584 −14.6129
−7.01914 −7.01377 −13.0087
−4.98907 −4.9888 −12.8895
−5.54918 −5.5502 −14.2886
−5.78761 −5.7866 −13.6307
−5.10822 −5.11197 −16.4254
−5.91312 −5.91964 −15.971
−5.32484 −5.32492 −12.9666
−6.81071 −6.80294 −12.6755
−5.75943 −5.75928 −13.8696
−5.76735 −5.76907 −14.3413
−6.93921 −6.94492 −12.2327
−4.87233 −4.87293 −13.0072
−5.68297 −5.68316 −20.3557
−5.16688 −5.16342 −17.0775
−5.33829 −5.33817 −12.6149
−6.21494 −6.20121 −12.1051

Table 16: RBC Approximated Solution: Error Approximationsd=(2,2,2)
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6 A Model with Occasionally Binding Constraints
Stochastic dynamic non linear economic models often embody occasionally binding con-
straints (OBC). Since (Christiano and Fisher, 2000) a host of authors have described a
variety of approaches.11 (Holden, 2015; Guerrieri and Iacoviello, 2015b; Benigno et al.,
2009; Hintermaier and Koeniger, 2010b; Brumm and Grill, 2010; Nakov, 2008; Haefke, 1998;
Nakata, 2012; Gordon, 2011; Billi, 2011; Hintermaier and Koeniger, 2010a; Guerrieri and
Iacoviello, 2015a)

Consider adding a constraint to the simple RBC model:

It ≥ υIss

max
{
u(ct) + Et

∞∑
t=0

δt+1u(ct+1)
}

ct + kt = (1− d)kt−1 + θtf(kt−1)
θt = θρt−1e

εt

f(kt) = kαt

u(c) = c1−η − 1
1− η

L =
{
u(ct) + Et

∞∑
t=0

δtu(ct+1)
}

+

∞∑
t=0

{
δtλt(ct + kt − ((1− d)kt−1 + θtf(kt−1)))+

δtµt((kt − (1− d)kt−1)− υIss)
}

so that we can impose

It = (kt − (1− d)kt−1) ≥ υIss

The first order conditions become
1
cηt

+ λt

λt − δλt+1θt+1αk
(α−1)
t − δ(1− d)λt+1 + µt − δ(1− d)µt+1

For example, the Euler equations for the neoclassical growth model can be written as
11The algorithms described in (Holden, 2015) and (Guerrieri and Iacoviello, 2015b) also exploit the use of

“anticipated shocks”, but do not use the comprehensive formula employed here.
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if(µ > 0 ∧ (kt − (1− d)kt−1 − υIss) = 0)

λt −
1
ct

ct + It − θtkαt−1

Nt − λtθt
θt − e(ρ ln(θt−1)+ε)

λt + µt − (αk(α−1)
t δNt+1 + λt+1δ(1− d) + µt+1 + δ(1− d)µt+1

It − (Kt − (1− d)kt−1)
µt(kt − (1− d)kt−1 − υIss)

if(µ = 0 ∧ (kt − (1− d)kt−1 − υIss) ≥ 0)

λt −
1
ct

ct + It − θtkαt−1

Nt − λtθt
θt − e(ρ ln(θt−1)+ε)

λt + µt − (αk(α−1)
t δNt+1 + λt+1δ(1− d) + µt+1 + δ(1− d)µt+1

It − (Kt − (1− d)kt−1)
µt(kt − (1− d)kt−1 − υIss)

Table 17 shows the evaluation points when the Smolyak polynomial degrees of approx-
imation were (1,1,1). Table 18 shows the decision rule prescription for (ct, kt, θt) at each
evaluation point. Table 19 shows the log of the absolute value of the estimated error in the
decision rule at each evaluation points. Note that the formula provides accurate estimates
of the error component by component.

Table 20 shows the evaluation points when the Smolyak polynomial degrees of approx-
imation were (2,2,2). Table 21 shows the decision rule prescription for (ct, kt, θt) at each
evaluation point. Table 22 shows the log of the absolute value of the estimated error in the
decision rule at each evaluation points. Note that the formula provides accurate estimates
of the error component by component.

Why not here?
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
k1 θ1 ε1

...
k30 θ30 ε30


3.26643 0.944454 −0.0261085
4.12098 1.06801 0.0270199
3.67835 0.940854 −0.00839901
3.92114 0.989356 0.0137378
3.69543 1.00026 −0.0216811
3.88415 1.05817 0.0314473
3.44151 0.931012 −0.00397164
4.26001 1.06084 0.0225926
3.78979 1.02922 −0.0128264
3.60107 0.971308 0.0048831
4.20171 1.02562 −0.0305358
3.41024 0.891085 0.00266941
3.96698 1.03809 −0.0327495
3.63406 1.00526 0.0203789
4.2347 1.05957 −0.0150401
3.41619 0.929745 0.0292336
3.4676 0.988852 −0.00618532
3.80052 1.02168 0.0115241
3.35789 0.89452 −0.0238948
4.15837 1.02748 0.0248063
3.41102 0.947657 −0.0106127
4.12137 1.0963 0.00709678
3.67874 0.96914 −0.0283222
3.97561 1.00824 0.0159515
4.02702 1.06734 −0.0194674
3.31666 0.918703 0.033661
3.9173 0.973011 −0.00175796
3.65197 0.928429 0.0170584
3.42219 0.938626 −0.0183606
4.13254 1.08727 0.0347678

Table 17: Occasionally Binding Constraints Model Evaluation Points d=(1,1,1)
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
c1 I1 k1

...
c30 I30 k30


1.03662 0.379903 3.34624
1.36955 0.431143 4.13607
1.13338 0.361691 3.69353
1.25263 0.381718 3.92139
1.18795 0.376988 3.71505
1.32486 0.433045 3.92962
1.08991 0.364941 3.48842
1.37645 0.426962 4.25615
1.24202 0.39202 3.80933
1.17598 0.373255 3.63206
1.26718 0.39439 4.1772
1.03482 0.3675 3.46926
1.25075 0.392683 3.96566
1.22878 0.398246 3.68118
1.33116 0.409411 4.21636
1.11619 0.384274 3.48551
1.15026 0.38833 3.52625
1.26672 0.394799 3.82276
0.997682 0.362814 3.41768
1.33254 0.40944 4.15357
1.095 0.369696 3.46366

1.36855 0.443297 4.14433
1.14269 0.364517 3.69245
1.28393 0.389658 3.97475
1.30274 0.41229 4.03407
1.08632 0.391331 3.40604
1.21329 0.372403 3.91112
1.13942 0.372397 3.68273
1.07662 0.365006 3.47022
1.38964 0.453375 4.16566

Table 18: Occasionally Binding Constraints Values at Evaluation Points for Occasionally
Binding Constraints d=(1,1,1)
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
ln(| ˆec,1|) ln(| ˆek,1|) ln(| ˆeθ,1|)

...
ln(| ˆec,30|) ln(| ˆek,30|) ln(| ˆeθ,30|)


−4.31395 −4.55496 −4.55496
−4.49983 −4.13333 −4.13333
−5.5352 −5.24857 −5.24857
−5.8198 −5.84969 −5.84969
−4.60287 −4.60328 −4.60328
−4.41983 −4.10467 −4.10467
−4.62802 −4.55181 −4.55181
−5.26804 −4.74828 −4.74828
−8.43803 −8.15898 −8.15898
−5.35434 −5.28501 −5.28501
−3.85154 −3.66516 −3.66516
−4.38957 −4.32099 −4.32099
−4.47738 −4.23689 −4.23689
−5.01928 −5.04091 −5.04091
−5.51293 −4.94452 −4.94452
−3.83164 −3.64992 −3.64992
−4.53368 −4.51412 −4.51412
−4.74133 −4.66482 −4.66482
−7.3604 −5.00693 −5.00693
−7.71361 −5.96299 −5.96299
−4.71182 −4.60582 −4.60582
−4.81987 −4.52925 −4.52925
−6.36037 −5.73385 −5.73385
−6.04304 −5.80405 −5.80405
−6.58347 −5.58301 −5.58301
−3.45988 −3.27868 −3.27868
−4.15596 −4.15415 −4.15415
−4.2487 −4.33841 −4.33841
−5.03715 −4.72138 −4.72138
−4.38481 −3.89053 −3.89053

Table 19: Occasionally Binding Constraints Error Approximations d=(1,1,1)
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
k1 θ1 ε1

...
k30 θ30 ε30


3.11653 0.930006 −0.0265567
4.04206 1.06199 0.0292736
3.58012 0.922498 −0.00794662
3.83937 0.975085 0.015316
3.58288 0.98926 −0.0219042
3.77881 1.05289 0.0339261
3.31687 0.9134 −0.0032941
4.20017 1.05275 0.0246211
3.68084 1.02108 −0.0125991
3.48492 0.957443 0.00601095
4.14443 1.01357 −0.0312093
3.29279 0.868696 0.00368469
3.87738 1.02958 −0.0335355
3.51259 0.995409 0.0222948
4.17209 1.05153 −0.0149254
3.28879 0.912185 0.0315998
3.33019 0.978321 −0.00562036
3.69499 1.0125 0.0129897
3.23305 0.873004 −0.0242305
4.09524 1.01604 0.0269473
3.27803 0.932401 −0.0102729
4.03468 1.09384 0.00833722
3.57274 0.954351 −0.028883
3.89532 0.995891 0.0176423
3.93671 1.06203 −0.0195779
3.18007 0.900584 0.0362524
3.83958 0.95671 −0.000967836
3.55394 0.908726 0.0188054
3.29307 0.922137 −0.0184148
4.04972 1.08358 0.0374155

Table 20: Occasionally Binding Constraints Model Evaluation Points d=(2,2,2)

49




k1 θ1 ε1

...
k30 θ30 ε30


0.996234 0.372233 3.17711
1.35273 0.449889 4.08774
1.08239 0.37197 3.59408
1.22794 0.381138 3.83657
1.15723 0.375819 3.60041
1.29529 0.457947 3.85887
1.03658 0.371604 3.35678
1.37221 0.431977 4.21213
1.21472 0.395466 3.70822
1.14148 0.37158 3.50801
1.24362 0.394261 4.12425
0.972304 0.376186 3.33969
1.22692 0.392432 3.88208
1.19298 0.407354 3.56868
1.31345 0.414672 4.16956
1.06882 0.383074 3.34298
1.1142 0.387566 3.38473
1.23929 0.401702 3.72719
0.926116 0.382809 3.29255
1.32171 0.410856 4.09657
1.04696 0.373008 3.32323
1.35156 0.46278 4.09399
1.09896 0.370843 3.58631
1.26258 0.39151 3.8973
1.28036 0.420156 3.9632
1.04154 0.382172 3.24423
1.18102 0.373737 3.82935
1.09669 0.372006 3.57055
1.02297 0.373053 3.33681
1.38105 0.472609 4.11735

Table 21: Occasionally Binding Constraints Values at Evaluation Points for Occasionally
Binding Constraints d=(2,2,2)
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
ln(| ˆec,1|) ln(| ˆek,1|) ln(| ˆeθ,1|)

...
ln(| ˆec,30|) ln(| ˆek,30|) ln(| ˆeθ,30|)


−4.3713 −4.37518 −4.37518
−4.80064 −4.79951 −4.79951
−4.51635 −4.51745 −4.51745
−4.97684 −4.97675 −4.97675
−4.76238 −4.76248 −4.76248
−5.20213 −5.19772 −5.19772
−4.42504 −4.42526 −4.42526
−4.74432 −4.74585 −4.74585
−5.81449 −5.81175 −5.81175
−5.44103 −5.4409 −5.4409
−3.41118 −3.41245 −3.41245
−2.35772 −2.35772 −2.35772
−4.10566 −4.10512 −4.10512
−7.55599 −7.55774 −7.55774
−4.76462 −4.76603 −4.76603
−3.88786 −3.88797 −3.88797
−4.30233 −4.30326 −4.30326
−5.00949 −5.00948 −5.00948
−2.04364 −2.04336 −2.04336
−5.59945 −5.60358 −5.60358
−5.12234 −5.12392 −5.12392
−5.73503 −5.7328 −5.7328
−4.80694 −4.80739 −4.80739
−7.06764 −7.06949 −7.06949
−5.20027 −5.196 −5.196
−3.4838 −3.48367 −3.48367
−3.61222 −3.61225 −3.61225
−4.37205 −4.3713 −4.3713
−4.80664 −4.80713 −4.80713
−4.63986 −4.63587 −4.63587

Table 22: Occasionally Binding Constraints Error Approximations d=(2,2,2)
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7 Conclusions
This paper introduces a new series representation for bounded time series and shows how
to develop series for representing bounded time invariant maps. The series representation
plays a strategic role in developing a formula for approximating the errors in dynamic model
solution decision rules. The paper also shows how to augment the usual “Euler Equation”
model solution methods with constraints reflecting how the updated conditional expectation
paths relate to the time t solution values thereby enhancing solution algorithm reliability
and accuracy. The prototype was written in Mathematica and is available on gitHub at
https://github.com/es335mathwiz/AMASeriesRepresentation.
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A Error Approximation Formula Proof
We consider time invariant maps such as often arise from solving an optimization problem
codified in a systems of equations. In what follows, we construct an error approximation
for proposed model solutions. Consider a bounded region, A, where all iterated conditional
expectations paths remain bounded. Given an exact solution x?t = g?(xt−1, εt) define the
conditional expectations function,

G?(x) ≡ E [g?(x, ε)]

then with

Etx
?
t+1 = G?(g?(xt−1, εt))

we have

M(x?t−1, x
?
t , Etx

?
t+1, εt) = 0 ∀(xt−1, εt)

In words, the exact solution exactly satisfies the model equations. Using G? and L, construct
the family of trajectories and corresponding z?t (xt−1, ε)

x?t (xt−1, εt) ∈ RL ‖x?t (xt−1, εt)‖2 ≤ X̄ ∀t > 0

z?t (xt−1, εt) ≡H−1x
?
t−1(xt−1, εt)+

H0x
?
t (xt−1, εt)+

H1x
?
t+1(xt−1, εt).

Consequently, the exact solution has a representation given by

x?t (xt−1, ε) = Bxt−1 + φψεε+ (I − F )−1φψc+
∞∑
ν=0

F sφz?t+ν(xt−1, ε)

and

E
[
x?t+1(xt−1, ε)

]
= Bx?t+k +

∞∑
ν=0

F νφE
[
z?t+1+ν(xt−1, ε)

]
+ (I − F )−1φψc

with

M(xt−1, x
?
t , Etx

?
t+1, εt) = 0 ∀(xt−1, εt)

Now consider a proposed solution for the model, xpt = gp(xt−1, εt) define Gp(x) ≡
E [gp(x, ε)] so that

Etxt+1 = Gp(gp(xt−1, εt))
ept (xt−1, ε) ≡M(xt−1, x

p
t , Etx

p
t+1, εt)
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By construction, the conditional expectations paths will all be bounded in the region Ap.
Using Gp and L construct the family of trajectories and corresponding zpt (xt−1, ε)12

xpt (xt−1, εt) ∈ RL ‖xpt (xt−1, εt)‖2 ≤ X̄ ∀t > 0

zpt (xt−1, εt) ≡H−1x
p
t−1(xt−1, εt)+

H0x
p
t (xt−1, εt)+

H1x
p
t+1(xt−1, εt).

The proposed solution has a representation given by

xpt (xt−1, ε) = Bxt−1 + φψεε+ (I − F )−1φψc+
∞∑
ν=0

F sφzpt+ν(xt−1, ε)

and

E [xpt+1(xt−1, ε)] = Bxpt+k +
∞∑
ν=0

F νφzpt+1+ν(xt−1, ε) + (I − F )−1φψc

with

ept (xt−1, ε) ≡M(xt−1, x
p
t , Etx

p
t+1, εt)

x?t (xt−1, ε)− xpt (xt−1, ε) =
∞∑
ν=0

F sφ(z?t+ν(xt−1, ε)− zpt+ν(xt−1, ε))

∆zpt+ν(xt−1, εt) ≡ (z?t+ν(xt−1, ε)− zpt+ν(xt−1, ε))

x?t (xt−1, ε)− xpt (xt−1, ε) =
∞∑
ν=0

F sφ∆zpt+ν(xt−1, εt)

‖x?t (xt−1, ε)− xpt (xt−1, ε)‖∞ ≤
∞∑
ν=0

F sφ ‖∆zpt+ν(xt−1, εt)‖∞

By bounding the largest deviation in the paths for the ∆zpt we can bound the largest
difference in xt.13 The exact solution satisfies the model equations exactly. The error asso-
ciated with the proposed solution leads to a conservative bound on the largest change in z
needed to match the exact solution.

12The algorithm presented below for finding solutions provides a mechanism for generating such proposed
solutions.

13Since the future values are probability weighted averages of the ∆zp
t values for the given initial conditions

and the condition expectations paths remain in the region Ap, the largest error for ∆zp
t+k are pessimistic

bounds for the errors from the conditional expectations path.
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∆zt ≤ max
{x−,ε}

‖φM(x−, gp(x−, ε), Gp(gp(x−, ε)), ε)‖2

‖x?t (xt−1, ε)− xpt (xt−1, ε)‖∞ ≤ max
{x−,ε}

∥∥∥(I − F )−1φM(x−, gp(x−, ε), Gp(gp(x−, ε)), ε)
∥∥∥

2

z?t = H−x
?
t−1 +H0x

?
t +H+x

?
t+1

zpt = H−x
p
t−1 +H0x

p
t +H+x

p
t+1

0 = M(x?t−1, x
?
t , x

?
t+1, εt)

ept (xt−1, ε) = M(xpt−1, x
p
t , x

p
t+1, εt)

max
xt−1,εt

(‖φ∆zt‖2)2 = max
xt−1,εt

(φ(H0(xpt − x?t ) +H+(xpt+1 − x?t+1)))2

with

M(x?t−1, x
?
t , x

?
t+1, εt) = 0

∆ept (xt−1, ε) ≈
∂M(xt−1, xt, xt+1, εt)

∂xt
(x?t − x

p
t ) + ∂M(xt−1, xt, xt+1, εt)

∂xt+1
(x?t+1 − x

p
t+1)

when ∂M(xt−1,xt,xt+1,εt)
∂xt

is non-singular, we can write

(x?t − x
p
t ) ≈

(
∂M(xt−1, xt, xt+1, εt)

∂xt

)−1 (
∆ept (xt−1, ε)−

∂M(xt−1, xt, xt+1, εt)
∂xt+1

(x?t+1 − x
p
t+1)

)

collecting results

(‖φ∆zt‖2)2 =

(φ(H0

(
∂M(xt−1, xt, xt+1, εt)

∂xt

)−1

(
∆ept (xt−1, ε)−

∂M(xt−1, xt, xt+1, εt)
∂xt+1

(x?t+1 − x
p
t+1)

)
+H+(xpt+1 − x?t+1)))2 =

(φ(H0

(
∂M(xt−1, xt, xt+1, εt)

∂xt

)−1

(∆ept (xt−1, ε))−H0

(
∂M(xt−1, xt, xt+1, εt)

∂xt

)−1
∂M(xt−1, xt, xt+1, εt)

∂xt+1
(x?t+1 − x

p
t+1)

+H+(xpt+1 − x?t+1)))2 =

(φ(H0

(
∂M(xt−1, xt, xt+1, εt)

∂xt

)−1

(∆ept (xt−1, ε))−H0

(
∂M(xt−1, xt, xt+1, εt)

∂xt

)−1
∂M(xt−1, xt, xt+1, εt)

∂xt+1
−H+

 (x?t+1 − x
p
t+1)))2 =
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approximating the derivatives using the H matrices

∂M(xt−1, xt, xt+1, εt)
∂xt

≈ H0

∂M(xt−1, xt, xt+1, εt)
∂xt+1

≈ H+

produces

max
xt−1,εt

(φ∆ept (xt−1, ε))2

B A Regime Switching Example
To apply the series formula, one must construct conditional expectations paths from each
initial x(xt−1, εt). Consider the case when the transition probabilities pij are constant and
do not depend on xt−1, εt, xt.

Et[xt+1] =
N∑
j=1

pijEt(xt+1(xt)|st+1 = j)

Et[xt+2] =
N∑
j=1

pijEt(xt+2(xt+1)|st+2 = j)

If we know the current state we can use the known conditional expectation function for
the state: 

Et(xt+1(xt)|st = 1)
...

Et(xt+1(xt)|st = N)


For the next state we can compute expectations if the errors are independent

Et(xt+2(xt)|st = 1)
...

Et(xt+2(xt)|st = N)

 = (P ⊗ I)


Et(xt+2(xt+1)|st+1 = 1)

...
Et(xt+2(xt+1)|st+1 = N)


Consider two states st ∈ 0, 1 where the depreciation rates are different: d0 > d1

Prob(st = j|st−1 = i) = pij
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if(st = 0 ∧ µ > 0 ∧ (kt − (1− d0)kt−1 − υIss) = 0)

λt −
1
ct

ct + kt − θtkαt−1

Nt − λtθt
θt − e(ρ ln(θt−1)+ε)

λt + µt − (αk(α−1)
t δNt+1 + λt+1δ(1− d0) + µt+1 + δ(1− d0)

It − (Kt − (1− d0)kt−1)
µt(kt − (1− d0)kt−1 − υIss)

if(st = 0 ∧ µ = 0 ∧ (kt − (1− d0)kt−1 − υIss) ≥ 0)

λt −
1
ct

ct + kt − θtkαt−1

Nt − λtθt
θt − e(ρ ln(θt−1)+ε)

λt + µt − (αk(α−1)
t δNt+1 + λt+1δ(1− d0) + µt+1 + δ(1− d0)

It − (Kt − (1− d0)kt−1)
µt(kt − (1− d0)kt−1 − υIss)

if(st = 1 ∧ µ > 0 ∧ (kt − (1− d1)kt−1 − υIss) = 0)

λt −
1
ct

ct + kt − θtkαt−1

Nt − λtθt
θt − e(ρ ln(θt−1)+ε)

λt + µt − (αk(α−1)
t δNt+1 + λt+1δ(1− d1) + µt+1 + δ(1− d1)

It − (Kt − (1− d1)kt−1)
µt(kt − (1− d1)kt−1 − υIss)
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if(st = 1 ∧ µ = 0 ∧ (kt − (1− d1)kt−1 − υIss) ≥ 0)

λt −
1
ct

ct + kt − θtkαt−1

Nt − λtθt
θt − e(ρ ln(θt−1)+ε)

λt + µt − (αk(α−1)
t δNt+1 + λt+1δ(1− d1) + µt+1 + δ(1− d1)

It − (Kt − (1− d1)kt−1)
µt(kt − (1− d1)kt−1 − υIss)
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C Algorithm Pseudo-code
L ≡ {H,ψε, ψc;B, φ, F} The linear reference model

xp(xt−1, εt) The proposed decision rule xt components

zp(xt−1, εt) The proposed decision rule zt components

Xp(xt−1) The proposed decision rule conditional expectations xt components

Zp(xt−1) The proposed decision rule their conditional expectations zt components

κ One less than the number of terms in series representation(κ >= 0)

S Smolyak an-isotropic grid polynomials (p1(x, ε), . . . , pN(x, ε)) and their conditional expec-
tations (P1(x), . . . , PN(x))

T Model evaluation points Neidereiter sequence in the model variable ergodic region.

γ {x(xt−1, εt), z(xt−1, εt)} collects the decision rule components

G {x(xt−1, εt), z(xt−1, εt)} collects the decision rule conditional expectations components

H {γ,G} collects decision rule information

{{C1, . . . ,CM},d(xt−1, ε, xt, E [xt+1])|(b., c.)} The equation system R3Nx+Nε+Nx → RNx

input : (L,H0, κ, {{C1, . . . ,CM},d(xt−1, ε, xt, E [xt+1])|(b., c.)}, S,T)
1 /* Compute a sequence of decision rule and conditional expectation rule

function terminating when the evaluation of the functions at the
tests points no longer changes much. Norm of the difference
controlled by default (‘‘normConvTol’’->10−10) */

2 NestWhile
(Function(v, doInterp(L, v, κ, {{C1, . . . ,CM},d(xt−1, ε, xt, E [xt+1])|(b., c.)},S)),H0, notConvergedAt(v,T))
output: {H0,H1, . . . ,Hc}

Algorithm 1: nestInterp

62



input : (L,Hi, κ, {{C1, . . . ,CM},d(xt−1, ε, xt, E [xt+1])|(b., c.)},S)
1 /* Symbolically generates a collection of function triples and an outer

model solution selection function. Each of triples returns the
boolean gate values and a unique value for xt for any given value of
(xt−1, εt) one of the model equations and subsequently uses these
functions to construct interpolating functions approximating the
decision rules. */

2 theF indRootFuncs =
genFindRootFuncs(L,H, κ, {{C1, . . . ,CM},d(xt−1, ε, xt, E [xt+1])|(b., c.)})

3 Hi+1 = makeInterpFuncs(theF indRootFuncs, S)
output: Hi+1

Algorithm 2: doInterp

input : (L,H, κ, {{C1, . . . ,CM},d(xt−1, ε, xt, E [xt+1])|(b., c.)}, S)
1 /* Applies genFindRootWorker to each model component. Symbolically

generates a collection of function triples and an outer model
solution selection function. Each of the triples returns the
Boolean gate values and a unique value for xt for any given value of
(xt−1, εt) for one from the set of model equations. It subsequently
uses these functions to construct interpolating functions
approximating the decision rules. Each of the function
constructions can be done in parallel. */

2 theFuncOptionsTriples =
Map(Function(v, {v[1], genF indRootWorker(L,H, κ, v[2]), v[3]), {C1, . . . ,CM})
output: {theFuncOptionsTriples,d}

Algorithm 3: genFindRootFuncs

input : (L,G, κ,M)
1 /* Symbolically constructs functions that return xt for a given (xt−1, εt)

*/
2 Z = {Zt+1, . . . , Zt+k−1} = genZsForF indRoot(L, xpt ,G)
3 modEqnArgsFunc = genLilXkZkFunc(L,Z)
4 X = {xt−1, xt, Et(xt+1), εt} = modEqnArgsFunc(xt−1, εt, zt)
5 funcOfXtZt = FindRoot((xpt , zt), {M(X ), xt − xpt})
6 funcOfXtm1Eps = Function((xt−1, εt), funcOfXtZt)

output: funcOfXtm1Eps
Algorithm 4: genFindRootWorker
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input : (xpt ,L,G, κ,M)
1 /* Symbolically compute the κ− 1 future conditional Z’s vectors needed

for the series formula.(empty list for κ = 1 */
2 Xt = xpt for i = 1, i < κ− 1, i+ + do
3 {Xt+1, Zt+i} = G(Zt+i−1)
4 end
5 = {(Xt+i, Zt+1), . . . , (Xt+κ−1Zt+κ−1)} = genZsForF indRoot(L, xpt ,G)

output: {Zt+1, . . . , Zt+k−1}
Algorithm 5: genZsForF indRoot

input : (L = {H,ψε, ψc;B, φ, F})
1 /* Create functions that use the solution from the linear reference

model for an initial proposed decision rule function and decision
rule conditional expectation function. */

2 γ(x, ε) =
[
Bx+ (I − F )−1φψc + ψεεt

0Nx

]

3 G(x, ε) =
[
Bx+ (I − F )−1φψc + ψε

0Nx

]
4 H = {γ,G}

output: {H}
Algorithm 6: genBothX0Z0Funcs

input : (L, {Zt+1, . . . , Zt+k−1})
1 /* Symbolically creates a function that uses an initial Zt path to

generate a function of (xt−1, εt, zt) providing (potentially symbolic )
inputs (xt−1, xt, Et(xt+1), εt),for model system equations M */

2 fCon = fSumC(φ, F, ψz, {Zt+1, . . . , Zt+k−1})
xtV als = genXtOfXtm1(L, xt−1, εt, zt, fCon)
xtp1V als = genXtp1OfXt(L, xtV als, fCon)
fullV ec = {xtm1V ars, xtV als, xtp1V als, epsV ars}
output: fullV ec

Algorithm 7: genLilXkZkFunc

input : (L, xt−1, εt, zt, fCon)
1 /* Symbolically creates a function that uses an initial Zt path to

generate a function of (xt−1, εt, zt) providing (potentially symbolically
) the xt component of inputs (xt−1, xt, Et(xt+1), εt),for model system
equations M */

2 xt = Bxt−1 + (I − F )−1φψc + φ.ψε.εt + φψzzt + FfCon
output: xt

Algorithm 8: genXtOfXtm1
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input : (L, xt−1, fCon)
1 /* Symbolically creates a function that uses an initial Zt path to

generate a function of (xt−1, εt, zt) providing (potentially symbolically
)the xt+1 component of inputs (xt−1, xt, Et(xt+1), εt),for model system
equations M */

2 xt = Bxt−1 + (I − F )−1φψc + φ.ψε.εt + φψzzt + fCon
output: xt

Algorithm 9: genXtp1OfXt

input : (L, {Zt+1, . . . , Zt+k−1})
1 /* Numerically sums the F contribution for the series. */
2 S = ∑

F ν−1φZt+ν
output: S

Algorithm 10: fSumC

input : ({{C1, . . . ,CM},d(xt−1, ε, xt, E [xt+1])|(b., c.)},S)
1 /* Solves model equations at collocation points producing interpolation

data and subsequently returns the interpolating functions for the
decision rule and decision rule conditional expectation. This
routine also optionally replaces the approximations generated for
all ‘‘backward looking’’ equations with user provided pre-computed
functions. */

2 interpData = genInterpData({{C1, . . . ,CM},d(xt−1, ε, xt, E [xt+1])|(b., c.)},S)
{γ,G} = interpDataToFunc(interData, S)
output: {γ,G}

Algorithm 11: makeInterpFuncs

input : ({{C1, . . . ,CM},d(xt−1, ε, xt, E [xt+1])|(b., c.)},S)
1 /* Solves model equations at collocation points producing interpolation

data and subsequently returns the interpolating functions for the
decision rule and decision rule conditional expectation. This
routine also optionally replaces the approximations generated for
all ‘‘backward looking’’ equations with user provided pre-computed
functions. */

output: {γ,G}
Algorithm 12: genInterpData

input : (C,(xt−1, εt))
1 /* Evaluate the model equations obeying pre and post conditions */

output: xt or failed
Algorithm 13: evaluateTriple
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input : (V, S)
1 /* Computes a vector of Smolyak interpolating polynomials corresponding

to the matrix of function evaluations. Each row corresponds to a
vector of values at a collocation point. */

output: {γ,G}
Algorithm 14: interpDataToFunc

input : (approxLevels,means, stdDev,minZs,maxZs, vvMat, distributions)
1 /* Given approximation levels, PCA information, and probability

distributions for errors compute the collocation points, the Psi
Matrix, the polynomials and the integrals of the polynomials */

output: {xPts, PsiMat, polys, intPolys}
Algorithm 15: smolyakInterpolationPrep

input : (approxLevels, varRanges, distributions)
1 /* Given approximation levels, variable ranges and probability

distributions for errors compute the collocation points, the Psi
Matrix, the polynomials and the integrals of the polynomials */

output: {xPts, PsiMat, polys, intPolys}
Algorithm 16: smolyakInterpolationPrep
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input : (approxLevels, varRanges, distributions)
1 /* Given approximation levels, variable ranges and probability

distributions for errors compute the collocation points, the Psi
Matrix, the polynomials and the integrals of the polynomials */

output: {xPts, PsiMat, polys, intPolys}
Algorithm 17: genSolutionErrXtEps

input : (approxLevels, varRanges, distributions)
1 /* Given approximation levels, variable ranges and probability

distributions for errors compute the collocation points, the Psi
Matrix, the polynomials and the integrals of the polynomials */

output: {xPts, PsiMat, polys, intPolys}
Algorithm 18: genSolutionErrXtEpsZero

input : (approxLevels, varRanges, distributions)
1 /* Given approximation levels, variable ranges and probability

distributions for errors compute the collocation points, the Psi
Matrix, the polynomials and the integrals of the polynomials */

output: {xPts, PsiMat, polys, intPolys}
Algorithm 19: genSolutionPath
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