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Takeoff 
Over recent decades, central banks have made enormous strides in enhancing transparency around 
many elements of the formulation and conduct of monetary policy.  Still, even for an audience of 
seasoned policy experts, providing clarity about aspects of monetary policy strategy is a daunting 
task and all the more so when the audience extends to the public at large.  This collection of short 
notes attempts to take a small step in fostering more inclusive discussion of monetary policy strategy 
by presenting some standard results in a way that may be useful as an introduction to basic concepts 
for students and nonspecialists.  The discussion below relies heavily on diagrams to illustrate the 
main points while keeping equations to a minimum.  Some mathematical details are provided in the 
appendix.   

The paper is organized as a collection of “short takes” on a series of related issues.  Take 1 presents 
a bare bones “baseline” economic model.  Take 2 introduces a standard central bank “loss function” 
and discusses optimal monetary policy in the context of the baseline model.  Take 3 considers how 
optimal policy in the baseline model is affected under different assumptions about the structure of 
the economy.  Take 4 examines how alternative specifications of the central bank’s loss function 
affect optimal policy.   Take 5 introduces uncertainty in the baseline model and reviews two key 
results—the certainty equivalence principle and the policy attenuation principle.  Take 6 examines 
how alternative specifications of the loss function affect optimal policy under uncertainty.  Take 7 
looks at optimal policy with an objective function that places a great deal of weight on tail risks.  
Take 8 extends the baseline economic model to include two periods and discusses the zero lower 
bound problem.  Take 9 uses the extended model to discuss risk management incentives for 
monetary policy in connection with the zero lower bound.  Take 10 discusses some special topics in 
the context of the baseline model and the final section concludes with a few “takeaways.” 
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Take 1: A Baseline Economic Model   
“The Federal Open Market Committee decided today to raise its target for the federal funds rate by 25 basis points to 
4-1/2 percent.  Although recent economic data have been uneven, the expansion in economic activity appears solid.  
Core inflation has stayed relatively low in recent months and longer-term inflation expectations remain contained. 
Nevertheless, possible increases in resource utilization as well as elevated energy prices have the potential to add to 
inflation pressures.  The Committee judges that some further policy firming may be needed to keep the risks to the 
attainment of both sustainable economic growth and price stability roughly in balance.” 

FOMC Statement, January 2006 

The FOMC statement above embeds a number of recurring themes in monetary policy analysis—a 
focus on economic activity and inflation, concerns that tightening resource utilization together with 
supply shocks (in the form of higher energy prices) could lead to inflation pressures, and careful 
monitoring of inflation expectations.  In the case above, these observations and concerns led the 
FOMC to judge that policy should be tightened to foster progress toward the Federal Reserve’s 
longer-run goals of maximum employment and price stability.  A number of these basic ideas can be 
illustrated in the context of a very simple baseline model of the economy.  The discussion below 
sketches the key features of this framework. 

1.1 Overview 
In the baseline model, inflation and output are determined by two basic equations—a Phillips curve 
and a so-called investment-savings (IS) equation.  The Phillips curve describes the behavior of 
inflation in response to the level of the “output gap.”  The output gap is a measure of the cyclical 
position of the economy and is defined as the difference between the actual level of output and the 
level of potential output.  Potential output, in turn, is the level of output that can be produced by the 
economy when labor and capital are fully employed.  When the economy is very strong, the output 
gap can be large and positive.  When the economy is very weak, the output gap is large and negative.  
In much of what follows, it is convenient to focus on a related measure of the output gap defined in 
terms of the unemployment rate.  The unemployment rate gap is defined as the difference between 
the current level of the unemployment rate and the so-called “natural rate” of unemployment 
defined as the level of the unemployment rate when the economy is at “full employment.”  The 
unemployment rate gap is large and positive when the economy and labor market are very weak, and 
it is large and negative when the economy and labor market are very strong. 

The IS curve describes the behavior of aggregate demand in the economy.  As with the formulation 
of the Phillips curve, it is convenient to discuss the IS curve in terms of the unemployment rate gap.  
The IS curve in this model thus relates the level of the unemployment rate gap to the central bank’s 
choice of the policy rate relative to the “neutral” policy rate.  An increase in the policy rate gap—the 
spread between the policy rate and the neutral policy rate—depresses aggregate demand and pushes 
the unemployment rate gap up.  Conversely, all else equal, a reduction in the policy rate gap provides 
some impetus to aggregate demand, lowers the unemployment rate, and pushes the unemployment 
rate gap lower. 

1.2 Phillips Curve  
A simple version of the Phillips curve expresses the deviation of inflation from the central bank’s 
target value as a function of three basic factors.  As shown in equation (1), the first of these factors 
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is the unemployment rate gap.  An unemployment rate gap, 𝑢𝑢� , that is positive—unemployment is 
above the natural rate—puts downward pressure on inflation and vice versa. 

𝜋𝜋� = 𝜋𝜋 − 𝜋𝜋∗ = −𝜏𝜏𝑢𝑢� + (𝜋𝜋𝑒𝑒 − 𝜋𝜋∗) + 𝜀𝜀        (1) 

The “slope” of the Phillips curve, 𝜏𝜏, measures the sensitivity of inflation to the unemployment rate 
gap.  The second key factor affecting inflation is the level of inflation expectations relative to the 
central bank’s target value.  If the public is convinced that the Federal Reserve will take actions 
necessary to achieve its inflation target, this term should generally be equal to zero. 

The final factor is the “error term” which captures various demand and supply shocks that can 
affect inflation on a temporary basis.  For example, adverse oil price shocks might temporarily boost 
the level of inflation.  Conversely, new technologies that allow firms to produce more with the same 
level of inputs can put temporary downward pressure on inflation. 

In more advanced models, the Phillips curve can incorporate forward-looking elements.  For 
example, inflation today could depend on expectations of the future levels of aggregate demand.  In 
addition, inflation expectations can be modelled in various ways, either as a function of other 
observed variables or as a so-called “rational expectation” of future values of inflation.  In the 
baseline model, we simply treat inflation expectations as fixed or exogenous.  Even with this simple 
setup, inflation expectations play an important role in the determination of actual inflation.  When 
the central bank is fully credible and the public anticipates that inflation will equal the central bank’s 
target in the longer-run, inflation expectations and the central bank’s inflation target should be equal 
and the actual level of inflation is affected only by the level of unemployment rate gap. 

In figure 1.1, the Phillips curve is shown by the downward sloping green line.  Here the 
unemployment rate gap is shown along the x-axis and the inflation deviation from target is measured 
along the y-axis. When there are no shocks to the Phillips curve and when expected inflation aligns 
with the central bank’s target rate, the Phillips curve passes through the origin.  When there are 
“cost push” shocks to inflation captured by the error term, 𝜀𝜀, the Phillips curve shifts up.  
Conversely, if there are shocks that depress inflation, the Phillips curve shifts down.  Similarly, if 
inflation expectations move above or below the central bank’s target rate, the Phillips curve shifts up 
or down. 

1.3 IS Curve 
The second key relationship in the model is a simplified IS curve that relates the level of the 
unemployment rate gap to the interest rate gap.  The interest rate gap term is the spread between the 
actual real rate of interest given by 𝑖𝑖 − 𝜋𝜋𝑒𝑒  and the so-called neutral real rate of interest given by 𝑟𝑟∗. 
Intuitively, when the central bank raises the level of the real federal funds rate above the long-run 
neutral rate, this tends to depress aggregate demand and restrain employment and vice versa. 

𝑢𝑢� = 𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢∗ = 𝛼𝛼(𝑖𝑖 − 𝜋𝜋𝑒𝑒 − 𝑟𝑟∗) + 𝜂𝜂 = 𝛼𝛼(𝑖𝑖 − (𝜋𝜋𝑒𝑒 − 𝜋𝜋∗) − (𝑟𝑟∗ + 𝜋𝜋∗)) + 𝜂𝜂  (2) 

In this equation, 𝑢𝑢𝑢𝑢 and 𝑢𝑢𝑢𝑢∗ are the actual observed unemployment rate and the “natural” rate of 
unemployment, respectively.  Under this specification, the level of the unemployment rate gap, 𝑢𝑢� , is 
unaffected by the actual level of inflation.  As a result, the IS curve is shown as a vertical line in 
figure 1.2.  When there are adverse shocks to the economy, 𝜂𝜂 > 0, the IS curve shifts to the right in 
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this diagram.  And conversely when there are favorable shocks to the economy, the IS curve shifts 
to the left.  The “slope” of the IS curve with respect to the policy rate gap, 𝛼𝛼, measures the 
sensitivity of the unemployment rate to deviations of the real rate from the neutral real rate, 𝑟𝑟∗. 

1.4 Determination of Inflation and Unemployment and the Stance of Policy 
The Phillips curve and IS curve equations together determine the unemployment rate and inflation 
rate in the model.  Figure 1.3 displays both curves with the unemployment rate deviation shown on 
the horizontal axis and the inflation gap shown on the vertical axis.  For a given setting of the policy 
rate, inflation and output are determined at the intersection of these two curves at a point shown by 
the black dot. 

As shown by the dashed green line, if there is a cost push shock to the Phillips curve, inflation rises 
along the existing IS curve to a point shown by the red dot.  If there is an adverse shock to the IS 
curve, inflation falls and the unemployment rate rises moving down along the Phillips curve to the 
point shown by the blue dot.   

The other factor that affects the position of the IS curve is the level of the expected real interest rate 
relative to the neutral real interest rate, 𝑟𝑟∗.  As shown in figure 1.4, a policy tightening boosts the 
level of the real interest rate relative to the neutral rate and pushes the IS curve to the right.  
Inflation falls and unemployment rises in this case as the economy moves from the initial 
equilibrium shown by the black dot to the new equilibrium shown by the red dot.  A policy easing 
has the reverse effect; the unemployment rate gap falls and the inflation gap rises along the Phillips 
curve as the economy moves to a new equilibrium shown by the green dot. 

Policymakers can thus utilize changes in the policy rate gap to offset or mitigate the effects of other 
types of shocks.  In the case of an adverse shock to the IS curve, the central bank can completely 
offset the shock by a suitable reduction in the level of the policy rate.  In the case of an adverse 
shock to the Phillips curve, the policymaker can tighten policy to mitigate the effect of the inflation 
shock on the level of inflation. 

Of course, the real world is far more complicated than this simple model.  But even through the 
narrow lens of this baseline model, the ability of the central bank to conduct monetary policy 
effectively depends critically on the confidence of the public in the central bank’s determination to 
achieve its inflation target over time.  For example, as noted above and as shown in figure 1.5, in 
response to an adverse shock to the IS curve, the central bank can ease policy in a way that cushions 
the effect of the shock on the unemployment rate.  In the diagram, the adverse economic shock 
would initially push the unemployment rate up and the inflation rate down as the economy moved 
along the Phillips curve from the black dot to the red dot.  In response, the central bank could ease 
policy and return the IS curve to its initial position, moving the economy back up to the black dot 
with the economy at full employment and inflation at target.  However, if the public believes that 
this policy easing signals that the central bank is less committed to its inflation target, inflation 
expectations could rise, and the Phillips curve could shift up as shown by the green dotted line.  
Moreover, the rise in inflation expectations would lower the real policy rate and shift the IS curve 
further to the left.  In that case, as shown in figure 1.6, the initial effect of policy easing could be 
successful in returning the economy to full employment.  However, as inflation expectations 
adjusted, the level of inflation would move higher and the unemployment rate would fall below the 
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natural rate as indicated by the yellow dot.  A key implication is that the ability of the central bank to 
achieve its employment and price stability objectives depends critically on the public’s confidence 
that the central bank will take the actions necessary to maintain stable inflation in the longer run.  
When the public is fully confident in the central bank’s commitment to stable inflation, the central 
bank will have greater freedom to take actions necessary to stabilize the real economy.  
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Figure 1.2: IS Curve
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Figure 1.3: Determination of Inflation and Unemployment

𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢∗

adverse IS shock

cost push shock

8



𝜋𝜋 − 𝜋𝜋∗

IS Curve Phillips Curve 

Figure 1.4: Effect of Policy Easing and Tightening
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Figure 1.5: Countering an Adverse Economic Shock
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Figure 1.6: Inflation Expectations and Policy
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Take 2: Optimal Policy in the Baseline Model 
“In setting monetary policy, the Committee seeks to mitigate deviations of inflation from its longer-run goal and 
deviations of employment from the Committee’s assessments of its maximum level.  These objectives are generally 
complementary. However, under circumstances in which the Committee judges that the objectives are not 
complementary, it follows a balanced approach in promoting them, taking into account the magnitude of the deviations 
and the potentially different time horizons over which employment and inflation are projected to return to levels judged 
consistent with its mandate.” 

From FOMC Statement of Longer Run Goals and Monetary Policy Strategy 

In these few words, the Federal Open Market Committee (FOMC) articulates both an overarching 
policy strategy aimed at achieving the long-run goals of maximum employment and stable prices, 
and also describes its short-run tactics in conducting policy to minimize deviations of inflation and 
employment from their respective goals.  Those few words, however, embed many layers of 
meaning.  Indeed, the strategy and tactics of monetary policy are the focus of a vast and complicated 
economic literature.  As noted above, in the baseline model, the central bank can adjust the position 
of the IS curve by changing the value of the policy rate.  In doing so, it can choose to conduct policy 
so that inflation and output are determined at any point along the Phillips curve.  But which point 
should the central bank choose?  And how would it do so under a “balanced approach”? 

A standard approach in determining the point along the Phillips curve that the central bank should 
choose involves specifying a “loss function” for the central bank.  Similar to the language in the 
FOMC’s statement of longer run goals and monetary policy strategy, often the loss function is stated 
in terms of squared deviations of inflation and the unemployment rate from their respective longer-
run goals (these deviations are denoted by 𝜋𝜋� and 𝑢𝑢� , respectively, in equation (3)).  Intuitively, the 
central incurs a “loss” that is an increasing function of the magnitude of the deviation of inflation 
and the unemployment rate from their respective target or longer-run levels.   

𝐿𝐿 = (1
2
)(𝑢𝑢�2 + 𝜋𝜋�2)          (3) 

A plot of this loss function is shown in figure 2.1.  The lowest loss is equal to zero at the point at 
which the unemployment rate and inflation gaps are both equal to zero.  At other points, the losses 
are higher and the loss function specified in (3) has the shape of a cone with a rounded tip.  The 
“level curves” for this loss function (also sometimes called indifference curves) are shown by the 
cross section circles in that diagram at particular levels along the z-axis.  As shown in figure 2.2, it is 
convenient to “project” these level curves into the plane below with the unemployment rate gap on 
the x-axis and the inflation gap on the y-axis.  Each level curve maps out all combinations of 
inflation and output deviations that result in the same loss to the central bank.  So, for example, 
inflation and unemployment deviation pairs of (1 ,1), (-1, -1), (1,-1), and (-1,-1) would all lie on the 
same indifference curve corresponding to a loss of 1 (by equation 3).  Policymakers should choose a 
point along the Phillips curve with an indifference curve that is closest to the origin—that is, the 
lowest possible loss.  As shown in figure 2.3, that would occur at points like those shown by the 
black dots where the indifference curve is just tangent to the Phillips curve.  To achieve that point, 
the central bank would adjust the level of the policy rate to push the IS curve so that it intersects the 
Phillips curve at that point of tangency.  The set of all possible tangency points (corresponding to 
potential shocks to the Phillips curve) defines the set of all possible optimal economic outcomes.  As 
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shown by the solid orange line in figure 2.4, the locus of all such optimal economic outcomes in the 
baseline model is a straight line passing through the origin.   

Each point along the optimal economic outcomes line corresponds to a particular setting of the 
central bank’s policy rate.  The optimal policy rate depends on all of the “exogenous” variables in 
the model including the central bank’s inflation target, the level of the neutral real interest rate, the 
deviation of inflation expectations from the central bank’s target rate, and the shocks to the IS curve 
and the Phillips curve.  In the baseline model, the central bank is assumed to observe the shocks to 
the IS curve and Phillips curve prior to making its choice about the policy rate.  The relationship 
between the policy rate and these exogenous variables is sometimes referred to as the policy 
“reaction function.”  The formula for the optimal policy reaction function in the baseline model is: 

𝑖𝑖 − 𝑖𝑖∗ = �1 + 𝜏𝜏
𝛼𝛼(1+𝜏𝜏2)� (𝜋𝜋𝑒𝑒 − 𝜋𝜋∗) + 𝜏𝜏

𝛼𝛼(1+𝜏𝜏2)
𝜀𝜀 − 1

𝛼𝛼
η        (4) 

As one might expect, the policy reaction function calls for the central bank to tighten policy in 
response to positive shocks to the Phillips curve, 𝜀𝜀, and to ease policy in response to positive shocks 
to the IS curve, η.  (Recall that the IS curve in equation (2) is based on the unemployment rate gap 
rather than the output gap, so a positive shock to the IS curve is one that depresses aggregate 
demand and boosts the unemployment rate).  The policy rate also responds positively to increases in 
inflation expectations and with a coefficient greater than 1.  The magnitude of the coefficient on 
expected inflation is an example of the “Taylor principle” which suggests that the policy rate must 
respond by more than one for one in reaction to increases in inflation.  As shown in equation (2), in 
the baseline model, the policy rate must increase by as much as an increase in expected inflation, 𝜋𝜋𝑒𝑒 , 
just to leave the unemployment rate unchanged.  The central bank must push the policy rate up by 
more than this though to also counter the upward pressure on inflation stemming from the increase 
in inflation expectations. 

It's also worth noting that the coefficients in the optimal policy reaction function in equation (4) are 
functions of the parameters of the IS curve and the Phillips curve.  In general, lower values for the 
slope of the IS curve, 𝛼𝛼, imply that the central bank must move the policy rate by more in response 
to various shocks.  That’s because the lower values of this coefficient imply that any given setting of 
the policy rate has a less pronounced effect on the economy.  So the central bank must generally 
move the policy rate by more in response to various shocks in order to achieve the desired outcome. 

It is often helpful to have an easy graphical way of thinking about the policy reaction function.  One 
way to do so is to note from the IS curve that the desired amount of policy stimulus or restraint, 
hereafter referred to as the policy stance (PS), is directly related to the optimal choice of the 
unemployment rate.  From the IS curve, the desired PS is given by: 

PS = 𝛼𝛼(𝑖𝑖 − 𝜋𝜋𝑒𝑒 − 𝑟𝑟∗) = 𝑢𝑢� − 𝜂𝜂         (5) 

Using this relationship, figure 2.5 plots the usual optimal economic outcomes line (in orange) along 
with a similar PS line (heavy purple dotted line) that shows the optimal desired level of economic 
stimulus or restraint associated with any given optimal outcome.  This line is simply a horizontal 
translation of the optimal economic outcomes line by the amount of the shock to the IS curve.  In 
this case, the shock to the IS curve is assumed to be positive, so the optimal policy stance line is a 
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translation to the left.  To read the policy stance associated with any point on the optimal economic 
outcomes line, one can find the point on the PS line that corresponds to the inflation rate 
determined by the intersection of the Phillips curve and the optimal economic outcomes line.  In the 
diagram, the optimal levels of the unemployment rate gap and inflation rate gap are determined at 
the black dot.  The corresponding policy stance associated with this outcome is shown by the heavy 
purple triangle.  In this case, even though an inflation shock has pushed the Phillips curve outward, 
the central bank eases policy a little because there has also been a simultaneous adverse shock to the 
IS curve.  The light purple dotted line shows the optimal policy stance line that would correspond to 
a case in which the IS curve experiences a very favorable shock that would otherwise push the 
unemployment rate much lower.  In this case, as shown by the light purple triangle, the central bank 
would need to tighten policy very aggressively to achieve the optimal economic outcomes denoted 
by the black dot. 

2.1 Key Characteristics of Optimal Policy in the Baseline Model 
For reference, some basic properties of optimal policy in the baseline model are listed below.   

Property 1:  Optimal Unemployment and Inflation Combinations fall in Quadrants 1 and 3.  Referring to the 
optimal economic outcomes line in figure 2.4, the optimal levels of inflation and unemployment 
occur only in quadrants 1 and 3.  That is, there are no shocks to the Phillips curve or IS curve that 
would lead the central bank to choose to be in quadrants 2 and 4.  In quadrants 2 and 4, there is no 
policy tradeoff.  If inflation is above target and the unemployment rate is below the natural rate as in 
quadrant 2, the central bank should clearly tighten policy according to this model.  And conversely, 
if inflation is below target and the unemployment rate is well above the natural rate, as in quadrant 4, 
the central bank should clearly ease policy.   

Property 2: Optimal Choices for the Unemployment Rate and Inflation are Unaffected by Shocks to the IS Curve. 

A second key result in this model is that aggregate demand shocks do not affect the optimal 
outcomes for inflation and unemployment.  Indeed, borrowing the language from the FOMC’s 
statement of longer-run goals, the central bank’s objectives are “complementary” in the case of a 
shock to the IS curve because the required policy response reduces the magnitude of both the 
deviation of the unemployment rate and the deviation of the inflation rate from their respective 
longer run goals.  The central bank is extraordinarily powerful in the baseline model and can fully 
offset shocks to the IS curve through the choice of the policy rate.  Moreover, there are no costs or 
limits in changing the policy rate as assumed, for example, in some other common models of 
optimal policy.   As a result, the central bank can change the policy rate by as much as necessary in 
the current period to achieve the optimal economic outcome.  The central bank is more limited in its 
ability to offset shocks to the Phillips curve because it can only do so, according to the model, 
indirectly through influencing the unemployment rate gap.  As a result, in the baseline model, the 
optimal economic outcomes line is largely determined by shocks to the Phillips curve and how the 
central bank views the tradeoff between inflation and unemployment.  Of course, even though the 
optimal levels of the unemployment rate and inflation are unaffected by shocks to the IS curve, the 
policy rate itself is very much influenced by these shocks.  For example, if the economy experiences 
a very adverse shock to the IS curve, the central bank would need to ease the stance of monetary 
policy by a large amount in order to achieve the “optimal” economic outcome. 

14



Property 3: Optimal Choices of Inflation and the Unemployment Rate are Positively Correlated. 

Another basic property of the model is that the optimal economic outcomes line—the collection of 
optimal combinations of inflation and unemployment—implies that inflation deviations and 
unemployment rate deviations are positively correlated even though the Phillips curve posits a 
negative relationship between the unemployment rate gap and inflation.  This highlights a key 
practical difficulty in identifying a Phillips curve.  Although the structural Phillips curve slopes 
downward (higher unemployment leads to lower inflation), optimal policy can alter the observed 
correlation of inflation and the unemployment rate gaps in the data, making it very difficult to 
identify the underlying Phillips curve. 

Property 4:  Optimal Choices for Inflation and Unemployment Inherit the Distributional Properties of Inflation 
Shocks.  If Inflation Shocks are Symmetrically Distributed, then Inflation and Unemployment will be Symmetrically 
Distributed around Their Respective Long Run Goals. 

The central banks’ loss function is symmetric in the sense that it attaches the same costs at the 
margin to deviations of inflation above and below target that are of equal magnitude.  This 
symmetry is evident in the shape of the indifference curves shown in figure 2.2.  In the baseline 
model, these curves are simply concentric circles.  As a result, under optimal policy, the solutions for 
the optimal unemployment rate gap and inflation gap all fall along the straight line of optimal 
economic outcomes shown in figure 2.4.  The mean values of inflation and the unemployment rate 
over time are thus are equal to their respective target levels assuming that the mean value of inflation 
shocks is equal to zero and the level of inflation expectations is equal to the central bank’s target 
rate.  Assuming that inflation shocks are symmetrically distributed around zero, both the optimal 
inflation rate and optimal unemployment rate would be symmetrically distributed around their 
respective targets. 

Property 5:  Optimal Choices for Inflation and Unemployment Rates are Uncorrelated Over Time. 

Yet another basic property of the optimal solutions is that there is no “serial correlation” in the 
optimal outcomes.  That is, in each period, the unemployment rate and inflation gaps are simple 
functions of the observed shock to the Phillips curve in that period.  The result stems partly from 
the very simple form of the economic model but also stems importantly from the assumption that 
the central bank can freely adjust the level of interest rates to achieve its objectives in the current 
period.  In the baseline model, there is also no serial correlation in the setting of the policy rate.  
That result depends entirely on the very simple structure of the economy assumed in the model.  In 
particular, absent any lags or other elements in the model that play out over time, the central bank 
can achieve its desired outcome in each period and every period is a “new” period, unaffected by 
developments in prior periods. 

Property 6:  Optimal Policy Results in the Price Level Rising on Average Over Time at the Central Bank’s Target 
Rate and a Variance in the Future Price Level That Increases with the Forecast Horizon. 

A final basic property of optimal policy is that the price level evolves over time as a so-called 
random walk with drift.  In each period, the central bank lets bygones be bygones with any past 
inflation deviations from target.  Thus, the price level increases over time at a trend rate given by the 
central bank’s target inflation rate—that’s the drift component.  In addition, past shocks to inflation 
tend to cumulate over time—that’s the random walk component.  As a result, the expected average 
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rate of inflation over any period of time is equal to the central bank’s target rate.  However, the 
conditional variance of the price level at any future date increases steadily as the forecast horizon 
increases.   
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Figure 2.1: Loss Function and Level Curves
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Figure 2.2: Level Curves
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Figure 2.3: Optimal Policy
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Figure 2.4: Optimal Economic Outcomes Line
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Figure 2.5: Optimal Economic Outcomes and Optimal Policy Stimulus 
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Take 3: Variations in the Baseline Economic Model 
Over recent years, many authors have discussed the “flattening” of the Phillips curve—that is, the 
apparent decline in the sensitivity of inflation to the level of the unemployment rate gap.  In 
addition, especially during the financial crisis and its aftermath, there were questions about whether 
the traditional transmission mechanism for monetary policy operating through interest rates had 
been damped.  Below we focus on the way that changes in the Phillips curve and IS curve along 
these lines affect optimal policy in the baseline model. 

3.1 The Curse of a Flat Phillips Curve 
As shown in figure 3.1, optimal policy with a flat Phillips curve generally features a steeper optimal 
economic outcomes line than in the case when the Phillips curve is steeper.  With a flatter Phillips 
curve, any given increase in the level of the unemployment rate gap generates a smaller decline in 
inflation.  As a result, the central bank must engineer a larger increase (or decrease) in the 
unemployment rate in order to combat positive (or negative) inflation shocks when the Phillips 
curve is flat than in the case with a steeper Phillips curve. 

Since the cost of combatting inflation is higher with a flat Phillips curve, optimal policy allows a 
larger portion of inflation shocks to show through to the level of inflation.  In response to a cost 
push inflation shock—one that pushes the Phillips curve up and to the right—the optimal stance of 
policy is easier than would otherwise be the case.  In response to a cost pull shock—a downward 
shift in the Phillips curve—policy is tighter than would otherwise be the case. 

A flatter Phillips curve is generally a curse for policymakers in the baseline model.  Because inflation 
shocks are more costly to combat with a flatter Phillips curve, the expected value of the central 
bank’s loss function in the baseline model increases unambiguously as the slope of the Phillips curve 
declines.   

3.2 Who’s Afraid of a Flat IS Curve? 
In contrast to changes in the slope of the Phillips curve, changes in 𝛼𝛼—the parameter describing 
responsiveness of the unemployment rate to the policy rate or the “slope” of the IS curve—have no 
implications for optimal choices of the inflation and unemployment rate gaps in the baseline model 
as long the slope remains positive.  This result stems from the fact that the central bank adjusts the 
level of the policy rate in order to achieve the optimal level of the unemployment rate as shown in 
figure 2.3.  As long as the slope is positive, and there are no constraints on the choice of the policy 
rate, the central bank can simply set the policy rate at the level necessary to achieve the desired 
position of the IS curve and the optimal combination of inflation and the unemployment rate.   

Of course, the value of the parameter 𝛼𝛼 does affect the setting of the policy rate necessary to 
achieve the optimal inflation and unemployment rates.  If 𝛼𝛼 is quite high, the economy is very 
sensitive to interest rates and the central bank would need to make only small changes in the interest 
rate gap in order to adjust the level of the unemployment rate.  In this world, the variability of the 
policy rate over time would be relatively low.  Conversely, if 𝛼𝛼 is quite low, the economy is 
insensitive to interest rates and the central bank would need to make relatively large changes in the 
interest rate gap in order to achieve the desired level of the unemployment rate.  By implication, a 
“flattening” in the IS curve in the baseline model results in an increase in the variability of the policy 
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rate over time even though the optimal choices for the unemployment rate and inflation rate are 
unaffected by the slope of the IS curve. 
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𝜋𝜋 − 𝜋𝜋∗
Figure 3.1: Flat Phillips Curve and Optimal Policy Choices
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Take 4: Variations on the Central Bank Loss Function  
The baseline model assumes a very simple specification for the policymaker’s loss function.  Here 
we consider the implications of some alternative specifications for the loss function.  These 
alternative specifications are one way to capture the idea that some policymakers are “hawks” while 
others are “doves.”  As discussed below, however, these labels can obscure some important issues in 
cases when inflation and the unemployment rate are above or below their respective targets. 

4.1 Symmetric Hawks and Doves 
Frequently, policymakers that seem to focus more on inflation deviations from target are described 
as inflation “hawks.”  Other policymakers that are especially concerned about the cost of high 
unemployment are described as “doves.”  One might view both of these types of policymakers as 
captured by the loss function in equation (6).  Hawks in this setting might be viewed as putting 
relatively more weight on inflation deviations from target, so they would have an objective function 
with a weighting parameter 𝛾𝛾 greater than 1.  Doves would put relatively more weight on the 
unemployment rate gap, so they would have a loss function in which 𝛾𝛾 is less than 1. 

𝐿𝐿 = (1
2
)(𝑢𝑢�2 + 𝛾𝛾𝜋𝜋�2)         (6) 

Figure 4.1 illustrates the shape of the indifference curves for this concept of balanced hawks and 
doves.  When the weighting parameter, 𝛾𝛾, is equal to 1 the objective function is that in the baseline 
model and the indifference curves, shown in figure 4.1, are circles.  An inflation hawk, 𝛾𝛾 greater than 
1, would have indifference curves that look like the red dotted oval while the indifference curves for 
a symmetric dove would look like the green dotted oval in that diagram. 

As an aside, it’s useful to compare the loss function specification here with the specification for a 
pure inflation targeting central bank.  A pure inflation targeting central bank would only care about 
the deviations of inflation from target.  The level curves for that loss function would be horizontal 
lines on either side of the horizontal axis as shown in figure 4.2.   All points along the x-axis—that 
is, with an inflation gap of zero—are points where the central bank’s loss is zero.  For the two 
Phillips curves shown, the optimal points would then be determined at the point where the Phillips 
curve intersects the horizontal axis, shown by the blue dots.  And the optimal policy response then 
would be the setting of the policy rate that pushes the IS curve to a point that passes through the 
blue dot.  Figure 4.3 shows how the optimal solutions for the loss function specified in (4) move 
closer and closer to the solution for the pure inflation targeting bank as the weight on inflation in 
equation (6) increases.   

The optimal economic outcomes line for hawks, shown in figure 4.4, is relatively flat, reflecting the 
fact that such policymakers are more willing to adjust the stance of policy and the level of the 
unemployment rate gap in order to keep inflation close to target.  Conversely, as shown in figure 4.5, 
the optimal economic outcomes line for doves is relatively steep in this diagram.  That steep slope 
reflects the fact that doves are more willing to tolerate deviations of inflation from target, if 
necessary, in order to keep the unemployment rate close to the long-run natural rate. 

The solutions for the optimal levels of inflation and unemployment rate deviations are as shown in 
the appendix.  The form of these expressions is very similar to those for the baseline model except 
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that they now incorporate the weighting parameter, 𝛾𝛾.  Not surprisingly, in response to a cost push 
inflation shock, high values of 𝛾𝛾 lead hawkish policymakers to choose a point along the Phillips 
curve that involves a relatively low inflation rate and relatively high unemployment rate.  

It is important to note that this concept of “symmetric” hawks and doves does not imply that hawks 
always run a “tight” monetary policy while doves always run an “easy” policy.  In response to a cost 
push shock, hawks will indeed tighten policy by more than doves in order to keep inflation closer to 
target.  However, in response to a “cost pull” shock that drives inflation below target, the “hawks” 
would be more willing to run an easy policy and let the unemployment rate move below the natural 
rate in order to push inflation back up toward target.  The “doves” in this case would run a tighter 
policy because they would not want to see the unemployment rate fall well below the long-run 
natural level. 

4.12 Properties of Optimal Policy for Symmetric Hawks and Doves 
Optimal policy with these types of symmetric objective functions inherits many of the basic 
properties of optimal policy described above in the baseline model.  The expected value of the 
unemployment rate and inflation are both equal to their long-run targets.  And the distributions of 
both inflation and the unemployment rate around their targets are symmetric assuming that inflation 
shocks are symmetrically distributed.  With a value of 𝛾𝛾 greater than 1, the variability of inflation 
falls relative to the variation of the unemployment rate.  As shown in appendix equation (4.5), the 
feedback rule for the policy rate for hawks puts a higher weight on inflation shocks than in the 
baseline model.  The feedback rule for the policy rate for doves puts a lower weight on inflation 
shocks than in the baseline model.   

4.2 Asymmetric Hawks and Doves 
The objective functions described above are all “symmetric” in the sense that the loss associated 
with deviations of equal magnitude for inflation or for unemployment receive the same weight. As 
shown in figure 4.1, the indifference curves for these objective functions are symmetric about the 
origin.  In contrast, a number of objective functions are “asymmetric” in the treatment of inflation 
and unemployment deviations.  Such objective functions have indifference curves that look “lop 
sided.”  Optimal policy with these types of objective functions can have some interesting properties. 

One type of asymmetric objective function attaches a higher weight to deviations of inflation above 
or below the target or to unemployment rate deviations above or below the target.  For example, a 
policymaker that attached more weight to deviations of inflation above target than for those below 
target could have a loss function with indifference curves like those shown in figure 4.6.  Optimal 
policy in this case depends on whether the inflation shock is positive or negative.  When the 
inflation shock is positive, optimal policy would move to points like those shown by the red dots.  
With a negative inflation shock of the same magnitude, the optimal policy outcome would be at a 
point like those shown by the yellow dots.  The optimal economic outcomes line would look like 
that shown by the orange lines in figure 4.6.  Thus, asymmetric preferences lead to an optimal 
economic outcomes line with a “kink” at the point where inflation is equal to the central bank’s 
target rate.  The flatter trajectory of the optimal economic outcomes line with positive inflation 
shocks reflects the fact that the policymaker attaches high costs to above-target inflation and so 
more aggressively adjusts the stance of policy in order to keep inflation closer to target. 
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Similarly, one can specify an asymmetric loss function associated with unemployment rate 
deviations.  The deviation of the unemployment rate below the natural rate, 𝑢𝑢𝑢𝑢∗, then might have 
lower weight than an equivalent magnitude deviation with the unemployment rate above 𝑢𝑢𝑢𝑢∗.  With 
this type of objective function, the optimal economic outcomes line could look as shown in figure 
4.7.  Just as in the case of asymmetric inflation hawks, the optimal economic outcomes line for 
asymmetric unemployment rate doves exhibits a kink at the point where the unemployment rate 
equals the long-run natural rate.  When inflation shocks are positive, the optimal economic 
outcomes line is relatively steep in this case because the policymaker sees high levels of 
unemployment as especially costly. 

4.21 Properties of Optimal Policy with Asymmetric Objective Functions 
Even with an asymmetric objective function, many of the key properties noted above in the baseline 
model remain intact.  However, there are some notable differences on a few points.  An implication 
of a “kinked” optimal economic outcomes line is that property 4 from the baseline model—the 
symmetry result—is violated.  Even when the shocks to the IS curve and Phillips curve have zero 
means, the expected values of inflation and the unemployment rate over time are not equal to their 
long-run goals.  For an asymmetric inflation hawk, the expected value of the inflation rate will be 
below zero because the policymaker aggressively adjusts policy to damp the effect of positive 
inflation shocks.   As a result, there is an internal inconsistency in the model.  Inflation expectations 
that were initially anchored at the central bank’s target in the model would be inconsistent with 
observed outcomes on average over long periods.  Over time, the public would presumably learn 
that inflation is systematically deviating from the central bank’s announced “target.”  In this case, 
inflation expectations might adjust lower over time. 

Moreover, the distributions of inflation and unemployment are no longer symmetric even if the 
underlying shocks have symmetric distributions.  In particular, the distributions for inflation and 
unemployment have a discontinuity at zero.  Moreover, the distribution on either side of that point 
have different shapes corresponding to the differential policy response on either side of zero.   

As in the baseline model, optimal policy implies a “rule” for setting the policy rate that responds to 
shocks to the IS curve and the Phillips curve.  For both asymmetric hawks and doves, the response 
to shocks to the IS curve is as in the baseline model.  However, the response to inflation shocks 
depends on whether those shocks are positive or negative.  For an asymmetric inflation hawk, a 
positive inflation shock leads to an aggressive policy tightening, a sizable increase in the 
unemployment rate and a modest increase in inflation.  A negative shock to the Phillips curve, by 
contrast, results in a moderate policy response with the unemployment rate and inflation both 
moving moderately lower.  For an asymmetric unemployment dove, a positive shock to the Phillips 
curve leads to a modest policy tightening and an associated modest increase in the unemployment 
rate along with a relatively large increase in inflation.  With a negative shock to the Phillips curve, an 
asymmetric unemployment rate dove would be willing to aggressively ease policy, pushing the 
unemployment rate well below the natural rate in an effort to keep inflation closer to target. 
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Figure 4.1: Loss Function Variations: Symmetric Hawks and Doves

𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢∗

28



𝜋𝜋 − 𝜋𝜋∗

Figure 4.2: Level Curves: Pure Inflation Target
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Figure 4.3:  Symmetric Hawks and Doves
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Figure 4.4: Optimal Economic Outcomes Line: Symmetric Hawks
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Figure 4.5: Optimal Economic Outcomes Line: Symmetric Doves
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Figure 4.6: Optimal Economic Outcomes Line: Asymmetric Hawks
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Figure 4.7: Optimal Economic Outcomes Line: Asymmetric Doves
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Take 5: Uncertainty in the Baseline Model 
“Uncertainty is not just an important feature of the monetary policy landscape; it is the defining characteristic of that 
landscape. As a consequence, the conduct of monetary policy in the United States at its core involves crucial elements of 
risk management, a process that requires an understanding of the many sources of risk and uncertainty that 
policymakers face and the quantifying of those risks when possible.” 

Chairman Greenspan, 2004 
 
Under the baseline model and all of the variations considered above, the policymaker enjoys perfect 
information about the state of the economy and, in particular, is assumed to observe the shocks to 
the IS curve and the Phillips curve prior to making a choice regarding the setting of the policy rate.  
In keeping with the spirit of the quote from Chairman Greenspan above, a useful extension of the 
baseline model is to consider how optimal policy should respond in the absence of complete 
information about the shocks affecting the economy. 

5.1 Additive Shocks and Certainty Equivalence 
A simple variation on the baseline model is to assume that both the Phillips curve and IS curve are 
subject to a second round of shocks, 𝜀𝜀′ and 𝜂𝜂′, after the policymaker commits to the choice of the 
policy rate in each period. 

Given the uncertainty in this case, it is natural assume that the central bank seeks to minimize the 
expected value of the loss function.  As shown in equation (7), the expected value of the loss 
function can be calculated for any distribution for the second round shocks, 𝜂𝜂′and 𝜀𝜀′.  The 
uncertainty about the shocks in the model increases the value of the central bank’s loss function.  So 
the central bank is clearly worse off when the second round shocks affecting the economy are 
unknown and uncertain.  However, the extra terms in the loss function are simply constants and do 
not affect the shape of the indifference curves.  This implies the remarkable result that optimal 
policy in the baseline model with uncertainty about shocks to the IS curve and Phillips curve is 
identical to optimal policy in the baseline model with complete certainty.   

𝐿𝐿 = �1
2
�E{(𝑢𝑢�2 + 𝜋𝜋�2} = �1

2
� ((𝑢𝑢�2 + 𝜋𝜋�2) + (1 + 𝜏𝜏2)𝜎𝜎𝜂𝜂′

2 + 𝜎𝜎𝜀𝜀′
2  ) )    (7) 

This so-called “certainty equivalence” result is a key property present in models in which the central 
bank minimizes a quadratic objective function in connection with an underlying economic model 
with a linear structure.  A corollary of the basic certainty equivalence result in the baseline model is 
that skews in the underlying distribution of the second round shocks to the Phillips curve and IS 
curve also are of little consequence for the conduct of policy.  Again, the only factors that affect the 
optimal choice for the policy rate and the optimal choices for the ex-ante values of inflation and 
unemployment are the expected values of the second round shocks.  All higher moments of the 
distributions of the second round shocks including variances, skews, kurtosis (fat tails) and so on do 
not affect optimal policy. 

The certainty equivalence result seems to call into question the quote from Chairman Greenspan 
above citing the challenges of conducting monetary policy under uncertainty.  According to the 
certainty equivalence principle, policymakers just need to compute the expected value of various 
shocks, incorporate those expected values as appropriate in any behavioral relationships in the 
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economy, and then conduct policy exactly as if the central bank had perfect information about the 
shocks affecting the economy. 

This result is a consequence of the quadratic form of the objective function and the linear 
specification of the key behavioral relationships of the economy.  As we’ll see in later sections, 
Chairman Greenspan had excellent reasons to underscore the difficulties of conducting monetary 
policy under uncertainty.  Indeed, relaxing the key assumptions of the baseline model can produce 
very different results. 

5.2 Parameter Uncertainty and the Attenuation Principle 
The discussion of certainty equivalence focused on the shock terms to the Phillips curve and the IS 
curve or on other terms that cannot be influenced by the setting of the policy rate.  Another 
common type of uncertainty focuses on the parameters of the underlying economic model, 
including those that may affect the economy in a “multiplicative” way.  For example, policymakers 
could be uncertain about the “slope” parameters 𝛼𝛼 and 𝜏𝜏 for the IS curve and the Phillips curve, 
respectively.   

Uncertainty about these parameters does affect the central bank’s optimal policy choice because the 
setting of the policy rate affects the level of uncertainty about inflation and unemployment.  In these 
cases, a key result is the so-called “attenuation” principle noted originally in the seminal paper by 
Brainard (1967).  In a nutshell, the attenuation principle suggests that in the presence of this type of 
parameter uncertainty, policymakers should adjust their policy choice relative to the case with 
perfect certainty in a way that reduces the uncertainty about the goal variables.  In many cases, this 
can imply that the central bank should respond less aggressively to economic shocks.  In other cases, 
the central bank should respond more aggressively to economic shocks.  Examples of these 
situations are described in more detail below. 

5.21  Uncertainty Regarding the Slope of IS Curve 
Often, policymakers may be uncertain about just how sensitive the economy is to the setting of the 
policy rate.  For example, suppose the value of the IS curve parameter 𝛼𝛼 is not known with 
certainty.  As noted in the appendix, with some simple algebra, the form of the objective function 
when there is uncertainty about the slope of the IS curve takes the form shown in equation (8).  As 
in the case with uncertainty about “additive” factors discussed above, there is a term that captures 
the uncertainty regarding the post-shock values of the unemployment rate and inflation.  But now 
that term is not simply a constant.  It depends on the squared value of the interest rate gap. 

𝐿𝐿 = �1
2
�E{(𝑢𝑢�2 + 𝜋𝜋�2) = �1

2
� ((𝑢𝑢�2 + 𝜋𝜋�2) + 𝛼𝛼�2(1 + 𝜏𝜏2)𝜎𝜎𝛼𝛼2(𝑖𝑖 − 𝑖𝑖∗)2)     (8) 

Intuitively, this type of uncertainty provides an incentive for the policymaker to keep the policy rate 
gap, 𝑖𝑖 − 𝑖𝑖∗, close to zero because that lowers the variance of the unemployment rate gap.  And 
because the variation of the inflation gap stems partly from the variation of the unemployment gap, 
keeping 𝑖𝑖 close to 𝑖𝑖∗also lowers the uncertainty associated with the inflation gap.  The attenuation 
principle in this case suggests that the central bank should respond less aggressively to inflation 
shocks than in the case with perfect certainty.  That result stems from the fact that uncertainty about 
the unemployment rate in the model becomes larger as the level of the interest gap increases.  Under 
complete information, the policymaker might want to raise the policy rate significantly above 𝑖𝑖∗ in 
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order to address an inflation shock.  However,  in the presence of uncertainty about the slope of the 
IS curve, the potential for a policy-induced increase in uncertainty about the inflation rate and 
unemployment rate stemming from a widening in the policy rate gap causes the central bank to take 
a more cautious approach.   

Similarly, the policymaker should respond less aggressively to observed shocks to the rate of 
unemployment than in the case with perfect certainty.  Again, this stems from the fact that there is 
now a cost to adjusting the level of the policy rate relative to 𝑖𝑖∗in the form of increased uncertainty 
about the ex-post levels of the unemployment rate and inflation rate gaps. 

The appendix shows that this form of the objective function can also be viewed as increasing the 
weight on the unemployment rate gap and shifting the indifference curve to the right or left 
depending on the observed value of the shock to the IS curve.  Figure 5.1 displays the optimal 
economic outcomes line in the case with an observed adverse shock to the IS curve.  The level 
curves in this case shift to the right and place relatively high weight on unemployment rate gaps.  
The optimal economic outcomes line in this case passes through quadrant 4—something that never 
happens in the baseline model.  The intuition is that in the case of an adverse first-round shock to 
the IS curve, the policymaker will not choose to completely offset that shock as in the baseline 
model because doing so would increase the magnitude of the interest gap and thus boost the level of 
uncertainty about the post-shock values of the unemployment rate and inflation. 

5.22  Uncertainty Regarding the Slope of Phillips Curve 
Another interesting case occurs when there is uncertainty about the slope of the Phillips curve. In 
this case, the expected value of the objective function is as shown in equation 9.  The term that 
captures the effect of uncertainty about the slope of the Phillips curve depends on the value of the 
unemployment rate gap.   

𝐿𝐿 = �1
2
�E{(𝑢𝑢�2 + 𝜋𝜋�2)}= �1

2
� ((𝑢𝑢�2 + 𝜋𝜋�2) +  𝜏𝜏̅2𝑢𝑢�2𝜎𝜎𝜏𝜏2  )     (9) 

So the attenuation principle suggests that the central bank should shade its policy choices relative to 
the case with perfect certainty in a way that results in a lower level of the unemployment rate gap. 

As in the case with certainty about the slope of the Phillips curve, the central bank should 
completely offset any shocks to the IS curve.  Doing so reduces the magnitude of the expected value 
the unemployment and inflation rates from their respective targets and also reduces the ex-post 
uncertainty about the inflation rate stemming from the uncertainty about the slope of the Phillips 
curve.   

The attenuation principle in this case implies that the central bank should respond less aggressively 
to observed shocks to the Phillips curve than in the case with perfect certainty.  In response to an 
inflation shock, the policymaker might otherwise wish to push the level of the unemployment rate 
relatively high in order to damp inflation pressures.  But doing so when there is a lot of uncertainty 
about the slope of the Phillips curve would result in an increase in the ex-post variance of inflation 
and that would be costly according to equation (9).  As result, the policymaker adjusts the policy rate 
to keep the unemployment rate gap relatively small and allows more of the observed shock to the 
Phillips curve to show through to the rate of inflation. 
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As a result, the attenuation principle in this case implies the central bank should be quite aggressive 
in offsetting adverse (or favorable) shocks to the unemployment rate.  Indeed, the form of the 
objective function in equation (7) is just a variation on the “balanced dove” specification discussed 
above in Take 4. 

A graphical representation is shown in figure 5.2.  In the diagram, the uncertainty about the slope of 
the Phillips curve results in higher weight being placed on unemployment rate gaps.  The optimal 
economic outcomes line is thus steeper than in the baseline model but still passes through the origin. 

5.23  The Faults in Our Stars: Uncertainty Regarding the Level of 𝑟𝑟∗ and 𝑢𝑢𝑢𝑢∗ 
“Experience has revealed two realities about the relation between inflation and unemployment, and these bear directly 
on the two questions I started with. First, the stars are sometimes far from where we perceive them to be. In particular, 
we now know that the level of the unemployment rate relative to our real-time estimate of u* will sometimes be a 
misleading indicator of the state of the economy or of future inflation.” 

Chairman Powell, 2018 

Central bankers spend a great deal of time and effort in attempting to reach judgments regarding the 
levels of the key “star” parameters in the basic model—the neutral real interest rate, 𝑟𝑟∗, and the 
natural rate of unemployment, 𝑢𝑢𝑢𝑢∗.  These two parameters are central to the conduct of monetary 
policy in the baseline model but in the real world they are unobserved variables and must be 
estimated.  Moreover, the range of uncertainty around such estimates is typically very large.   

Similar to the analysis above, one could view the uncertainty surrounding these parameters as a 
“shock” that is only observed after the central bank has committed to its choice of the policy rate.  
In that case, uncertainty about 𝑟𝑟∗ is just another example of “additive” uncertainty discussed above.  
In the baseline model, policymakers faced with this uncertainty would form their best estimate of 
the expected value of 𝑟𝑟∗ and then conduct policy as if this value was known with certainty.  Greater 
uncertainty about 𝑟𝑟∗ would increase the expected value of the central bank’s loss function but would 
have no effect on optimal outcomes for the unemployment rate and inflation gaps or on the optimal 
policy rate. 

The case with uncertainty about the natural rate of unemployment, 𝑢𝑢𝑢𝑢∗, is even simpler.  In the 
baseline model, a shock to 𝑢𝑢𝑢𝑢∗ passes through one for one to a corresponding change in the actual 
unemployment rate.  As a result, the unemployment rate gap is completely unaffected by this type of 
shock; the expected value of the central bank’s loss function is unaffected as are all other aspects of 
the optimal policy outcomes. 

Another type of uncertainty that policymakers can face in reaching judgments about the star 
variables is the inability to completely identify the values of these parameters in the current period.   
For example, in the baseline model, the policymaker observes the value of the shock to the IS curve 
and the Phillips curve in the current period.  However, in practice, it may be quite difficult to exactly 
determine the extent to which observed levels of the unemployment rate and inflation rate reflect 
the shocks to the IS curve, the Phillips curve, or shocks to the level of the natural rate 𝑢𝑢𝑢𝑢∗, or all of 
them.  As discussed in the appendix, under some assumptions, it’s possible to make estimates of 
what those shocks might be based on the observed values of the unemployment rate and inflation 
rate and some sense of the uncertainty about the natural rate of unemployment and the IS and 
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Phillips curve shocks.  In that sort of “signal extraction” exercise, the relative variances of the IS and 
Phillips curve shocks and the shocks to the natural rate of unemployment determine the estimated 
values of these shocks in the current period.  Intuitively, if the variance of IS curve shocks is very 
high, chances are that an observed high level of the unemployment rate is primarily attributable to a 
large contemporaneous shock to the IS curve.  Conversely, if uncertainty about the natural rate of 
unemployment is relatively high, the policymaker might conclude that a relatively large factor 
affecting the unemployment rate in the current period could be a higher than usual level of the 
natural rate. 

The signal extraction process described above does depend on the relative variances of the IS curve 
and Phillips curve shocks and the shocks to the natural rate of unemployment, but it is purely a 
statistical procedure.  In the baseline model, policymakers faced with this type of identification risk 
would, as always, form their best estimate of the expected value of the IS curve shock, the Phillips 
curve shock and the natural rate of unemployment and then conduct policy as if these values were 
known with certainty.  The policy reaction function in this case is: 

𝑖𝑖 − 𝑖𝑖∗ =
�𝜏𝜏𝛼𝛼�(𝛿𝛿+ E{𝜀𝜀})

1+𝜏𝜏2
− E{η}

α
=

�𝜏𝜏𝛼𝛼�(𝛿𝛿+ E{𝜀𝜀})

1+𝜏𝜏2
− 𝐸𝐸{𝜂𝜂}

α
       (10) 

This expression is identical to the policy reaction function for the baseline model shown in equation 
(4) except that the actual values of the shocks to the Phillips curve and IS curves in equation (4) are 
replaced with their expected values conditional on the observed values of inflation and unemployment 
based on the statistical signal extraction procedure.  

The upshot of this analysis is that, in the baseline model, uncertainty about the level of the “star” 
parameters, 𝑟𝑟∗and 𝑢𝑢𝑢𝑢∗, does not have major implications for optimal monetary policy.  However, as 
discussed in more detail below, some variations on the assumptions in the standard model can 
provide a strong rationale for focusing on the uncertainty associated with 𝑟𝑟∗ and 𝑢𝑢𝑢𝑢∗.  As noted 
above in the quote from Chairman Powell, in the presence of identification risk, the central bank 
may be quite concerned that its estimates of these parameters may be inaccurate, especially when the 
cost of a policy mistake is quite high.  For example, if a central bank mistakenly estimates that the 
natural rate of unemployment is quite high, it might provide less policy accommodation than desired 
in response to an adverse shock to the IS curve.  And there may be situations in which the cost of 
that type of policy mistake is especially high.  Conversely, there may be cases in which a central bank 
mistakenly assumes that the natural rate of unemployment is quite low and therefore provides a 
great deal of policy accommodation to push the unemployment rate down to this low estimate of 
the natural rate.   Particularly if inflation expectations become unanchored, maintaining a very 
accommodative policy based on this misperception of the natural rate could also be very costly. 
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𝜋𝜋 − 𝜋𝜋∗

Figure 5.1: Optimal Economic Outcomes Line: Uncertainty about Slope of IS Curve
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𝜋𝜋 − 𝜋𝜋∗

Figure 5.2 Optimal Economic Outcomes Line: 
Uncertainty about Slope of Phillips Curve
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Take 6: Uncertainty and Asymmetric Objective Functions 
“Uncertainty--about the state of the economy, the economy's structure, and the inferences that the public will draw from 
policy actions or economic developments--is a pervasive feature of monetary policy making.  [….] Notably, we now 
appreciate that policy decisions under uncertainty must take into account a range of possible scenarios about the state or 
structure of the economy, and those policy decisions may look quite different from those that would be optimal under 
certainty.  For example, policy actions may be attenuated or augmented relative to the "no-uncertainty benchmark," 
depending on one's judgments about the possible outcomes and the costs associated with those outcomes. “ 

Chairman Benanke, 2007 

As Chairman Bernanke noted above, optimal policy responses must take account of outcomes that 
may be especially costly.  The piece-wise “asymmetric” objective functions described above are one 
way to capture the idea of outcomes that may be viewed as especially costly.  In this case, even in the 
simple baseline economic model, policymakers will assign higher weights to some ex-post outcomes 
than to others.  As a result, they will have an incentive to adjust the stance of policy ex-ante to 
reduce the risk of an especially costly ex-post outcome. 

6.1 Asymmetric Hawks and Uncertainty 
Consider the case of the objective function for the “asymmetric hawk” described above in which the 
policymaker attaches greater weight to inflation realizations above target than to those below target.  
In this case, the expected value of the objective function is as shown in appendix equation 6.1.  The 
cost associated with uncertainty about inflation is split into two parts—one that captures the 
expected cost of positive shocks that may push inflation above target and a second that captures the 
expected cost of negative shocks that push inflation below target.  As shown in figure 6.1, the 
optimal economic outcomes line for this objective function with uncertainty about shocks to the IS 
curve and Phillips curves (shown by the smooth yellow line) is a probability weighted average of the 
kinked optimal economic outcomes lines from the case with perfect certainty (as described above in 
section 4.2).  (See the appendix for details). 

The optimal choice of the ex-ante inflation rate for a policymaker with these preferences is even 
lower than in the case with perfect certainty because the policymaker wants to guard against an 
outcome in which the second round shock to inflation turns out to be large and negative.  As 
described above, in the case with no uncertainty, a policymaker with asymmetric hawk preferences 
will be quite aggressive in adjusting the stance of policy to offset an observed positive shock to 
inflation.  It turns out that an asymmetric hawk will be even more aggressive in taking steps to 
combat inflation in the case with uncertainty about inflation shocks.   

If there are second round shocks to the IS curve, as discussed in Take 5, uncertainty about those 
second round shocks will also matter to an asymmetric inflation hawk.  An asymmetric inflation 
hawk would be especially concerned about an unexpected shock to the IS curve that could push the 
unemployment rate much lower than expected.  In that case, the realized value of inflation would 
turn out to be higher than expected and that outcome would be especially costly for an asymmetric 
inflation hawk.  As a result, an increase in uncertainty about shocks to the IS curve will also make 
the asymmetric inflation hawk run a tighter ex-ante policy in order to guard against especially 
adverse inflation outcomes. 
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Similar analysis shows that, unlike the baseline model, an asymmetric hawk will tend to run a tighter 
stance of policy in the presence of uncertainty about 𝑟𝑟∗.  In particular, an asymmetric hawk will want 
to shade the stance of policy toward higher levels of the policy rate to guard against outcomes in 
which 𝑟𝑟∗ turns out to be much higher than expected.  In that case, the policymaker would have 
provided more stimulus than desired and the policy consequences of that mistake are more costly 
than the alternative case in which 𝑟𝑟∗ is lower than expected and less policy stimulus than intended 
was provided.   

6.2 Asymmetric Doves and Uncertainty 
A similar type of analysis applies in the case of an asymmetric dove facing uncertainty about a 
second round shock to the unemployment rate.  The optimal economic outcomes line for a 
policymaker with these preferences is shown by the smooth yellow line in figure 6.2.  The optimal 
economic outcomes line is again a probability weighted average of the “kinked” dotted optimal 
economic outcomes line that arises with asymmetric preferences of this form in the case with 
perfect certainty. 

Policymakers with these preferences are especially concerned about outcomes with the 
unemployment rate above the natural rate of unemployment.  In the case with perfect certainty, such 
policymakers allow a large portion of a positive shock to inflation to show through so as to limit the 
effect of such a shock on the level of the unemployment rate.  Conversely, in the presence of a 
negative shock to inflation, the policymaker is willing to allow the unemployment rate to fall to 
levels substantially below the natural rate of unemployment. 

In the presence of uncertainty about an ex-post shock to the unemployment rate, an asymmetric 
dove would shade the ex-ante choice of policy to provide more stimulus.  That policy helps to guard 
against outcomes in which the ex-post shock pushes the unemployment rate well above the natural 
rate of unemployment.   

An asymmetric dove will also want to respond to uncertainty about the levels of 𝑟𝑟∗.  In particular, 
they would be especially concerned about outcomes in which the level of 𝑟𝑟∗ is lower than expected.  
In this case, the stance of policy chosen ex-ante could be too tight and the potential for an ex-post 
level of the unemployment rate above the natural rate of unemployment is higher.  As a result, an 
asymmetric dove facing uncertainty about 𝑟𝑟∗ will want to adopt a policy stance that is even more 
accommodative than the one they would choose in the case of perfect certainty. 
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𝜋𝜋 − 𝜋𝜋∗

Figure 6.1: Optimal Economic Outcomes Line: Asymmetric Hawks and Uncertainty
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𝜋𝜋 − 𝜋𝜋∗

Figure 6.2: Optimal Economic Outcomes Line: 
Asymmetric Doves and Uncertainty
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Take 7:  Appealing to a Higher Power—Tail Risk Avoidance 
“At times, policy practitioners operating under a risk-management paradigm may be led to undertake actions intended 
to provide some insurance against the emergence of especially adverse outcomes. For example, following the Russian debt 
default in the fall of 1998, the Federal Open Market Committee (FOMC) eased policy despite our perception that the 
economy was expanding at a satisfactory pace and that, even without a policy initiative, was likely to continue to do so.  
We eased policy because we were concerned about the low-probability risk that the default might severely disrupt 
domestic and international financial markets, with outsized adverse feedback to the performance of the U.S. economy.” 

Chairman Greenspan, 2004 

The quote from Chairman Greenspan describing the policy response to the global distress in the fall 
of 1998 seems far removed from the world of certainty equivalence. As we’ve seen, certainty 
equivalence breaks down in the case of objective functions that are asymmetric.  However, 
departures from certainty equivalence can arise even in the case of symmetric objective functions. 

A case of some interest is one in which the policymaker is especially concerned about “tail risks” 
that would lead to large deviations of the unemployment rate or the inflation rate from their 
respective targets.  For example, suppose the objective function is based on the unemployment rate 
and inflation deviations raised to the fourth power rather than just the squared values as in the 
baseline model.  In this case, policymakers very much wish to avoid large deviations in either the 
unemployment rate or inflation from their respective targets. 

In the case of certainty, the indifference curves for this objective function are symmetric as in figure 
7.1 and look a bit like a “rounded off” square.  Moreover, the optimal economic outcomes line is 
again a straight line through the origin just as in the simple baseline model. 

However, in the presence of uncertainty about the shocks to unemployment and inflation, optimal 
policy for preferences of this form must take account of higher moments of the distribution of 
possible outcomes and the possible interactions between the ex-ante level of the unemployment rate 
and inflation and the ex-post levels of these variables.  In contrast to the case with a quadratic 
objective function, the variance and skew of potential shocks can affect the shape of the indifference 
curves and thus the shape of the optimal economic outcomes line. 

It’s straightforward to show that the optimal economic outcomes line with the quartic objective 
function coupled with uncertainty about shocks to inflation and unemployment assumes the form 
shown in appendix equation 7.7.  In this case, the variance and skew terms for the shocks enter 
directly into the expression for the optimal economic outcomes line.  The intuition is that 
policymakers are especially concerned about large deviations with this objective function.  As a 
result, they adjust the ex-ante values of the unemployment rate and inflation to guard against 
especially bad outcomes.  If, for example, the variance of shocks to inflation is very large, 
policymakers will try to keep the ex-ante value of inflation as close to zero as possible.  The same is 
true in the case of uncertainty about output shocks.  Similarly, if inflation shocks are skewed to the 
upside, then policymakers will guard against especially large ex-post values of inflation by tightening 
policy and keeping the ex-ante value of inflation a little below zero. 

These effects are shown graphically in figure 7.2.   The top panels in figure 7.2 display the shape of 
the optimal economic outcomes line when the variance of shocks to the IS curve is substantially 
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larger than the variance of shocks to the Phillips curve.  In this case, the optimal economic 
outcomes line has a sort of “s” shape with a relatively steep section as the unemployment rate gap 
approaches zero.  As noted above, with a high variance of shocks to the IS curve, the policymaker is 
very intent on keeping the ex-ante level of the unemployment rate gap close to zero.  So it takes a 
sizable inflation gap to induce the policymaker to move away from that position.  That policy 
implies that the policymaker will respond very little to observed modest inflation shocks, preferring 
instead to allow those shocks to show through almost entirely to higher inflation. 

The green dashed lines in these panels show three distinct Phillips curves.  And, as always, the 
optimal point for policy would be determined at the intersection of the optimal economic outcomes 
line and the Phillips curve.  Note that once the Phillips curve is quite far away from zero, the 
“nonlinear” effects stemming from uncertainty about shocks become far less pronounced.  That 
occurs because once the Phillips curve is sufficiently far away from zero, the costs that matter most 
are the “certain” costs associated with the ex-ante deviations of inflation and unemployment from 
their respective goals. 

When the shocks to the unemployment rate are skewed to the upside, the optimal economic 
outcomes line shifts to the left.  That occurs because the policymaker is willing to incur a small cost 
in expectation in operating with a negative ex-ante unemployment rate gap in order to help cushion 
the blow in the event of an especially large, positive ex-post shock to the unemployment rate.  With 
the optimal economic outcomes line assuming that position, the optimal point for the economy for 
some Phillips curves would be in quadrant 2 as shown by the yellow dot.  As noted above, in the 
baseline model with a quadratic objective function, the policymaker would never choose a point in 
quadrant 2.  But with quartic preferences that put a lot of weight on tails risks and with skewed 
shocks to the economy, that result no longer holds.  Conversely, as shown in the top right panel, 
when the shocks to the IS curve are skewed to the downside (that is, large favorable shocks to the 
economy are possible), then then optimal economic outcomes line shifts to the right.  The optimal 
economic outcomes line with the middle Phillips curve now leaves the economy in quadrant 4.  
Again, this is a position that the policymaker would never choose in the baseline model.  In this 
case, the policymaker is inclined to tighten policy and keep the unemployment rate a little on the 
high side ex-ante to provide a cushion in case the ex-post shock to the IS curve is very favorable. 

The bottom row of the figure illustrates the case in which the variance of inflation shocks is 
substantially larger than the variance of unemployment shocks.  In this case, the optimal economic 
outcomes line again has an “s” shape, but now one with a flat portion around the horizontal axis.  
That occurs because the possibility of a large and costly ex-post inflation shock provides strong 
incentives for the policymaker to keep the ex-ante inflation gap very close to zero.  The policymaker 
in this case is willing to tolerate a relatively large unemployment rate gap in order to keep the 
inflation gap close to zero.  That strategy, in turn, implies that the policymaker will tighten very 
aggressively in response to observed positive inflation shocks and will ease very aggressively in 
response to observed negative inflation shocks. 

The remaining bottom panels show the cases when inflation shocks are skewed to the upside and 
downside.  In these cases, the optimal economic outcomes line shifts down and up, respectively.  As 
before, that result arises because in the presence of skewed shocks, the policymaker is willing to 
incur some costs in setting the ex-ante level of the inflation gap above or below zero in order to 
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cushion the blow in the event of an especially large shock in the long tail of the distribution for 
inflation shocks.  As shown by the yellow dots, the skews in the distribution can lead the 
policymaker then to choose points in quadrants 2 and 4 as a form of “insurance” against these large 
ex-post shocks. 

As discussed above, the optimal policy stance line is a horizontal translation of the optimal 
economic outcomes line with the translation amount reflecting the magnitude of the observed shock 
to the IS curve in the period.  The nonlinear shape of the optimal economic outcomes line in these 
panels thus implies a nonlinear response in the stance of policy to a shock to the Phillips curve.  In 
particular, in the top row of panels, the policymaker would adjust the stance of policy quite 
aggressively in response to first round shocks to the Phillips curve in the “flat” regions of the curves.  
Again, that would reflect a strong desire to keep the ex-ante inflation gap as low as possible.  
Conversely, in the bottom rows, the policymaker would not respond much at all to first round 
observed shocks to the Phillips curve in the “steep” region of the economic outcomes line.  That 
again reflects the strong desire to keep the magnitude of the unemployment rate gap as small as 
possible in this scenario. 
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𝜋𝜋 − 𝜋𝜋∗

Figure 7.1: Optimal Economic Outcomes Line: Tail Risks
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Take 8: Extended Baseline Model and The Zero Lower Bound 
There are considerable downside risks to the near-term outlook as well. […] Turning to inflation, […] the 
considerable slack in labor and product markets will put downward pressure on the underlying rate of inflation over the 
next few years. [… ] Given the sizable downside risk to the forecast for growth, the risks to the inflation forecast are 
likewise weighted to the downside. In conclusion, I think the present situation obviously calls for an easing of policy, as 
I assumed in my forecast. Given the seriousness of the situation, I believe that we should put as much stimulus into the 
system as we can as soon as we can. 

Vice Chair Yellen, October 2008 FOMC Meeting 
 
As the quote from Chair Yellen above attests, concerns about downside risks to the outlook and the 
implications for policy were at the forefront of policy discussions at the peak of crisis and over the 
long, slow period of recovery.  And yet, as discussed above, with a quadratic objective function for 
the central bank and a linear model for the economy, the role for uncertainty in the conduct of 
optimal monetary policy is quite limited.  While some types of “multiplicative” uncertainty do matter 
for monetary policy, uncertainty about many factors such as the equilibrium real rate, the natural rate 
of unemployment rate, and the magnitude of shocks to the economy and inflation does not affect 
optimal policy choices in the baseline model.  Moreover, skews in the distribution of shocks to the 
economy also have no important implications for policy in the baseline model.   

The discussion below shows how optimal policy choices change when the key assumptions 
underlying the baseline model are significantly changed to encompass an important nonlinearity in 
the economy—the zero lower bound (ZLB) on short-term nominal interest rates.  The zero lower 
bound constraint affects many of the standard results from the baseline model.  In particular, the 
zero lower bound constraint provides an important reason for central bankers to care a great deal 
about uncertainty even when the loss function for the central bank is the simple quadratic form 
assumed in the baseline model.   

In the baseline model, the central bank is very powerful and can perfectly offset all observed shocks 
to aggregate demand.  As a result, the central bank does not respond now to uncertainty related to 
future values of aggregate demand; there may be a lot of uncertainty about future shocks to the 
economy but the central bank can be completely confident that it will be able to address those 
shocks through appropriate setting of the policy rate.  In contrast, with the zero lower bound 
constraint, the ability to easily offset shocks can be constrained.  In that case, policymakers may have 
an incentive to take actions in the current period that will help avoid becoming constrained in the 
future.  In effect, they will be willing to take out some “insurance” against possible future shocks by 
providing more accommodation in the current period.  This insurance has an associated cost in the 
form of larger unemployment rate and inflation rate gaps in the current period than would be 
chosen in the absence of a ZLB constraint.  The policymaker then must weigh the gain from 
reducing the likelihood of a future episode in which the ZLB is binding with the cost incurred today 
by intentionally running a policy that is different than the one that would minimize today’s objective 
function.    

51



8.1 Baseline Two-Period Model 
To illustrate some of the issues associated with the zero lower bound, it’s useful to extend the 
baseline model to include two periods with a simple form of persistence in the unemployment rate 
across the two periods.  This extension makes it possible to examine how the central bank should 
adjust the stance of monetary policy to guard against the possibility of becoming constrained by the 
zero lower bound in a future period. 

8.11  Structure of the Two Period Model 
As shown in equation (11) below, the two period version of the baseline model considered here 
specifies an IS curve in period 2 in which the unemployment rate gap depends on the policy rate as 
before but also on the level of the unemployment rate from period 1.  That type of relationship 
captures the effects of lags in the economy.  As in the baseline model, we assume that the 
policymaker observes all the shocks to the IS curve and the Phillips curve in each period. 

𝑢𝑢�2 = 𝑢𝑢𝑢𝑢2 − 𝑢𝑢𝑢𝑢∗ = 𝑢𝑢�1 + 𝛼𝛼(𝑖𝑖2 − 𝜋𝜋𝑒𝑒 − 𝑟𝑟∗) + 𝜂𝜂2      (11) 

To solve the model, it is instructive to consider the policy choices in period 2 in the case when the 
policymaker does not face the ZLB constraint.  In this case, the policymaker sets the policy rate in 
period 2 to fully offset the effect of the unemployment rate gap from the prior period as well as the 
shock to the unemployment rate in period.  The result is that optimal economic outcomes in period 
2 are identical to those in the baseline model and, in particular, do not depend on any outcomes 
from the first period. 

The expected value of the loss function in period 1 is thus essentially the same as in the baseline 
model.  As a result, the shape of the indifference curves for the loss function in the first period is the 
same as in the baseline model and optimal economic outcomes are identical to the baseline model.  
The bottom line is that when the policymaker is unconstrained in the choice of the policy rate, 
optimal economic outcomes in the two period model are identical to optimal economic outcomes in 
the baseline one period model.  There is a difference, however, in the rule for the optimal setting of 
the policy rate that is necessary to achieve the optimal economic outcomes.  In particular, as shown 
in the appendix, the optimal setting of the policy rate in period 2 depends on outcomes from the 
first period.  That dependency, in turn, arises because of the lag structure embedded in the modified 
IS curve in equation (11). 

8.2 The Zero Lower Bound in the Two Period Model 
A key aspect of the baseline two period model is that the central bank is able to adjust the level of 
short term interest rates in a way that positions the IS curve to achieve the optimal point.  However, 
the situation is more complicated if the policymaker cannot push the nominal federal funds rate 
below zero.  When that constraint is binding, the level of output and inflation will be determined at 
the intersection of the Phillips curve and the IS curve with the policy rate pinned at zero.  This point 
will be at a position that could be much inferior to the unconstrained optimal policy choice.  For 
example, as shown in figure (8.1), suppose the economy is subject to both an adverse shock to the 
IS curve and a shock that pushes the Phillips curve lower.  Absent any adjustment in the policy rate, 
the IS curve could shift well to the right as shown by the dashed blue line.  In the baseline model, 
that presents no real difficulties because the central bank can simply lower the policy rate as much as 
desired to achieve the optimal outcome denoted by the black dot.  However, with a zero lower 
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bound constraint, the central bank may only be able to move the IS curve to the left as far as the red 
dashed line.  In this case, the unemployment rate and inflation rate are determined at the intersection 
of the constrained IS curve and the Phillips curve at a point like the red dot.  That outcome is very 
poor from the central bank’s perspective.  Indeed, that point lies on an indifference curve that is 
much farther out than the one corresponding to the unconstrained optimum at the black dot. 

8.21  Characterizing the Zero Lower Bound 
What kinds of situations give rise to a binding zero lower bound constraint?  As discussed above, 
the central bank encounters the ZLB when the optimal unconstrained choice of the policy rate in 
period 2 is less than or equal to zero.  As shown in the appendix, in the two period model, the 
probability that the optimal unconstrained policy rate is less than or equal to 0 in period 2 is given 
by: 

 𝑃𝑃(𝑍𝑍𝑍𝑍𝑍𝑍) = N((𝑢𝑢�1 − α𝑖𝑖∗)/𝜎𝜎𝑧𝑧)         (12) 

For convenience, the shocks to the IS curve and Phillips curve are assumed to be normally 
distributed, and the function N() is just the cumulative distribution function for the normal 
distribution.  The term in the numerator represents the gap between the inherited unemployment 
rate gap from the first period and the maximum amount of stimulus that the central bank can deliver 
in period 2 by reducing the policy rate all the way to zero.  The maximum stimulus, in turn, is a 
function of the level of the neutral policy rate, 𝑖𝑖∗ = 𝑟𝑟∗ + 𝜋𝜋∗.  The higher the values of these 
parameters, the more stimulus the central bank can provide in response to adverse shocks to 
aggregate demand and the lower the probability that the zero lower bound will become a constraint.  
Similarly, the slope of the IS curve, 𝛼𝛼, translates the maximum amount of rate stimulus into an 
economic measure comparable to the unemployment rate.  So the more sensitive the economy is to 
interest rates, the higher the value of α, and the lower the probability that the zero lower bound 
constraint will become binding.  Conversely, an elevated level of the unemployment rate gap from 
the first period, 𝑢𝑢�1, carried into the second period makes it more likely that the zero lower bound 
constraint will become binding.  The denominator,𝜎𝜎𝑧𝑧, is the standard deviation of the shock term 
that matters in determining whether the zero lower bound becomes binding.  As discussed in the 
appendix, the variance of this shock term is a function of the variances of both the shocks to the 
Phillips curve and the IS curve.  Assuming that the numerator is negative, higher levels of the 
variance of shocks to the unemployment rate and inflation make it more likely that the zero lower 
bound will become binding. 

This simple expression helps to explain why central bankers around the world have been so 
concerned about the apparent global trend toward lower levels of the neutral real rate, 𝑟𝑟∗.  All else 
equal, a low value for 𝑟𝑟∗increases the probability of encountering the zero lower bound.  The 
expression also explains why some have suggested that central banks should raise the level of the 
inflation target.  All else equal, a higher inflation target would increase the maximum amount of 
economic stimulus that could be delivered in the event of an adverse shock to aggregate demand 
and thus reduces the probability of a binding ZLB constraint.  The expression also makes clear why 
economists are so interested in developing new tools such as forward guidance or asset purchases 
that may be effective in providing stimulus but that would not be subject to the zero lower bound 
constraint. 
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Figure 8.1: The ZLB Constraint

Phillips Curve 

IS Curve 

IS Curve at ZLB

Adverse IS 
Shock 

Policy Easing

𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢∗

54



Take 9: Risk Management Near the Zero Lower Bound  
The risk of a binding ZLB changes the nature of optimal policy.  In period 1, optimal policy 
depends partly on the level of inflation and unemployment gaps in the current period.  But now the 
level of the unemployment rate gap in the current period has implications for the starting point in 
the second period and the possibility of being constrained by the ZLB.  In particular, there are 
incentives to strengthen the economy in the first period to reduce the likelihood that the ZLB 
constraint will become binding in period 2.  Like insurance, the extent to which such actions are 
taken depends on probability of the future adverse outcome and the cost of the insurance.  The cost 
of insurance in this case is the need to move away from a policy setting that would otherwise 
minimize the loss function for just the current period.     

The appendix works through the algebra of how the zero lower bound constraint affects the shape 
of the indifference curves in period 1.  As shown in figure (9.1), the effect of the ZLB constraint in 
period 2 alters the shape and position of the indifference curves in period 1.  Each indifference 
curve is “flattened” as the unemployment rate gap in period 1 moves above zero.  That’s because a 
positive unemployment rate gap in period 1 imposes the usual cost in period 1 and also carries with 
it a higher potential for a cost in period 2 associated with a binding zero lower bound constraint.   

The indifference curve also shifts to the left.  The net result in that the optimal economic outcomes 
line now has a non-linear shape with a relatively “steep” slope for positive values of the 
unemployment gap in period 1 and a somewhat flatter slope for negative values of the 
unemployment rate gap.  So in response to a positive inflation shock in period 1, the policymaker 
would tend to allow more of that shock to show through to the inflation rate than in the baseline 
model.  Moving to counter that inflation shock in the baseline model would involve tightening 
policy and tolerating a period with a positive unemployment rate gap.  With the threat of the zero 
lower bound in period 2, however, the policymaker would want to keep the unemployment rate gap 
smaller in the current period because carrying a sizable positive unemployment rate gap into the 
second period would create a higher probability of being constrained by the zero lower bound. 

The optimal economic outcomes line now does not pass through the origin and “crosses” into 
quadrant 2.  In the baseline model, optimal policy never occurred at points in quadrant 2 because 
with the unemployment rate below target and inflation above target, it always made sense for the 
policymaker to tighten policy.  But with the possibility of a binding zero lower bound in period 2, 
the policymaker may be willing to tolerate a period with above target inflation and below target 
unemployment in order to reduce the probability and expected cost of encountering the zero lower 
bound in the next period. 

9.1  Certainty Equivalence Revisited 
Uncertainty that mattered little in the baseline model can be quite important in the presence of ZLB 
risks.  In particular, certainty equivalence does not apply even for a simple quadratic objective 
function.  For example, as discussed above, the variance of output shocks has an important bearing 
on the risk of being trapped at the ZLB.  The larger the variance of output shocks, the more the 
policymaker should want to enter the second period with an unemployment rate below the NAIRU 
and inflation above 𝜋𝜋∗.  The variance of shocks to inflation similarly affects the possibility of 
encountering the zero lower bound. 
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Uncertainty about the level of 𝑟𝑟∗ now presents asymmetric policy risks.  If the level of 𝑟𝑟∗ is lower 
than the central bank believes, the chances of being trapped at the zero lower bound are higher.  As 
a result, unlike the baseline model, uncertainty about the level of 𝑟𝑟∗ matters a lot to policymakers 
when the stance of monetary policy could be constrained by the zero lower bound.  In terms of the 
indifference curves, greater uncertainty about 𝑟𝑟∗  increases the potential risks of a zero lower bound 
episode and “flattens” the portion of the curves with positive unemployment rate gaps.  So the 
higher the uncertainty about 𝑟𝑟∗, the larger the “risk management” incentives are associated with the 
zero lower bound. 

The risk of a binding ZLB constraint also implies that higher moments of the distribution of shocks 
to the unemployment rate and inflation such as skews and fat tails will affect optimal policy choices.  
For example, if the distribution of shocks to the unemployment rate is skewed to higher values or 
simply has “fat” tails, that will imply larger risks that that the ZLB could be binding.  As a result, the 
policymaker will have greater incentives to implement a risk-management approach to policy in the 
current period. 

9.2  The Curse of the Flat Phillips Curve Revisited 
In the baseline model, a flat Phillips curve was unambiguously a bad thing for central bankers.  A flat 
Phillips curve makes it more costly for the central bank to combat shocks to inflation because it 
must engineer larger changes in the unemployment rate to offset any shock to the Phillips curve.  In 
the baseline model, the expected value of the central bank’s loss function thus was larger with a flat 
Phillips curve. 

That basic result is more complicated in the presence of a zero lower bound constraint.  In the case 
when the central bank is constrained by the zero lower bound, a flat Phillips curve can help to keep 
inflation anchored near the central bank’s inflation target.  Thus while a flat Phillips curve is 
unambiguously a curse when the central bank can freely adjust the stance of policy to offset any 
shock to the real economy, it can be a blessing of sorts when adjustments to the stance of policy are 
constrained by the zero lower bound.  This situation is illustrated in figure (9.2).  Here, when the 
policymaker is unconstrained by the ZLB, the combination of a downward shift in the Phillips curve 
and a large adverse shock to the IS curve would lead to policy adjustments that put the economy at 
the point shown by the black dot.  If the Phillips curve is relatively flat, the policymaker could again 
ease policy aggressively to arrive at the optimal economic outcomes shown by the grey dot.  In the 
case with the flat Phillips curve, the policymaker is worse off because the grey dot lies on an 
indifference curve that is “farther out” than for the black dot. 

However, if the policymaker cannot offset the adverse shock to the IS curve because of the ZLB, 
the economy could end up at a point like the red dot with very large unemployment rate and 
inflation rate gaps.  In this case, the outcome with the flat Phillips curve is a better than in the case 
with a steeper curve because the inability to completely adjust the policy rate as desired has a smaller 
impact on the rate of inflation.   

9.3  Fear the Flat IS Curve 
In the baseline model, policymakers had nothing to fear in the case of a relatively flat IS curve.  They 
could easily achieve any desired level of the unemployment rate by simply implementing larger 
adjustments in the stance of monetary policy.  But that conclusion also needs to be tempered greatly 
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when there is a risk of a binding ZLB constraint.  A flat IS curve means that smaller shocks to the 
unemployment rate can drive the central bank to the zero lower bound.  That effect is evident in the 
expression for the probability of encountering the zero lower bound in equation (11).  There, the 
parameter 𝛼𝛼 enters with a negative sign because the higher the value of 𝛼𝛼, the more economic 
stimulus the central bank can impart by cutting the federal funds rate all the way to zero.  When 𝛼𝛼 is 
quite small, this capability to provide economic stimulus is much reduced, thus greatly increasing the 
odds of encountering the zero lower bound. 

Summary 
The zero lower bound presents very serious challenges for central banks.  The ZLB constrains the 
amount of economic stimulus that the central bank can provide in response to adverse economic 
shocks.  In extreme cases, the inability to provide adequate stimulus can lead to economic conditions 
that prolong the episode of being constrained by the ZLB.  For example, a central bank that is 
constrained by the ZLB may not be able to counter deflationary pressures.  As inflation falls, the real 
debt burdens of households and businesses increase and their spending may decline further.  Many 
authors have pointed to such debt-deflation dynamics during periods like the Great Depression and, 
more recently, in the long period of declining prices in Japan. 

As discussed above, the risk that the ZLB constraint will become binding is importantly influenced 
by the long-run value of the neutral real rate as well as the central bank’s inflation target and the 
interest sensitivity of aggregate demand.  Given the decline in real interest rates observed over recent 
decades, many have suggested that there may be less scope than in the past for central banks to 
respond to adverse economic shocks before encountering the ZLB.  Moreover, the possibility that 
the central bank could be constrained by the ZLB can affect optimal policy even when the economy 
is performing reasonably well.    
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Figure 9.1 Optimal Economic Outcomes Line: Zero Lower Bound
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Figure 9.2: The Partial Blessing of a Flat Phillips Curve
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Take 10: Special Topics 
The basic framework discussed in previous sections is helpful in thinking about many other types of 
topics.  The discussion below touches on ways that “endogenous” risks such as financial stability 
and risks to inflation expectations can be examined in the context of the baseline model.  In 
addition, simple variations on the baseline framework help to illustrate the potential connections 
between concepts of “fairness” and the conduct of monetary policy. 

Endogenous Risks 
Most of the types of risks discussed above were associated with a set of exogenous shocks to the 
economy; the statistical distributions for these shocks were largely unaffected by other economic 
variables.  The potential for some degree of interaction or “endogeneity” between the nature of 
shocks to the economy and economic variables adds yet another layer of complexity to the analysis 
of optimal policy. 

Financial Stability Risks 
Policymakers often worry that the stance of monetary policy may contribute to financial strains or 
imbalances in a way that could set the stage for a large adverse shock to the economy in the future.  
One simple way of interpreting that concern in the context of the models discussed in previous 
sections is to hypothesize that the variance of unobserved shocks may partly depend on the stance 
of policy or on some other endogenous variable. For example, “Take 4” above examined the effect 
of additive uncertainty in the baseline model.   The general conclusion under the certainty 
equivalence principle was that this form of uncertainty had no implications for the conduct of 
monetary policy.  However, if the variance of the additive shocks depended on, say, the magnitude 
of the deviation of the policy rate from its neutral level, then the optimal policy choices would be 
affected.  For example, some observers have worried that a lengthy period with the federal funds 
rate close to zero would contribute to financial imbalances that would set the stage for another 
economic downturn.   

Optimal policy in the face of this dependence of the variance of the shocks to the IS equation or the 
Phillips curve equation on the policy rate is analytically similar to the case of “multiplicative” 
parameter uncertainty noted above in Take 4.  To the extent that a larger interest rate gap (in 
absolute magnitude) implies a larger variance in the shocks to the IS curve or the Phillips curve, the 
policymaker will tend to keep the magnitude of the interest rate gap smaller than would otherwise be 
the case—a variation on the attenuation principle noted above.  It is important to note, however, 
that the policy conclusions to be drawn in this type of analysis depend very much on the 
specification of the financial stability risk.  For example, if the variance of shocks to the IS curve 
depends not on the interest rate gap but on the unemployment rate gap, then policymakers would 
move aggressively to counter shocks to the IS curve. 

Risks to Inflation Expectations 
A major shortcoming of the baseline model developed above is that inflation expectations are 
treated as determined outside the model.  Policymakers often worry, however, that changes in the 
stance of monetary policy could have outsized and persistent effects on inflation expectations.  
Those sorts of effects are difficult to model, but a (very) crude variation on the baseline model 
captures the flavor of that type of risk.  For example, suppose there is some probability that inflation 
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expectations will jump up (or down) by a fixed amount 𝛿𝛿 in the next period and that this probability 
depends on the current setting of the policy rate relative to the neutral rate.  In the two period model 
developed in Take 8 above, that “jump risk” for inflation expectations would affect the expected 
value of the loss function in the second period.  As a result, the expected value of the loss function 
in the first period would assume the form: 

𝐿𝐿 = 𝐿𝐿1 + 𝐿𝐿2 = �1
2
� (𝑢𝑢�12 + 𝜋𝜋�12) +

�12�𝛿𝛿
2

1+𝜏𝜏2
Prob(𝑖𝑖1 − 𝑖𝑖∗) +

�12�𝜎𝜎𝜀𝜀
2

1+𝜏𝜏2
  

Here, the term Prob(𝑖𝑖1 − 𝑖𝑖∗) is the probability that inflation jumps by the amount 𝛿𝛿 in period 2 as a 
function of the interest rate gap in period 1.  In this case, in judging the appropriate policy action 
today, the policymaker would need to weigh the benefits in terms of adjusting today’s inflation and 
unemployment rate gaps versus the potential future costs of experiencing persistently higher (or 
lower) inflation expectations in future periods.  This type of risk is similar to the endogenous 
financial stability risk noted above in that it can act as a form of restraint on policymaker’s desired 
choice of the policy in the current period.  However, also similar to the case of endogenous financial 
stability risks, the nature of the policy conclusions depend very much on the nature of the assumed 
risks to inflation expectations.  For example, if the probability of a future jump in inflation 
expectations depends not on the current interest rate gap but on the current realized value of 
inflation, then the central bank today would tend to be quite aggressive in keeping today’s inflation 
close to target.  The objective function for that policymaker in that case might be reasonably 
approximated by the “balanced hawk” objective function described above.  As noted in Take 4 
above, a balanced hawk tends to ease aggressively in response to downward shifts in the Phillips 
curve. 

Fairness and the Central Bank Objective Function 
Central banks often conduct policy to promote price stability as well as strong performance for the 
economy and labor market.  The labor market is heterogeneous, and the experiences of individuals 
in different groups can be very strongly affected by biases based on group characteristics such as 
ethnicity, gender, and social status.  Central banks typically are focused on the performance of the 
overall labor market and generally do not have the tools or the public mandate to address issues of 
discrimination or bias in the workplace.  That said, there are ways these issues can intersect with the 
conduct of monetary policy. 

In the baseline model above, the variable 𝑢𝑢�  was defined as the deviation of the unemployment rate 
from the natural rate.  One might view 𝑢𝑢�  instead as a more general indicator of the “state of the 
labor market.” The labor market experiences of different groups then might be viewed as driven by 
this aggregate variable but in somewhat different ways.  For example, suppose that the 
unemployment rate gap for group 1 is 𝑔𝑔�1 = 𝜆𝜆1𝑢𝑢�   while that for group 2 is 𝑔𝑔�2 = 𝜆𝜆2𝑢𝑢� .  In this setup, 
if the overall indicator of the state of the labor market 𝑢𝑢�  is equal to zero, then the unemployment 
rate gap in each group would be equal to zero as well.  So it seems that everything in this slightly 
different setup would be very similar to the baseline model.  Indeed, that would be the case if the 
objective for the central bank included the squared value of the overall labor market conditions 
indicator 𝑢𝑢�  in the loss function as in the baseline model: 
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𝐿𝐿 = (1
2
)(𝑢𝑢�2 + 𝜋𝜋�2)         (13) 

If the state of the labor market variable 𝑢𝑢�  is unobserved, the central bank might choose to use the 
weighted average of the unemployment rate gaps for each group in the loss function as the measure 
of the aggregate unemployment rate gap,  𝑔𝑔� = ω𝑔𝑔�1 + (1 −ω)𝑔𝑔�2.  Here, the weight ω is the share 
of group 1 in the total labor force.  In this case, the loss function would be given by: 

𝐿𝐿 = (1
2
)(𝑔𝑔�2 + 𝜋𝜋�2) 

Simplifying, this loss function can be expressed as: 

 𝐿𝐿 = �1
2
� ((ω𝜆𝜆1 + (1 −ω)𝜆𝜆2)2𝑢𝑢�2 + 𝜋𝜋�2) = �1

2
� (a2𝑢𝑢�2 + 𝜋𝜋�2)   (14) 

In this specification, the policymaker focuses only on the aggregate measure of the unemployment 
rate gap, 𝑔𝑔�.  As shown in equation 14, this turns out to be the same as just focusing on the overall 
labor market indicator 𝑢𝑢�  weighted by the squared value of the term  𝑎𝑎 = ω𝜆𝜆1 + (1 −ω)𝜆𝜆2 .  If the 
value of 𝑎𝑎 in equation (14) is equal to 1, the loss function would be exactly that same as in the 
baseline model. 

One might ask whether the implicit weighting of the individual group unemployment rate gaps in 
equation (14) is consistent with common interpretations of “fairness.”  For example, taken literally, 
the focus on the aggregate index implies that the policymaker would be equally happy with an 
employment outcome in which both groups were at full employment, 𝑔𝑔�1 = 𝑔𝑔�2 = 0, and another in 
which one group had a high unemployment rate while another had a very low unemployment rate so 
that the overall index 𝑔𝑔� remained at zero. 

Another loss function that might be viewed as a fairer treatment of individual groups would focus 
directly on the unemployment rate gaps for the two individual groups with each squared 
unemployment rate gap weighted by the share of that group in the total labor force.  In that case, the 
loss function would take the form: 

𝐿𝐿 = (1
2
)(ω𝑔𝑔�12 + (1 −ω)𝑔𝑔�12 + 𝜋𝜋�2) 

Using the definitions for the group unemployment rate gaps above, this loss function can be 
expressed as: 

𝐿𝐿 = �1
2
� �(ω𝜆𝜆12 + (1 −ω)𝜆𝜆22)𝑢𝑢�2 + 𝜋𝜋�2� = (1

2
)(𝑏𝑏2𝑢𝑢�2 + 𝜋𝜋�2)    (15) 

As before, this loss function again turns out to be a function of the aggregate state of the labor 
market indicator 𝑢𝑢�  , but the weight on that variable, 𝑏𝑏2, is larger than in the case when the 
policymaker focuses only on the aggregate unemployment index 𝑔𝑔�.  Indeed, the weight on the state 
of the labor market indicator in this case is quite sensitive to the group that has a relatively high 
response to the overall labor market indicator.  So, for example, if one group’s unemployment rate 
goes up by twice as much as another group when the overall labor market indicator increases, that 
group’s experience will be weighted more heavily by this version of the central bank objective 
function relative to the more common specifications in equations (13) and (14).  In this example, the 
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objective function in (15) is similar to that for the “balanced dove” objective function discussed 
above in Take 3.  Other things equal, a balanced dove would take account of the relatively large 
“elasticity” of the unemployment rate gap for an individual group by allowing a larger portion of 
inflation shocks to show through to the rate of inflation.  In effect, a “high elasticity” unemployment 
rate group makes it expensive for the central bank to combat inflation shocks.  Intuitively, in the 
case when the central bank focuses solely on the aggregate unemployment rate as in (14), the effect 
of the “high elasticity” labor force group matters only to the extent that the experience of that group 
affects the weighted average unemployment rate gap.  In the case when the central bank focuses 
directly on the squared unemployment rate gaps for individual groups, the experience of the high 
elasticity labor force group becomes relatively more important in determining the shape of the 
central bank’s objective function and the conduct of optimal policy. 

As discussed above, over time, a central bank with a “balanced dove” objective function would 
achieve maximum employment and stable prices over time.  The volatility of inflation over time 
would be larger than in the baseline model and the variability of the unemployment rate (and those 
for each individual group) would be lower than in the baseline model. 
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Takeaways: What to Make of All This? 
The aim of this collection of short takes on monetary policy was to convey some of the basic 
principles of monetary policy strategy in a standard bare bones version of a commonly used policy 
framework.  The two key ingredients in the framework are a model of the economy and a central 
bank objective function.   

One key theme that emerges from the various topics discussed above is that the nature of the central 
bank loss function assumed in any optimal policy analysis is critical in defining the appropriate 
policy strategy.  The nature of the policy response to inflation and output shocks, changes in 
inflation expectations, and uncertainty and risks surrounding the economic outlook all hinge 
critically on the assumed objective function for the central bank.  Another key theme that emerges is 
that in the presence of constraints on the central bank’s ability to adjust its policy instruments, 
optimal policy usually calls for the central bank to adjust the stance of policy in a way that helps to 
mitigate the potential economic costs of those constraints.  In the case of the zero lower bound 
constraint, that incentive led to the central bank to choose to provide more accommodation than 
would otherwise be appropriate in order to avoid a binding ZLB constraint in the future.  In the 
case of uncertainty about the slope of the IS curve or financial stability risks, those incentives led the 
central bank to attenuate its policy response to shocks in an effort to reduce the variance of future 
shocks to the economy.   

Another important theme running beneath the surface of much of the analysis in these notes is the 
essential role of anchoring inflation expectations at the central bank’s target.  The model employed 
here is highly stylized and, in particular, largely assumed that inflation expectations are exogenous 
and pegged at the central bank’s inflation target.  That approach completely shuts down a central 
feature of more sophisticated models—the connection between inflation expectations, the actual 
path of inflation generated by the model, and the central bank’s policy strategy.  Many important 
questions and issues arise in models that incorporate these types of linkages. 

Finally, many of the examples above underscore the importance and the challenges of incorporating 
risk and uncertainty in the formulation of monetary policy.  Indeed, central banks in practice operate 
with far less information and far more uncertainty than is captured in the simple framework 
developed in these notes.  In practice, the structure of the economy is evolving over time, and 
policymakers may be unsure about even the basic form of key structural relationships in the 
economy.  In addition, the structure of the economy may be very complex, incorporating many 
aspects of forward-looking behavior and various types of “frictions.”  In this environment, 
calculating an “optimal” stance of policy as in the notes above may be all but impossible in the real 
world.  Against that backdrop, central banks have increasingly come to recognize the importance of 
evaluating approaches to policy that perform well across a variety of economic models, and in 
response to a wide range of shocks and scenarios. 
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Appendix: Mathematical Details 
The notes below provide the mathematical details underlying the pictures and analytical points noted 
in the main text. 

Take 1: Baseline Model 
In the baseline model, the IS curve and Phillips curve specifications are as shown in equations (1.1) 
and (1.2). 

𝑢𝑢� = 𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢∗ = 𝛼𝛼(𝑖𝑖 − 𝜋𝜋𝑒𝑒 − 𝑟𝑟∗) + 𝜂𝜂 = 𝛼𝛼(𝑖𝑖 − (𝑟𝑟∗ + 𝜋𝜋∗)) − 𝛼𝛼(𝜋𝜋𝑒𝑒 − 𝜋𝜋∗) + 𝜂𝜂  (1.1) 

𝜋𝜋� = 𝜋𝜋 − 𝜋𝜋∗ = −𝜏𝜏𝑢𝑢� + (𝜋𝜋𝑒𝑒 − 𝜋𝜋∗) + 𝜀𝜀        (1.2) 

Unless noted otherwise, we generally assume that the shock terms 𝜂𝜂 and 𝜀𝜀 are normally distributed 
with variances 𝜎𝜎𝜂𝜂2 and 𝜎𝜎𝜀𝜀2, respectively. 

The reduced form expression for the inflation rate gap is then: 

𝜋𝜋� = −𝜏𝜏𝑢𝑢� + (𝜋𝜋𝑒𝑒 − 𝜋𝜋∗) + 𝜀𝜀 = −𝜏𝜏𝜏𝜏(𝑖𝑖 − 𝑖𝑖∗) + (1 + 𝛼𝛼𝛼𝛼)(𝜋𝜋𝑒𝑒 − 𝜋𝜋∗) − 𝜏𝜏𝜏𝜏 +  𝜀𝜀  (1.3)  

Where 

𝑖𝑖∗ = 𝑟𝑟∗ + 𝜋𝜋∗ 

In the reduced form expression for the inflation gap, the coefficient on the interest rate gap term is 
negative—tighter policy boosts the unemployment rate and pushes inflation down.  The coefficient 
on deviations of inflation expectations above the central bank’s target rate is positive and greater 
than 1.  This model has very high sensitivity to inflation expectations through two channels.  In the 
Phillips curve equation (1.2), an increase in inflation expectations shows through one for one to an 
increase in the inflation rate.  In addition, all else equal, an increase in inflation expectations pushes 
down real interest rates in the IS curve, stimulates demand and puts downward pressure on the 
unemployment rate.  The pickup in aggregate demand adds to the upward pressure on inflation in 
the model. 

Take 2: Optimal Policy in the Baseline Model 
The loss function shown for the central bank (equation 2.1) is a function of the squared deviations 
of the unemployment rate and inflation from their respective goals. 

𝐿𝐿 = (1
2
)(𝑢𝑢�2 + 𝜋𝜋�2)          (2.1) 

The first order condition for minimizing this loss function generates the expression for the “optimal 
economic outcomes line” shown in 2.2. 

𝑢𝑢� =  𝜏𝜏𝜋𝜋�            (2.2) 

Combining the first order condition in (2.2) with the Phillips curve (1.2) yields expressions for the 
unemployment rate and inflation gaps as functions of the exogenous variables (equations 2.3 and 
2.4) 

𝑢𝑢� =  𝜏𝜏(𝛿𝛿 +  𝜀𝜀)/(1 + 𝜏𝜏2)         (2.3) 
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𝜋𝜋� =  (𝛿𝛿 +  𝜀𝜀)/(1 + 𝜏𝜏2)         (2.4) 

where 𝛿𝛿 = (𝜋𝜋𝑒𝑒 − 𝜋𝜋∗) 

Combining the solution for the optimal unemployment rate gap in (2.3) with the IS curve equation 
(1.1) yields the equation for the policy rule for the interest rate gap: 

𝑖𝑖 − 𝑖𝑖∗ = �1 + 𝜏𝜏
𝛼𝛼(1+𝜏𝜏2)

� 𝛿𝛿 + 𝜏𝜏
𝛼𝛼(1+𝜏𝜏2)

𝜀𝜀 − 1
𝛼𝛼
η         (2.5) 

The expected value of the loss function can be computed using the expressions for the optimal 
unemployment rate and inflation gaps as: 

𝐸𝐸{𝐿𝐿} = (1
2
)𝐸𝐸{𝑢𝑢�2 + 𝜋𝜋�2} = (1

2
)(𝛿𝛿2 + 𝜎𝜎𝜀𝜀2)/(1 + 𝜏𝜏2)       (2.6) 

As shown in equation (2.3) and (2.4), the optimal unconstrained setting of the funds rate completely 
insulates the unemployment rate and inflation rate from the effects of shocks to the IS curve.  
Shocks to the Phillips curve affect the unemployment rate and inflation in the same direction.  
Similarly, any gap between inflation expectations and the central bank’s target rate captured by 𝛿𝛿 
pushes the unemployment rate and inflation gaps in the same direction. 

The policy rule responds positively to inflation shocks and to inflation expectations deviations from 
target.  Positive shocks to the unemployment rate in the IS curve push the optimal setting of the 
funds rate lower and vice versa. 

The expected value of the loss function increases with the variance of shocks to the Phillips curve.  
Higher values for the slope of the Phillips curve, 𝜏𝜏, reduce the expected loss for the central bank 
because the central bank can offset inflation shocks with relatively small adjustments in the 
unemployment rate gap. 

Take 4: Variations on the Central Bank Loss Function 
Symmetric Hawks and Doves 
The baseline model assumes that policymakers assign equal weights to unemployment rate 
deviations and inflation deviations from their respective targets.  The model with “balanced” hawks 
and doves involves a modification of the loss function for the central bank as: 

𝐿𝐿 = (1
2
)(𝑢𝑢�2 + 𝛾𝛾𝜋𝜋�2)          (4.1) 

Values of 𝛾𝛾 greater than one might be associated with inflation “hawks” that place greater weight on 
minimizing inflation deviations from target.  Values of 𝛾𝛾 less than one might be interpreted as 
representing inflation “doves” who place relatively greater weight on minimizing unemployment rate 
deviations from target. 

The first order condition leads to an optimal economic outcomes line of the form: 

𝑢𝑢� =  𝜏𝜏𝜏𝜏𝜋𝜋�            (4.2) 

The optimal levels of the unemployment rate and inflation gaps are given by: 
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𝑢𝑢� =  𝛾𝛾𝛾𝛾(𝛿𝛿 +  𝜀𝜀)/(1 + 𝛾𝛾𝜏𝜏2)         (4.3) 

𝜋𝜋� =  (𝛿𝛿 +  𝜀𝜀)/(1 + 𝛾𝛾𝜏𝜏2)         (4.4) 

As above, the policy rule for the funds rate is based on equation 3.3 and the IS curve: 

𝑖𝑖 − 𝑖𝑖∗ =
�𝛾𝛾𝛾𝛾𝛼𝛼 �(𝛿𝛿+ 𝜀𝜀)

1+𝛾𝛾𝛾𝛾2
− η/α         (4.5) 

For inflation hawks, these solutions imply that the policymaker would be relatively aggressive in 
taking actions to combat inflation and would tolerate larger swings in the unemployment rate in 
order to accomplish that goal.  In contrast, inflation doves would generally respond less aggressively 
to inflation shocks in order to keep the unemployment rate close target. 

Asymmetric Hawks and Doves 
The model variations considered in this section focus on specifications in which policymakers have 
different views about deviations of inflation above or below target or about deviation of the 
unemployment rate above or below target. 

Asymmetric Inflation Hawk 
For an asymmetric inflation hawk, the central bank objective function is specified as: 

𝐿𝐿 = (1
2
)(𝑢𝑢�2 + 𝛾𝛾𝑏𝑏𝜋𝜋�2𝐼𝐼(𝜋𝜋� < 0) + 𝛾𝛾𝑎𝑎𝜋𝜋�2𝐼𝐼(𝜋𝜋� ≥ 0))      (4.6) 

Here the parameters 𝛾𝛾𝑏𝑏 and 𝛾𝛾𝑎𝑎 are the costs the central bank attaches to deviations of inflation 
below or above target, respectively.  The indicator function 𝐼𝐼() takes on a value of 1 when inflation 
satisfies the specified criterion and zero otherwise. 

For convenience, we assume here that the gap between inflation expectations and the target inflation 
rate is zero.  In this case, when the shock to the Phillips curve is positive, the equations for the 
optimal economic outcomes line, the optimal levels of the unemployment and inflation gaps, and 
the policy rule are: 

𝑢𝑢� =  𝜏𝜏𝛾𝛾𝑎𝑎𝜋𝜋�           (4.7) 

𝑢𝑢� =  𝛾𝛾𝑎𝑎𝜏𝜏𝜏𝜏/(1 + 𝛾𝛾𝑎𝑎𝜏𝜏2)         (4.8) 

𝜋𝜋� =   𝜀𝜀/(1 + 𝛾𝛾𝑎𝑎𝜏𝜏2)          (4.9) 

𝑖𝑖 − 𝑖𝑖∗ =
�𝛾𝛾
𝑎𝑎𝜏𝜏
𝛼𝛼 �(𝛿𝛿+ 𝜀𝜀)

1+𝛾𝛾𝑎𝑎𝜏𝜏2
− η/α         (4.10) 

When the shock to the Phillips curve is negative, the corresponding equations are:  

𝑢𝑢� =  𝜏𝜏𝛾𝛾𝑏𝑏𝜋𝜋�           (4.11) 

𝑢𝑢� =  𝛾𝛾𝑏𝑏𝜏𝜏𝜏𝜏/(1 + 𝛾𝛾𝑏𝑏𝜏𝜏2)         (4.12) 

𝜋𝜋� =  𝜀𝜀/(1 + 𝛾𝛾𝑏𝑏𝜏𝜏2)          (4.13) 
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𝑖𝑖 − 𝑖𝑖∗ =
�𝛾𝛾
𝑏𝑏𝜏𝜏
𝛼𝛼 �(𝛿𝛿+ 𝜀𝜀)

1+𝛾𝛾𝑏𝑏𝜏𝜏2
− η/α         (4.14) 

As one would expect, an asymmetric inflation hawk responds quite aggressively to positive inflation 
shocks but less so in the case of negative inflation shocks.  As a result, the response of the policy 
rate to positive inflation shock is relatively large leading to a relatively damped response of inflation 
to the shocks and to a relatively large response of the unemployment rate to inflation shocks.   

In contrast to the cases discussed so far, the expected values of the unemployment and inflation rate 
gap are not zero with an asymmetric objective function.  In this case, over time, the expected values 
of these variables would be: 

𝐸𝐸(𝑢𝑢�) =
� 𝛾𝛾𝑎𝑎𝜏𝜏
1+𝛾𝛾𝑎𝑎𝜏𝜏2

 − 𝛾𝛾𝑏𝑏𝜏𝜏
1+𝛾𝛾𝑏𝑏𝜏𝜏2

�𝜎𝜎𝜀𝜀

(2𝜋𝜋).5 > 0         (4.15) 

𝐸𝐸(𝜋𝜋�) =
� 𝜏𝜏
1+𝛾𝛾𝑎𝑎𝜏𝜏2 − 𝜏𝜏

1+𝛾𝛾𝑏𝑏𝜏𝜏2
�𝜎𝜎𝜀𝜀

(2𝜋𝜋).5 < 0         (4.16) 

Similarly, the expected deviation of the policy rate from the natural rate is not zero: 

𝐸𝐸(𝑖𝑖 − 𝑖𝑖∗) =
�

𝛾𝛾𝑎𝑎𝜏𝜏
𝛼𝛼

1+𝛾𝛾𝑎𝑎𝜏𝜏2
 − 

𝛾𝛾𝑏𝑏𝜏𝜏
𝛼𝛼

1+𝛾𝛾𝑏𝑏𝜏𝜏2
�

(2𝜋𝜋).5 > 0        (4.17) 

Asymmetric Dove 
The case for an asymmetric unemployment dove involves a similar modification to the standard 
central bank loss function: 

𝐿𝐿 = (1
2
)( 𝜃𝜃𝑏𝑏𝑢𝑢�2𝐼𝐼(𝑢𝑢� < 0) + 𝜃𝜃𝑎𝑎𝑢𝑢�2𝐼𝐼(𝑢𝑢� ≥ 0) + 𝜋𝜋�2)      (4.18) 

 
As above, we assume that the gap between inflation expectations and the central bank’s inflation 
target is zero.  In this case, when the shock to the Phillips curve is positive, the optimal economic 
outcomes line takes the form: 
 
𝜃𝜃𝑎𝑎𝑢𝑢� =  𝜏𝜏𝜋𝜋�            (4.19) 

The corresponding optimal levels of the unemployment and inflation rate gaps are: 

𝑢𝑢� =  𝜏𝜏 𝜀𝜀/(𝜃𝜃𝑎𝑎 + 𝜏𝜏2)         (4.20)   

𝜋𝜋� =  𝜃𝜃𝑎𝑎𝜀𝜀/(𝜃𝜃𝑎𝑎 + 𝜏𝜏2)         (4.21) 

𝑖𝑖 − 𝑖𝑖∗ =
�𝜏𝜏𝛼𝛼�(𝛿𝛿+ 𝜀𝜀)

𝜃𝜃𝑎𝑎+𝜏𝜏2
− η/α         (4.22) 

In the case with a negative shock to the Phillips curve, the corresponding equations are: 

𝜃𝜃𝑏𝑏𝑢𝑢� =  𝜏𝜏𝜋𝜋�           (4.23) 
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𝑢𝑢� =  𝜏𝜏𝜏𝜏/(𝜃𝜃𝑏𝑏 + 𝜏𝜏2)          (4.24) 

𝜋𝜋� =  𝜃𝜃𝑏𝑏𝜀𝜀/(𝜃𝜃𝑏𝑏 + 𝜏𝜏2)          (4.25) 

𝑖𝑖 − 𝑖𝑖∗ =
�𝜏𝜏𝛼𝛼�(𝛿𝛿+ 𝜀𝜀)

𝜃𝜃𝑏𝑏+𝜏𝜏2
− η/α         (4.26) 

The expected values of the variables are not zero: 

𝐸𝐸(𝑢𝑢�) =
� 𝜏𝜏
𝜃𝜃𝑎𝑎+𝜏𝜏2

− 𝜏𝜏
𝜃𝜃𝑏𝑏+𝜏𝜏2

�

(2𝜋𝜋).5 < 0         (4.27) 

𝐸𝐸(𝜋𝜋�) =
� 𝜏𝜏𝜃𝜃𝑎𝑎

𝜃𝜃𝑎𝑎+𝜏𝜏2
− 𝜏𝜏𝜃𝜃𝑏𝑏

𝜃𝜃𝑏𝑏+𝜏𝜏2
�

(2𝜋𝜋).5 > 0         (4.28) 

𝐸𝐸(𝑖𝑖 − 𝑖𝑖∗) =
�

𝜏𝜏
𝛼𝛼

𝜃𝜃𝑎𝑎+𝜏𝜏2
−

𝜏𝜏
𝛼𝛼

𝜃𝜃𝑏𝑏+𝜏𝜏2
�

(2𝜋𝜋).5 < 0        (4.29) 

Take 5: Uncertainty in the Baseline Model 
This section introduces uncertainty in the baseline model by positing a second round of shocks, 
𝜂𝜂′𝑎𝑎𝑎𝑎𝑎𝑎 𝜀𝜀′, that hit the IS curve and Phillips curves after the central bank has chosen the desired level 
of the policy rate. 

Additive Shocks Certainty Equivalence 
With the assumed second round shocks, the IS curve and Phillips curve equations are given by: 

𝑢𝑢� = 𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢∗ = 𝛼𝛼(𝑖𝑖 − 𝜋𝜋𝑒𝑒 − 𝑟𝑟∗) + 𝜂𝜂 + 𝜂𝜂′ = 𝑢𝑢� + 𝜂𝜂′      (5.1) 

𝜋𝜋� = 𝜋𝜋 − 𝜋𝜋∗ = −𝜏𝜏𝑢𝑢� + (𝜋𝜋𝑒𝑒 − 𝜋𝜋∗) + 𝜀𝜀 + 𝜀𝜀′ = 𝜋𝜋� − 𝜏𝜏𝜏𝜏′ + 𝜀𝜀′     (5.2) 

In the presence of uncertainty, the policymaker is assumed to minimize the expected value of the 
loss function given by: 

𝐿𝐿 = �1
2
�E{(𝑢𝑢�2 + 𝜋𝜋�2} = �1

2
� ((𝑢𝑢�2 + 𝜋𝜋�2) + (1 + 𝜏𝜏2)𝜎𝜎𝜂𝜂′

2 + 𝜎𝜎𝜀𝜀′
2  ) )    (5.3) 

Similar to the baseline model without uncertainty, the optimal economic outcomes line is given by: 

𝑢𝑢� =  𝜏𝜏𝜋𝜋�            (5.4) 

Where 𝑢𝑢�  𝑎𝑎𝑎𝑎𝑎𝑎 𝜋𝜋�  are the values of the unemployment and inflation gaps prior to the second round 
shocks, 𝜂𝜂′𝑎𝑎𝑎𝑎𝑎𝑎 𝜀𝜀′.  The optimal values for these “ex-ante” variables are given by: 

𝑢𝑢� =  𝜏𝜏(𝛿𝛿 +  𝜀𝜀)/(1 + 𝜏𝜏2)         (5.5) 

𝜋𝜋� =  (𝛿𝛿 +  𝜀𝜀)/(1 + 𝜏𝜏2)         (5.6) 

𝑖𝑖 − 𝑖𝑖∗ =
�𝜏𝜏𝛼𝛼�(𝛿𝛿+ 𝜀𝜀)

1+𝜏𝜏2
− η/α         (5.7) 

The upshot here is that these equations are identical to those for the baseline model in the absence 
of uncertainty.  Note that uncertainty does affect the level of the loss function as shown in (5.3).  
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However, this type of uncertainty just results in a constant in the loss function and thus has no 
effect on the optimal solutions.  This is the so-called “certainty equivalence” principle. 

Parameter Uncertainty and the Attenuation Principle 
The type of uncertainty discussed above focused on uncertainty about “additive” factors in the 
underlying economic model.  Another type of uncertainty that has attracted a great deal of attention 
focuses on uncertainty about factors that enter the model in a nonlinear fashion.  To prominent 
examples of this type of uncertainty are uncertainty about the slope of the IS curve and uncertainty 
about the slope of the Phillips curve.  These two cases are discussed in more detail below. 

Uncertainty about the Slope of the IS Curve 
Suppose that the policymaker is uncertain about the slope of the IS curve and must set the stance of 
policy before that uncertainty is resolved.  One way of modeling this type of uncertainty is to specify 
the slope coefficient as:  

𝛼𝛼 = 𝛼𝛼� + 𝛼𝛼�𝑤𝑤𝛼𝛼           (5.8) 

With this specification, the coefficient 𝛼𝛼 has a fixed mean 𝛼𝛼� and variance equal to 𝛼𝛼�2𝜎𝜎𝛼𝛼2.  To 
simplify some of the equations, here we simply assume that the gap between inflation expectations 
and the target inflation rate is equal to zero.  The equation for the IS curve then becomes: 

𝑢𝑢� = 𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢∗ = 𝛼𝛼(𝑖𝑖 − 𝜋𝜋𝑒𝑒 − 𝑟𝑟∗) + 𝜂𝜂 = 𝛼𝛼�(𝑖𝑖 − (𝑟𝑟∗ + 𝜋𝜋∗)) + 𝜂𝜂 + 𝛼𝛼�(𝑖𝑖 − 𝑖𝑖∗)𝑤𝑤𝛼𝛼   (5.9) 

The Phillips curve equation is: 

𝜋𝜋� = 𝜋𝜋 − 𝜋𝜋∗ = −𝜏𝜏𝑢𝑢� + 𝜀𝜀 = 𝜋𝜋� − 𝜏𝜏𝛼𝛼�(𝑖𝑖 − 𝑖𝑖∗)𝑤𝑤𝛼𝛼      (5.10) 

It is convenient to write the inflation and output gaps in terms of the variables that are known at the 
time the policymaker chooses a setting for the interest rate and those that are not.  These two values 
are given in (5.11) and (5.12) below. 

𝑢𝑢� =  E{𝑢𝑢�} = 𝛼𝛼�(𝑖𝑖 − (𝑟𝑟∗ + 𝜋𝜋∗)) + 𝜂𝜂        (5.11) 

𝜋𝜋� =  E{𝜋𝜋�} = −𝜏𝜏𝑢𝑢� + 𝜀𝜀          (5.12) 

The policymaker is assumed to minimize the expected value of the loss function which can be 
written as: 

𝐿𝐿 = �1
2
�E{(𝑢𝑢�2 + 𝜋𝜋�2) = �1

2
� ((𝑢𝑢�2 + 𝜋𝜋�2) + 𝛼𝛼�2(1 + 𝜏𝜏2)𝜎𝜎𝛼𝛼2(𝑖𝑖 − 𝑖𝑖∗)2)     (5.13) 

The form of this expression clarifies the way in which uncertainty about the slope coefficient affects 
the incentives faced by the central bank.  Now the uncertainty term entering the loss function is 
affected by the central bank’s choice of the policy rate gap 𝑖𝑖 − 𝑖𝑖∗.  Intuitively, if there is uncertainty 
about the slope coefficient in the IS curve, policymakers can mitigate that uncertainty by keeping the 
magnitude of the interest rate gap close to zero.  The first order condition in this case is: 

 𝛼𝛼�(𝑢𝑢� − τ𝜋𝜋�) + 𝛼𝛼�2(1 + 𝜏𝜏2)𝜎𝜎𝛼𝛼2(𝑖𝑖 − 𝑖𝑖∗) = 0         (5.14) 

This can be further rewritten as: 
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(𝑢𝑢� − τ𝜋𝜋�) + (1 + 𝜏𝜏2)𝜎𝜎𝛼𝛼2(𝑢𝑢� − 𝜂𝜂) = 0         (5.15) 

Which leads to an expression for the optimal economic outcomes line: 

𝜋𝜋� = (1
𝜏𝜏
)((1 + (1 + 𝜏𝜏2)𝜎𝜎𝛼𝛼2)𝑢𝑢� − (1 + 𝜏𝜏2)𝜎𝜎𝛼𝛼2𝜂𝜂)        (5.16) 

When the uncertainty about the slope of the IS curve falls to zero, this expression collapses to the 
optimal economic outcomes line for the baseline model.  When the variance of the slope term is 
positive, the optimal economic outcomes line is steeper than in the baseline model.  That stems 
from the fact that that adjusting the policy rate in response to a shock to a Phillips curve is more 
costly than in the baseline model.  As a result, it is optimal to allow more of the inflation shock to 
show through to the level of inflation.  Conversely, a smaller portion of the inflation shock shows 
through to the unemployment rate because the central bank is not adjusting the stance of monetary 
policy as much as in the baseline model.   

Another notable aspect of equation 5.13 is that the optimal line no longer passes through the origin.  
Now the position of the optimal line is affected by the shock to the IS curve.  When there is a 
positive shock to the IS curve (𝜂𝜂 > 0), the policymaker now does not adjust the stance of policy to 
completely offset the shock as in the baseline model.  As a result, an adverse shock to the IS curve 
puts downward pressure on the optimal inflation rate and vice versa. 

As before, we can combine the optimal economic outcomes line and the Phillips curve to obtain the 
optimal solutions for the unemployment rate and inflation gaps: 

𝑢𝑢� = 𝜏𝜏𝜏𝜏/((1 + 𝜏𝜏2)(1 + 𝜎𝜎𝛼𝛼2)) + 𝜎𝜎𝛼𝛼2𝜂𝜂/(1 + 𝜎𝜎𝛼𝛼2)        (5.17) 

𝜋𝜋� = (1 + (1 + 𝜏𝜏2)𝜎𝜎𝛼𝛼2)𝜀𝜀/((1 + 𝜏𝜏2)(1 + 𝜎𝜎𝛼𝛼2)) − 𝜏𝜏𝜎𝜎𝛼𝛼2𝜂𝜂/(1 + 𝜎𝜎𝛼𝛼2)      (5.18) 

The rule for the policy rate implied by these equations is: 

𝑖𝑖 − 𝑖𝑖∗ = �1
𝛼𝛼�
� { 𝜏𝜏𝜏𝜏

(1+𝜏𝜏2)(1+𝜎𝜎𝛼𝛼2)
− 𝜂𝜂/(1 + 𝜎𝜎𝛼𝛼2)}         (5.19) 

As noted above, the coefficients in the policy rule on shocks to the IS curve and shocks to the 
Phillips curve are both smaller than in the baseline model.  This is the so-called “attenuation” effect.   

Uncertainty About the Slope of the Phillips Curve 
Following the same approach, one can also examine the implication of uncertainty about the slope 
of the Phillips Curve.  In this case, the slope parameter could be written as: 

τ= 𝜏𝜏̅ + 𝜏𝜏̅𝑤𝑤𝜏𝜏           (5.20) 

With that specification, the IS curve would be unchanged while the Phillips Curve can be written as 
in equation (5.19).  We assume inflation expectations equal the target rate. 

𝑢𝑢� = 𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢∗ = 𝛼𝛼(𝑖𝑖 − 𝜋𝜋𝑒𝑒 − 𝑟𝑟∗) + 𝜂𝜂 = 𝛼𝛼(𝑖𝑖 − (𝑟𝑟∗ + 𝜋𝜋∗)) + 𝜂𝜂    (5.21) 

𝜋𝜋� = 𝜋𝜋 − 𝜋𝜋∗ = −𝜏𝜏𝑢𝑢� + 𝜀𝜀 − 𝜏𝜏̅𝑢𝑢�𝑤𝑤𝜏𝜏 = 𝜋𝜋� − 𝜏𝜏̅𝑢𝑢�𝑤𝑤𝜏𝜏      (5.22) 

The expected value of the central bank loss function would then be given by: 
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𝐿𝐿 = �1
2
�E{(𝑢𝑢�2 + 𝜋𝜋�2)}= �1

2
� ((𝑢𝑢�2 + 𝜋𝜋�2) +  𝜏𝜏̅2𝑢𝑢�2𝜎𝜎𝜏𝜏2  )     (5.23) 

The expression for the optimal economic outcomes line would be: 

 𝑢𝑢�(1 + 𝜏𝜏̅2𝜎𝜎𝜏𝜏2) = 𝜏𝜏̅𝜋𝜋�          (5.24) 

If uncertainty about the slope coefficient is zero, this expression collapses to the expression for the 
optimal economic outcomes line in the baseline model.  The optimal policy choices for the 
unemployment and inflation gaps are given by: 

𝑢𝑢� =  𝜏𝜏̅ 𝜀𝜀/(1 + 𝜏𝜏̅2(1 + 𝜎𝜎𝜏𝜏2))         (5.25) 

𝜋𝜋� =  (1 + 𝜏𝜏̅2𝜎𝜎𝜏𝜏2)𝜀𝜀/(1 + 𝜏𝜏̅2(1 + 𝜎𝜎𝜏𝜏2))        (5.26) 

And the policy rule in this case is given by: 

𝑖𝑖 − 𝑖𝑖∗ = (𝜏𝜏�
α

)(𝛿𝛿 +  𝜀𝜀)/(1 + 𝜏𝜏̅2(1 + 𝜎𝜎𝜏𝜏2)) − η/α      (5.27) 

The policy rule in this case again tends to respond less aggressively to inflation shocks than in the 
baseline model because the policymaker is uncertain about how much of an effect any given change 
in the unemployment rate will have on inflation.  This risk can be mitigated by keeping the 
unemployment rate gap closer to zero than in the baseline model.  In contrast to the case with 
uncertainty about the slope of the IS curve, the policymaker continues to completely offset any 
shocks to the IS curve in order to keep the unemployment rate gap small. 

Uncertainty about UN* and R* 
The discussion above focused on the effects of uncertainty associated with exogenous shocks to the 
IS curve and Phillips Curve.  Many of the same conclusions arise in the case with uncertainty about 
parameters of the underlying economic model.  For example, consider the case when there is 
uncertainty about the neutral real rate, 𝑟𝑟∗, and the natural rate of unemployment 𝑢𝑢𝑢𝑢∗ of the form: 

𝑢𝑢𝑢𝑢∗ = 𝑢𝑢𝑢𝑢���� + 𝑤𝑤𝑢𝑢𝑢𝑢∗ and 𝑟𝑟∗ = 𝑟̅𝑟 + 𝑤𝑤𝑟𝑟∗        (5.28) 

Assume again that the shocks to the neutral rate 𝑟𝑟∗ and the natural rate of unemployment 𝑢𝑢𝑢𝑢∗ are 
not known when the policymaker chooses the level of the policy rate.  The IS curve and Phillips 
curve can then be written as: 

𝑢𝑢� = 𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢���� − 𝑤𝑤𝑢𝑢𝑢𝑢∗ = 𝛼𝛼(𝑖𝑖 − 𝜋𝜋𝑒𝑒 − 𝑟̅𝑟) + 𝜂𝜂 − 𝛼𝛼𝑤𝑤𝑟𝑟∗ 

𝑢𝑢� = 𝐸𝐸{𝑢𝑢�} = 𝛼𝛼(𝑖𝑖 − 𝜋𝜋𝑒𝑒 − 𝑟̅𝑟) + 𝜂𝜂        (5.29) 

𝜋𝜋� = 𝜋𝜋 − 𝜋𝜋∗ = −𝜏𝜏𝑢𝑢� + (𝜋𝜋𝑒𝑒 − 𝜋𝜋∗) + 𝜀𝜀 = −𝜏𝜏𝑢𝑢� + (𝜋𝜋𝑒𝑒 − 𝜋𝜋∗) + 𝜀𝜀 + 𝜏𝜏𝜏𝜏𝑤𝑤𝑟𝑟∗ = 𝜋𝜋� + 𝜏𝜏𝜏𝜏𝑤𝑤𝑟𝑟∗ (5.30)  

The policymaker in this case again minimizes the expected value of the loss function given as: 

𝐿𝐿 = �1
2
�E{(𝑢𝑢�2 + 𝜋𝜋�2)}= �1

2
� ((𝑢𝑢�2 + 𝜋𝜋�2) + (1 + 𝜏𝜏2)𝛼𝛼2𝜎𝜎

𝑤𝑤𝑟𝑟∗
2  )    (5.31) 
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The effects of uncertainty again only add a constant term to the loss function.  Moreover, because 
the shock to the natural rate passes through to the actual unemployment rate, the unemployment 
rate gap is unaffected by this shock.   

As a result, the optimality condition is unaffected and remains: 

𝑢𝑢� =  𝜏𝜏𝜋𝜋�            (5.32) 

This expression together with the Phillips curve then determines the ex-ante level of the 
unemployment rate and inflation gaps as usual: 

𝑢𝑢� =  𝜏𝜏(𝛿𝛿 +  𝜀𝜀)/(1 + 𝜏𝜏2)         (5.33) 

𝜋𝜋� =  (𝛿𝛿 +  𝜀𝜀)/(1 + 𝜏𝜏2)         (5.34) 

The interest rate rule is also identical to that for the baseline model without uncertainty. 

𝑖𝑖 − 𝑖𝑖∗ =
�𝜏𝜏𝛼𝛼�(𝛿𝛿+ 𝜀𝜀)

1+𝜏𝜏2
− η/α         (5.35) 

Contemporaneous Misperception Risks 
A basic problem confronting policymakers is that they may not have complete information about all 
shocks affecting the economy during the current period.  For example, suppose that the policymaker 
does not observe the contemporaneous values of the shock to the natural rate of unemployment, 
and the shocks to the IS curve and Phillips curve.   In this case, the policymaker can estimate the 
contemporaneous values of the natural rate of unemployment and the shocks to the IS and Phillips 
curve assuming that the means and variances of the unobserved variables are known.  As above, 
assume that the natural rate in the current period is given by 𝑢𝑢𝑢𝑢∗ = 𝑢𝑢𝑢𝑢���� + 𝑤𝑤𝑢𝑢𝑢𝑢∗ .  And assume that 
the policymaker knows the value of 𝑢𝑢𝑢𝑢���� and the variance of the shock term 𝑤𝑤𝑢𝑢𝑢𝑢∗ .  Assume also that 
the policymaker does not observe the shock to the IS curve directly but knows that the shock term 
has mean zero and variance 𝜎𝜎𝜂𝜂2.  Similarly, assume that the shock to the Phillips curves is not known 
but that it also has mean zero and variance of 𝜎𝜎𝜀𝜀2 

Then the IS curve is given by: 

𝑢𝑢� = 𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢���� − 𝑤𝑤𝑢𝑢∗ = 𝛼𝛼(𝑖𝑖 − 𝜋𝜋𝑒𝑒 − 𝑟𝑟∗) + 𝜂𝜂       (5.36) 

Collecting all the known terms on one side of the equation yields:  

𝑉𝑉 = 𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢���� − 𝛼𝛼(𝑖𝑖 − 𝜋𝜋𝑒𝑒 − 𝑟𝑟∗) = 𝜂𝜂 + 𝑤𝑤𝑢𝑢∗        (5.37) 

Similarly, the Phillips curve is given by: 

𝜋𝜋� = 𝜋𝜋 − 𝜋𝜋∗ = −𝜏𝜏𝑢𝑢� + (𝜋𝜋𝑒𝑒 − 𝜋𝜋∗) + 𝜀𝜀 = −𝜏𝜏(𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢����) + (𝜋𝜋𝑒𝑒 − 𝜋𝜋∗) + 𝜀𝜀 + 𝜏𝜏𝑤𝑤𝑢𝑢∗  (5.38) 

Again collecting the known terms on one side of the equation yields: 

𝑊𝑊 = (𝜋𝜋 − 𝜋𝜋∗) − 𝜏𝜏(𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢����) + (𝜋𝜋𝑒𝑒 − 𝜋𝜋∗) = 𝜀𝜀 + 𝜏𝜏𝑤𝑤𝑢𝑢∗      (5.39) 

By assumption everything on the left sides of 5.37 and 5.38 expression is observed.  Conditional on 
these observed values for V and W,  the expected values of 𝑤𝑤𝑢𝑢∗ , 𝜂𝜂 and 𝑤𝑤𝑢𝑢∗ are given by: 
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𝐸𝐸{𝑤𝑤𝑢𝑢∗|𝑉𝑉,𝑊𝑊} = (𝑉𝑉𝜎𝜎𝑤𝑤𝑢𝑢∗
2 𝜎𝜎𝜀𝜀2 + 𝜏𝜏𝑊𝑊𝜎𝜎𝑤𝑤𝑢𝑢∗

2 𝜎𝜎𝜂𝜂2)/(𝜎𝜎𝜀𝜀2𝜎𝜎𝜂𝜂2 + 𝜎𝜎𝑤𝑤𝑢𝑢∗
2 𝜎𝜎𝜀𝜀2 + 𝜏𝜏2𝜎𝜎𝑤𝑤𝑢𝑢∗

2 𝜎𝜎𝜂𝜂2)    (5.40) 

𝐸𝐸{𝜀𝜀|𝑉𝑉,𝑊𝑊} = 𝑊𝑊 − 𝜏𝜏𝜏𝜏{𝑤𝑤𝑢𝑢∗|𝑉𝑉,𝑊𝑊}         (5.41) 

𝐸𝐸{𝜂𝜂|𝑉𝑉,𝑊𝑊} = 𝑉𝑉 − 𝐸𝐸{𝑤𝑤𝑢𝑢∗|𝑉𝑉,𝑊𝑊}         (5.42) 

These expressions can be obtained by maximizing the likelihood function for the three shocks 
subject to constraints of 5.37 and 5.39.  Alternatively, the coefficients on V and W in equation 5.40 
can be calculated as the regression coefficients of 𝑤𝑤𝑢𝑢∗ on the variables 𝜂𝜂 + 𝑤𝑤𝑢𝑢∗  and  𝜀𝜀 + 𝜏𝜏𝑤𝑤𝑢𝑢∗. 

Regarding equation 5.40, it’s useful to note that when the variance of the shock to the natural 
unemployment rate falls to zero, the expected value of the shock also falls to zero.  And by 
equations 5.41 and 5.42, the values of the shocks to the Phillips curve and IS curve may then also be 
determined exactly.  Another aspect of equation 5.40 to note is that the value of the expected values 
of the shocks does not depend on the magnitude of the three variances—only the relative variances 
of the three shocks matter.  For example, equation 5.40 can be expressed equivalently as: 

𝐸𝐸{𝑤𝑤𝑢𝑢∗|𝑉𝑉,𝑊𝑊} = (𝑉𝑉 + 𝜏𝜏𝑊𝑊(𝜎𝜎𝜂𝜂
2

𝜎𝜎𝜀𝜀2
))/(1 + ( 𝜎𝜎𝜂𝜂2

𝜎𝜎𝑤𝑤𝑢𝑢∗
2 ) + 𝜏𝜏2(𝜎𝜎𝜂𝜂

2

𝜎𝜎𝜀𝜀2
))     (5.43) 

The objective function then is given by: 

𝐿𝐿 = �1
2
�E{(𝑢𝑢�2 + 𝜋𝜋�2)|𝑉𝑉,𝑊𝑊}            (5.44) 

𝑢𝑢� = 𝐸𝐸{𝑢𝑢�|𝑉𝑉,𝑊𝑊} = 𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢���� − E{𝑤𝑤𝑢𝑢𝑢𝑢∗|𝑉𝑉,𝑊𝑊}       (5.45) 

𝜋𝜋� = 𝐸𝐸{𝜋𝜋�|𝑉𝑉,𝑊𝑊} = −𝜏𝜏𝑢𝑢� + (𝜋𝜋𝑒𝑒 − 𝜋𝜋∗) + E{𝜀𝜀|𝑉𝑉,𝑊𝑊} 

The optimal economic outcomes line again is given by: 

𝑢𝑢� = 𝜏𝜏𝜋𝜋�  

𝑖𝑖 − 𝑖𝑖∗ =
�𝜏𝜏𝛼𝛼�(𝛿𝛿+ E{𝜀𝜀|𝑉𝑉,𝑊𝑊})

1+𝜏𝜏2
− E{η|V,W}

α
=

�𝜏𝜏𝛼𝛼�(𝛿𝛿+ E{𝜀𝜀|𝑉𝑉,𝑊𝑊})

1+𝜏𝜏2
− 𝐸𝐸{𝜂𝜂|𝑉𝑉,𝑊𝑊}

α
     (5.46) 

The end result in 5.46 is that the policy rule has a form identical to that in the baseline model.  The 
only difference is that now the actual values of the shocks to the Phillips curve and IS curve are 
replaced with their estimated values conditional on V and W as shown above in equations 5.40 to 
5.42.  

Take 6: Uncertainty and Asymmetric Objective Functions 
A basic conclusion in the discussion above is that uncertainty about “additive” factors affecting the 
economy does not affect optimal policy choices.  This “certainty equivalence” result rests 
importantly on the assumed quadratic form of the central bank’s objective function and the linear 
structure of the economic model.  Below we consider how uncertainty regarding “additive” factors 
may affect optimal policy outcomes for cases in which policymakers’ preferences depart from the 
standard quadratic specification.  For convenience, the analysis below assumes that inflation 
expectations are equal to the central bank’s target rate. 
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Asymmetric Inflation Hawk 
One departure from the standard quadratic specification would be the asymmetric loss function 
discussed above for an inflation hawk.  A policymaker with these preferences would attach greater 
weight to outcomes with inflation above target relative to outcomes with inflation below target.  As 
above, we assume that the unemployment rate and inflation rate gaps are subject to a second round 
of shocks after the policymaker has committed to the choice of policy rate in that period.   

𝑢𝑢� = 𝑢𝑢� + 𝜂𝜂′       

𝜋𝜋� = 𝜋𝜋� − 𝜏𝜏𝜏𝜏′ + 𝜀𝜀′ 

Formally, the specification of the loss function in this case would be: 

𝐸𝐸{𝐿𝐿} = �1
2
� 𝐸𝐸{𝑢𝑢�2 + 𝛾𝛾𝑏𝑏𝜋𝜋�2𝐼𝐼(𝜋𝜋� < 0)  + 𝛾𝛾𝑎𝑎𝜋𝜋�2𝐼𝐼(𝜋𝜋� ≥ 0)} =  

�1
2
� �𝑢𝑢�2 + 𝜎𝜎𝜂𝜂′2 � + �1

2
� 𝛾𝛾𝑏𝑏 ∫ (𝜋𝜋�2𝜈𝜈

−∞ + 2𝜎𝜎𝑧𝑧𝜋𝜋�𝑢𝑢𝑧𝑧 + 𝜎𝜎𝑧𝑧2𝑢𝑢𝑧𝑧2) +  �1
2
� 𝛾𝛾𝑎𝑎 ∫ (𝜋𝜋�2∞

𝑣𝑣 + 2𝜎𝜎𝑧𝑧𝜋𝜋�𝑢𝑢𝑧𝑧 + 𝜎𝜎𝑧𝑧2𝑢𝑢𝑧𝑧2) =  

�1
2
� �𝑢𝑢�2 + 𝜎𝜎𝜂𝜂′2 � +   

�1
2
� 𝛾𝛾𝑏𝑏 �𝜎𝜎𝑧𝑧2𝜈𝜈2N(ν) +  2𝜎𝜎𝑧𝑧2𝜈𝜈𝜈𝜈(𝜈𝜈) + 𝜎𝜎𝑧𝑧2�𝑁𝑁(𝑣𝑣) − 𝑣𝑣𝑣𝑣(𝑣𝑣)��+  

(1
2
)𝛾𝛾𝑎𝑎  �𝜎𝜎𝑧𝑧2𝜈𝜈2�1 − N(ν)� −  2𝜎𝜎𝑧𝑧2𝜈𝜈𝜈𝜈(𝜈𝜈) + 𝜎𝜎𝑧𝑧2�1 − 𝑁𝑁(𝑣𝑣) + 𝑣𝑣𝑣𝑣(𝑣𝑣)��    (6.1) 

where 

𝑣𝑣 = −𝜋𝜋�/𝜎𝜎𝑧𝑧  

𝑧𝑧 = −𝜏𝜏𝜏𝜏′ + 𝜀𝜀′  

The equation for the optimal economic outcomes line is given by the expression: 

𝑢𝑢� = 𝜏𝜏𝛾𝛾𝑎𝑎𝜋𝜋� + 𝜏𝜏(𝛾𝛾𝑏𝑏 − 𝛾𝛾𝑎𝑎){�𝜋𝜋�𝑁𝑁(𝑣𝑣)−𝜎𝜎𝑧𝑧𝑛𝑛(𝑣𝑣)�}      (6.2) 

Note that if the weights on positive and negative inflation gaps are equal, then this expression 
reduces to the equation for the optimal economic outcomes line in the baseline model. 

Asymmetric Unemployment Dove 
A similar departure from the standard quadratic specification would be the asymmetric loss function 
discussed above for an unemployment dove.  A policymaker with these preferences would attach 
greater weight to outcomes with unemployment above target relative to outcomes with 
unemployment below target.  Formally, the specification of the loss function in this case would be: 

𝐸𝐸{𝐿𝐿} = �1
2
� 𝐸𝐸{𝜋𝜋�2 + 𝜃𝜃𝑏𝑏𝑢𝑢�2𝐼𝐼(𝑢𝑢� < 0)  + 𝜃𝜃𝑎𝑎𝑢𝑢�2𝐼𝐼(𝑢𝑢� ≥ 0)} =  

�
1
2
� (𝜋𝜋�2 + 𝜎𝜎𝑧𝑧2) + �

1
2
� 𝜃𝜃𝑏𝑏 � (𝑢𝑢�2

𝜈𝜈

−∞
+ 2𝜎𝜎𝜂𝜂′𝑢𝑢�𝑢𝑢𝜂𝜂′ + 𝜎𝜎𝑧𝑧2𝑢𝑢𝜂𝜂′

2 ) + 

 �1
2
� 𝜃𝜃𝑎𝑎 ∫ (𝑢𝑢�2∞

𝑣𝑣 + 2𝜎𝜎𝜂𝜂′𝑢𝑢�𝑢𝑢𝜂𝜂′ + 𝜎𝜎𝜂𝜂′
2 𝑢𝑢𝜂𝜂′

2 ) =  
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�1
2
� (𝜋𝜋�2 + 𝜎𝜎𝑧𝑧2) +  

�1
2
� 𝜃𝜃𝑏𝑏 �𝜎𝜎𝜂𝜂′

2 𝜈𝜈2N(ν) +  2𝜎𝜎𝜂𝜂′
2 𝜈𝜈𝜈𝜈(𝜈𝜈) + 𝜎𝜎𝜂𝜂′

2 �𝑁𝑁(𝑣𝑣) − 𝑣𝑣𝑣𝑣(𝑣𝑣)�� +  

(1
2
)𝜃𝜃𝑎𝑎  �𝜎𝜎𝜂𝜂′

2 𝜈𝜈2�1 − N(ν)� −  2 𝜎𝜎𝜂𝜂′
2 𝜈𝜈𝜈𝜈(𝜈𝜈) + 𝜎𝜎𝜂𝜂′

2 �1 − 𝑁𝑁(𝑣𝑣) + 𝑣𝑣𝑣𝑣(𝑣𝑣)��   (6.3) 

The optimal economic outcomes line in this case takes the form: 

𝜏𝜏𝜋𝜋� = 𝜃𝜃𝑎𝑎𝑢𝑢� + (𝜃𝜃𝑏𝑏 − 𝜃𝜃𝑎𝑎) �𝑢𝑢�𝑁𝑁(𝑣𝑣)−𝜎𝜎𝜂𝜂′𝑛𝑛(𝑣𝑣)�       (6.4) 

𝑣𝑣 = −𝑢𝑢�/𝜎𝜎𝜂𝜂′  

Note that if the weights on unemployment gaps above and below zero are equal, this expression 
collapses to the expression for the optimal economic outcomes line in the baseline model. 

Take 7: Appealing to a Higher Power--Tail Risk Avoidance 
The discussion above focuses on uncertainty about additive factors with asymmetric objective 
functions.  In contrast to the case for symmetric quadratic objective functions, uncertainty about 
additive factors does affect the optimal policy outcomes in this case.  However, uncertainty about 
additive factors can matter even with objective functions that are symmetric.  For example, consider 
the case when the policymaker’s objective function is based on unemployment rate gaps and 
inflation gaps raised to the fourth power.  Such preferences might be consistent with policymakers 
that are especially concerned about very large inflation gaps or unemployment rate gaps. 

In the absence of uncertainty, this type of objective function yields solutions that are very similar to 
those for the baseline model.  The objective function is given by: 

𝐿𝐿 = (1
4
)(𝑢𝑢�4 + 𝜋𝜋�4)          (7.1) 

The optimal economic outcomes line is given by: 

𝑢𝑢�3 − τ𝜋𝜋�3 = 0           (7.2) 

or 

𝜋𝜋� = 𝜏𝜏−1/3𝑢𝑢�           (7.3) 

And the optimal policy choices for the unemployment rate gaps and inflation gaps are given by: 

𝑢𝑢� =  𝜏𝜏3𝜀𝜀/(1 + 𝜏𝜏4)          (7.4) 

𝜋𝜋� =  𝜏𝜏8/3𝜀𝜀/(1 + 𝜏𝜏4)          (7.5) 

As in the baseline model, the optimal economic outcomes line is a straight line through the origin 
and all of the basic properties of the baseline model hold.  When the IS curve and Phillips curve are 
subjected to second round additive shocks, however, the solution becomes considerably more 
complicated.  In this case, the expected value of the objective function is given by: 

𝐸𝐸{𝐿𝐿} = �1
4
�E{𝑢𝑢�4 + 𝜋𝜋�4} = �1

4
� (𝑢𝑢�4 + 6𝑢𝑢�2𝜎𝜎𝑢𝑢2 + 4𝑢𝑢�𝜎𝜎𝑢𝑢3𝑠𝑠𝑢𝑢 + 𝜎𝜎𝑢𝑢4𝑘𝑘𝑢𝑢) +  
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�1
4
� (𝜋𝜋�4 + 6𝜋𝜋�2𝜎𝜎𝜋𝜋2 + 4𝜋𝜋�𝜎𝜎𝜋𝜋3𝑠𝑠𝜋𝜋 + 𝜎𝜎𝜋𝜋4𝑘𝑘𝜋𝜋)       (7.6)  

Where 

𝑠𝑠𝑢𝑢, 𝑠𝑠𝜋𝜋 are measures of skew for the shocks to the IS curve and Phillips curve and  

𝑘𝑘𝑢𝑢, 𝑘𝑘𝜋𝜋 are measures of the kurtosis for these same shocks. 

The optimal economic outcomes line in this case is given by: 

(𝑢𝑢�3 + 3𝑢𝑢�𝜎𝜎𝑢𝑢2 + 𝜎𝜎𝑢𝑢3𝑠𝑠𝑢𝑢) = τ(𝜋𝜋�3 + 3𝜋𝜋�𝜎𝜎𝜋𝜋2 + 𝜎𝜎𝜋𝜋3𝑠𝑠𝜋𝜋)      (7.7) 

This is a particular type of cubic equation—a so-called “depressed cubic”—with a solution given by: 

𝜋𝜋�3 + 3𝜋𝜋�𝜎𝜎𝜋𝜋2 = (𝑢𝑢�3 + 3𝑢𝑢�𝜎𝜎𝑢𝑢2 + 𝜎𝜎𝑢𝑢3𝑠𝑠𝑢𝑢) − 𝜎𝜎𝜋𝜋3𝑠𝑠𝜋𝜋 = 𝐷𝐷      (7.8) 

𝑎𝑎3 − 𝑏𝑏3 = 𝐷𝐷           (7.9) 

𝑎𝑎𝑎𝑎 = 𝜎𝜎𝜋𝜋2           (7.10) 

𝑎𝑎 = ((D + �𝐷𝐷2+4𝜎𝜎𝜋𝜋6�
1
2

2
)1/3  and 𝑏𝑏 = 𝜎𝜎𝜋𝜋2/𝑎𝑎 

Figure 7.2 displays a range of optimal economic outcomes lines that can arise for different settings 
of the relative variances of the shocks and the skews to the shocks.  In general, when the variance of 
the unemployment rate shocks is relative large,that tends to an optimal economic outcomes line that 
is very steep around an unemployment rate gap of zero.  That is because deviations of the 
unemployment rate gap from zero pose greater risks of an elevated ex-post value of the 
unemployment rate gap this is very costly.  A skew in the distribution of the shocks toward high or 
low unemployment rates shifts the optimal economic outcomes line to the left or the right.  This 
reflects the incentives for the policymaker to reduce the odds of an especially large ex-post value of 
the unemployment rate shocks.  Analogous results are shown when the variance of inflation is 
relative large and when there are skews in the shocks to the inflation rate.  

Take 8: Extended Baseline Model and the Zero Lower Bound Problem 
The discussion above focused on the role of uncertainty in the baseline model and with alternative 
specification of the central bank’s objective function.  This section focuses on a “nonlinearity” in the 
economy that has received a great deal of attention over recent years—the zero lower bound on 
nominal interest rates.  In order to study this in more detail, it is helpful to expand the baseline 
model to encompass two periods.  Moreover, we modify the IS curve in the second period so that 
the unemployment rate in the first period affects the initial conditions in period 2.   

Structure of Two-Period Model 
In the two period model, the IS curve is identical to the baseline model specification except that the 
unemployment rate from the first period influences the initial conditions in that period.  

𝑢𝑢�2 = 𝑢𝑢𝑢𝑢2 − 𝑢𝑢𝑢𝑢∗ = 𝑢𝑢�1 + 𝛼𝛼(𝑖𝑖2 − 𝜋𝜋𝑒𝑒 − 𝑟𝑟∗) + 𝜂𝜂2      (8.1) 

𝜋𝜋�2 = 𝜋𝜋2 − 𝜋𝜋∗ = −𝜏𝜏𝑢𝑢�2 + 𝜀𝜀2         (8.2) 
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As before, the central bank minimizes a standard quadratic loss function.  Starting in period 2, 
optimal policy looks a great deal like optimal policy in the baseline model. 

𝐿𝐿2 = (1
2
)(𝑢𝑢�22 + 𝜋𝜋�22)          (8.3) 

The unemployment and inflation rate gaps have the same form as the baseline model.  This result 
obtains because the central bank can set the funds rate in period 2 to offset any influence from the 
unemployment rate in period 1.   

𝑢𝑢�2 =  𝜏𝜏(𝛿𝛿 +  𝜀𝜀2)/(1 + 𝜏𝜏2)         (8.4) 

𝜋𝜋�2 =  (𝛿𝛿 + 𝜀𝜀2)/(1 + 𝜏𝜏2)         (8.5) 

The policy rule then is: 

𝑖𝑖2 − 𝑖𝑖∗ =
�𝜏𝜏𝛼𝛼�(𝛿𝛿+ 𝜀𝜀2)

1+𝜏𝜏2
− (𝑢𝑢�1 + 𝜂𝜂2)/α        (8.6) 

Plugging these expressions back into the period 2 loss function and computing expectations based 
on the information set in period 1 yields.   

𝐸𝐸{𝐿𝐿2} = 𝐸𝐸{�1
2
� (𝑢𝑢�22 + 𝜋𝜋�22)} = (1

2
)𝜎𝜎𝜀𝜀2/(1 + 𝜏𝜏2)      (8.7) 

This is just a constant, so the minimization of the loss function in period 1 looks exactly like that in 
the baseline model. 

𝐿𝐿 = 𝐿𝐿1 + 𝐿𝐿2 = �1
2
� (𝑢𝑢�12 + 𝜋𝜋�12) + 𝐿𝐿2           (8.8) 

As a result, the solutions for the optimal choices for the unemployment rate and inflation in period 1 
are identical to the baseline model as is the policy rule for setting the funds rate in period 1. 

𝑢𝑢�1 =  𝜏𝜏(𝛿𝛿 +  𝜀𝜀1)/(1 + 𝜏𝜏2)         (8.9) 

𝜋𝜋�1 =  (𝛿𝛿 + 𝜀𝜀1)/(1 + 𝜏𝜏2)         (8.10) 

𝑖𝑖1 − 𝑖𝑖∗ =
�𝜏𝜏𝛼𝛼�(𝛿𝛿+ 𝜀𝜀1)

1+𝜏𝜏2
− 𝜂𝜂1/α         (8.11) 

Characterizing the ZLB 
The solution is much more complicated, however, if the central bank is constrained by the zero 
lower bound on nominal interest rates.  Returning to equation (8.6), cases in which the 
unconstrained optimal interest rate in period 2 is less than or equal to zero are given by: 

𝑖𝑖2 = 𝑖𝑖∗ +
�𝜏𝜏𝛼𝛼�(𝛿𝛿+ 𝜀𝜀2)

1+𝜏𝜏2
− (𝑢𝑢�1 + 𝜂𝜂2)/α ≤ 0       (8.12) 

This expression, in turn, implies that the zero lower bound will be binding whenever: 
𝜏𝜏𝜏𝜏2
1+𝜏𝜏2

− 𝜂𝜂2 ≤ 𝑢𝑢�1 − α𝑖𝑖∗          (8.13) 
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Assuming that the shocks to the IS curve and Phillips curve are normally distributed, the probability 
that the zero lower bound is binding is given by: 

 N((𝑢𝑢�1 − α𝑖𝑖∗)/𝜎𝜎𝑧𝑧)          (8.14) 

where 

𝑧𝑧 = 𝜏𝜏𝜏𝜏2
1+𝜏𝜏2

− 𝜂𝜂2           (8.15) 

All else equal, higher unemployment in period increase the likelihood of encountering the zero lower 
bound.  Similarly, lower levels of the long-run normal funds rate, 𝑖𝑖∗, or the level of the slope 
coefficient for the IS curve, α, also increase the likelihood of encountering the zero lower bound.  In 
addition, a higher variance for the shocks to the IS curve and Phillips curve in period 2 also increase 
the ZLB risk.  Intuitively, high values of the unemployment rate from the prior period would imply 
that the central bank would need to reduce the funds rate by a large amount to offset that effect.  
But that increases ZLB risk.  Similarly, higher variance shocks in period 2 increase the likelihood of 
circumstances that could lead central bank to ease policy. 

Take 9: Risk Management Near the Zero Lower Bound 
In cases when the zero lower bound is binding, the unemployment rate and inflation rate are 
determined at the intersection of the IS curve and Phillips curve with the funds rate set at zero: 

𝑢𝑢�2𝑐𝑐 = 𝑢𝑢𝑢𝑢2𝑐𝑐 − 𝑢𝑢𝑢𝑢∗ = 𝑢𝑢�1 − 𝛼𝛼𝑖𝑖∗ + 𝜂𝜂2        (9.1) 

𝜋𝜋�2𝑐𝑐 = 𝜋𝜋2𝑐𝑐 − 𝜋𝜋∗ = −𝜏𝜏𝑢𝑢�2𝑐𝑐 + 𝜀𝜀2         (9.2) 

The expected value of the loss function in period 2 is given by: 

𝐸𝐸{𝐿𝐿2} = 𝐸𝐸 ��1
2
� (𝑢𝑢�22 + 𝜋𝜋�22)� = ∬ �1

2
� (𝑢𝑢�22 + 𝜋𝜋�22)∞

𝑧𝑧=𝜑𝜑 + ∬ �1
2
� �𝑢𝑢�2𝑐𝑐

2 + 𝜋𝜋�2𝑐𝑐
2�𝜑𝜑

𝑧𝑧=−∞   (9.3) 

The first term in this expression integrates across all outcomes in which the zero lower bound is not 
binding and the second integrates across all shock combinations for which the zero lower bound is 
binding.  Computing this expectation is aided by orthogonalizing the underlying shocks as: 

𝑧𝑧 = � 1
1+𝜏𝜏2

� 𝜀𝜀 − 𝜂𝜂  

𝜀𝜀 = 𝛽𝛽𝜀𝜀𝑧𝑧 + 𝑥𝑥   

𝑥𝑥 = 𝜀𝜀 − 𝛽𝛽𝜀𝜀𝑧𝑧  

𝜂𝜂 = 𝛽𝛽𝜂𝜂𝑧𝑧 + 𝛾𝛾𝜂𝜂𝑥𝑥  

where 

𝛽𝛽𝜀𝜀 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝜀𝜀,𝑧𝑧)
𝜎𝜎𝑧𝑧2

= � 1
1+𝜏𝜏2

� (𝜎𝜎𝜀𝜀
2

𝜎𝜎𝑧𝑧2
)  

𝛽𝛽𝜂𝜂 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝜂𝜂,𝑧𝑧)
𝜎𝜎𝑧𝑧2

= −(𝜎𝜎𝜂𝜂
2

𝜎𝜎𝑧𝑧2
)  
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𝛾𝛾𝜂𝜂 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝜂𝜂,𝑥𝑥)
𝜎𝜎𝑥𝑥2

= 𝛽𝛽𝜀𝜀(𝜎𝜎𝜂𝜂
2

𝜎𝜎𝑥𝑥2
)  

With this orthogonalization, integrating across realizations of 𝑧𝑧/𝜎𝜎𝑧𝑧 that are associated with a binding 
ZLB constraint involves computing the expectations for values of 𝑧𝑧/𝜎𝜎𝑧𝑧 that are above and below 
the critical value: 

𝜑𝜑 = (𝑢𝑢�1 − 𝛼𝛼(𝑟𝑟∗ + 𝜋𝜋∗))/𝜎𝜎𝑧𝑧         (9.4) 

The integration over the orthogonal error term 𝑥𝑥 is taken over the full range from minus to plus 
infinity. 

Tedious algebra leads to an expression for the first term of equation (A.102) as: 

∬ �1
2
� (𝑢𝑢�22 + 𝜋𝜋�22)∞

𝑧𝑧=𝜑𝜑 = ( 1
1+𝜏𝜏2

)(�𝛽𝛽𝜀𝜀2𝜎𝜎𝑧𝑧2�1 − 𝑁𝑁(𝜑𝜑) + 𝜑𝜑𝜑𝜑(𝜑𝜑)� + �1 − 𝑁𝑁(𝜑𝜑)�𝜎𝜎𝑥𝑥2�)  (9.5) 

Similarly, the equation for the second term in the expression can be written as: 

∬ �1
2
� �𝑢𝑢�2𝑐𝑐

2 + 𝜋𝜋�2𝑐𝑐
2�𝜑𝜑

𝑧𝑧=−∞ = A + B        (9.6) 

with 

A = �𝜎𝜎𝑧𝑧2𝜑𝜑2 + 𝛾𝛾𝜂𝜂2𝜎𝜎𝑥𝑥2�𝑁𝑁(𝜑𝜑) − 2𝛽𝛽𝜂𝜂𝜎𝜎𝑧𝑧2𝜑𝜑𝜑𝜑(𝜑𝜑) + 𝛽𝛽𝜂𝜂2𝜎𝜎𝑧𝑧2(𝑁𝑁(𝜑𝜑) − 𝜑𝜑𝜑𝜑(𝜑𝜑))   (9.7) 

B = (𝜏𝜏2𝜎𝜎𝑧𝑧2𝜑𝜑2 + 𝑞𝑞𝑥𝑥2𝜎𝜎𝑥𝑥2)𝑁𝑁(𝜑𝜑) − 2𝜏𝜏𝑞𝑞𝑧𝑧𝜎𝜎𝑧𝑧2𝜑𝜑𝜑𝜑(𝜑𝜑) + 𝑞𝑞𝑧𝑧2𝜎𝜎𝑧𝑧2(𝑁𝑁(𝜑𝜑) − 𝜑𝜑𝜑𝜑(𝜑𝜑))   (9.8) 

𝑞𝑞𝑧𝑧 = (𝛽𝛽𝜀𝜀 − 𝜏𝜏𝜏𝜏𝜂𝜂) 

𝑞𝑞𝑥𝑥 = (1 − 𝜏𝜏𝛾𝛾𝜂𝜂) 

Combining these results, the expected value of the loss function in period 2 based on the 
information set in period 1 is: 

𝐸𝐸{𝐿𝐿2} = � 1
1+𝜏𝜏2

� �𝛽𝛽𝜀𝜀2𝜎𝜎𝑧𝑧2�1 − 𝑁𝑁(𝜑𝜑) + 𝜑𝜑𝜑𝜑(𝜑𝜑)� + �1 − 𝑁𝑁(𝜑𝜑)�𝜎𝜎𝑥𝑥2� +  

�𝜎𝜎𝑧𝑧2𝜑𝜑2 + 𝛾𝛾𝜂𝜂2𝜎𝜎𝑥𝑥2�𝑁𝑁(𝜑𝜑) − 2𝛽𝛽𝜂𝜂𝜎𝜎𝑧𝑧2𝜑𝜑𝜑𝜑(𝜑𝜑) + 𝛽𝛽𝜂𝜂2𝜎𝜎𝑧𝑧2�𝑁𝑁(𝜑𝜑) − 𝜑𝜑𝜑𝜑(𝜑𝜑)� +   

(𝜏𝜏2𝜎𝜎𝑧𝑧2𝜑𝜑2 + 𝑞𝑞𝑥𝑥2𝜎𝜎𝑥𝑥2)𝑁𝑁(𝜑𝜑) − 2𝜏𝜏𝑞𝑞𝑧𝑧𝜎𝜎𝑧𝑧2𝜑𝜑𝜑𝜑(𝜑𝜑) + 𝑞𝑞𝑧𝑧2𝜎𝜎𝑧𝑧2(𝑁𝑁(𝜑𝜑) − 𝜑𝜑𝜑𝜑(𝜑𝜑))   (9.9) 

The derivative of this expression with respect to 𝑢𝑢�1 given by: 

𝛹𝛹(𝜑𝜑) = (1 + 𝜏𝜏2)𝜑𝜑𝜑𝜑(𝜑𝜑) − 𝛽𝛽𝜂𝜂(1 + 𝜏𝜏2)𝑛𝑛(𝜑𝜑) + 𝜏𝜏𝜏𝜏𝜀𝜀𝑛𝑛(𝜑𝜑) 

The optimal policy condition then is: 

𝑢𝑢�1 + 𝛹𝛹 �𝑢𝑢�1−𝛼𝛼(𝑟𝑟∗+𝜋𝜋∗)
𝜎𝜎𝑧𝑧

� = 𝜏𝜏𝜋𝜋�1         (9.10) 

Where  

𝛹𝛹(𝑢𝑢�1) = 𝑑𝑑(𝐸𝐸{𝐿𝐿2})/𝑑𝑑𝑢𝑢�1         (9.11) 
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The function 𝛹𝛹(𝑢𝑢�1) is positive and increasing.  As a result, the optimal economic outcomes line 
crosses the x-axis with an unemployment rate gap below zero and passes through quadrant 2 as 
shown in figure 9.1.  This reflects the incentives for the policymaker to hedge against the risk of 
being constrained by the zero lower bound in period 2. 
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