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Abstract

We estimate a county-level model of household delinquency and use it to conduct
“stress tests” of household debt. Applying house price and unemployment rate shocks
from Comprehensive Capital Analysis Review (CCAR) stress tests, we find that fore-
casted delinquency rates for the recent stock of debt are moderately lower than for the
stock of debt before the 2007-09 financial crisis, given the same set of shocks. This
decline in expected delinquency rates under stress reflects an improvement in debt-to-
income ratios and an increase in the share of debt held by borrowers with relatively
high credit scores. Under an alternative scenario where the size of house price shocks
depends on housing valuations, we forecast a much lower delinquency rate than oc-
curred during the crisis, reflecting more reasonable housing valuations than pre-crisis.
Stress tests using other scenarios for the path of house prices and unemployment also
support the conclusion that household debt currently poses a lower risk to financial
stability than before the financial crisis.

JEL Codes: D14, E37, G01

Keywords: loan default, stress test, household debt, delinquency

∗neil.bhutta@frb.gov, jesse.bricker@frb.gov, lisa.j.dettling@frb.gov, steven.m.laufer@frb.gov,
jimmy.kelliher@frb.gov. The analysis and conclusions set forth are those of the authors and do not
indicate concurrence by other members of the research staff or the Board of Governors. We would like to
thank Kathy Bi for excellent research assistance, and thank Raven Molloy, Kevin Moore, Michael Palumbo,
Shane Sherlund, Robert Sarama, John Sabelhaus and audiences at the Federal Reserve Board and the
Federal Reserve Bank of Philadelphia for helpful comments and discussions.

1



1 Introduction

From 2000 to 2008, nominal debt owed by U.S. households doubled from about $7 trillion to

more than $14 trillion, driven primarily by an increase in mortgage borrowing. This increase

in household indebtedness and subsequent mortgage defaults are thought by many observers

to have played an important role in creating the 2007-09 financial crisis and economic re-

cession in the U.S. (e.g. Mian and Sufi [2010, 2014]). Indeed, past crises in the U.S. and

elsewhere have often been preceded by a rapid rise in household debt [Jorda et al., 2011].

Because of the potential link between household debt and financial crises, it is important

to closely monitor the current levels of risk and susceptibility to economic shocks in the

outstanding stock of household debt.

In this paper, we assess risks to the financial system posed by household borrowing.

Our “household stress test” is analogous to the stress testing of bank balance sheets, which,

since the financial crisis, has become a useful tool for identifying potential vulnerabilities

for individual financial institutions. Our stress test yields a summary measure of risk by

forecasting serious delinquency rates for outstanding household debt under various economic

scenarios. This exercise suggests that the outstanding stock of household debt is somewhat

less vulnerable to shocks than in the past. Nonetheless, a large shock to both unemployment

and house prices—similar to what occurred during the financial crisis—would still lead to

significantly elevated delinquency rates.

Our stress test is based on a straightforward model where the rate of serious delinquency

on household debt—defined here as 60 days or more late—is a function of shocks to liquidity

and wealth (in practice, unemployment rates and house prices), and the interaction of these

shocks with household credit quality and household leverage. To estimate such a model, we

draw on a panel dataset of consumer credit records with quarterly observations extending

back to 1999. While these data allow us to observe debt, credit scores and delinquency at

the individual level, data for many of the other components of the delinquency model we
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have in mind are available only at the county level. Consequently, we aggregate the credit

record data, constructing county-by-quarter estimates of delinquency rates and county-by-

credit-score-by-quarter estimates of outstanding debt, and then merge in county-by-quarter

data on wages, unemployment, and house prices. Despite this aggregation, our county-level

panel dataset provides us with a substantial amount of identifying variation.1

Similar to the suggested methodology in Sufi [2014], we focus on credit scores as a measure

of credit quality, and the ratio of total county debt (disaggregated by borrower credit quality)

to total county wage income (DTI) as a measure of leverage. Our model does not include

another important measure of leverage, the ratio of mortgage loan balances to home values

(LTV). It is well-established that having little or negative home equity (i.e. LTV close to

or above 100 percent) is an important driver of mortgage default, particularly when coupled

with a liquidity shock (the so-called “double-trigger” theory of mortgage default).2 Although

we do not directly include negative equity in our delinquency model, we do include house

price changes, which determine changes in homeowner equity. Therefore, variation in the

extent of negative equity across counties is likely to be captured in our model by cross-county

varation in house price changes. In particular, counties that experienced the biggest house

price declines during the housing bust are likely to have the highest incidence of negative-

equity homeowners by 2009.3

Our estimated model indicates that delinquency rates respond more strongly to changes

in house prices and unemployment when DTI ratios are higher and as more of the debt is

held by lower credit score borrowers. Moreover, we find results consistent with the double

trigger theory of mortgage default: delinquency rates are especially sensitive to house price

1Hale et al. [2015] find that county-level models of consumer delinquency generate better out-of-sample
predictions than individual-level models when some of the predictors, such as the unemployment rate, are
measured at the county level.

2Several recent papers help establish the importance of the interaction between liquidity and negative
equity, such as Bhutta et al. [2017], Bricker and Bucks [2016], Campbell and Cocco [2015], Ganong and Noel
[2018], Gerardi et al. [2018], and Hsu et al. [2018].

3See Fuster et al. [2018] for descriptive evidence on the evolution of negative equity across regions from
2006 through 2017.
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shocks when coupled with unemployment shocks.

Using our estimated model, we forecast delinquency rates under various stress scenarios.

First, we apply the house price and unemployment rate shocks used in the Federal Reserve

Comprehensive Capital Analysis Review (CCAR) stress tests.4 We find that the current

stock of household debt in the U.S. is somewhat less vulnerable to a given set of shocks

than the stocks at various points in time prior to the 2007-09 financial crisis. That said, the

“severely adverse” CCAR scenario would still be expected to sharply push up delinquency

rates on household debt. Quantitatively, we estimate that the same unemployment and

house price shocks that caused delinquency rates to rise to about 9 percent (from about

2.5 percent) between 2006Q4 and 2008Q4 would result in an increase to about 7.5 percent

(also from about 2.5 percent) in the two years after 2017Q4. We trace this decline in risk to

somewhat lower DTI ratios and a smaller share of total debt held by subprime borrowers.

Next, we consider “housing correction” scenarios where house price shocks are determined

by the degree of housing overvaluation at a given point in time, defined as the deviation of the

price-rent ratio from its long-term trend. By this measure, housing valuations are consider-

ably more reasonable today than they were at the peak of the housing boom. Consequently,

the housing shock in these scenarios is milder than in the severely adverse CCAR scenario

and thus generates a smaller increase in delinquency rates. We find that if house prices fully

corrected during the two years after 2017Q4 and unemployment rates went up as they do

under the severely adverse CCAR scenario, the delinquency rate on household debt would

go up to about 5 percent. This expected delinquency rate is about half the peak delinquency

rate reached by the end of 2009.

Finally, we consider two alternative stress scenarios based on different ways of assigning

county-level shocks. First, following Fuster et al. [2018], we consider a house price correction

scenario where the house price path in each county reverts back to the level of two or four

4We distribute the published national shocks to the county level using a simple methodology, which we
describe in 6.1.1.
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years earlier. Under the two-year reversion house price scenario, coupled with a severely

adverse unemployment shock, we find that delinquency rates rise to about 6.25 percent —

right between our forecast under the severely adverse CCAR scenario and our first price

correction scenario. Second, we consider a “worst-case” scenario where the most leveraged

counties receive the largest house price and unemployment shocks. In this scenario, we find

the delinquency rates rise to about 8.25 percent, higher than our forecast for the severely

adverse CCAR scenario, but still below the delinquency rates reached during the crisis.

Our paper makes several contributions to the literature. Conceptually, our paper re-

sembles Mian and Sufi [2010] along a few dimensions, in particular by modeling household

default as a function of household leverage, and by using county-level credit record data.

However, a key difference is that we allow defaults to respond to changes in house prices

and changes in unemployment, along with the interaction of these changes with leverage.

Our model therefore permits us to conduct out-of-sample “stress-testing”—the aim of our

paper—and project delinquency rates under various house price and unemployment scenar-

ios, given current levels of leverage.

This stress testing component of our paper builds upon recent work by Fuster et al.

[2018], who use a stress testing exercise with U.S. data and focus only on house price shocks

and mortgage defaults. We add to this nascent literature by incorporating both house price

and unemployment shocks, and by considering defaults on all types of household debt.5

One caveat about our model is that it does not fully capture all of the important time-

varying features of consumer credit markets. For example, our analysis does not directly

account for the decreased share of “exotic mortgages” or the more stringent income docu-

mentation requirements on mortgages imposed since the financial crisis. These developments

have likely led to the stock of debt in recent years becoming less risky than our model would

suggest. On the other hand, because of data limitations, our baseline debt and delinquency

5Household stress testing exercises have also been evaluated using household survey and administrative
data in Australia (Bilston et al. [2015]), Sweden (Finansinspektionen [2015]), Austria (Albacete and Fessler
[2010]), and the U.K. (Anderson et al. [2014]), among others.
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measures do not include student loans, which have more than tripled in volume since the

early 2000s and could make the stock of debt somewhat more risky than our model suggests.

That said, aggregate student loan balances were only about 10 percent of total household

balances by the end of 2017 (Federal Reserve Bank of New York [2018]), and virtually all

student loan debt is federally guaranteed, limiting the exposure of the financial system to

student loan risk. We discuss the student loan data in more detail in the appendix, and

provide suggestive evidence that our main results are little changed by the inclusion of the

available data on student loan debt.

While our stress testing exercise helps quantify the vulnerability of household debt to

major shocks, the ultimate impact of household delinquencies on the stability of the financial

system depends on the extent to which financial intermediaries are exposed to the credit

risk. For example, at the peak of housing boom, the largest private financial firms were

heavily exposed to mortgage credit risk, including high-risk subprime mortgages [Foote et al.,

2012]. Since the financial crisis, most new mortgages have been either insured by the Federal

Housing Administration, guaranteed by the Department of Veterans Affairs, or purchased

and guaranteed by the government-sponsored enterprises Fannie Mae and Freddie Mac.6

Shifts in mortgage credit risk away from the private sector and toward the government can

help shield the financial system from losses due to mortgage defaults.

The rest of the paper is organized as follows. In the next section, we discuss trends

in household debt and default, and triggers of household default. After presenting some

background material in section 2, we describe our data sources in section 3. We present our

model in section 4 and the results of our stress-testing exercise in sections 5 and 6. Section

7 concludes the paper.

6For example, 66 percent of mortgages originated in the first half of 2018 fell into these categories [Urban
Institute, 2018]. Since 2013, some of the risk on loans owned by Fannie Mae and Freddie Mac has been
transferred to private investors through their credit risk transfer programs.
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2 Background on Household Debt and Delinquency in

the U.S.

By the end of 2017, total household debt stood at just over $13 trillion according to the

Federal Reserve Bank of New York [Federal Reserve Bank of New York, 2018]. As a fraction

of aggregate personal income, aggregate household debt has declined from a peak of over 1.2

in 2007 to just under one in 2017 [Ahn et al., 2018]. Just over 70 percent of household debt

is housing related, including debt owed on home equity lines of credit. Student loans ($1.4

trillion), auto loans ($1.2 trillion) and credit cards ($0.8 trillion) make up most of the other

30 percent of debt.7

During the recent financial crisis of 2007-09, the delinquency rate on household debt

—that is, the fraction of dollars outstanding on consumer and mortgage loans that were at

least 60 days past due— jumped to about 9 percent after fluctuating modestly around 2 to 3

percent from 1999 through 2005. The delinquency rate increased for all forms of household

debt during the crisis, but the increase in mortgage delinquency was the most pronounced

and the rate of serious delinquency for closed-end mortgage loans jumped roughly 10-fold.8

While mortgages sold and packaged into nonprime securities experienced catastrophic default

rates by the peak of the crisis [Mayer et al., 2009], loan performance deteriorated sharply

across many types of loans and borrowers [Adelino et al., 2016].

A key trigger of household default is that debt payments can become too burdensome

relative to a household’s available resources. Households who have taken on a large amount

of debt relative to their income are especially vulnerable to income or expense shocks: even

relatively small shocks can tip the scales towards default. Along the same lines, borrowers

with lower credit scores have repayment histories that suggest they are susceptible to shocks.

7Statistics are from Federal Reserve Bank of New York [2018], based on consumer credit record data from
Equifax, which are also used in this paper.

8See Federal Reserve Bank of New York [2018] for trends in serious delinquency rates since 2003 by loan
type.
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Correspondingly, in our empirical work we allow for both overall indebtedness (relative to

income) and the share of debt held by lower-score households to influence delinquency rates.

Mortgage borrowers facing a liquidity shock may be able to avoid default by selling their

home to repay the loan.9 But when borrowers have “negative home equity” (e.g. homes

worth less than the current mortgage balance), selling may not be viable and default becomes

the best or only option. A combination of liquidity shocks and negative equity leading to

mortgage default is typically referred to in the housing literature as the “double-trigger”

theory of mortgage default. Recent research suggests that most defaults during the recent

crisis were likely due to the combination of liquidity shocks and negative equity (e.g. Bhutta

et al. [2017]; Gerardi et al. [2018]).

Negative equity alone, if severe enough, can itself generate mortgage defaults. When

house prices plummet and push home values far enough below mortgage balances, borrowers

may have a financial incentive to “strategically default” even if they can afford to continue

making payments [Vandell, 1995, Deng et al., 2000]. This is especially true in non-recourse

states like California [Ghent and Kudlyak, 2011].

In sum, this section highlights the importance of leverage, credit scores, liquidity shocks,

and house price shocks for explaining household defaults. Our discussion here emphasizes

that these factors can interact with each other, amplifying their effects on default. As such,

a key feature of our empirical model, which we discuss below, will be the full interaction of

these variables to help better explain patterns of household default.

3 Data

Our analysis of household debt uses a wide array of data sources, including debt and delin-

quency data from the Federal Reserve Bank of New York Consumer Credit Panel/Equifax

(CCP); wage data from the Bureau of Labor Statistics’ (BLS) Quarterly Census of Employ-

9Similarly, car loan borrowers facing a shock may be able to sell their car to repay the loan.
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ment and Wages (QCEW); house price data from Zillow; and unemployment data from the

BLS Local Area Unemployment (LAU) Statistics. From these data sources we construct a

county-quarter panel dataset from 1999 through 2017 and covering over 1,500 of the largest

counties in the U.S and containing roughly 90 percent of the U.S. population. This section

introduces these data sources and presents summary statistics of the key variables of our

study.

3.1 FRBNY Consumer Credit Panel (CCP)

Our measure of household debt and delinquency rates comes from the Federal Reserve Bank

of New York’s Consumer Credit Panel (CCP). The CCP draws a 5-percent random sample

of U.S. consumers with valid credit histories and Social Security Numbers (about 11 million

individuals in recent quarters) on a quarterly basis.10 The CCP includes extensive credit

history data (debt holdings and repayment history) maintained by Equifax, as well as a credit

risk score and location information for each member of the panel. We aggregate this data to

construct county-level aggregates of total debt holdings among borrowers of different credit

quality (prime, near prime, or subprime), as measured by their current credit risk score.11

Importantly, because these credit scores are calculated based on updated credit records, they

represent Equifax’s estimate of borrowers’ current credit quality rather than an assessment

of the borrower’s credit quality at the time any particular loan was originated. Our total

debt measure includes mortgages, home equity loans and lines of credit, auto loans and

leases, credit card and retail card debt, and other debts, but excludes student loan debt.12

We also use repayment information from the CCP to construct a measure of county-

10The CCP sampling design generates a longitudinal dataset that is also nationally representative each
quarter. See Lee and der Klaauw [2010] for more details. To make the data more manageable, we use a 10
percent sample of the CCP (i.e. a 0.5 percent sample of adults).

11The credit score available in the CCP is the Equifax 3.0 score. Similar to the FICO R© Score, it ranges
from 280-850 with higher scores implying lower risk. We define prime as 720 or above, near prime as 620-719,
and subprime as 619 or below.

12We exclude student loan debt because complete student loan information is not available for our entire
sample period, and delinquency reporting has changed over time. Please see the appendix for an analysis of
student loans in our model.
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level delinquency rates, defined as the share of dollar balances of our total debt measure

in a county that are 60 days or more past due.13 In our baseline model, we use the eight-

quarter-ahead delinquency rate on all loan balances as the dependent variable. In addition,

we estimate separate models for mortgage and non-mortgage debt. As shown in Table 1, the

share of debt in delinquency (two years out) was 3.3 percent in the average (large) county in

the early 2000s, and then increased to 9.4 percent by the middle of the sample before falling

back to the levels observed in the early 2000s. Notably, Table 1 highlights significant cross-

sectional variation in delinquency rates. For example, in 2007 the 10th and 90th percentile

counties had delinquency rates of 4.1 percent and 17.0 percent, respectively.

3.2 BLS Quarterly Census of Employment and Wages (QCEW)

While the CCP provides a measure of household debt, in order to use DTI ratios as a

measure of leverage also requires data on household income. Though the CCP lacks data on

consumers’ income, our approach of aggregating debt balances to the county level allows us

to use county-level income data to calculate DTI ratios. In particular, we merge in quarterly

data on total county wage earnings from the Bureau of Labor Statistic’s Quarterly Census

of Employment and Wages, and measure DTI ratios at the county level as total debt to total

wage income. Table 1 shows how average DTI ratio evolved over the sample period. In the

4th quarter of 2000, the average DTI ratio across counties was 1.35, then rose to about 2.2 by

the end of 2007, and receded by 2014 to about 1.7. Again, the table highlights considerable

cross-sectional variation. For example, in 2000 the 10th percentile DTI ratio was 0.74 and

the 90th percentile was 2.18.

We note that our measure of income focuses on wage income, based on administrative

state unemployment insurance program (UI) records. Thus it excludes some components

of personal income such as transfer income (e.g. Social Security), interest and dividend in-

13We account for joint balances in both our debt measurement and delinquency measurement by a standard
procedure of subtracting half of the joint balance.

10



come, and small business income. According to data available from the Bureau of Economic

Analysis, employee compensation (including pension contributions) accounted for less than

two-thirds of total personal income in 2017.14 However, wage income is likely the most rele-

vant source of income for our purposes, since other forms of income are concentrated among

high-wealth and older households who tend to have little debt relative to their income.15

Because differences in credit scores are expected to affect delinquency rates even among

similarly leveraged borrowers, we construct separate DTI ratios for the prime, near-prime and

subprime populations. Ideally, we would separately observe the income of the prime, near-

prime, and subprime populations for whom we measure debt balances and would calculate a

separate DTI ratio for each. In practice, however, we observe only total wages. Thus, total

wages are used as the denominator for all three credit score groups’ DTI ratio. For example,

the subprime DTI ratio in a given county at time t would be measured as total debt at t

among borrowers with a credit score at t under 620, divided by total wage income in the

county at t.

3.3 BLS county unemployment rate

As discussed previously in section 2, our model considers two types of economic shocks:

liquidity shocks and house price shocks. We measure county-level liquidity shocks as the

eight-quarter-ahead change in the local unemployment rate, which the BLS estimates using a

combination of household survey data and administrative UI records. We use unemployment

rates to proxy for liquidity shocks rather than, for example, total income for two reasons.

First, unemployment rates isolate unexpected disturbances in income, whereas, changes in

total income combine expected income changes (e.g. retirement) and unexpected changes

(e.g, job loss). Second, changes in total income will be dominated by those at the top of the

14See NIPA Table 2.1 ([Bureau of Economic Analysis, 2018])
15For example, in 2016, families in the top three quartiles of the DTI distribution derived between 60 and

70 percent of their total income from wages. In contrast, families in the first quartile of the DTI distribution
derived just 37 percent of their income from wages (authors’ calculation based on 2016 Survey of Consumer
Finances).
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income distribution, and can mask changes occurring elsewhere in the distribution. This will

be particularly problematic if lower-income borrowers are more vulnerable to defaulting.

Table 1 reveals considerable variation in unemployment rate changes, both across counties

and over time. Unemployment rates increased modestly in the early period from 2000-2002,

tended to rise sharply in the middle period, and tended to improve in the latter period. In

the middle (Great Recession) period, nearly all counties saw at least a 3 percentage point

increase in their unemployment rate, and some counties experienced increases of over 7

percentage points.

3.4 Zillow house price data

Our measure of house price shocks relies on publicly-available data from Zillow. In particular,

we use the county-level Zillow Home Value Index (ZVHI) for all single-family homes, which

reflects Zillow’s estimate of the potential sales price of the median home in a given county

in a given month. Zillow’s coverage has increased over time, which is why the number of

counties in our dataset rises over our sample period (see Table 1).

Table 1 presents two-year-ahead growth rates in home prices. From 2000-2002, county

median home prices grew by 14 percent, on average, with considerable variation between the

10th and 90th percentiles. From 2007-2009, home prices fell sharply—in excess of 40 percent

for some counties. Finally, in the most recent two-year period, home prices were growing

once again but, again, with considerable variation.

4 Model

Our econometric model is designed to measure the expected delinquency rate after a macroe-

conomic shock for a given level and composition of household debt. As described above, our

measures of county-level DTI ratios capture both the amount of leverage held by households

and also how this borrowing is distributed among borrowers of different credit quality. The

12



two economic shocks considered in the model are changes in house prices and changes in the

unemployment rate.

Our model is designed to be used in conjunction with the Federal Reserve Board’s Com-

prehensive Capital Analysis and Review (CCAR) exercise, which we describe more fully in

section 6. In this exercise, shocks build and then begin to recede over approximately two

years. Therefore, the outcome variable in our model is the delinquency rate eight quarters

in the future, the point at which the shocks in each scenario have reached their maximum

values.

The explanatory variables include measures of household borrowing that are observable

today—such as delinquency rates and DTI ratios described above—and also include the

realization of the two economic shocks over the next eight quarters. As noted earlier, we

disaggregate DTI ratios within a county into prime, near prime, and subprime DTI ratios.

Rather than make functional form assumptions about how these DTI ratios affect defaults,

we compute dummy variables indicating which quartile each DTI ratio falls into within

its historical distribution. For example, consider the evolution of the dummy variables

describing the subprime DTI ratio. In 2007, 31 percent of counties had subprime DTI ratios

in the highest quartile of the historical distribution, whereas in 2016, only 16 percent of

counties did. (Over the entire sample, of course, 25 percent of counties will fall into the

highest quartile.)

A second key feature of the model is interactions between the credit score-group DTI

ratios and the macroeconomic shocks, which captures the additional rise in delinquency

rates that occurs when the shocks occur in periods when households are more leveraged. In

addition to including the income and house price shocks separately, we also include an inter-

action between the two shocks to capture the intuition of the “double-trigger” hypothesis,

discussed earlier, that defaults may be particularly high when counties face a combination

of liquidity and house price shocks.
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Our full baseline model is then specified as follows:

Dc,t+8 = β0 + β1Dc,t + β2∆Uc,t + β3∆ log(HPIc,t) + β4∆Uc,t × ∆ log(HPIc,t)

+
∑
j,k

(
βj,k

5 + βj,k
6 ∆Uc,t + βj,k

7 ∆ log(HPIc,t) + βj,k
8 ∆Uc,t × ∆ log(HPIc,t)

)
×DTIj,kc,t

where c indexes the county, t indexes the quarter, Dc,t is the share of debt that is 60 or

more days delinquent, Uc,t is the unemployment rate, HPIc,t the house price index, and ∆

denotes the change in a variable over the next eight quarters (e.g. ∆Uc,t = Uc,t+8 − Uc,t).

Finally, DTIj,kc,t for j = subprime, near, prime is a dummy variable indicating that the ratio

of the debt of borrowers of type j to total county wage income falls into the kth quartile of

its historical distribution, where k = 2, 3, 4 and k = 1 is the omitted category. All regressions

are weighted by the total number of borrowers observed in each county c and quarter t.

5 Results

5.1 Model fit

Table 2 presents the results of estimating equation 1 using the data described in section 3.

Because our model incorporates many interaction terms, one must be careful in interpreting

the coefficients. For example, the coefficient on the main house price growth term measures

the expected rise in the delinquency rate from house price growth when all three DTIs are

in the first quartile and the unemployment rate does not change.

For exposition, table 3 provides a more parsimonious interpretation of the coefficients.

Here we estimate the change in delinquency rates under several illustrative examples, which

are designed to represent the effects of relatively small and large unemployment and house

price shocks on delinquency rates. The results are shown separately for counties in the lowest

and highest DTI quartiles to demonstrate a key feature of the model: that delinquency rates

associated with unemployment and house price shocks are larger in counties with higher DTI

14



ratios.

As shown in table 3, our estimates indicate that a small unemployment and house price

shock—on the order of a 0.75 percentage point rise in the unemployment rate and a 5 percent

decline in house prices—is associated with a 0.41 percentage point increase in delinquency

rates in counties with low DTI ratios. But the same shock is associated with a 0.86 percent-

age point increase in delinquency rates in high debt-to-income counties—nearly double the

increase in the low DTI ratio counties.16

A larger unemployment shock—on the order of a 3 percentage point increase in the

rate—accompanied by the smaller 5 percent decline in house prices also leads to a somewhat

larger increase in delinquency rates overall than just the two smaller shocks, and the change

is larger in the high DTI ratio counties (1.80 percentage points) than in lower DTI ratio

counties (1.12 percentage point increase). A similar pattern is found when a larger house

prices shock—a 15 percent decline—accompanies the smaller unemployment shock, though

the spread between low and high DTI county delinquency rates is even wider.

Finally, the last row of table 3 shows that delinquency rates are the highest when both

the large unemployment rate shock (3 percentage points) and the large house price shock

(15 percent) are applied to the model. Notably, the rise in the delinquency rate when we

apply both shocks simultaneously exceeds the sum of the independent effects of each shock,

reflecting the interactive effect between unemployment and house price shocks. Furthermore,

the delinquency rate change resulting from the two large shocks is over one and a half

percentage points higher in the highest DTI ratio counties than in the lowest DTI ratio

counties. Overall, then, such shocks are expected to lead to a widening of the baseline

difference in delinquency rates between high and low DTI counties.

Figure 1 displays population-weighted mean quarterly delinquency rates for the sample

period 2000-2017. The blue line displays predicted delinquency rates from the estimated

16Note that all shocks in table 3 are expressed relative to the baseline of no housing or employment shocks.
As shown at the bottom of table 3, the baseline in the high DTI counties is about 0.91 percentage points
higher than the low DTI county baseline.
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model, and the black line displays actual delinquency rates observed in the data. The pat-

terns in the two time series are extremely similar and display the same pattern: delinquency

rates hovering around 2 percent in the early 2000s, a steep rise in delinquency rates in the

2006-2010 period, followed by a more gradual decline until the present.17 The close rela-

tionship in both trends and levels in the two series provides prima facie evidence that our

model should be able to accurately predict delinquency rates under the various stress-test

scenarios discussed below.

5.2 Predicted delinquency rates by type of debt

To help understand how different types of debt are contributing to our estimates thus far,

we disaggregate household debt and estimate two variations of equation 1. First we examine

delinquency rates only for mortgage debt, and then we study delinquency rates only for

non-mortgage debt.18 For exposition, in lieu of presenting regression tables we again present

illustrative examples, as in table 3.

The first column of table 4 shows the expected increase in delinquency rates on mortgage

debt under relatively small and large shocks. These results show a similar pattern to those

in table 3, whereby a larger unemployment or house price shock increases the delinquency

rate on mortgages. Moving from a smaller unemployment shock (in the first row) to a larger

one (in the second row) is associated with a 74 basis point larger increase the mortgage

delinquency rate. The effect is similar when moving from a smaller to a larger house price

shock. Again, consistent with the double trigger theory of mortgage default, the effect of

simultaneously applying both of the larger shocks exceeds the sum of the two independent

effects. In that scenario, mortgage delinquency rates increase by 2.46 percentage points.

17According to the model, one reason default rates have come down so much since the crisis is the decline
in the subprime DTI ratios in particular. An alternative version of the model where we don’t separate out
the prime, near-prime and subprime DTI ratios has trouble reproducing this large decline in delinquency
rates.

18In these models, we also use separate mortgage and non-mortgage DTI ratios (and their interactions
with the macroeconomic shocks) as explanatory variables.
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The second column of table 4 repeats this exercise for non-mortgage delinquency rates.

Like with mortgage delinquency, moving from the smaller unemployment rate shock to a

larger one increases is associated with a 82 basis point larger increase the non-mortgage

delinquency rate. However, unlike mortgage delinquency, moving from a smaller house price

shock to a larger one has only a small effect on the non-mortgage delinquency. This difference

reflects the fact that we would not expect house price changes to have a direct effect on the

incentives to default on non-mortgage debt. In addition, many non-mortgage debt holders

may not have mortgage debt.

6 Stress-testing household debt

Having established that our model is able to predict the levels and trends in observed house-

hold delinquency rates during our sample period, we next use the model to make out-of-

sample predictions for household delinquency rates under various possible scenarios.

6.1 The scenarios

We use the Federal Reserve Board’s (FRB) 2018 Comprehensive Capital Analysis and Re-

view (CCAR) stress scenarios as our baseline stress test for the path of house prices and

unemployment rates. The CCAR stress scenarios are used for annual stress tests of the

largest U.S.-based bank holding companies, and is required as part of the Federal Reserve

Board’s supervisory function.19 The CCAR guidelines specify three hypothetical scenarios—

the baseline, adverse, and severely adverse scenarios—and are designed to assess a bank’s

resilience to adverse economic conditions.20

19See Federal Reserve Board [2018] or https://www.federalreserve.gov/supervisionreg/files/

bcreg20180201a1.pdf for more details. The test is required by the Dodd-Frank Wall Street Reform and
Consumer Protection Act and is used to help determine the required level of bank capital reserves.

20The scenarios are not forecasts of the Federal Reserve. The scenarios provide 28 measures of the forward
path of economic activity and prices, of which we will use two as inputs in our model: the path of house
prices and the path of unemployment rates.
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The baseline scenario in 2018 is based on a moderate economic expansion of real eco-

nomic activity, as projected in the Blue Chip Economic Indicators, a survey of professional

forecasters.21 In these projections, the unemployment rate remains near 4 percent through

our 8 quarter scenario period and nominal house price growth averages about 2.5 percent

annually.

The adverse scenario describes a moderate recession that begins in the first quarter of

2018. In this scenario, the unemployment rate increases sharply from less than 4 percent

in the 4th quarter of 2017 to 7 percent by the 3rd quarter of 2019, and house prices fall 12

percent over the 8 quarters.

The severely adverse scenario describes a severe recession, along the lines of the 2007-09

recession. The unemployment rate increases to 10 percent in by the 3rd quarter of 2019 and

house prices fall 30 percent by the 3rd quarter of 2019. Figure 2 displays three year trends

in the forward-looking CCAR paths for house prices and unemployment. In each panel, the

red line displays the severely adverse scenario, the yellow line displays the adverse scenario,

and the green line displays the baseline scenario.

6.1.1 Construction of county-level scenarios

While the published CCAR scenarios describe economic variables at the national level, we

would expect that these shocks would have heterogeneous effects in different areas of the

country. This heterogeneity is important for our purposes because household borrowing

poses a greater risk if there are higher degrees of leverage in counties that are likely to

experience larger economic shocks. In order to capture the heterogeneous nature of these

shocks, we calculate county-level scenarios for each of the three national scenarios based on

historical relationships between national changes in unemployment rates or house prices and

county-level changes in unemployment rates or house prices. Specifically, for each county c,

21Note that the details of the CCAR scenario change slightly year-to-year.
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we estimate parameters αc and βc from the regression

∆yc,t = αc + βc∆yt + εc,t (1)

where ∆yc,t is the one-quarter change in either log house prices or unemployment for county

c in quarter t and ∆yt is the change in that variable at the national level.22 We estimate

these models using data for 1999Q1 to 2017Q4. Then, we use the estimated parameters to

distribute the national changes in the CCAR scenarios across counties for 2018Q1 to 2019Q4.

This process allows us to recover county-level estimates of the path of unemployment rates

and home prices under the national CCAR scenarios, which we use as inputs in our models

to estimate the path of delinquency rates.

6.2 Predicted delinquency rates under CCAR scenarios

In our first prediction exercise, we begin with measures of household borrowing as of the

fourth quarter of 2017 and use our estimated model to predict the rise in delinquency rates

under our county-level version of each of the three CCAR scenarios described above. The

results of this exercise are presented in figure 3.

When we assume that unemployment and house prices evolve as in the baseline scenario,

our model predicts that the fraction of household debt in delinquency would remain around

2.5 percent through the fourth quarter of 2019 (green line). If unemployment and house

prices evolve as in the adverse scenario, the model predicts that delinquency rates would

steadily increase and peak at about 4.5 percent in late 2019 (yellow line). Finally, if house

prices and unemployment evolve as in the severely adverse scenario, our model predicts that

delinquency rates would increase sharply, peaking at about 7.6 percent in late 2019 (red

line).

22Note that we use county-level Zillow median home prices, whereas the published CCAR scenarios are
based on the national CoreLogic price index for owner-occupied real estate. Thus our model relates how
changes in the national CoreLogic index translates into changes in each counties’ Zillow median home price.
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In order to assess the current risks stemming from household debt relative to previous

time periods, we compare these predictions to the predictions we would have made from

repeating the same exercise in previous periods. Specifically, we can apply the same eight-

quarter-ahead forward paths of the 2018 CCAR scenarios, but starting with the stock of

outstanding household debt from the fourth quarter of selected pre-crisis years. For brevity,

we select 2002, 2004, and 2006 (figure 4). For ease of exposition, we display these results in a

bar chart, where the height of the bars are the maximal 2-year ahead expected delinquency

rates under each scenario.

We start with two observations based on expected delinquency rates for the pre-crisis

years. First, applying the severely adverse scenario to the stock of outstanding debt in the

4th quarter of 2006 returns an expected level of delinquencies of about 9.2 percent two years

later, nearly identical to the actual level of delinquencies around this time (which was 9.1

percent in the 1st quarter of 2009). This is a reassuring result from our model, as the severely

adverse scenario is designed to be similar to the 2007-2009 recession. Second, this exercise

suggests that the stock of debt was nearly as risky in early 2000s as it was in 2006. Expected

8-quarter out delinquency rates arising from the severely adverse CCAR shocks are around

8.3 percent in 2002, rising to 8.8 percent by 2003, 2004, and 2005, which is just slightly lower

than the expected delinquency rate in the 2006 stock of debt (9.2 percent).

Moving on to our main result, we find that the delinquency rates we predicted from 2017

are lower than the predicted delinquency rates for each pre-crisis year. For example, as noted

earlier the predicted delinquency rate in the adverse scenario in 2017 is about 4.5 percent,

whereas it ranges from 5.2 to 5.4 percent from 2002 to 2006 (yellow bars). In the severely

adverse scenario, the eight-quarters out delinquency rate in 2017 is about 7.6 percent, while

it is predicted to be between 8.3 to 9.2 percent in 2002, 2004 and 2006 (red bars). Thus,

although our model predicts that a severe economic shock would lead to a significant rise in

household delinquency in 2017, we conclude that household borrowing is less risky than it

was before the financial crisis.
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Why might household debt now be more resilient to a given set of macro-economic shocks?

While DTI ratios have moderated since 2010, on average they have remained near 2004 levels

for much of the post-2012 period (figure 5). Thus, the post-crisis decline in aggregate debt

relative to income cannot explain why household debt is less risky now than in the early

2000s. Instead, a more important reason for the decline in risk is that a larger portion of

outstanding household debt is now held by higher credit score borrowers (figure 6). This

pattern reflects the material shift toward borrowing by relatively low-risk households that

has taken place since the Financial Crisis, in particular due to tightened credit standards for

mortgages [Anenberg et al., 2017, Bhutta, 2015, Laufer and Paciorek, 2016].

6.3 Predicted delinquency rates under alternative house price shocks

In the exercises discussed above, we considered how changes in the composition of household

debt over time affects household default risk. However, we have not allowed for the possibility

that the risk of a particular economic shock might itself change over time. For example, one

important source of risk during the mid-2000s was the extreme overvaluation—by some

measures—of residential real estate, which precipitated the collapse in house prices that led

to the rise in mortgage defaults during the crisis.

Our next exercise attempts to capture changes over time in the risk of house price shocks

by considering “housing correction” scenarios where house price shocks at each point in time

are determined by the degree of housing overvaluation at that time. The degree of housing

overvaluation in these scenarios is measured as the amount of deviation of the price-rent ratio

from its long-term trend. Figure 7 plots the ratio of house prices (from CoreLogic) to rents

(as measured by BLS) over time, together with an estimate of the long-run trend in this ratio.

By this measure, house values were approximately 45 percent overvalued in 2006, whereas

in the fourth quarter of 2017, they were overvalued by just five percent. To implement

these “housing correction” scenarios, we consider the effects of a house price shock that

21



brings the price-rent ratio back to its long-run trend over the eight-quarter forecast period.

Because this exercise provides no guidance for how unemployment rates should evolve, we

consider paths for the unemployment rate taken from each of the three CCAR scenarios. As

in the previous exercises, we distribute these national shocks across the counties using the

methodology described in Section 6.1.1.

The results of our “housing correction” exercise (shown in figure 8) confirm the intuition

presented above—household debt looks less risky than before the crisis because housing does

not appear as overvalued at the present. For example, the red bars show the delinquency rates

that would be predicted by a housing correction together with a shock to the unemployment

rate taken from the severely adverse CCAR scenario. As household valuations climbed

through the early 2000’s, our model predicts that a price correction at any point in time

would have led to an increasingly higher rate of delinquency rates, with predicted delinquency

rates rising from about 6.5 percent in 2002 to almost 10 percent in 2006. In contrast, the

much lower valuations at the end of 2017 imply that the much smaller correction necessary

to erase this overvaluation would only the drive delinquency rate up to about 5 percent.23

6.3.1 House price reversion

Thus far our house price scenarios have all been derived from external national scenarios—

either from CCAR or based on a model of national overvaluation. In this section, we instead

consider an alternative house price scenarios based on recent house price experiences in each

particular county. In particular, we consider shocks by which house prices in each county

revert to their levels from either 2 or 4 years earlier.24 The intuition behind this exercise

uses the experience of the 2000-2012 housing boom and bust cycle, where the areas with

the largest price growth from 2000 to 2006 were also those that had the largest house price

declines in the 2006-2011 housing bust. As in the previous exercise, we consider paths for

23If house price declines are positively correlated with increases in unemployment rates, this would only
further reduce current period risk relative to the past.

24These scenarios are inspired by those considered in Fuster et al. [2018].
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the unemployment rate from each of the three CCAR scenarios.

Under the scenario where local house prices revert to levels from two years prior and

unemployment shocks follow the severely adverse CCAR scenario (the red bars in figure 9) we

find that the delinquency rate rises to about 6.25 percent. For comparison, the magnitude of

the expected delinquency rate under this scenario is larger than in the housing overvaluation

scenario considered earlier, but smaller than the set of severely adverse CCAR shocks initially

considered. Again, as in the CCAR and overvaluation exercises, the expected delinquency

rates based on the current state of household debt in this scenario are substantively lower

than predicted for the pre-crisis years.

In a more severe version of this exercise, we allow local house prices to revert back to the

level from 4 years earlier. In 2017, for example, this scenario essentially means erasing all of

the post-crisis increase in house prices. When coupled with a severe unemployment shock,

the expected delinquency rate reaches nearly 8 percent (the red bars in figure 10), which is a

bit higher than the severely adverse CCAR shock scenario. However, as before, the expected

delinquency rate based on the current state of household debt under this scenario is still

lower than predicted for the pre-crisis years.25

6.3.2 Worst Case Scenario: largest shocks in most highly leveraged counties

Our final set of stress scenarios explores the risk that some adverse event may cause shocks

that are particularly severe in areas where households are more indebted. For example,

Mian and Sufi [2014] point out that in the recent housing crisis, areas that had amassed

the largest amount of mortgage debt also suffered the largest house price declines during

the bust. To explore the risks from shocks that could follow such patterns, we implement

a “worst-case” scenario for unemployment rates and house prices. Rather than distributing

the national scenarios to counties using historical relationships, we instead distribute the

25Note we cannot include 2002 in the model because our data only go back to 1999 and therefore we
cannot construct a four-year reversion scenario for 2002.
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largest shocks to the most indebted counties. To implement these scenarios, we take the set

of county-level shocks from our county-level version of the CCAR scenarios and rearrange

those shocks quarterly so that the highest DTI counties in 2017Q4 receive the largest house

price and unemployment shocks.26

Figure 11 shows that this “worst case” scenario would lead to slightly more elevated

delinquency rates than in the original scenarios (as shown in figure 3). For example, in the

severely adverse “worst case” scenario (the red line), the model predicts that the delinquency

rate would peak at just over 8 percent, while in the original severely adverse scenario, the

delinquency rate peaks at around 7.6 percent. This relatively small difference partially

reflects the fact that more indebted counties already tended to receive larger shocks in the

original scenario.27

7 Conclusion

Since the financial crisis, stress testing bank balances sheets has become a useful tool for

identifying potential vulnerabilities in the financial sector. In this paper, we propose a sim-

ilar approach to assess risks to the economy posed by household borrowing. We estimate

a county-level model where household delinquency rates are a function of shocks to unem-

ployment rates and house prices, and the interaction of these shocks with household credit

quality and household leverage. We then use this model to predict the forward path of

household delinquencies under the well-known CCAR stress scenarios.

Our analysis indicates that household debt is less risky than it was before the financial

crisis. In particular, the decline in leverage and a shift in debt holding towards higher

credit score borrowers appear to have made household borrowing notably safer over the past

several years. That said, a severe economic shock—similar to the experience of the financial

26 Re-arranging the shocks in this way affects the population-weighted mean and standard deviation of the
shock distribution. To allow for direct comparison with the original results in 3, we re-scale the distribution
of shocks so that the population-weighted mean and standard deviation match the original scenarios.

27The correlation between the original scenario shocks and the “worst case” scenario shocks is about 0.2.
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crisis—would still lead to a significant rise in household delinquency.

When using the CCAR stress scenarios, our analysis measures the expected consequences

if a negative macroeconomic shock occurs, but says nothing about the likelihood of such a

shock. Thus, we extend our analysis to include a time-varying house price shock based on a

measure of national house price “overvaluation” at particular point in time. If house prices

were to “correct” today (coupled with a severe unemployment shock), our model predicts

that delinquency rates would increase to about 5 percent over the following eight quarters.

In contrast, before the crisis, such a house price correction would have led to a 6.5 to 10

percentage point increase. Further extensions to our results show that our main conclusions

are robust to alternate assumptions about the geographic distribution of shocks and a house

price correction that erases recent growth. Overall, we conclude that the risks to financial

stability from household borrowing are lower today than in the pre-crisis period.

There are several important caveats to our analysis and conclusions. First, the impact

of household delinquencies on the stability of the financial system depends on the extent

to which banks and other financial intermediaries are exposed to the credit risk. Recent

mortgage credit trends have seemingly shifted mortgage credit risk away from the private

sector towards the government, which could help shield the financial system from losses

due to mortgage defaults. Second, changes in mortgage underwriting standards in recent

years have led to a decline in new mortgages that lack full income documentation or contain

“exotic features.” These changes have likely led to the stock of mortgage debt becoming less

risky than our model would suggest.
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Table 1: Sample Summary Statistics

Table displays means and distributions of key summary variables, where the 10th and 90th percentiles of each variable is shown

in brackets below the mean. Data sources are: CCP/Equifax, BLS LAU and QCEW and Zillow.

2000 (4th Qtr) 2007 (4th Qtr) 2014 (4th Qtr) 

DTI (total debt to total wages) 1.35 2.20 1.71
[0.74, 2.18] [1.01, 3.66] [0.83, 2.75]

House price growth, next 2 years 0.14 -0.18 0.12
[0.03, 0.28] [-0.42, -0.02] [0.04, 0.22]

Change in unemp rate, next 2 years 1.84 4.72 -1.32
[0.85, 2.92] [2.84, 6.88] [-2.27, -0.40]

Share debt 60 days late, 2 years later 0.033 0.094 0.031
[0.015, 0.054] [0.041, 0.17] [0.012, 0.052] 

Number of counties 1421 1478 1649
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Table 2: Model Estimates

Table displays the results of estimating equation 1. Standard errors in parentheses. * p < .05, ** p < .01, *** p < .001. Data

sources are: CCP/Equifax, BLS LAU and QCEW and Zillow.Table 1: Model of delinquency rates

β SE(β)
Share of Borrowers 60+ DPD 0.513** (0.049)
∆ Unemployment 0.003** (0.000)
∆ log(HPI) –0.036** (0.007)
∆ Unemployment × ∆ log(HPI) -0.012** (0.002)
Subprime DTI

DTI Quartile 2 0.005** (0.001)
DTI Quartile 3 0.007** (0.001)
DTI Quartile 4 0.011** (0.001)

∆ Unemployment × Subprime DTI
DTI Quartile 2 0.000 (0.000)
DTI Quartile 3 -0.000 (0.000)
DTI Quartile 4 -0.001 (0.001)

∆ log(HPI) × Subprime DTI
DTI Quartile 2 -0.008 (0.005)
DTI Quartile 3 -0.017** (0.007)
DTI Quartile 4 -0.035* (0.019)

∆ Unemployment × ∆ log(HPI) × Subprime DTI
DTI Quartile 2 0.002 (0.002)
DTI Quartile 3 0.008** (0.002)
DTI Quartile 4 0.010** (0.003)

Near Prime DTI
DTI Quartile 2 0.001* (0.001)
DTI Quartile 3 0.005** (0.002)
DTI Quartile 4 0.007** (0.003)

∆ Unemployment × Near Prime DTI
DTI Quartile 2 0.000 (0.000)
DTI Quartile 3 0.001 (0.000)
DTI Quartile 4 0.000 (0.000)

∆ log(HPI) × Near Prime DTI
DTI Quartile 2 0.008 (0.006)
DTI Quartile 3 0.001 (0.008)
DTI Quartile 4 -0.002 (0.010)

∆ Unemployment × ∆ log(HPI) × Near Prime DTI
DTI Quartile 2 0.003 (0.002)
DTI Quartile 3 -0.008** (0.002)
DTI Quartile 4 -0.012** (0.004)

Prime DTI
DTI Quartile 2 –0.004** (0.001)
DTI Quartile 3 -0.005** (0.001)
DTI Quartile 4 -0.009** (0.002)

∆ Unemployment × Prime DTI
DTI Quartile 2 -0.000 (0.000)
DTI Quartile 3 0.001 (0.000)
DTI Quartile 4 0.001* (0.001)

∆ log(HPI) × Prime DTI
DTI Quartile 2 -0.009 (0.006)
DTI Quartile 3 -0.031** (0.010)
DTI Quartile 4 -0.037** (0.007)

∆ Unemployment × ∆ log(HPI) × Prime DTI
DTI Quartile 2 0.002 (0.002)
DTI Quartile 3 -0.007** (0.003)
DTI Quartile 4 -0.004 (0.003)

Constant 0.021** (0.002)
R-squared 0.761
N 101399

1
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Table 3: Model-predicted Default Rates by DTI Quartile

Table displays predictions for the change in the delinquency rate associated with the listed change in unemployment rates and

house prices, based on the results of estimating equation 1. The table shows the rise in delinquency rates compared to a baseline

where there is no shock (i.e. unemployment and house prices are unchanged over the eight-quarter period). For comparison,

average delinquency rates associated with no shock are displayed in the final row. Data sources are: CCP/Equifax, BLS LAU

and QCEW and Zillow.

Counties in the first quartile 
of subprime, near prime and 

prime DTI

Counties in the fourth quartile of 
subprime, near prime and prime 

DTI

Rise in county delinquency rate (pp) associated with…

…a 0.75pp rise in unemployment and 5% decline 
in home values

0.41 0.86

… a 3pp rise in unemployment and 5% decline 
in home values

1.12 1.80

… a 0.75pp rise in unemployment and a 15% 
decline in home values

0.86 2.10

…a 3pp rise in unemployment and 15% decline 
in home values

1.83 3.45

Memo: delinquency rate associated with no 
shock

4.55 5.46
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Table 4: Model-predicted Default Rates for Mortgage and Non-mortgage Debt

Table displays predictions for the change in the delinquency rate associated with the listed change in unemployment rates and

house prices, based on the results of estimating an augmented equation 1, where defaults are mortgage-only in column (1) and

non-mortgage-only in column (2). In these models, we also use separate mortgage and non-mortgage DTI ratios (and their

interactions with the macroeconomic shocks) as explanatory variables. Data sources are: CCP/Equifax, BLS LAU and QCEW

and Zillow.

Mortage delinquency rate Nonmortgage delinquency rate

Rise in county delinquency rate (pp) associated with…

…a 0.75pp rise in unemployment and 5% decline 
in home values

0.62 0.40

… a 3pp rise in unemployment and 5% decline 
in home values

1.36 1.22

… a 0.75pp rise in unemployment and a 15% 
decline in home values

1.44 0.71

…a 3pp rise in unemployment and 15% decline 
in home values

2.46 1.69

Mean county delinquency rate (%) 3.94 7.25
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Figure 1: Model Fit

Figure displays the 60+ day delinquency rate in the black line and the model-predicted 60+ day delinquency rate in the blue

line, where the blue line is based on estimating equation 1. Data sources are: CCP/Equifax, BLS LAU and QCEW and Zillow.
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Figure 2: Unemployment and House Prices under CCAR Scenarios

The top panel displays the national unemployment rate and the right panel displays the national house price index. In each

case, the black represents the data and the red, yellow and green lines represent the three indicated CCAR scenarios for

2018Q1-2019Q4. Source is Federal Reserve Board (2018).
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Figure 3: Predicted Delinquency Under CCAR Scenarios

Figure displays the model-predicted 60+ day delinquency rate for 2001Q1-2017Q4 in the blue line, and the model-predicted

60+ day delinquency rate under the indicated CCAR scenario for 2018Q1-2019Q4 in the red yellow and green line, where the

blue, red, yellow and green lines are based on estimating equation 1. The black line shows the observed 60+ dat delinquency

rate for 1999Q1-2017Q4. Data sources are: CCP/Equifax, BLS LAU and QCEW, Zillow and CCAR.
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Figure 4: Comparing CCAR Stress Test Results Two Years Out Across Time

Figure displays the results of applying the eight-quarter path of the indicated CCAR scenario from the fourth quarter of the

year listed, where estimates are based on estimating equation 1 for the entire sample period. Data sources are: CCP/Equifax,

BLS LAU and QCEW, Zillow and CCAR.
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Figure 5: Mean County Debt-to-Income Ratios

Figure displays the mean of the county-level DTI ratios over time. Data sources are CCP/Equifax and BLS QCEW.
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Figure 6: Share of Debt Held by Credit Score Groups

Figure displays the share of total debt held by the indicated credit score group. “Prime” is defined as 720 or above, “Near

prime” as 620-719, and “subprime” as 619 or below. All scores refer to the Equifax 3.0 score. Data sources is CCP/Equifax.
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Figure 7: Price-Rent Ratio as a House Price Overvaluation Measure

Figure displays the log of the house price-to-rent ratio. The red line shows an estimate of its long-term trend, which is estimated

using data from 1978-2001, and the shaded area shows a 95-percent confidence interval for this trend. Data sources are CoreLogic

for prices and BLS for rents.
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Figure 8: Delinquency Rates from a Housing Correction

Figure displays the results of applying the housing correction scenario for house prices and the indicated CCAR scenario for

unemployment rates from the fourth quarter of the year listed, where estimates are based on estimating equation 1 for the

entire sample period. The housing correction scenario moves the price-to-rent ratio to its long-term trend in 8 quarters. Data

sources are: CCP/Equifax, BLS LAU and QCEW, Zillow, CCAR, CoreLogic and BLS.
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Figure 9: Delinquency Rates from Reversing Two Year House Price Growth

Figure displays the results of applying the two-year house price reversion scenario for house prices and the indicated CCAR

scenario for unemployment rates from the fourth quarter of the year listed, where estimates are based on estimating equation

1 for the entire sample period. The two-year house price reversion scenario erases the past two years of local house prices gains

in 8 quarters. Data sources are: CCP/Equifax, BLS LAU and QCEW, Zillow and CCAR.

0
2

4
6

8
10

P
er

ce
nt

2002 2004 2006 2017

Baseline Adverse
Severe

42



Figure 10: Delinquency Rates from Reversing Four Year House Price Growth

Figure displays the results of applying the four-year house price reversion scenario for house prices and the indicated CCAR

scenario for unemployment rates from the fourth quarter of the year listed, where estimates are based on estimating equation 1

for the entire sample period. The four-year house price reversion scenario erases the past four years of local house prices gains

in 8 quarters. Data sources are: CCP/Equifax, BLS LAU and QCEW, Zillow and CCAR.
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Figure 11: Delinquency Rates when the Most Leveraged Counties Receive the Largest Shocks

Figure displays the model-predicted 60+ day delinquency rate for 2001Q1-2017Q4 in the blue line, and the model-predicted

60+ day delinquency rate under the worst case scenarios for 2018Q1-2019Q4 in the red yellow and green line, where the blue,

red, yellow and green lines are based on estimating equation 1. The black line shows the observed 60+ day delinquency rate

for 1999Q1-2017Q4. The worst case scenarios assign the largest shocks obtained from CCAR scenario to the most leveraged

counties. Data sources are: CCP/Equifax, BLS LAU and QCEW, Zillow and CCAR.
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8 Appendix

As noted in the main text, our baseline debt and delinquency measures do not include student

loan debt. Student loan debt has more than tripled since the early 2000s and could make

the stock of debt more risky than our model suggests. We chose to omit student loan debt

primarily because of data limitations, but the direct effect of student loan debt delinquency

on the financial system may also be somewhat limited because the vast majority of student

loans are guaranteed by the federal government. Still, if higher student loan debt causes

borrowers to default on other types of debt, then these additional defaults would not be

captured in our model predictions.28.

The measurement of student loan delinquencies is very different from other forms of

debt for a number of reasons. Rather than entering deliqnuency after an economic shock,

a borrower may choose to suspend their student debt repayment through the deferment or

forbearance process, or enter into an alternative payment plan like income-based repayment.

Further, the reporting of student loan delinquency to credit bureaus is different than other

forms of debt. For instance, servicers typically do not report Federal student loans as in

delinquency until the borrower misses more than 90 days of payments, making it hard to

construct the same 60 day delinquency rate we do on other forms of debt.29. Furthermore,

due to widespread changes in loan servicers’ reporting, there are structural changes in the

time series of loan balances in 2004, and in the time series of delinquencies in 2012. These

differences make it difficult to construct measures of student loan debt and deliquency for

the entire time series that are exactly comparable to the measures we use for other forms of

debt.

However, as a check on the potential importance of student loan debt in our model, we

include student debt in the DTI calculation (on the right hand side of the model) and also

28However, recent evidence suggests this type of indirect exposure to risk may be limited [Feiveson et al.,
2018]. And recent research indicates that, at least to some extent since the crisis, families have substituted
student loans for home equity loans [Eberly et al., 2017]

29See www.studentaid.ed.gov/repay-loans/default
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include our best measure of 60-day student loan delinquency on the left hand side (figure

12. While the overall delinquency rate is higher in recent years than in the baseline figure,

the change in delinquencies arising from the stress scenarios is about the same.

Figure 12: Predicted Delinquency Under CCAR Scenarios – Including Student Loans

Figure displays the model-predicted 60+ day delinquency rate for 2001Q1-2017Q4 in the blue line, and the model-predicted

60+ day delinquency rate under the indicated CCAR scenario for 2018Q1-2019Q4 in the red yellow and green line, where the

blue, red, yellow and green lines are based on estimating equation 1. The black line shows the observed 60+ dat delinquency

rate for 1999Q1-2017Q4. This fiugre is simialr to figure 3 but includes student loan balances in the RHS and student loan

delinquency on LHS. Data sources are: CCP/Equifax, BLS LAU and QCEW, Zillow and CCAR.
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