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Abstract

Suppose that asset pricing factors are just p-hacked noise. How much p-
hacking is required to produce the 300 factors documented by academics?
I show that, if 10,000 academics generate 1 factor every minute, it takes 15
million years of p-hacking. This absurd conclusion comes from applying
the p-hacking theory to published data. To fit the fat right tail of published
t-stats, the p-hacking theory requires that the probability of publishing t-
stats < 6.0 is infinitesimal. Thus it takes a ridiculous amount of p-hacking
to publish a single t-stat. These results show that p-hacking alone cannot
explain the factor zoo.
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1. Introduction

There is a well-known solution to every human problem—neat, plau-

sible, and wrong.

— H.L. Mencken (1920), Prejudices: Second Series.

Academics have documented more than 300 factors that explain expected

stock returns.1 This enormous set of factors begs for an economic explanation,

yet there is little consensus on their origin.2

p-hacking (a.k.a. data-snooping, data-mining) offers a neat and plausible so-

lution (Harvey, Liu, and Zhu 2016, Chordia, Goyal, and Saretto 2017, Hou, Xue,

and Zhang 2017, Linnainmaa and Roberts 2018, among others). This cynical ex-

planation begins by noting that the cross-sectional literature uses statistical tests

that are only valid under the assumptions of classical single hypothesis testing.

These assumptions are clearly violated in practice, as each published factor is

drawn from multiple unpublished tests. In this well-known explanation, the fac-

tor zoo consists of factors that performed well by pure chance.

In this short paper, I follow the p-hacking explanation to its logical conclu-

sion. To rigorously pursue the p-hacking theory, I write down a statistical model

in which factors have no explanatory power, but published t-stats are large be-

cause the probability of publishing a t-stat ti follows an increasing function p(ti ).

I estimate p(ti ) by fitting the model to the distribution of published t-stats in Har-

vey, Liu, and Zhu (2016) and Chen and Zimmermann (2018). The p-hacking story

is powerful: The model fits either dataset very well.

Though p-hacking fits the data, following its logic further leads to absurd con-

clusions. In particular, the pure p-hacking model predicts that the ratio of un-

published factors to published factors is ridiculously large, at about 100 trillion

to 1. To put this number in perspective, suppose that 10,000 economists mine

the data for 8 hours per day, 365 days per year. And suppose that each economist

1I use the term “factor” to refer to any variable that helps explain expected returns, following
Harvey, Liu, and Zhu (2016).

2Cochrane (2017) provides a macro-finance perspective on predictability. Barberis (2018) pro-
vides a psychological perspective. Recent explicit factor models based on q-theory, the present
value relation, and mispricing are given by Hou, Xue, and Zhang (2015), Fama and French
(2015), and Stambaugh and Yuan (2016), respectively. Rigorous statistical explanations for cross-
sectional predictability are proposed by Kozak, Nagel, and Santosh (2017), Kelly, Pruitt, and Su
(2017), and Lettau and Pelger (2018).
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finds 1 predictor every minute. Even with this intense p-hacking, it would take

15 million years to find the 316 factors in the Harvey, Liu, and Zhu (2016) dataset.

This absurd conclusion comes from the fact that the right tail in published

t-stats is extremely fat compared a t-distribution with many degrees of free-

dom. 10% of t-stats in Harvey, Liu, and Zhu (2016) are larger than 6.34, while

the corresponding p-value of the t-distribution with 200 degrees of freedom is

0.00000007%. Thus, to account for the fat tail in the data, authors and journals

must have an extremely strong preference for very large t-stats: t-stats less than

4.0 have at most a 10−10 probability of being published, while t-stats larger than

8.0 are published with a probability of 0.9997. While it is hard to place reasonable

limits on the preference for large t-stats, logistical and physical constraints imply

that the power of p-hacking is limited, far too limited to account for the literature

on asset pricing factors.

This thought experiment demonstrates that assigning the entire factor zoo

to p-hacking is wrong. Though the p-hacking story appears logical, following its

logic rigorously leads to implausible conclusions, disproving the theory by con-

tradiction. Thus, my thought experiment supports the idea that publication bias

in the cross-section of stock returns is relatively minor (Green, Hand, and Zhang

2014, McLean and Pontiff 2016, Jacobs and Müller 2017, Chen and Zimmermann

2018, Chen 2018). Papers that argue that publication bias is dominant include

Harvey, Liu, and Zhu (2016), Chordia, Goyal, and Saretto (2017), Hou, Xue, and

Zhang (2017), and Linnainmaa and Roberts (2018). In this literature, my paper is

unique in its rigorous analysis of the p-hacking story.

2. Model, Estimation Method, Data

This section presents a rigorous version of the p-hacking story and describes

how I fit it to data. Estimation results and absurd implications are found in Sec-

tion 3.

2.1. Model

The distribution of all t-stats (published and not) is standard normal

ti ∼ N (0,1), i.i.d. (1)
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This assumption formalizes the notion that all factors are false: t-stats are just

noise around the unobserved population return of 0.

Some readers may object to the independence assumption, noting that sev-

eral well-known anomalies are related to value or momentum. Value- and

momentum- related anomalies, however, comprise only a small portion of the

total universe of published anomalies (Harvey, Liu, and Zhu 2016, McLean and

Pontiff 2016). For example, in the Chen and Zimmermann (2018) dataset, predic-

tors related to valuations represent only 8% of their 156 predictors. Momentum-

related predictors represent only 6%.

Ultimately, the proper correlation should be measured from the data, and the

data indicate close-to-zero correlation is appropriate. The average pairwise cor-

relation between predictor returns is tiny, at 0.03 (McLean and Pontiff 2016, Chen

and Zimmermann 2018). This tiny average correlation does not result from av-

eraging across large positive and large-negative correlations. Indeed, Chen and

Zimmermann (2018) find that 80% of correlations are between -0.36 and 0.43.

Moreover, Chen and Zimmermann find that principal component analysis indi-

cates that a large number of principal components are required to span the data.

Equation (1) also assumes normality. This assumption is justified by the fact

that the numerator of the t-stat is the average of hundreds of monthly returns.

Thus, by the central limit theorem, the sample mean return is approximately

normal and the t-stat is approximately standard normal. Chen and Zimmer-

mann (2018) show that this approximation holds very well for a 312 month sam-

ple of equal-weighted long-short quintile portfolios sorted on B/M. Equation (1)

also assumes that performance is uncorrelated across predictors, consistent with

the near-zero average pairwise correlation between monthly long-short returns

of different published predictors (McLean and Pontiff 2016, Chen and Zimmer-

mann 2018).

Though t-stats are on average zero, published t-stats are large due to authors’

and journals’ preferences for large t-stats. This preference is embodied in the

function p(ti ) which determines the probability that a t-stat ti is published. I
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assume a staircase (or step) function for p(ti ):

p(ti ) =



p1, e1 < ti ≤ e2

p2, e2 < ti ≤ e3

...

pK , eK < ti ≤ eK+1

0, otherwise

(2)

where the edges {e1,e2, ...,eK+1} and probabilities {p1, p2, ..., pK } are model pa-

rameters. In words, pi is the probability of publishing a t-stat between ei and

ei+1.

Equation (2) is a rigorous version of the p-hacking story. t-stats < e1 are never

published or observed by the public. The staircase functional form allows for the

idea that larger t-stats are more likely to be published. The flexibility of the K step

staircase allows the model to fit the data very closely and provides a tractable,

closed-form estimation.

2.2. Estimation

The model predicts that the fraction of published t-stats between ei and ei+1

is

f model
i = pi [Φ(ei+1)−Φ(ei )]∑K

j=1 p j
[
Φ(e j+1)−Φ(e j )

] for i = 1, ...,K (3)

where Φ(·) is the standard normal CDF. Equation (3) embodies the power of the

p-hacking theory. It says that any number of t-stats can be observed. Even if it is

unlikely to observe such a large t-stat by chance (Φ(ei+1)−Φ(ei ) is small), a large

publication probability pi can make it possible.

Equation (3) suggests an intuitive method-of-moments estimation. First

choose a set of edges {e1,e2, ...,eK+1} that produces a histogram that describes

the data well. Then, measure in the data the fraction of published t-stats be-

tween ei and ei+1 and call this f data
i . Finally, setting f model

i = f data
i gives a set of
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K equations to solve for the K probabilities p̂1, ..., p̂K . Specifically,3

p̂i ≡ 1

κ

f data
i

[Φ(ei+1)−Φ(ei )]
(4)

where

κ≡
K∑

j=1

f data
j[

Φ(e j+1)−Φ(e j )
] . (5)

The model is exactly identified, and thus Equation (4) does not provide any for-

mal evaluation of the model. Instead, I discipline the model by examining a sim-

ple thought experiment in Section 3.2.

For histogram edges ei I use {1,2,3, ...,8,∞}. Other edges lead to similar re-

sults.

2.3. Data on Published t-stats

I estimate the model on 2 datasets. The first is Chen and Zimmermann’s

(2018) replications of 156 equal-weighted long-short quintile portfolios. These

portfolios are constructed from variables that have been shown to predict stock

returns cross-sectionally and are published in finance, accounting and general

interest economics journals. The majority are constructed using either account-

ing data or market prices, but about 1/3 use diverse data that include analyst

forecasts, trading-related measures, and corporate events. The Chen and Zim-

mermann dataset allows for easy replication, as this data is publically available

at http://sites.google.com/site/chenandrewy/code-and-data/.

I also consider the hand-collected t-stats for 316 factors in Harvey, Liu, and

Zhu (2016). These factors include variables that predict cross-sectional returns,

as well as other variables that broadly explain return patterns. Harvey et al do

not make their data publically available, but in Table 5 (page 30) they provide

parameter estimates for a model of the t-stats in their data. Using their model

estimates, I can simulate their dataset. By design, this simulated data should

match the moments in the original data. I use the parameter values from the

first row of Table 5, but the other parameters lead to similar results.

3To see this, note that f data
i = κp̂i [Φ(ei+1)−Φ(ei )]. Then, noting that

∑
i p̂i = 1, we have κ =∑

j f data/
[
Φ(e j+1)−Φ(e j )

]
.
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Table 1 summarizes the datasets. It shows the histogram counts for t-stats in

percent. I use these counts as target moments in Equation (4). For comparison,

the table also shows the histogram counts of the hand-collected data from Chen

and Zimmermann (2018).

[Table 1 about here.]

All three datasets show a fat right tail in t-stats. About 50% of t-stats are be-

tween 2.0 and 4.0, and the remaining 50% are spread far out and to the right. At

least 15% of t-stats are greater than 6.0 using any of the three datasets.

3. Results

3.1. Estimated Preference for Large t-stats

Figure 1 illustrates the model fit and estimation results. The figure plots the

histogram of t-stats data (bars) and model (circle markers), along with the esti-

mated preference for t-stats (triangle markers). The top panel uses the Chen and

Zimmermann (2018) (CZ) replicated data, and the bottom panel uses moments

from Harvey, Liu, and Zhu (2016) (HLZ).

[Figure 1 about here.]

As the model is exactly identified using the t-stat histogram, the model fit in

Figure 1 is very good by construction. This fit illustrates the powerful logic of

p-hacking: one can generate any pattern if the data is selectively published.

The implied preference for large t-stats, however, is very extreme. This pref-

erence is characterized by 8 parameters p1, p2, ..., p8 corresponding to the prob-

ability of publishing a t-stat in each bin. The probabilities are so extreme that

they need to be plotted on a log scale (triangles, right axis), and range from 10−14

for t-stats between 1 and 2 to 0.99977 for t-stats in excess of 8.0 for the CZ data.

The HLZ data leads to similar results.

These highly skewed probabilities come from the very thin tail of a standard

normal distribution. This can be seen in the bottom row of Table 1, which shows

the histogram counts implied by a standard normal distribution that is truncated

at 2.0. Roughly 0.00001% of t-stats exceed 6.0 in this distribution, compared to
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the roughly 15% of t-stats that exceed 6.0 in the data. Thus, in order for the data

to be generated by p-hacking, the publication probability for these large t-stats

must be very high compared to those for smaller t-stats, leading to the extreme

skewed probabilities seen in Figure 1.

3.2. A Thought Experiment

It’s difficult to say if the estimated preference for large t-stats in Figure 1 is rea-

sonable. The probability that a given t-stat is published depends on the choices

of the both authors and journals. These choices interact, making interpretation

difficult.

However, one can interpret the t-stat preferences easily in a thought experi-

ment. This thought experiment tests the plausibility of the p-hacking story in the

same way Mehra and Prescott’s (1985) calibration exercise tests the plausibility

of the power utility model of equity prices.

Suppose that N economists mine the data 8 hours per day, 365 days per year.

Suppose further that the economists produce factors at a rate of x per economist-

hour. How long would it take to produce 100 factors?

To answer this question, I need to calculate the probability that a random t-

stat is published. This probability is found by integrating the probability of pub-

lication (2) over the distribution of t-stats. The staircase form of (2) implies a

closed form expression:

Probability of Publishing a Random t-stat =
K∑

i=1
p̂i [Φ(ei+1)−Φ(ei )] (6)

where, as a reminder,Φ(·) is the standard normal CDF. Plugging in p̂i from Figure

1 and the standard normal probabilities from Table 1 we have

Probability of Publishing a Random t-stat = 6.49e −15 (7)

using the Chen and Zimmermann (2018) and

Probability of Publishing a Random t-stat = 1.23e −14. (8)

using Harvey, Liu, and Zhu (2016).

These infinitesimal probabilities come from the fact that the estimated prob-
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abilities of publication in Figure 1 and probabilities implied by the standard nor-

mal distribution (see Table 1) are largely disjoint. For t-stats below 6.0, p̂i is ex-

tremely small, but for t-stats above 6.0, the standard normal density implies a

tiny probability. Summing over the product of these probabilities, Equation (6)

implies an extremely tiny probability of publication.

Using this probability of publication, I calculate the number of years it takes

to publish 100 factors, assuming various numbers of economists and rates of fac-

tor production. As both probabilities are extremely small, I focus on the larger

the probability implied by the Harvey, Liu, and Zhu (2016) dataset.

[Table 2 about here.]

Table 2 shows the result. The table begins by assuming that 10,000

economists mine the data. If these 10,000 economists produce factors at a rate of

1 per economist-hour, it takes 528 million years to publish 100 factors. To put this

number in perspective, the number of economics professors in the United States

was 12,770 in 2017, and the number of economists was 21,300 in 2016 according

to the Bureau of Labor Statistics.

One might argue that factors can be mined at a much faster rate than 1

per economist-hour given modern computing power. However, factors need to

come with supplementary results that satisfy journal review in order to be pub-

lished. For example, portfolio sorts are often required to produce monotonic pat-

terns in expected returns, alternative methods for factor construction are some-

times required, and the factors themselves are typically asked to be consistent

with some kind of theory for journals to publish them. These additional restric-

tions are difficult to satisfy using computing power alone.

Regardless, I can pursue the idea of highly productive factor mining in this

thought experiment. Table 2 shows that, even at a factor production rate of 10 per

economist-second, it would take 15,000 years for 10,000 economists to publish

100 factors.

Table 2 also explores the possibility that more than 10,000 economists en-

gage in p-hacking. Even if 1 million economists mine the data at 10 factors per

economist-second, it would still take 145 years to publish 100 factors. To put

these numbers in perspective, the Bureau of Labor Statistics estimates that there

were 296,100 financial analysts in the United States in 2016.

Finally, the bottom row of Table 2 shows that if 1 million economists produce
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40 factors per economist-second, then 100 factors will be published in just 19

years. However, the idea that 1 million economists can, in every second, produce

40 factors that have the supplementary results required for publication, and do

so consistently for 19 years, is ridiculous.

4. Conclusion

The idea that all asset pricing factors are due to p-hacking is very tempting.

In one fell swoop, p-hacking can explain decades of puzzling financial research.

A rigorous exploration of this explanation, however, shows that it is implausi-

ble. Though it may be difficult to understand, the stock return data does display

cross-sectional variation in expected returns.
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Exhibits

Figure 1: Model Fit and t-stat Preference. I estimate a model of pure p-hacking
(Equations (1)-(2), circles) on large datasets of published t-stats (bars) by method
of moments (Section 2.2). The top panel uses 156 replicated long-short portfo-
lios from Chen and Zimmermann (2018). The bottom panel uses moments from
Harvey, Liu, and Zhu (2016). The t-stat preference is modeled as publication
probabilities (triangles). The estimated preference for large t-stats is extremely
strong. t-stats < 6.0 have an absurdly low probability of publication.
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Table 1: Distribution of Published t-stats

This table summarizes the data and provides moments used in the estimation. CZ repli-

cations is the 156 replications of equal-weighted long-short quintile portfolios in Chen

and Zimmermann (2018). HLZ estimated model simulates the model from Harvey, Liu,

and Zhu (2016) Table 5, first row. For comparison, I show the 77 hand collected statis-

tics from Chen and Zimmermann (2018) (CZ hand collection) and a standard normal

truncated at 2.0.

percent of t-stats between
1, 2 2, 3 3, 4 4, 5 5, 6 6, 7 7, 8 > 8

Used in Estimation

CZ replications 15.4 24.4 21.8 10.9 10.3 2.6 4.5 10.3
HLZ estimated model 1.2 30.9 27.1 16.2 9.7 5.9 3.5 5.4

For Comparison

CZ hand collection 6.4 29.5 20.5 9.0 14.1 5.1 1.3 14.1
standard normal - 94.1 5.8 0.1 1E-03 4E-06 6E-09 3E-12

truncated at 2.0
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Table 2: A Thought Experiment

I calculate the probability that a random t-stat is published (Equation (6)). Using the

Harvey, Liu, and Zhu (2016) data, this probability is 1.23e-14. Applying this probability

to the assumed number of economists and factors per economist-hour in the table leads

to the number publications per year and years to publish 100 factors. For comparison,

there were 12,770 economics professors in the United States in 2017 and 21,300 profes-

sional economists in 2016 according to the Bureau of Labor Statistics.

Number of Factors per Factors Publications per Years to
Economists Economist-Hour per Year Year Publish 100

(Millions) Factors

10,000 1 29 3.60E-07 277,524,922
10,000 60 1,752 2.16E-05 4,625,415
10,000 3,600 105,120 1.30E-03 77,090
10,000 36,000 1,051,200 1.30E-02 7,709

100,000 36,000 10,512,000 0.13 771
500,000 36,000 52,560,000 0.65 154

1,000,000 36,000 105,120,000 1.30 77

1,000,000 144,000 420,480,000 5.19 19
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