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Abstract

Simple, multi-step estimators are developed for the popular GARCH(1, 1) model, where these esti-

mators are either available entirely in closed form or dependent upon a preliminary estimate from, for

example, quasi-maximum likelihood. Identification sources to asymmetry in the model’s innovations,

casting skewness as an instrument in a linear, two-stage least squares estimator. Properties of regular

variation coupled with point process theory establish the distributional limits of these estimators as sta-

ble, though highly non-Gaussian, with slow convergence rates relative to the
√
n-case. Moment existence

criteria necessary for these results are consistent with the heavy-tailed features of many financial returns.

In light-tailed cases that support asymptotic normality for these simple estimators, conditions are discov-

ered where the simple estimators can enhance the asymptotic efficiency of quasi-maximum likelihood

estimation. In small samples, extensive Monte Carlo experiments reveal these efficiency enhancements

to be available for (very) heavy tailed cases. Consequently, the proposed simple estimators are members

of the class of multi-step estimators aimed at improving the efficiency of the quasi-maximum likelihood

estimator.

Keywords: GARCH models, closed form estimation, heavy tails, instrumental variables, regular

variation. JEL codes: C13, C22, C58.
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1.1. Introduction

The linear GARCH(1, 1) model of Bollerslev (1986) is a workhorse of conditional volatility forecasting

in financial economics, its applications spanning portfolio formation, derivative pricing, and risk manage-

ment. Despite its parsimony, this model is shown to outperform (in terms of out-of-sample forecasting)

more complicated alternative specifications (see; e.g., Hansen and Lunde, 2005). The most common estima-

tor for this model is quasi-maximum likelihood (QML), which is based on a Gaussian likelihood function.

Pioneering works by Lee and Hansen (1994), and Lumsdaine (1996) establish the QMLE as consistent and

asymptotically normal under a variety of (unknown) densities for the model’s innovations. Berkes, Horváth,

and Kokoszka (2003) and Francq and Zakoïan (2004) extend this result to the GARCH(p, q) model under

milder conditions, including a well-defined fourth moment of the model’s innovations. Hall and Yao (2003)

establish the distributional limit of the QMLE in cases when the fourth moment of these innovations is

ill-defined.

The first aim of this paper is to temporarily part ways with QMLE to propose simple, moment-based

alternatives for GARCH(1, 1) model estimation. The definition of a simple estimator heralds from Lewbel

(2004) and is subsequently applied in Dong and Lewbel (2015).

DEFINITION. A simple estimator closely resembles (or consists of steps that each resemble) estimators

that are already in common use and involves few or no numerical searches or numerical optimizations.

Consistent with this definition, the estimators developed herein are available in closed form and, there-

fore, comparable to those proposed by Kristensen and Linton (2006), although under milder conditions.

Collectively, these simple estimators are instrumental variables (IV) estimators that apply separately to the

model’s ARCH and GARCH parameters and are implemented via applications of linear, two-stage least

squares. These simple estimators are shown to be strongly consistent and to weakly converge to stable,

though highly non-Gaussian, limits in empirically-relevant cases. Specifically, these results require (slightly

stronger than) third moment existence for the raw return sequence being modeled and a well-defined ith

moment of the GARCH innovations, where i ∈ (3, 6). Convergence rates for these simple estimators tend

to be (much) slower than
√
n and depend on the tail-thickness of the raw returns being modeled.

Simple estimators tend to be associated with inefficient estimators. Indeed, relative to the case of max-

imum likelihood estimation (MLE), which relies upon knowledge of the true innovation density, this asso-

ciation is (many times) justified. QMLE, on the other hand, while still consistent, can also be considerably

inefficient in cases where the true (and unknown) innovation density deviates from normality. While one
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possible fix for this inefficiency loss is to specify a heavier-tailed density for the model’s innovations, like

the student-t (see; e.g., Baillie and Bollerslev, 1989), consistency is lost if the true innovation density hap-

pens to reside outside of the student-t family. Consequently, a literature on GARCH estimation has emerged

aimed at defining multi-step estimators that improve upon the QMLE, as implemented in a preliminary first

step, but also maintain robustness in terms of consistency (see; e.g., Drost and Klaassen, 1997, Francq and

Zakoïan, 2011, Fan, Qi and Xiu, 2014, and Preminger and Storti, 2017).3 Collectively, by better targeting

the scale of the true (and unknown) innovation density, these estimators offer efficiency enhancements over

QMLE.

Identification of the simple estimators proposed herein relies on non-zero skewness in the raw returns

being modeled. Essentially, skewness is the instrument upon which these estimators are based. In a linear

GARCH context, skewness in the raw returns necessarily sources to skewness in the true (and unknown)

innovation density. If that skewness represents a prominent feature of the innovation density, explicitly

targeting it may very-well provide efficiency gains, just as (better) targeting scale does. Additionally, the

simple estimators proposed herein are also multi-step estimators reliant upon preliminary estimates from

a first step. The second aim of this paper, then, is to investigate the advantages of sourcing the requisite

preliminary estimates for the proposed simple estimators to QMLE. From that investigation, it is found that

for raw return processes characterized by no more than a well-defined third moment, the proposed sim-

ple estimators are asymptotically more efficient with QMLE-based preliminary estimates than closed-form,

moments-based alternatives with slower convergence rates. In thin-tailed cases that support asymptotic

normality for the simple estimators, conditions are found under which the simple estimators are actually

asymptotically more efficient than QMLE.4 Lastly (and, perhaps, most surprisingly) it is also found that in

small samples, the simple estimators can enhance the efficiency of QMLE even when the model’s innova-

tions are (very) heavy tailed. Explaining this enhancement in heavy-tailed cases is the same factor at work

under asymptotic normality; namely, skewness in the model’s innovations. Consequently, the simple esti-

mators proposed herein are, in fact, comparable to the aforementioned class of multi-step estimators aimed

at enhancing the efficiency of QMLE; with the added benefit of not requiring any numerical optimization in

their final step.

3Specifically, Drost and Klaassen (1997) investgate the possibility for adaptive GARCH estimation; that is, a semiparametric

estimator matching the efficiency of MLE. Recognizing adaptive estimation to be, generally, infeasible, the more recent cited works

look to improve upon the efficiency of QMLE, thereby narrowing (but not eliminating) the efficiency loss relative to MLE.
4Monte Carlo studies find that these conditions can be satisfied for (at least) certain regions of the parameter space for the

GARCH(1, 1) model.
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1.2 Background and Motivation

For the linear GARCH(1, 1) model of

Yt = σtεt, σ2t = ω + αY 2t−1 + βσ2t−1,

where εt ∼ i.i.d. D (0, 1) and D is unknown, it is well known that

Y 2t = ω + φY 2t−1 − βWt−1 +Wt, φ = α+ β, Wt = σ2t
(
ε2t − 1

)
, (1)

where {Wt} is a Martingale difference sequence (MDS); that is, the GARCH(1, 1) model implies an

ARMA(1, 1) model for the second-order sequence
{
Y 2t
}

. When thinking about simple estimators for this

second-order ARMA(1, 1) model, two sets of possible instruments spring to mind:

Z
(i)
t−1 =

(
Y i
t−1, . . . , Y i

t−h

)
, i = 1, 2.

The case where i = 2 covers the estimators proposed by Kristensen and Linton (2006) and Giraitis and

Robinson (2000). This paper investigates the (up until this point) overlooked case of i = 1. In order for

Z
(1)
t−1 to serve as a valid instrument for Y 2t−1 requires both that E

(
Y 3t
)
<∞ and that E

(
Y 3t
)
6= 0.

STYLIZED FACT. Many financial returns seem to be characterized by heavy-tailed processes for which

the fourth moment is not well-defined...(see Figure 1 and; e.g., Hill and Renault, 2012).

Plotted in Panel A of Figure 1 are Hill (1975) tail index estimates together with 95% confidence bands

(the latter coming from Hill, 2010, Theorem 4) for daily S&P 500 Index log returns. Recalling that a tail

index κ > 0 for a regularly varying random variable is a moment supremum (i.e., if Yt is regularly varying,

then E |Yt|
p <∞ if and only if p < κ), empirical evidence does not (strongly) support well-defined fourth

moments for these returns. In fact, in many instances, even the upper bounds of the 95% Confidence intervals

fall below 4. This lack of support for E
(
Y 4t
)
<∞ is problematic if Z

(2)
t−1 is to serve as instruments for (1)

since identification and, hence, consistency hinges upon this criterion.

STYLIZED FACT. "There is now good evidence that on short time scales, and using long time series, the

tail index for stocks is around 3 on several markets (U.S., Japan, Germany)"...Bouchard and Potters

(2003)
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Panel A of Figure 1 is much more supportive of the claim that E
(
Y 3t
)
<∞. In addition, the skewness

statistic for the returns is −0.26, which is highly significant against a null of normality, given the sam-

ple size.5 Table 1 illustrates additional instances where (very high frequency) financial returns evidence

very significant skewness statistics that are also quite large in absolute terms. Collectively then, empirical

evidence seems to support Z
(1)
t−1 as a viable set of instruments for (1).

The empirical evidence from the previous paragraph also illustrates the impracticality of simple estima-

tors for (1) based even on Z
(1)
t−1 being asymptotically normal: the well-defined, higher moments necessary

for such a result simply aren’t supported empirically. Fortunately, these simple estimators can be shown

to weakly converge in distribution to a heavy-tailed mixture of stable random variables using results from

Davis and Hsing (1995) that are also applied in, for example, Davis and Mikosch (1998) and Mikosch and

Stărică (2000).6 Applicability of these results depends on {Yt} being regularly varying in the case where

εt is drawn for a skewed distribution. In addition, as mentioned in the introduction, a second requirement

is for E |εt|
i < ∞, where i ∈ (3, 6). From Panel B of Figure 1 (which depicts tail index estimates for the

innovations to a GARCH(1, 1) model applied to daily S&P 500 Index log returns), this second requirement

also enjoys empirical support.7

2.1. Simple Estimation of the GARCH(1,1) Model

Consider the model

Yt = σtεt, εt ∼ i.i.d. D (0, 1) , (2)

where

σ2t = ω0 + α0Y
2
t−1 + β0σ

2
t−1 (3)

= ω0 + σ2t−1
(
α0ε

2
t−1 + β0

)
= ω0 + σ2t−1At

Here, ω0 denotes the true value, ω any one of a set of possible values, ω̂ an estimate, and parallel definitions

hold for all other parameter values. The model of (2) and (3) describes a strong GARCH process (see Drost

and Nijman, 1993). Consistency of the simple estimators studied in this paper holds if {εt} is, instead,

5In fact, the skewness statistic for daily S&P 500 Index log returns can be as high as−1.02, depending on the length of the data

sample used.
6This mixture of stable random variables has an ill-defined variance.
7Specifically, the linear GARCH(1, 1) model applied also includes an AR(1) component in the conditional mean.
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a weakly dependent, MDS (see; e.g., Prono, 2014). The distributional limits for these simple estimators,

however, require {εt} to be i.i.d. (Mikosch and Straumann, 2002, 2006, and Vaynman and Beare, 2014,

impose this same requirement).

Mikosch and Stāricā (2000) establish (3) as a stochastic recurrence equation (SRE). Most linear GARCH

processes are afforded this characterization (see; e.g., Basrak, Davis and Mikosch, 2002), which is important

for establishing them as regularly varying. For instance, conditional on (3) being a SRE, both
{
σ2t
}

and

{Yt} are regularly varying sequences (see Lemmas 3 and 5, respectively, in the Supplemental Appendix).

Specifically, for 0 ≤ h < ∞, consider Yt =
(
Yt, . . . , Yt+h

)
, or Y = Y0 =

(
Y0, . . . , Yh

)
for

short. Y is regularly varying in Rh+1 with tail index κ0, meaning there exists a sequence of constants {an}

such that

nP (|Y| > an) −→ 1, n→∞,

where |Y| = max
m=0,...,h

|Ym|,

an = n1/κ0L (n) ,

and L (·) is slowly-varying at∞. Mikosch and Stărică (2000, Theorem 2.3) demonstrate Y to be regularly

varying in the case where D is symmetric. Lemma 5 in the Supplemental Appendix is a more general re-

sult that establishes Y as regularly varying regardless of whether D is symmetric or skewed by combining

certain elements from the proofs of Mikosch and Stărică (2000, Theorem 2.3) and Basrak et al. (2002,

Corollary 3.5(B)), respectively (see Remark 6 in the Supplemental Appendix). This generalization is im-

portant because a necessary condition for identifying the simple estimators in this paper is E
(
ε3t
)
6= 0, and

given (2) and (3), this condition implies E
(
Y 3t
)
6= 0.

ASSUMPTION A1: The distributionD has an unbounded support. In addition, for some δ > 0,E |εt|
i+δ <

∞, where 3 ≤ i < h <∞, while E |εt|
h =∞, and for j ≤ i, E |εt|

j = cj .

Under A1, {εt} is lighter-tailed than {σt}. This distinction is important because it limits the heavy-tailed

features of {Yt} to stem from {σt}, which, in turn, enables {Yt} to be established as regularly varying.

ASSUMPTION A2: The parameter space is given by

Θ =
{
θ =

(
ω, α, β

)
∈ R3 | ω ≥ ω, α > 0, β ≥ 0

}
,

for some ω > 0.
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The strictly positive lower bound on ω heralds from Kristensen and Rahbek (2005). Notice as well that

Θ is non-compact.

ASSUMPTION A3: E
(
ε3t
)

= c∗3 6= 0.

A3 passes skewness onto the unconditional distribution of Yt. The direction of skewness is uncon-

strained.8 Skewness in (high frequency) returns is considered a stylized fact. This fact is exogenous to the

model under consideration, yet (as will be shown) can be harnessed to identify the model. Examples where

an asymmetric D is used to account for skewness in returns include Hansen (1994), Harvey and Siddique

(1999), and Jondeau and Rockinger (2003).

ASSUMPTION A4: E
(
A3/2

)
< 1.

A4 is sufficient for {Yt} to have a strictly stationary solution (see; e.g., Mikosch, 1999, Corollary 1.4.38

and Remark 1.4.39). Throughout this and the remaining sections, assume that this strictly stationary solution

is the one being observed. From (2) and (3) follows that

Y 2t = σ2t +Wt, (4)

where {Wt} is an MDS. Let Xt ≡ Y 2t − γ0, where

γ0 ≡ E
(
Y 2t
)

=
ω0

1− φ0
, φ0 = α0 + β0,

and φ0 < 1, given A4. Then from (4) follows that

Xt = φ0Xt−1 − β0Wt−1 +Wt (5)

= φ0Xt−1 + Vt

which relates the GARCH(1, 1) model to an ARMA(1, 1) model of the (centered) second-order sequence{
Y 2t
}

. Also given A4, E
(
Y 3t
)

= E
(
σ3t
)
× c∗3 is well defined (see Prono, 2018, Lemma 1). Consequently,

given the law of iterated expectations, multiplying both sides of (5) by Yt−m for a m ≥ 1 and taking

expectations produces

E
(
XtYt−m

)
= α0φ

m−1
0 E

(
Y 3t
)
,

8For equity returns, as an example, skewness can be of either sign for single names and tends to be negative for portfolios.
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in which case,

E
(
XtYt−1

)
= α0E

(
Y 3t
)
, (6)

and

E
(
XtYt−m

)
= φ0E

(
XtYt−m+1

)
, m ≥ 2. (7)

From (6), an exactly identified estimator for α0 in (5) is

α̂IV = F̂

(
n−1

∑
t
X̂tYt−1

)
, F̂ =

(
n−1

∑
t
X̂t−1Yt−1

)−1
, (8)

where

X̂t = Y 2t − γ̂, γ̂ = n−1
∑
t
Y 2t . (9)

Notice that (8) is a linear TSLS estimator applied to the feasible version of (5) (see (25) in the Appendix)

using Yt−1 as an instrument for X̂t−1. Notice as well that Yt−1 is not a proper instrument, since

E
(
Wt−1Yt−1

)
= E

(
Y 3t−1

)
6= 0.

Nonetheless, Yt−1 is sufficient for identifying α0 from (5) as the following Theorem demonstrates.

Theorem 1 Consider the estimator in (8). Let F0 = E
(
Xt−1Yt−1

)−1
, and let Assumptions A1–A4 hold.

Then

α̂IV
a.s.−→ α0,

and

na−3n (α̂IV − α0)
d−→ α−10 F0 (V2,y − β0V1,y) , (10)

where κ0 ∈ (3, 6), "
d−→" is weak, and the limiting random variables

(
Vi,y

)
i=1,2

defined in Lemma 11 are

jointly (κ0/3)−stable. If κ0 ∈ (6, ∞), in which case, E
(
Y 6t
)
<∞, then

√
n (α̂IV − α0)

d−→ N
(

0, E
(
Y 3t
)−2

ΣV Y−1

)
, (11)

where

ΣV Y−1 = E
((
VtYt−1

)2)
+ 2

∞∑
s=1

E
(
VtYt−1Vt−sYt−1−s

)
.

Proof. See the Appendix for proofs of all theorems and corollaries stated here in the main text. See the
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Supplemental Appendix for statements and proofs of all supporting lemmas as well as additional theorems

and corollaries.

Remark 2 Asymptotically, γ̂ does not affect the limiting distribution of α̂IV . Also, consistency of α̂IV

does not require consistency of γ̂ (see (26) in the Appendix). In thin-tailed cases where E
(
Y 6t
)
< ∞

(which is equivalent to E
(
A3
)
< 1), there is an inverse relationship between the required asymmetry in

the distribution of Yt and the asymptotic variance of α̂IV . Specifically, as
∣∣E (Y 3t )∣∣ → 0, the asymptotic

variance of α̂IV increases without bound. The limiting case where E
(
Y 3t
)

= 0 corresponds to the case

where this asymptotic variance is ill-defined, rendering α̂IV unidentified. Analogously, in heavy-tailed cases

where κ0 ∈ (3, 6) and, consequently, E
(
Y 6t
)

= ∞, the stable limit is ill-defined when E
(
Y 3t
)

= 0. In

addition, away from symmetric innovations, the rate of convergence in (10) is n
κ0−3
κ0 , which is quite a bit

slower than
√
n in (11), especially for empirically-relevant values of κ0.

Remark 3 The distributional limit in (10) depends on i ∈ (3, 6) in A1. This requirement is both consistent

with existing limit theory for alternative GARCH estimators like the QMLE as well as the empirical features

of many GARCH processes (see; e.g., Figure 1 as well as Hill and Renault, 2012). In contrast, a requirement

more analogous to one employed in related works (see; e.g., Mikosch and Stărică, 2000, and Kristensen and

Linton, 2006) would be for i ≥ 6, which is both much stronger and not as well supported by empirical

evidence.9

Remark 4 In the special case where β0 = 0 (i.e., the ARCH(1) case), the distributional limits in (10) and

(11) reduce to those in Prono (2018a, Theorem 1) with a single, lagged instrument.

Owing to its dependence on κ0, the exact convergence rate in (10) is unknown. This feature complicates

bootstrapping a confidence interval for α̂IV .10 Consider, then, the estimator τ̂2n = n−1
∑
t
Y 6t . Given this

estimator,

na−6n τ̂2n = a−6n
∑
t
Y 6t

d−→ V
(2)
0,y ,

where V
(2)
0,y is (κ0/6)−stable following the method of proof given for Davis and Hsing (1995, Theorem

3.1(i)). Since
(
V2,y − β0V1,y, V

(2)
0,y

)
is jointly-stable following the arguments given for Vaynman and

9In each of these two referenced cases, second-order autocovariances are considered; i.e., E (XtXt−m) for m ≥ 1, in which

case, the analogous condition is i = 8.
10The distributional limit in (10) has an awkward characteristic function that does not readily admit the construction of confidence

intervals.
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Beare (2014, Theorem 4),

√
n

(
α̂IV − α0

τ̂n

)
d−→ α−10 F0

(
V2,y − β0V1,y

V
(2)
0,y

)
,

by the continuous mapping theorem. Advantages of this normalization are twofold. First, the bootstrap

method of Hall and Yao (2003) can now be applied.11 Second, a bridge is provided for understanding the

transition from (10) to (standard) asymptotic normality in (11). Specifically, if κ0 ∈ (6, ∞), the limit of τ̂n

is degenerate, and the linear combination of V1,y and V2,y is Gaussian.

Next, let

Rt = Xt − φ0Xt−1

so that, given (5),

Rt = −β0Wt−1 +Wt, (12)

making Rt a MA(1) process. Recursive substitution into (12) produces

Rt = −β0Rt−1 + Ut, Ut = Wt − β20Wt−2. (13)

From (13), an exactly identified IV estimator for β0 is

β̂IV

(
φ̂
)

= −Ĝ
(
n−1

∑
t
R̂tYt−1

)
, Ĝ =

(
n−1

∑
t
R̂t−1Yt−1

)−1
, (14)

where

R̂t = X̂t − φ̂X̂t−1.

The estimator in (14) is highly analogous to the one in (8), since

E
(
Rt−1Yt−1

)
= E

(
Xt−1Yt−1

)
= E

(
Y 3t−1

)
,

thereby linking instrument strength directly to the level of skewness in D. Differentiating (14) from (8) is

1. Yt−1 being a proper instrument for Rt−1 (it is an improper instrument for Xt−1 as previously dis-

cussed)

11This type of normalization applies to all of the simple estimators discussed in this paper and enables the calculation of confi-

dence intervals for the, respective, parameter estimates, even in heavy-tailed cases.
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2. the estimator depending on φ̂

This second differentiating feature likens (14) to the closed-form estimator proposed by Kristensen and

Linton (2006) and necessitates, in turn, a consistent estimator for φ0. In order to satisfy this condition and

preserve (14) being entirely closed form, consider

φ̂IV = F̂

(
n−1

∑
t
X̂tZt−2

)
, F̂ =

(
n−1

∑
t
X̂t−1Zt−2

)′
Λ̂(

n−1
∑
t
X̂t−1Zt−2

)′
Λ̂

(
n−1

∑
t
X̂t−1Zt−2

) , (15)

with the instrument vector

Zt−2 =
(
Yt−2, . . . , Yt−h

)′
.

Given A3, (7), and

E
(
Wt−iZt−2

)
= 0, i = 0, 1,

which follows by the law of iterated expectations, Zt−2 is a proper set of instruments for Xt−1 in (5).

ASSUMPTION A5: Λ̂
a.s.−→ Λ0, a positive definite matrix.

If Λ̂ =

(
n−1

∑
t

Zt−2Z
′
t−2

)−1
, then φ̂

IV
is a TSLS estimator. The advantage of this choice of a

weighting matrix is that

Λ̂ =

(
n−1

∑
t

Zt−2Z
′
t−2

)−1
a.s.−→ γ−10 Ih,

where Ih is a h× h identity matrix, given Assumptions A1–A4. Alternatively, if

Λ̂ =

(
n−1

∑
t

(
Xt − φ̃Xt−1

)2
Zt−2Z

′
t−2

)−1
,

where φ̃ is a preliminary estimator, then φ̂IV is a two-step GMM estimator. While this second choice of a

weighting matrix is certainly preferable on efficiency grounds, Λ̂
a.s.−→ Λ0 now requires E

(
A3
)
< 1, which

is a rather tall order given the empirical features of many financial return series (see; e.g., Figure 1). Conse-

quently, this paper focuses on the TSLS interpretation of (15). Theorem 13 in the Supplemental Appendix

shows that φ̂IV
a.s.−→ φ0 and that φ̂IV converges (weakly) in distribution to a limit that is qualitatively similar

to (10) when κ0 ∈ (3, 6), with the same rate of convergence. The following theorem depends on these

results.
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Theorem 5 Consider the estimator in (14) with φ̂ = φ̂IV as defined in (15). Let

A0 = Λ0E
(
Xt−1Zt−2

)
, B0 = E

(
Xt−1Zt−2

)′
A0, G0 = E

(
Rt−1Yt−1

)−1
,

and let Assumptions A1–A5 hold. Then

β̂IV

(
φ̂IV

)
a.s.−→ β0,

and

na−3n

(
β̂IV

(
φ̂IV

)
− β0

)
d−→ α−10

(
F0S+G0

(
α0φ0V0,y −

(
V2,y − β0V1,y

)))
, (16)

where κ0 ∈ (3, 6), "
d−→" is weak, V0,y is defined in Lemma 12,

(
V2,y − β0V1,y

)
heralds from Theorem 1,

and F0S is defined in Theorem 13 of the Supplemental Appendix. This (weak) distributional limit is also

(κ0/3)−stable. If κ0 ∈ (6, ∞), in which case, E
(
Y 6t
)
<∞, then

√
n
(
β̂IV

(
φ̂IV

)
− β0

)
d−→ N

(
0, Σβ

)
,

where

Σβ = E
(
Y 3t
)−2 [

B20ΣUY−1
+ E

(
Y 3t
)2 (

A
′
0ΣV Z−2A0 − 2B0Σ

′
UV Y−1Z−2

A0

)]
,

A0, B0, and ΣV Z−2
are defined in Theorem 13,

ΣUY−1
= E

((
UtYt−1

)2)
+ 2E

(
UtUt−1Yt−1Yt−2

)
,

ΣV Z−2 = E
(
V 2t Zt−2Z

′
t−2

)
+ 2E

(
VtVt−1Zt−2Z

′
t−3

)
,

and

ΣUV Y−1Z−2
= E

(
UtVtYt−1Zt−2

)
+ 2E

(
UtVt−1Yt−1Zt−3

)
.

Remark 6 As is true in Theorem 1, (i) γ̂ impacts neither consistency nor the asymptotic variance of β̂IV ,

(ii) a necessary condition for the limiting result in (16) is that i ∈ (3, 6) in A1, and (iii) in order for both

the heavy-tailed and thin-tailed distributional limits to be stable, E
(
Y 3t
)
6= 0; otherwise, β̂IV

(
φ̂
)

is not

identified.

Remark 7 The limiting result in (16) is a linear combination of the results in (10) and (28) in the Supple-

mental Appendix; in which case, the limiting distribution of φ̂ impacts the asymptotic distribution of β̂IV as
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it does in the Kristensen and Linton (2006) estimator.

Corollary 8 Consider the estimator in (14). Let Assumptions A1–A4 hold. In addition, assume there exists

a φ̂ such that φ̂
a.s.−→ φ0 with a rate of convergence of to a stable limiting distribution of nl, where l >

κ0−3
κ0

.

Then,

β̂IV

(
φ̂
)

a.s.−→ β0

and

na−3n

(
β̂IV

(
φ̂
)
− β0

)
d−→ G0

(
φ0V0,Y − α−10

(
V2,y − β0V1,y

))
. (17)

Remark 9 Relative to (16), (17) has a (substantial) source of variation in the asymptotic limit removed.

The implications of this result are threefold. First, for any consistent φ̂ that converges faster than φ̂IV (see

Theorem 13 in the Supplemental Appendix), asymptotically there is no difference between using this estimate

and the true value φ0. Second, in this case, β̂IV

(
φ̂
)

is asymptotically more efficient than β̂IV

(
φ̂IV

)
. Third,

it is natural to consider φ̂ = φ̂QMLE , since φ̂QMLE is both consistent and nl asymptotically normal under

conditions supported by the Corollary (see; e.g., Berkes, Horváth, and Kokoszka, 2003, Hall and Yao, 2003,

and Francq and Zakoïan, 2004).

Given β̂IV

(
φ̂
)

in Corollary 8, consider the alternative estimator for α0

α̂IV

(
φ̂
)

= φ̂− β̂IV
(
φ̂
)
. (18)

Corollary 10 Consider the estimator in (18). Let Assumptions A1–A5 hold. Then for both the φ̂ defined in

Corollary 8 and φ̂ = φ̂IV ,

α̂IV

(
φ̂
)

a.s.−→ α0,

and

na−3n

(
α̂IV

(
φ̂
)
− α0

)
d−→ −G0

(
φ0V0,Y − α−10

(
V2,y − β0V1,y

))
. (19)

From Theorem 1 and Corollary 10, if

na−3n (α̂IV − α0)
d−→ X,

then

na−3n

(
α̂IV

(
φ̂
)
− α0

)
d−→ X − Y

13



Drawing upon what is (generally) known for two-step estimators, necessary for α̂IV

(
φ̂
)

to display asymp-

totic efficiency gains over α̂IV is a (strong) positive association between X and Y (see; e.g., Newey and

McFadden, 1994). Specifically, given (10) and (19), there needs to be a (strong) and positive association

between V0,Y and
(
V2,y − β0V1,y

)
. From Lemma 12 in the Supplemental Appendix, V0,Y is the limit to

n−1
∑
t
Y 3t , while Vm,Y is the limit to n−1

∑
t
YtY

2
t+m for m = 1, 2 (see Lemma 11). Given (6) and (7),

supporting such a positive association in large samples and thin-tailed cases where κ0 ∈ (6, ∞) is then

Cov

(
n−1

∑
t

Y 3t , n
−1
∑
t

YtY
2
t+2 − β0n−1

∑
t

YtY
2
t+1

)
= Cov

(
n−1

∑
t

Y 3t , n
−1
∑
t

YtY
2
t+2

)

−β0Cov
(
n−1

∑
t

Y 3t , n
−1
∑
t

YtY
2
t+1

)

≈ Cov

(
n−1

∑
t

Y 3t , α0φ0n
−1
∑
t

Y 3t

)

−β0Cov
(
n−1

∑
t

Y 3t , α0n
−1
∑
t

Y 3t

)

= α20V ar

(
n−1

∑
t

Y 3t

)
> 0

It can be anticipated, however, that any efficiency gains in α̂IV

(
φ̂
)

over α̂IV will be muted relative to the

gains in β̂IV

(
φ̂QMLE

)
over β̂IV

(
φ̂IV

)
.

2.2. Potential for Efficiency Gains

Consider the estimator θ̂.

ASSUMPTION A6: θ̂
a.s.−→ θ0 and

√
n
(
θ̂ − θ0

)
d−→ N (0, Σθ), where

Σθ =


Σω Σω, α Σω, β

Σω, α Σα Σα, β

Σω, β Σα, β Σβ

 .

In addition,

Σα + 2Σα, β < 0. (20)
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Since
(

0, 1, 1
)(

θ̂ − θ0
)

=
(
φ̂− φ0

)
, from A6 follows that

√
n
(
φ̂− φ0

)
d−→ N

(
0,Σβ + Σα + 2Σα, β

)
.

Consequently, given (20), Σφ < Σβ . Moreover, since Σα > 0, necessary for (20) is Σα, β < 0. Given

the discussion that follows Corollary 8, a natural candidate for θ̂ is θ̂QMLE . The next section considers

a wide range of Monte Carlo simulation designs for the model in (2) and (3). Under all of these designs

(without exception), including ones conducted using (very) large sample sizes, (20) holds when θ̂ = θ̂QMLE .

Consequently, because the Monte Carlo designs conform both with the magnitudes of ARCH and GARCH

parameters and the stylized facts of GARCH innovations encountered empirically, A6 appears to (at least)

enjoy broad empirical support when applied to the QMLE.

Consider next the estimator in (8). Given Theorem 1,

√
n (α̂IV − α0)

d−→ N (0, Σ∗α)

in thin-tailed cases where κ0 ∈ (6, ∞). Further consider

Σ∗α, β = nE
(

(α̂IV − α0)
(
β̂ − β0

))
, Ω∗α = nE ((α̂IV − α0) (α̂− α0)) .

ASSUMPTION A7:

Σ∗α − 2
(
Ω∗α + Σ∗α, β

)
< 0 (21)

In all the Monte Carlo experiments considered in the next section, Ω∗α + Σ∗α, β < 0 when θ̂ = θ̂QMLE .

Consequently, the relative size of Σ∗α is important for determining whether (21) holds. Recall from (11) that

as
∣∣E (Y 3t )∣∣ increases, Σ∗α decreases. As a result, the likelihood of (21) holding increases along with the

magnitude of skewness in Yt. Empirical evidence supports elevated skewness levels in (very) high frequency

returns (see Table 1). These elevated levels, however, correspond with heavy-tailed return processes (see

Figure 1). An interesting question, then, is whether there exist thin-tailed GARCH processes in the context

of Theorem 1 with sufficient skewness to satisfy (21). Evidencing why this question is interesting is the

following theorem.
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Theorem 11 Consider the estimator in (14) under thin-tailed cases where κ0 ∈ (6, ∞). Let Assumptions

A1–A4 and A6–A7 hold. Then, β̂IV

(
φ̂
)

a.s.−→ β0,

√
n
(
β̂IV

(
φ̂
)
− β0

)
d−→ N

(
0, Σ∗β

)
,

and

Σ∗β < Σβ.

Remark 12 From Theorem 11, there exist conditions under which β̂IV

(
φ̂
)

has a smaller asymptotic vari-

ance than β̂. Under these conditions, β̂IV

(
φ̂
)

can be interpreted as enhancing the efficiency of β̂, generally,

and β̂QMLE , specifically, in an analogous way that the estimators of Francq et al. (2011) and Fan et al.

(2014) enhance the efficiency of β̂QMLE . These latter estimators achieve efficiency gains (i.e., smaller

asymptotic variances) by targeting the scale of the unknown innovation density D. Rather than targeting

scale, β̂IV

(
φ̂
)

targets the skewness of D. To the extent that this skewness is pronounced (i.e., a prevalent

feature of D), efficiency gains should result, especially if the initial estimator θ̂ ignores this skewness, as is

the case, generally, for many GARCH estimators, and, certainly, θ̂QMLE , specifically.

Corollary 13 Consider the estimator in (18) under thin-tailed cases where κ0 ∈ (6, ∞). Let Assumptions

A1–A4 hold. Then

√
n
(
α̂IV

(
φ̂
)
− α0

)
d−→ N (0, Σ∗α) ,

the same distributional limit as α̂IV in (11).

Remark 14 In thin tailed cases where κ0 ∈ (6, ∞), α̂IV

(
φ̂
)

and α̂IV share the same distributional limit.

Consequently, if Σ∗α < Σα, which likely sources to heavy skewness in D, α̂IV

(
φ̂
)

offers no improvement

over α̂IV , a result which, owing to simulation evidence, stands in contrast to the improvement β̂IV

(
φ̂
)

affords over β̂IV

(
φ̂IV

)
.

3.1. Monte Carlo Design

This section considers the GARCH(1, 1) model from Section 2.1, where {εt} is drawn from the skewed

student’s-t density of Hansen (1994). This density has two parameters, λ and η, where the former governs

skewness, the latter governs the tails, and up to the ηth moment of the distribution is well defined. Values
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for these parameters considered in the Monte Carlo experiments are

λ = −0.20, − 0.40, − 0.80, − 0.90, − 0.99, η = 64.5, 8.1, 4.5, 3.5. (22)

As λ increases, skewness increases, while as η decreases, tail thickness increases. The Monte Carlo experi-

ments summarized in this section involve the GARCH specification of

ω0 = 0.005, α0 = 0.10, β0 = 0.80. (23)

For robustness, other specifications are also considered, the results for which are summarized in the Supple-

mental Appendix. The estimators under study are the simple IV estimators from Section 2.1, with both the

closed-form Kristensen and Linton (2006) estimator (KL) and the QMLE serving as benchmarks. Recall-

ing that m denotes the number of lags used as instruments, for α̂IV , α̂IV

(
φ̂QMLE

)
and β̂IV

(
φ̂QMLE

)
,

m = 1. For β̂IV

(
φ̂IV

)
, m = 20, 10, 5, so as to investigate the effects of the number of instruments on

the performance of the estimator. Table 2 summarizes the skewness statistics and tail index estimates for

{Yt}
T
t=1, given the GARCH specification in (23) and the different values for λ and η in (22). Notice that

skewness levels in the simulations are consistent with skewness levels encountered empirically (see Table

1). When η = 64.5, α̂IV , α̂IV

(
φ̂QMLE

)
, α̂QMLE , β̂IV

(
φ̂IV

)
, β̂IV

(
φ̂QMLE

)
, and β̂QMLE are all as-

ymptotically normal, while α̂KL and β̂KL (likely) are not.12 When η = 8.1 and η = 4.5, only α̂QMLE

and β̂QMLE are asymptotically normal. When η = 3.5, none of the estimators are asymptotically nor-

mal.13.When η = 4.5 and η = 3.5, α̂KL and β̂KL are not consistent; in which case, they are not considered

in the experiments.14

Samples sizes for the simulations are 100, 000 and 500 observations, respectively, with the former in-

vestigating the large-sample properties of the simple IV estimators (given their slow convergence rates),

and the latter investigating their small-sample properties. All simulations are conducted over 10, 000 trials,

with the first 200 observations dropped to avoid initialization effects. Summary statistics for the simulations

are the root mean squared error, mean absolute error, and median absolute error (each measured relative to

the true parameter value) divided by the corresponding efficiency measure for the QMLE. These ratios are

termed "efficiency ratios," and benchmark the performance of the simple IV estimators against the QMLE.

Additional details on the simulations are contained in the notes to the relevant Tables.

12Necessary for α̂KL and β̂KL to be asymptotically normal is E
(
Y 8
t

)
<∞ (see Kristensen and Linton, 2006), which does not

appear to be true, given the results in Table 2.
13A necessary condition for α̂QMLE and β̂QMLE to be asymptotically normal is E

(
ε4t
)
<∞ (see; e.g., Hall and Yao, 2003).

14Necessary for consistency of α̂KL and β̂KL is E
(
Y 4
t

)
<∞, which (very likely) does not hold, given the results in Table 2.
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3.2. Results

Tables 3–4 report large-sample results for the simple estimators proposed herein at varying levels of

tail-thickness for the GARCH(1, 1) model’s innovation density. Beginning with Table 3, in the thin-tailed

case of η = 64.5, the relative performance of all simple estimators improves as λ increases (in absolute

terms). The opposite is true for the KL estimator, which sees its performance meaningfully degrade with

increasing levels of skewness At low skewness levels, the KL estimator is more efficient than the simple

estimators. At high skewness levels, this tendency is reversed, with the KL estimator notably lagging the

simple estimators. Amongst the simple estimators, β̂IV

(
φ̂QMLE

)
performs the best. However, all simple

estimators, including the KL estimator, notably lag the QMLE.

Moving to the heavier-tailed case of η = 8.1 (still Table 3), the same trends mentioned above continue to

hold. There are, however, some notable points of departure from these trends. Specifically, the relative per-

formance of β̂IV

(
φ̂IV

)
materially degrades in this heavier-tailed case. Also, its performance now appears

to worsen as λ increases (in absolute terms). In contrast, the relative performance of α̂IV , α̂IV

(
φ̂QMLE

)
,

and β̂IV

(
φ̂QMLE

)
remains much more stable across the two cases.

In the heavy-tailed case of η = 4.5 (now Table 4), a substantial relative performance drop is, again,

evidenced for β̂IV

(
φ̂IV

)
. Consequently, β̂IV

(
φ̂IV

)
now notably lags in performance relative to the other

simple estimators at all skewness levels considered. Overall, there is a general tendency for the relative per-

formance of the other simple estimators to also decline between the cases of η = 8.1 and η = 4.5; however,

this decline is decidedly more modest. In the heaviest-tailed case of η = 3.5, the relative performance of

all simple estimators notably improves, likely owing to the fact that while under the cases of η = 8.1 and

η = 4.5, QMLE is asymptotically normal, under the case of η = 3.5, the distributional limit of QMLE is

qualitatively (much) more similar to that of the simple estimators.

Table 5 summarizes results of an investigation into whether Assumptions A6 and A7 of Theorem 11 can

hold in thin-tailed cases that support asymptotic normality for both β̂QMLE and β̂IV

(
φ̂QMLE

)
. The design

of this investigation is as follows. For different ARCH and GARCH parameter values (listed in the Table)

and the highest possible λ values (in absolute terms), determine the lowest possible η value that still supports

asymptotic normality for β̂IV

(
φ̂QMLE

)
. In each of these cases, measure the efficiency of β̂IV

(
φ̂QMLE

)
relative to β̂QMLE . Across all of the cases summarized in Table 5 (and, in fact, all large and small sample

cases considered in this section), A6 holds.15 Consequently, as hypothesized in Section 2.2, the prediction

of Theorem 11 critically hinges upon the validity of A7. Table 5 demonstrates that A7 can, in fact, hold, in

15This finding, though not explicitly evident in the Table, can be seen through performance comparisons of φ̂QMLE and β̂QMLE .

These comparisons are available upon request.
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which case, β̂IV

(
φ̂QMLE

)
is more efficient than β̂QMLE .

It is tempting to conclude from the results in Table 5 that efficiency gains of β̂IV

(
φ̂QMLE

)
over

β̂QMLE are limited to GARCH processes with low persistence. Such a conclusion under-weights the fact

that cases where β̂IV

(
φ̂QMLE

)
is more efficient than β̂QMLE correspond with the highest skewness levels

in {Yt}
T
t=1. Evidently, lower GARCH persistent levels are associated with higher skewness levels in the

Table. However, to the extent that is possible to generate skewness levels ≥ (in absolute terms) the highest

levels observed in Table 5 for more persistent GARCH processes, then it seems likely that β̂IV

(
φ̂QMLE

)
will exceed the performance of β̂QMLE in these cases as well.

Tables 3–5 evidence that the simple estimators record their best performance relative to QMLE in cases

where skewness is high. In Table 5, the level of skewness achievable is limited by the constraint to only

consider thin-tailed densities. Relaxing this constraint allows for materially higher skewness levels (see

Table 2), the effects of which are demonstrated in Tables 3–4 for (very) large samples. From Section 2.1,

the convergence rate of the simple estimators is slow, implying that their distributional limits as proxied

for in the large sample results might offer poor predictions for how the simple estimators behave in small

samples under the same heavy-tailed and skewed data generating processes. It is also generally known that

asymptotic normality offers a poor proxy for QMLE in small samples of non-normally distributed data.

Consequently, Table 6 summarizes small sample results from the cases of η = 4.5 and η = 3.5. The results

are striking. In particular, α̂IV , α̂IV

(
φ̂QMLE

)
, and β̂IV

(
φ̂QMLE

)
are now shown to outperform their

QMLE counterparts when skewness is high. Moreover, this outperformance can be (very) substantial.

3.3. Interpretation

α̂IV

(
φ̂QMLE

)
and β̂IV

(
φ̂QMLE

)
are analogous to the multi-step estimators of Preminger and Storti

(2017) and Fan, Qi and Xiu (2014) (see also Francq, Lepage and Zakoïan, 2011), the latter of which are

intended to improve upon the efficiency of θ̂QMLE by using θ̂QMLE as first-step inputs. The relative

performance of these simple estimators against the QMLE strengthens this analogy. Simulation evidence

in Preminger and Storti (2017) for their least squares estimator (LSE) benchmarked against the Fan et

al. (2014) non-gaussian quasi-maximum likelihood estimator (NGQMLE) for the same sample size and

(α0, β0) values considered here shows α̂NGQMLE to best α̂QMLE (in terms of root mean squared error) by

less than α̂IV

(
φ̂QMLE

)
bests α̂QMLE and β̂LSE to best β̂QMLE to a comparable degree as β̂IV

(
φ̂QMLE

)
bests β̂QMLE .

To understand why α̂IV

(
φ̂QMLE

)
and β̂IV

(
φ̂QMLE

)
can improve upon their QMLE inputs, begin
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by noting that both LSE and NGQMLE attempt such improvements by better targeting the scale of the

unknown GARCH(1, 1) innovation density. The simple estimators α̂IV

(
φ̂QMLE

)
and β̂IV

(
φ̂QMLE

)
also target a particular feature of this innovation density; namely, its skewness. To the extent that skewness

figures prominently in this density (as it does in the high λ cases), it is certainly possible that estimators

focused on this feature can outperform alternatives that ignore it (like QMLE), even if those alternatives

possess better large sample properties, so long as those large sample properties have yet to apply. Case-in-

point, the small sample distributions of both α̂QMLE and β̂QMLE evidenced in Table 6 are characterized by

elevated levels of both skewness and excess kurtosis, making normality a (very) poor approximation for these

distributions and, consequently, rendering the large-sample properties of α̂QMLE and β̂QMLE uninformative

of their, respective, small-sample behavior. Noting further that the target of both LSE and NGQMLE is also

insensitive to skewness, it is, perhaps, less surprising that α̂IV

(
φ̂QMLE

)
and β̂IV

(
φ̂QMLE

)
would (at

least) perform comparably to these alternatives, in cases where skewness is a feature worth targeting.

4. Empirical Application

Estimators for the GARCH(1, 1) model from Section 3 are applied to intra-day Japanese Yen log returns

measured against the USD at 15-, 10-, 5-, and 1-minute sampling frequencies over the time period January

1, 2015 through July 1, 2015.16 Using the approach in Hecq, Laurent, and Palm (2012, Eq. 4.1), all log

returns are pre-filtered for the U-shaped intra-day periodicity noted by Anderson and Bollerslev (1997). The

QMLE serves to benchmark the simple IV estimators.

Tables 7–8 summarize the estimation results. With the exception of the 1-minute frequency, α̂IV and

α̂IV

(
φ̂QMLE

)
exist inside the 95% confidence intervals for α̂QMLE .17 In contrast, and also with the ex-

ception of the 1-minute frequency, β̂IV

(
φ̂IV

)
exists well outside the 95% confidence intervals for β̂QMLE ,

while β̂IV

(
φ̂QMLE

)
exists inside them. These estimation results conform with the Monte Carlo experi-

ments in that α̂IV tends to perform better than β̂IV

(
φ̂IV

)
at all sample sizes and across all degrees of tail

thickness. Specifically, β̂IV

(
φ̂IV

)
tends to be (severely) biased, where the source of the bias is φ̂IV . The

estimation results confirm this finding, since β̂IV

(
φ̂QMLE

)
tends to be (well) inside the 95% confidence

interval for β̂QMLE . Notice, however, that at the 1-minute frequency (which, corresponds with the largest

16Japanese Yen log returns are selected because of the forecast comparisons conducted by Hansen and Lunde (2005), which show

that the GARCH(1, 1) model provides the best volatility forecast for these returns over more complicated GARCH specifications.
17These confidence intervals are based on asymptotic normality. Given the, respective, tail index estimates, asymptotic normality

for the QMLE is suspect (see; e.g., Hall and Yao, 2003). Consequently, the true confidence intervals are likely to be wider.
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data sample), β̂IV

(
φ̂IV

)
is also well inside the 95% confidence interval for β̂QMLE . Consequently, in this

case, β̂IV

(
φ̂IV

)
enjoys a sizable advantage over β̂QMLE in terms of computation time (the former is faster

to compute by orders-of-magnitude over the latter), with no seeming cost in terms of sacrificed precision.

5. Conclusion

This paper proposes simple estimators for the popular GARCH(1, 1) model and studies their properties.

Simple, in this context, means available in closed form. Consequently, all such estimators are linear TSLS

estimators. In some cases, the instruments upon which these estimators depend, in turn, depend on prelim-

inary parameter estimates from the GARCH(1, 1) model that may, or may not, be available in closed form.

An example of the latter case is preliminary QML estimates; in which case, the linear TSLS estimators based

on these estimates are shown to improve upon the efficiency (either asymptotically, in thin-tailed cases, or

when applied to small samples, in heavy-tailed cases) of QMLE. As a result, these simple estimators are

members of the (growing) class of multi-step estimators aimed at improving the performance of QMLE

by better aligning the parameter estimates with certain aspects of the unknown GARCH(1, 1) innovation

density.

Established in this paper are the desirable properties of the simple estimators over the QMLE alternative.

These desirable properties relate to in-sample fit. It would be interesting to investigate the degree to which

these desirable properties translate into improved out-of-sample volatility forecasts. That is, to what extent

(and under what conditions) can the simple estimators beat the QMLE in out-of-sample forecasting? This

investigation is left for future research.
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Appendix

All Lemmas, upon which the proofs of the Theorems rely, are both stated and proved in the Supplemental

Appendix.

Proof of Theorem 1: To begin, note that

X̂t = Xt − (γ̂ − γ0) , (24)

so that given (5),

X̂t = c0 + φ0X̂t−1 − β0Wt−1 +Wt, c0 = (γ̂ − γ0)× (φ0 − 1) . (25)

Since by Carrasco and Chen (2002, Corollary 6), {Yt} is strongly mixing,

n−1
∑
t
X̂t−1Yt−1 = n−1

∑
t
Xt−1Yt−1 − (γ̂ − γ0)n−1

∑
t
Yt−1 (26)

a.s.−→ E
(
Xt−1Yt−1

)
by the Ergodic Theorem, and, given (25) and (26),

n−1
∑
t
X̂tYt−1 = c0n

−1∑
t
Yt−1 + φ0n

−1∑
t
X̂t−1Yt−1 − β0n−1

∑
t
Wt−1Yt−1 + n−1

∑
t
WtYt−1

a.s.−→ φ0E
(
Xt−1Yt−1

)
− β0E

(
Wt−1Yt−1

)
= α0E

(
Xt−1Yt−1

)
,
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where the final equality follows since

E
(
Xt−1Yt−1

)
= E

((
σ2t−1 −Wt−1

)
Yt−1

)
(27)

= E
(
Wt−1Yt−1

)
.

Next,

na−3n (α̂IV − α0) = F0

(
a−3n
∑
t
XtYt−1 − E

(
XtYt−1

))
+ op (1) (28)

= F0

(
a−3n
∑
t
Y 2t Yt−1 − E

(
Y 2t Yt−1

)
− γ0a−3n

∑
t
Yt−1

)
+ op (1)

= F0

(
a−3n
∑
t
Y 2t Yt−1 − E

(
Y 2t Yt−1

))
+ op (1)

d−→ α−10 F0 (V2,y − β0V1,y) ,

where "
d−→" follows from Lemma 11, which itself depends on Lemmas 9–10, the CLT in Lemma 7,

and Lemma 5, and the final equality follows since

a−1n
∑
t
Yt−1

d−→ V0, (29)

with V0 being κ0−stable (see the proof of Lemma 10). Finally, if κ0 ∈ (6, ∞) so that E
(
Y 6t
)
<∞,

then given (5), (9), and (24),

√
n (α̂IV − α0) =

√
n

 n−1
∑
t
XtYt−1

n−1
∑
t
X̂t−1Yt−1

− α0 + op (1)


=
√
n

β0 +

n−1
∑
t
VtYt−1

E
(
Xt−1Yt−1

) + op (1)


= E

(
Y 3t
)−1√

n

(
n−1

∑
t
VtYt−1 − E

(
VtYt−1

)
+ op (1)

)
d−→ N

(
0, E

(
Y 3t
)−2

ΣV Y−1

)
where the limiting result follows from Ibragimov and Linnik (1971, Theorem 18.5.3).�
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Proof of Theorem 5: For notational ease, let β̂IV = β̂IV

(
φ̂IV

)
. Given (24),

R̂t = Rt −
(
φ̂− φ0

)
Xt−1 − (γ̂ − γ0)

(
1− φ̂

)
. (30)

If φ̂
a.s.−→ φ0 (as is the case when φ̂ = φ̂IV , see Theorem 13 in the Supplemental Appendix), then,

given that {Yt} is strongly mixing,

n−1
∑
t
R̂t−1Yt−1 = n−1

∑
t
Rt−1Yt−1 −

(
φ̂− φ0

)
n−1

∑
t
Xt−2Yt−1 − (γ̂ − γ0)

(
1− φ̂

)
n−1

∑
t
Yt−1

a.s.−→ E
(
Wt−1Yt−1

)
and

n−1
∑
t
R̂tYt−1 = n−1

∑
t
RtYt−1 −

(
φ̂− φ0

)
n−1

∑
t
Xt−1Yt−1 − (γ̂ − γ0)

(
1− φ̂

)
n−1

∑
t
Yt−1

a.s.−→ −β0E
(
Wt−1Yt−1

)
by the Ergodic Theorem, since also given (27),

E
(
Rt−1Yt−1

)
= E

(
Xt−1Yt−1

)
− φ0E

(
Xt−2Yt−1

)
= E

(
Xt−1Yt−1

)
and

E
(
RtYt−1

)
= E

(
XtYt−1

)
− φ0E

(
Xt−1Yt−1

)
= E

(
Y 2t Yt−1

)
− φ0E

(
Y 2t−1Yt−1

)
= E

(
σ2tYt−1

)
− φ0E

(
Wt−1Yt−1

)
= α0E

(
Y 2t−1Yt−1

)
− φ0E

(
Wt−1Yt−1

)
.

Next, since

β̂IV = −Ĝ
(
n−1

∑
t
RtYt−1 −

(
φ̂− φ0

)
n−1

∑
t
Xt−1Yt−1 + op (1)

)
,
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then

β̂IV − β0 = −Ĝ
(
n−1

∑
t
RtYt−1 − E

(
RtYt−1

))
+
(
φ̂− φ0

)
Ĝ

(
n−1

∑
t
Xt−1Yt−1

)
−
(
Ĝ−G0

)
E
(
RtYt−1

)
=

(
φ̂− φ0

)
− Ĝ

(
n−1

∑
t
XtYt−1 − E

(
XtYt−1

)
− φ0n−1

∑
t
Xt−1Yt−1 − E

(
Xt−1Yt−1

))
+ op (1)

such that

na−3n

(
β̂IV − β0

)
= na−3n

(
φ̂− φ0

)
(31)

−Ĝ
(
a−3n

∑
t
Y 2t Yt−1 − E

(
Y 2t Yt−1

)
− φ0a−3n

∑
t
Y 3t−1 − E

(
Y 3t−1

)
+ op (1)

)
d−→ α−10

(
F0S+G0

(
α0φ0V0,Y −

(
V2,y − β0V1,y

)))
,

where this last equality follows given (29), and "
d−→" follows given Lemmas 11 and 12. That this limit

is jointly (κ0/3)−stable follows from Samorodnitsky and Taqqu (1994, Theorem 2.1.5(c)). Finally,

√
n
(
β̂IV − β0

)
=
√
n

−n−1
∑
t
UtYt−1

E
(
RtYt−1

) +
(
φ̂− φ0

) E (Xt−1Yt−1
)

E
(
RtYt−1

) + op (1)


=
√
n

(
−E

(
Y 3t
)−1(−n−1∑

t
UtYt−1

)
+
(
φ̂− φ0

)
+ op (1)

)
d−→ N

(
0, Σβ

)
,

where "
d−→" follows using the CLT from the proof of Theorem 1 as well as Shao and Zhou (2010,

Theorem 1).�

Proof of Corollary 8 Almost sure convergence is established in the proof of Theorem 5. From (31),

na−3n

(
β̂IV

(
φ̂
)
− β0

)
= na−3n

(
φ̂− φ0

)
+Op

(
na−3n

)
,

where the second term on the right-hand-side of the equality follows from Lemmas 11 and 12. For

the first term,

na−3n

(
φ̂− φ0

)
=

(
n
κ0−3
κ0
−l
)
nl
(
φ̂− φ0

)
= op (1) . (32)

Lemmas 11 and 12, again, then establish (17).�

27



Proof of Corollary 10 Almost sure convergence follows from the proof of Theorem 5 here and the proof

of Theorem 13 in the Supplemental Appendix. Given (18),

na−3n

(
α̂IV

(
φ̂
)
− α0

)
= na−3n

(
φ̂− φ0

)
− na−3n

(
β̂IV

(
φ̂
)
− β0

)
. (33)

If φ̂ = φ̂IV , then (19) is established by Theorem 2 here and Theorem 13 in the Supplemental Appen-

dix, noting that the shared (asymptotic) dependence of φ̂IV and β̂IV

(
φ̂IV

)
on S cancels out. Lastly,

from (33) and given (32), α̂IV

(
φ̂
)

shares the same distributional limit (excluding a sign change) with

β̂IV

(
φ̂
)

.�

Proof of Theorem 11 Almost sure convergence follows from the proof of Theorem 5. Given (30) and (13),

β̂IV

(
φ̂
)

= −Ĝ
(
n−1

∑
t
R̂tYt−1

)
(34)

= β0 − Ĝ
(
n−1

∑
t
UtYt−1

)
+
(
φ̂− φ0

)
Ĝ

(
n−1

∑
t
Xt−1Yt−1

)
+ op (1)

Recalling also that Rt = Xt − φ0Xt−1, from the proof of Theorem 5,

n−1
∑
t
R̂t−1Yt−1 = n−1

∑
t
Xt−1Yt−1 − φ̂n−1

∑
t
Xt−2Yt−1 − (γ̂ − γ0)

(
1− φ̂

)
n−1

∑
t
Yt−1

= n−1
∑
t
Xt−1Yt−1 + op (1) ,

in which case,

Ĝ

(
n−1

∑
t
Xt−1Yt−1

)
= 1, n→∞.

Next, given the definitions of Vt and Ut in (5) and (13), respectively,

Ut = −β20Wt−2 + β0Wt−1 + Vt.
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Consequently,

Ĝ

(
n−1

∑
t
UtYt−1

)
=

n−1
∑
t
VtYt−1 + β0n

−1∑
t
Wt−1Yt−1 + op (1)

n−1
∑
t
Xt−1Yt−1 + op (1)

=

n−1
∑
t
VtYt−1

n−1
∑
t
Xt−1Yt−1

+ β0 + op (1)

=

(
n−1

∑
t
Xt−1Yt−1

)−1
× {n−1

∑
t
VtYt−1 − E

(
VtYt−1

)
+β0

(
n−1

∑
t
Xt−1Yt−1 − E

(
Wt−1Yt−1

))
}

= E
(
Y 3t
)−1(

n−1
∑
t
VtYt−1 − E

(
VtYt−1

)
+ op (1)

)
= (α̂IV − α0) ,

where given (5), the third equality relies on E
(
VtYt−1

)
= −β0E

(
Wt−1Yt−1

)
and E

(
Xt−1Yt−1

)
=

E
(
Wt−1Yt−1

)
, and the fourth equality follows from the proof of Theorem 1. Then, given (34),

√
n
(
β̂IV

(
φ̂
)
− β0

)
=
√
n
(
φ̂− φ0

)
−
√
n (α̂IV − α0) + op (1) (35)

=
√
n
(
β̂ − β0

)
+
√
n (α̂− α0)−

√
n (α̂IV − α0) + op (1)

Since
√
n
(
θ̂ − θ0

)
d−→ N (0, Σθ) by assumption, and

√
n (α̂IV − α0)

d−→ N (0, Σ∗α) by Theorem

1,
√
n
(
β̂IV

(
φ̂
)
− β0

)
d−→ N

(
0, Σ∗β

)
,

where

Σ∗β = Σβ + Σα + 2Σα, β + Σ∗α − 2
(
Ω∗α + Σ∗α, β

)
< Σβ + Σ∗α − 2

(
Ω∗α + Σ∗α, β

)
< Σβ.

�
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Proof of Corollary 13 From (18),

√
n
(
α̂IV

(
φ̂
)
− α0

)
=
√
n
(
φ̂− β̂IV

(
φ̂
)
− α0

)
=
√
n
(
φ̂− β̂IV

(
φ̂
)
− α0 − β0 + β0

)
=
√
n
(
φ̂− φ0

)
−
√
n
(
β̂IV

(
φ̂
)
− β0

)
=
√
n (α̂IV − α0) + op (1) ,

where the final equality follows from (35). Then from Theorem 1,

√
n
(
α̂IV

(
φ̂
)
− α0

)
d−→ N (0, Σ∗α) ,

which completes the proof.�
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TABLE 1: Skewness Estimates

JPY Returns SPX Returns DJIA Returns

freq. obs. skew. obs. skew. obs. skew.

1-min 174,997 -2.68 46,551 -1.75 46,557 -1.25

(0.01) (0.01) (0.01)

5-min 35,028 -1.94 9,312 -3.17 9,315 -2.68

(0.01) (0.03) (0.03)

10-min 17,523 -1.51

(0.02)

15-min 11,685 -3.10

(0.02)

20-min 8,766 -2.10

(0.03)

Notes to Tables 1. The data source is Bloomberg Finace LP. JPY is the Yen/USD exchange rate. SPX

and DJIA is the S&P 500 and Dow Jones Industrial Average, respectively. The date range for all return

series is 7/19/2015–12/31/2015. Skew is the standard estimate of the (unconditionally) standardized third

moment. Standard errors for the skewness, measured against the null of normality, are in parentheses .

TABLE 2: Simulation Designs

η = 64.5 η = 8.1 η = 4.5 η = 3.5
λ skew. κ skew. κ skew. κ skew. κ

-0.20 -0.34 7.25 -0.56 5.15 -1.10 3.76 -1.92 3.14

-0.40 -0.65 6.60 -1.06 4.73 -2.05 3.53 -3.50 2.98

-0.80 -1.03 6.08 -1.67 4.37 -3.18 3.29 -5.26 2.81

Notes to Tables 2. Reported are the skewness statistics and tail index values for the Monte Carlo

simulation designs that study the linear GARCH(1, 1) model when ω = 0.005, α = 0.10, and β = 0.80.

The rescaled errors from this model follow the skewed student’s t density of Hansen (1994) normalized

so that E (εt) = 0 and E
(
ε2t
)

= 1. This density has two parameters, λ and η, with the former governing

skewness, the latter governing the tails, and up to the ηth moment being well defined. Both the skewness

statistics and tail index values κ for the simulated raw returns are themselves determined through simu-

lation as the mean estimate from {Yt}
10,000
t=1 across 10, 000 trials for the given design. The estimator for

κ is Hill (1975) with a constant threshold of 0.5%.
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TABLE 3: Large Sample Results I

λ = −0.20 λ = −0.40 λ = −0.80
efficiency ratio efficiency ratio efficiency ratio

est. m rmse mae mdae rmse mae mdae rmse mae mdae

I. η = 64.5
α̂IV 1 7.35 7.27 7.22 4.23 4.17 4.09 3.15 3.05 2.99

α̂KL 4 3.00 2.85 2.72 3.46 3.19 2.98 4.23 3.76 3.41

α̂IV

(
φ̂QMLE

)
1 8.16 8.12 8.03 4.27 4.24 4.22 2.71 2.68 2.65

β̂IV

(
φ̂IV

)
20 4.96 4.87 4.78 4.04 3.84 3.66 4.66 4.13 3.71

10 4.80 4.72 4.64 3.83 3.59 3.41 4.36 3.73 3.33

5 5.11 5.05 4.98 4.19 4.03 3.85 4.67 4.21 3.88

β̂KL 4 4.49 4.39 4.25 5.10 4.92 4.71 6.08 5.77 5.40

β̂IV

(
φ̂QMLE

)
1 3.91 3.90 3.88 2.18 2.17 2.16 1.54 1.53 1.50

II. η = 8.1
α̂IV 1 7.14 6.82 6.61 4.74 4.31 4.02 4.24 3.53 3.25

α̂KL 4 5.65 4.96 4.33 6.21 5.43 4.68 6.59 5.67 5.06

α̂IV

(
φ̂QMLE

)
1 7.89 7.52 7.25 4.63 4.25 3.95 3.46 3.03 2.74

β̂IV

(
φ̂IV

)
20 8.94 7.40 6.10 10.69 8.30 6.17 13.42 10.94 8.32

10 8.21 6.76 5.64 9.64 7.20 5.06 11.96 9.16 6.23

5 8.49 7.18 6.28 9.32 7.27 5.61 11.13 8.55 6.16

β̂KL 4 7.86 7.40 6.78 8.50 8.00 7.33 9.06 8.50 8.02

β̂IV

(
φ̂QMLE

)
1 4.07 3.85 3.65 2.49 2.29 2.12 2.02 1.79 1.64

TABLE 4: Large Sample Results II

λ = −0.20 λ = −0.40 λ = −0.80
efficiency ratio efficiency ratio efficiency ratio

est. m rmse mae mdae rmse mae mdae rmse mae mdae

III. η = 4.5
α̂IV 1 7.83 6.92 6.34 5.18 4.65 4.36 3.86 3.84 3.76

α̂IV

(
φ̂QMLE

)
1 8.86 7.83 7.13 5.20 4.71 4.25 3.32 3.36 3.09

β̂IV

(
φ̂IV

)
20 17.60 16.65 13.91 17.41 17.34 15.08 16.97 17.89 16.99

10 15.98 14.36 10.88 15.60 14.64 11.80 15.11 15.04 13.29

5 14.62 12.79 9.56 14.00 12.56 9.21 13.29 12.46 9.68

β̂IV

(
φ̂QMLE

)
1 5.25 4.61 4.03 3.27 2.83 2.42 2.34 2.16 1.91

IV. η = 3.5
α̂IV 1 3.87 5.30 5.21 2.57 3.51 3.87 1.83 2.82 3.45

α̂IV

(
φ̂QMLE

)
1 4.29 5.94 5.71 2.63 3.45 3.58 1.52 2.33 2.59

β̂IV

(
φ̂IV

)
20 13.97 16.72 18.18 12.73 15.80 17.85 11.65 14.82 17.50

10 12.63 14.38 14.58 11.45 13.49 14.40 10.49 12.69 14.21

5 11.23 12.15 10.93 10.11 11.20 10.44 9.12 10.33 10.20

β̂IV

(
φ̂QMLE

)
1 4.16 4.07 3.75 2.43 2.45 2.28 1.69 1.80 1.76
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Notes to Tables 3–4. Simulations are conducted on sample sizes of T = 100, 000 across 10, 000
trials, where, within each trial, the first 200 observations are dropped to avoid initialization effects. The

linear GARCH(1, 1) model under study is parameterized as

ω0 = 0.005, α0 = 0.10, β0 = 0.80.

The simple IV estimators are considered, along with the Kristensen and Linton (2006) estimator (KL)

and quasi-maximum likelihood estimator (QMLE), both of which serve as benchmarks. For the simple

IV estimators, m is the number of lagged instruments used. The innovations from the GARCH(1, 1)
model follow Hansen’s (1994) skewed student’s-t density, where

λ = −0.20,−0.40,−0.80, η = 64.5, 8.1, 4.5, 3.5.

Higher values of λ correspond with more skewness (in absolute terms) in {Yt}
T
t=1, while higher values of

η correspond with heavier tails in the simulated return sample. In the thin-tailed case of η = 64.5, α̂IV ,

α̂IV

(
φ̂QMLE

)
, α̂QMLE , β̂IV

(
φ̂IV

)
, β̂IV

(
φ̂QMLE

)
, and β̂QMLE are all asymptotically normal,

while α̂KL and β̂KL (likely) are not.18 In the heavy-tailed cases of η = 8.1, 4.5, only α̂QMLE and

β̂QMLE are asymptotically normal. In the (very) heavy-tailed case of η = 3.5, none of the estimators

are asymptotically normal.19. In the heavy-tailed cases of η = 4.5, 3.5, α̂KL and β̂KL are not consistent

; consequently, they are not considered in those cases.20 Summary statistics for the simulations are the

root mean squared error, mean absolute error, and median absolute error (each measured relative to the

true parameter value) divided by the corresponding efficiency measure for the QMLE. These ratios are

termed "efficiency ratios."

18Necessary for α̂KL and β̂KL to be asymptotically normal is E
(
Y 8
t

)
<∞ (see Kristensen and Linton, 2006), which does not

appear to be true, given the results in Table 2.
19A necessary condition for α̂QMLE and β̂QMLE to be asymptotically normal is E

(
ε4t
)
<∞ (see; e.g., Hall and Yao, 2003).

20Necessary for consistency of α̂KL and β̂KL is E
(
Y 4
t

)
<∞, which (very likely) does not hold, given the results in Table 2.
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TABLE 5: Thin-Tailed Efficiency Comparisons (Large Sample)

efficiency ratio

λ η skew. κ α β φ rmse mae mdae

-0.90 16.5 -1.21 6.03 0.05 0.50 0.55 1.00 0.99 0.99

-0.99 16.5 -1.24 5.99 0.05 0.50 0.55 1.00 0.99 0.99

-0.90 20.5 -1.17 6.04 0.10 0.50 0.60 1.01 1.00 1.00

-0.99 20.5 -1.21 6.00 0.10 0.50 0.60 1.01 1.00 1.00

-0.90 16.5 -1.21 6.01 0.05 0.60 0.65 0.99 0.99 0.98

-0.99 16.5 -1.25 5.97 0.05 0.60 0.65 0.99 0.99 0.98

-0.90 21.5 -1.17 6.01 0.10 0.60 0.70 1.03 1.01 1.00

-0.99 21.5 -1.20 5.97 0.10 0.60 0.70 1.03 1.01 1.00

-0.90 18.5 -1.19 6.07 0.05 0.80 0.85 1.07 1.01 1.01

-0.99 18.5 -1.22 6.03 0.05 0.80 0.85 1.07 1.01 1.01

-0.90 64.5 -1.08 6.01 0.10 0.80 0.90 1.50 1.49 1.49

-0.99 64.5 -1.11 5.96 0.10 0.80 0.90 1.49 1.48 1.47

-0.90 24.5 -1.15 6.04 0.05 0.90 0.95 1.68 1.68 1.71

-0.99 24.5 -1.19 6.00 0.05 0.90 0.95 1.65 1.66 1.67

Table 6: Small Sample Results

λ = −0.20 λ = −0.40 λ = −0.80
efficiency ratio efficiency ratio efficiency ratio

est. m rmse mae mdae rmse mae mdae rmse mae mdae

III. η = 4.5
α̂IV 1 2.41 2.49 2.05 1.17 1.31 1.48 0.68 0.85 1.15

α̂IV

(
φ̂QMLE

)
1 2.34 2.52 2.18 1.18 1.34 1.50 0.61 0.77 1.03

β̂IV

(
φ̂IV

)
20 2.69 3.95 7.06 2.77 4.14 7.35 2.66 3.95 6.95

10 2.50 3.60 6.38 2.54 3.73 6.62 2.44 3.55 6.28

5 2.22 3.07 5.30 2.25 3.15 5.56 2.15 3.00 5.33

β̂IV

(
φ̂QMLE

)
1 1.29 1.47 1.74 1.06 1.15 1.37 0.97 0.99 1.09

IV. η = 3.5
α̂IV 1 1.63 1.73 1.62 0.86 0.98 1.20 0.54 0.68 1.01

α̂IV

(
φ̂QMLE

)
1 1.60 1.79 1.76 0.82 0.97 1.19 0.45 0.58 0.85

β̂IV

(
φ̂IV

)
20 2.51 3.61 6.61 2.55 3.74 6.70 2.43 3.54 6.29

10 2.35 3.33 6.07 2.37 3.42 6.16 2.25 3.24 5.80

5 2.11 2.87 5.17 2.11 2.91 5.28 2.01 2.78 5.04

β̂IV

(
φ̂QMLE

)
1 1.20 1.33 1.55 1.02 1.08 1.24 0.95 0.95 1.00
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Notes to Table 5. Simulations are conducted on sample sizes of T = 100, 000 across 10, 000 tri-

als, where, within each trial, the first 200 observations are dropped to avoid initialization effects. The

linear GARCH(1, 1) model is studied under different parameter values for α0 and β0 and different

specifications of Hansen’s (1994) skewed student’s-t density for the model’s innovations (see the Ta-

ble).21 The estimators considered are β̂IV

(
φ̂QMLE

)
and β̂QMLE . Different specifications of Hansen’s

(1994) skewed student’s-t density are selected to maximize the amount (in absolute terms) of skewness

in {Yt}
T
t=1, while maintaining asymptotic normality for β̂IV

(
φ̂QMLE

)
. "skew." and κ are the skew-

ness and tail index value of {Yt}
T
t=1, respectively, under the given simulation design, while φ = α + β.

Summary statistics for the simulations are the root mean squared error, mean absolute error, and median

absolute error (each measured relative to the true parameter value) for β̂IV

(
φ̂QMLE

)
divided by the

corresponding efficiency measure for β̂QMLE , with these ratios being termed "efficiency ratios," as in

Tables 3 and 4.

Notes to Table 6. Simulations are conducted on sample sizes of T = 500 across 10, 000 trials,

where, within each trial, the first 200 observations are dropped to avoid initialization effects. The linear

GARCH(1, 1) model under study is parameterized as

ω0 = 0.005, α0 = 0.10, β0 = 0.80.

The simple IV estimators are considered (where m is the number of lagged instruments used to con-

struct the estimator), along with the quasi-maximum likelihood estimator (QMLE), which serves as a

benchmark. The innovations from the GARCH(1, 1) model follow Hansen’s (1994) skewed student’s-t

density, where

λ = −0.20,−0.40,−0.80, η = 4.5, 3.5.

Higher values of λ correspond with more skewness (in absolute terms) in {Yt}
T
t=1, while higher values

of η correspond with heavier tails in the simulated return sample. In these small-sample experiments,

only (very) heavy-tailed innovation densities are considered. Summary statistics for the simulations are

the root mean squared error, mean absolute error, and median absolute error (each measured relative to

the true parameter value) divided by the corresponding efficiency measure for the QMLE. These ratios

are termed "efficiency ratios."

21In all cases, ω0 = 0.005.
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TABLE 7: GARCH Model Estimates I

estimator

tail TSLS QMLE

freq. obs. skew. index para. m = 5 m = 10 φ̂QMLE

15-min 12,680 -1.27 2.93 α 0.15 0.15 0.19 0.20

(0.02) (0.06, 0.34)

φ 0.32 0.25 0.90 0.94

β 0.17 0.10 0.71 0.74

(0.58, 0.89)

10-min 19,021 -1.33 2.83 α 0.19 0.19 0.17 0.12

(0.02) (0.05, 0.20)

φ 0.53 0.53 0.94 0.95

β 0.35 0.35 0.77 0.83

(0.73, 0.93)

TABLE 8: GARCH Model Estimates II

estimator

tail TSLS QMLE

freq. obs. skew. index para. m = 5 m = 10 φ̂QMLE

5-min 38,035 -1.40 2.83 α 0.09 0.09 0.15 0.12

(0.01) (0.08, 0.17)

φ 0.77 0.78 0.96 0.99

β 0.64 0.65 0.82 0.87

(0.82, 0.91)

1-min 190,058 -1.81 3.05 α 0.03 0.03 0.03 0.13

(0.01) (0.08, 0.18)

φ 0.84 0.91 1.04 1.00

β 0.86 0.94 1.01 0.87

(0.82, 0.91)

Notes to Tables 7–8. All data ranges from January 1, 2015 through July 1, 2015 and sources to

Bloomberg Finance LP. Log return data is intra-daily at the stated frequency measured from traded

Japanese Yen exchange rates relative to the USD. Using the approach in Hecq, Laurent, and Palm (2012,

Eq. 4.1), all log returns are pre-filtered for the U-shaped intra-day periodicity noted by Anderson and

Bollerslev (1997). Skew is the unconditional skewness of the log returns. Moving from left to right in the

columns under the TSLS heading, the first two columns show α̂IV , φ̂IV , and β̂IV

(
φ̂IV

)
, respectively.

For α̂IV , it is always the case that m = 1 (where m denotes the number of lags used as instruments).

For φ̂IV , and β̂IV

(
φ̂IV

)
, it is either the case that m = 5 or m = 10. The third column shows

α̂IV

(
φ̂QMLE

)
and β̂IV

(
φ̂QMLE

)
, where, it is also always that case that m = 1, and, additionally,

φ = α̂IV

(
φ̂QMLE

)
+ β̂IV

(
φ̂QMLE

)
. The final column of the Table shows estimates from the QMLE,

together with the lower- and upper-bounds of their associated 95% confidence interval.
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FIGURE 1
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Notes to Figure1: Hill (1975) tail index estimates at varying thresholds are depicted for S&P 500 Index log returns and the 
innovations from a GARCH(1,1) model applied to these returns. Th thresholds are determined as proportions of the ranked data 
ranging from 1% to 10%. The underlying price data is daily and sources to Bloomberg Finance LP.
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