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Abstract

We compare popular measures of transaction costs based on daily data with their high-

frequency data-based counterparts. We find that for U.S. equities and major foreign

exchange rates, (i) the measures based on daily data are highly upward biased and

imprecise; (ii) the bias is a function of volatility; and (iii) it is primarily volatility that

drives the dynamics of these liquidity proxies both in the cross section as well as over

time. We corroborate our results in carefully designed simulations and show that such

distortions arise when the true transaction costs are small relative to volatility. Many

financial assets exhibit this property, not only in the last two decades, but also in the

previous century. We document that using low-frequency measures as liquidity proxies

in standard asset pricing tests may produce sizable biases and spurious inferences about

the pricing of aggregate volatility or liquidity risk.
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1 Introduction

Transaction costs are a key input in many financial decisions. The literature on measur-

ing transaction costs and market liquidity more generally, has evolved into two distinct

strands. With the increasing availability of high-frequency data since the 1990s, one strand

emphasizes the importance of using transactions data to calculate trading costs. Chor-

dia, Sarkar, and Subrahmanyam (2005) who study stock and bond market liquidity and

Mancini, Ranaldo, and Wrampelmeyer (2013) who examine foreign exchange market liq-

uidity are examples of papers that use high-frequency measures. The other strand argues

that the availability of long histories of daily data—dating back to early 1900s—and the

significant cost associated with acquiring and processing high-frequency data makes it de-

sirable to estimate transaction costs from low-frequency, daily data. Roll (1984), Hasbrouck

(2009), Corwin and Schultz (2012), and Abdi and Ranaldo (2017) propose low-frequency

measures that have become popular in the literature. As the latter are essentially statistical

proxies for the former, we would expect them to deliver similar results on average.

In this paper, we find that, in general, the low-frequency measures of transaction costs

are not good estimators for the high-frequency-based trading costs. We show that for U.S.

equities and major foreign exchange rates, (i) several widely used measures suffer from a

large bias that cannot be diminished by using more data; (ii) more importantly, the bias

is a function of volatility, and hence it induces a positive correlation between the low-

frequency measures and volatility above and beyond what is implied by the correlation

between volatility and the true transaction costs; and (iii) the volatility-induced bias has

important implications for empirical asset pricing. Put simply, volatility explains the wedge

between the low-frequency measures and their high-frequency counterparts.

Specifically, for the S&P 1500 stocks between 2003 and 2017, we show that the average

effective spread computed from the Trade and Quote (TAQ) data is around 12 basis points,

while the monthly low-frequency measures–measures calculated from one month of daily

data–yield spreads between 26 and 168 basis points on average. The five major foreign

exchange rates trade in the Electronic Broking Services (EBS) market with an effective

spread of less than one basis point on average between 2008 and 2015, but the monthly

low-frequency measures deliver estimates between 13 and 48 basis points on average. When
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we regress the monthly low-frequency measures on the true spread and realized volatility,

we find that the coefficient on realized volatility is highly statistically significant. Moreover,

relative to a simple regression of the low-frequency measures on the true spread alone,

adding realized volatility significantly increases the R2, often more than doubling it. For

the foreign exchange rates, adding realized volatility to the regression even renders the

coefficient on the true spread statistically insignificant for some low-frequency measures.

How does the volatility-induced bias arise? When recovering the transaction costs from

daily data, one is attempting to estimate a small, positive-valued object from noisy data.

This requires methods that guarantee non-negativity of the transaction costs estimates,

such as censoring, truncation, or an appropriate prior distribution if one chooses a Bayesian

approach. It is well-known from the study of limited dependent variable models that trun-

cating or censoring a random variable at zero will increases the mean and the mean becomes

a function of volatility; see Greene (2017). We show by carefully designed simulations that

the same problem arises in the construction of the low-frequency measures. The magnitude

of the problem depends on the relative size of the true transaction costs and the volatility

of the daily asset price. The lower (higher) the transaction costs relative to volatility, the

higher (lower) the bias and the stronger (weaker) the dependence on volatility are.

Since many financial markets experienced a significant decline in transaction costs, both

in absolute terms and relative to the volatility of asset returns, over the past two decades,

the issues we uncover have become more acute. But they have also implications for the most

liquid financial assets in the previous century. Jones (2002) documents that the proportional

effective spread was only around 60 basis points on average for the Dow Jones Industrial

Average 30 stocks between 1928 and 2000. Thus, there has always been a nontrivial subset

of U.S. stocks for which the issues we document mattered. Bessembinder (1994) reports

that the average bid-ask spread in the interdealer foreign exchange market was between 5

and 8 basis points on average for major currencies between 1979 and 1992. Although such

values are much larger than in the current century, our results indicate that they are still

small enough for the volatility to have a sizable effect.

We use two well-known asset pricing models to illustrate how using transaction costs

measures that suffer from the presence of a non-negligible, volatility-driven bias may produce

3



misleading inference and spurious results. First, we document the consequences of using low-

frequency liquidity measures as liquidity proxies in the liquidity-adjusted CAPM of Acharya

and Pedersen (2005). Our simulation results show that both the liquidity betas and the

market price of risk suffer from sizable biases; in empirically relevant calibrations, popular

low-frequency measures yield negative market price of risk estimates even though the true

value in the simulation is positive. Second, we study the pricing of aggregate volatility and

liquidity risks in an unconditional asset pricing model motivated by Ang, Hodrick, Xing,

and Zhang (2006). We demonstrate through simulations that using low-frequency measures

as a proxy for aggregate liquidity may yield spurious pricing of liquidity risk due to the

correlation of these low-frequency measures with volatility. The estimated price of liquidity

risk can be as low as −10% per annum or as high as 2.5% per annum on average, depending

on which low-frequency measure is used, even though the true price of risk in the simulation

is zero.

Accurate measures of transaction are essential in many other areas of empirical finance.

Our findings about the upward bias of the low-frequency measures raise questions about

their suitability for optimal portfolio choice problems with transaction costs, where the

so-called no-trade region is a function of the level of transaction costs (Constantinides,

1986), and for evaluation of trading strategies and asset pricing anomalies, where small

changes in transaction costs have a large impact on performance (Novy-Marx and Velikov,

2015, Chen and Velikov, 2018, and Patton and Weller, 2018). The dependence of the low-

frequency measures on volatility limits their use in studies of the commonality in liquidity,

where liquidity proxies are used to measure co-movements in liquidity across assets and

markets (Chordia, Roll, and Subrahmanyam, 2000, Hasbrouck and Seppi, 2001, Korajczyk

and Sadka, 2008, Karolyi, Lee, and Van Dijk, 2012, Mancini, Ranaldo, and Wrampelmeyer,

2013). In all of these applications, using imperfect proxies for transaction costs can lead to

suboptimal financial decisions.

The literature on low-frequency measures of liquidity is fairly large. A number of in-

fluential studies introduce measures that build upon the seminal work of Roll (1984) and

his proposed measure of transaction costs. Among these studies, we examine the measures

introduced by Hasbrouck (2009), Corwin and Schultz (2012), and Abdi and Ranaldo (2017).
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Alternative measures include those based on the frequency of zero returns (Lesmond, Og-

den, and Trzcinka, 1999), effective tick, which is based on the concept of price clustering

(Holden, 2009 and Goyenko, Holden, and Trzcinka, 2009), or the simplified version of the

Lesmond, Ogden, and Trzcinka (1999) measure introduced by Fong, Holden, and Trzcinka

(2017). We do not study these measures here for two reasons. First, Corwin and Schultz

(2012) and Abdi and Ranaldo (2017) show that their proposed measures outperform these

alternatives, and second, these measures are less suitable for our empirical exercise. For

example, we virtually never observe a zero daily return in our data.

Additionally, previous literature has examined the performance of a variety of low-

frequency measures against high-frequency benchmarks. Hasbrouck (2009), Goyenko, Holden,

and Trzcinka (2009), Corwin and Schultz (2012), Abdi and Ranaldo (2017) provide evi-

dence from the U.S. stock market; Fong, Holden, and Trzcinka (2017) extend the analysis

to global equity markets; Karnaukh, Ranaldo, and Söderlind (2015) study the foreign ex-

change market; Marshall, Nguyen, and Visaltanachoti (2011) study the commodity market;

and Schestag, Schuster, and Uhrig-Homburg (2016) examine the U.S. corporate bond mar-

ket. All of these studies conclude that the low-frequency measures are good proxies of true

transaction cost, as they closely correlate with their high-frequency benchmarks. So why do

we reach a different conclusion? We argue that while these measures are correlated with the

true spreads as the literature finds, this correlation is to a large extent driven by volatility.

Since the realized volatility and the true spread are positively correlated as predicted by

market microstructure theory, omitting the realized volatility from the regression inflates

the magnitude and statistical significance of the correlation between the low-frequency mea-

sures and the true spread. To the best of our knowledge, this issue has not been recognized

by the existing literature. 1

We do not claim that low-frequency measures of transaction costs are not generally

useful. They are certainly useful for assets with relatively higher transaction costs and

lower volatility, such as corporate bonds. However, we argue that caution is needed when

applying these measures–whether in today’s electronic markets or to data from the previous

1Our foreign exchange results differ from those of Karnaukh, Ranaldo, and Söderlind (2015). We discuss

the sources of these differences in Section 4.2.2.
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century–unless one is reasonably confident that the transaction costs are large relative to

the daily volatility. It is worth mentioning that Hasbrouck (2009) already noted that his

measure requires a significant amount of data and should not be expected to perform well for

highly liquid assets. Contrary to his recommendation, however, the common practice in the

literature is to construct the measures from only one month worth of data and apply them

to the entire cross section of U.S. stocks and foreign exchange rates. In this study, we show

that for less liquid assets, the consistent version of Corwin and Schultz (2012) performs

better than other low-frequency liquidity measures, provided that one uses a fairly long

window of data (at least one year) for constructing the measure. Otherwise, high-frequency

measures are preferable.

Our analysis bears considerable similarity to several important debates in finance and

economics literature. First, recovering a small positive object from noisy data is notori-

ously difficult. Examples include estimating the expected stock return from low-frequency

data (Merton, 1980), recovering a small predictable component of consumption growth

from consumption data (Bansal and Yaron, 2004), or expected dividend growth (Lettau

and Ludvigson, 2005). Second, the necessity of using high-frequency data for measuring

transaction costs resemble the discussion in the early 2000s about the use of parametric, low-

frequency data based measures of volatility against high-frequency nonparametric volatility,

the so-called realized measures (Andersen, Bollerslev, Diebold, and Labys, 2003, Andersen,

Bollerslev, and Diebold, 2010, Bollerslev, Hood, Huss, and Pedersen, 2018). Spiegel and

Zhang (2013) critically assess the convex relation between flow and past performance of

mutual funds. They show that several studies that report a convex flow response function

suffer from misspecification in their empirical models. Finally, our exercise is also similar

in spirit to the paper by Farre-Mensa and Ljungqvist (2016), who study the performance

of various measures of financial constraints. They find that instead of measuring financial

constraints, these measures in reality capture firms’ growth and financing policies; our re-

sults show that popular low-frequency measures of transaction costs are largely driven by

volatility.

The rest of the paper is organized as follows. In Section 2, we describe the four low-

frequency measures of transaction costs, which have become popular in the literature. In
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Section 3, we study the properties of these measures in simulations and document their bias

and dependence on volatility. Section 4 presents our empirical results for U.S. stocks and

major foreign exchange rates, and in Section 5 we discuss the implications of our results for

empirical finance. Section 6 concludes.

2 Low-frequency effective spread measures

The four low-frequency measures of transaction cost that we discuss in this paper are all

derived within the well-known model of Roll (1984). In this section, we first present the

model and then briefly describe the measures. For more details on the model, and its many

generalizations, see Foucault, Pagano, and Röell (2013).

2.1 Notation and framework

We assume there are T days with n transactions each. For every i = 1, ..., n and t =

0, ..., T − 1, the logarithmic (log) transaction price p and the log efficient price m follow

pt+i/n = mt+i/n +
s

2
qt+i/n, (1)

mt+i/n = mt+(i−1)/n + εt+i/n, (2)

where ε, the efficient price innovation, is independently and identically distributed (iid)

with variance σ2/n; q, the buy/sell indicator, is iid and qt+i/n = ±1 with equal probability;

ε and q are independent at all leads and lags; and m0 = 0 without loss of generality. The

sequence of daily closing log prices is thus given by {p1, p2, ..., pT }, the sequence of daily

high log prices by {h1, h2, ..., hT }, where ht = max1≤i≤n pt−1+i/n, and the sequence of daily

low log prices by {l1, ..., lT }, where lt = min1≤i≤n pt−1+i/n. The sequence of daily returns is

given by {r2, r3, ..., rT }, where rt = pt − pt−1. It follows from the assumptions above that

the daily efficient price innovations, mt − mt−1, are iid with zero mean and variance σ2.

The parameter of interest is s, the proportional effective spread.
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2.2 Roll (1984)

Roll (1984) exploits the negative serial correlation in returns, induced by the bid-ask bounce.

In our framework, the first-order serial covariance is Cov(rt, rt−1) = − s2

4 . For a sample of

T days, the Roll measure is obtained by replacing the true covariance with its sample

counterpart:

R = 2

√√√√max

{
− 1

T − 2

T∑
t=3

rtrt−1, 0

}
, (3)

where the censoring at zero ensures nonnegative estimates, as the sample first-order serial

covariance is not generally guaranteed to be negative.

2.3 Hasbrouck (2009)

Hasbrouck (2009) proposes to estimate the Roll model by Bayesian methods. He develops

a Gibbs sampler to approximate the posterior distribution of s, given a sample of T daily

closing transaction prices. The prior on s is half-normal, s ∼ N+(0, σ2s), and the prior on σ

is inverse Gamma, σ ∼ IG(α, β). Following Hasbrouck (2009), we set α = β = 1e−12 and

σ2s = 0.052, but we also consider a tighter prior for s, namely σ2s = 0.012. We denote the

resulting estimators by HL and HT , respectively.

2.4 Corwin and Schultz (2012)

Corwin and Schultz, henceforth CS, exploit the information contained in daily high and

low prices. They observe that “the sum of the price ranges over 2 consecutive single days

reflects 2 days volatility and twice the spread, while the price range over one 2-day period

reflects 2 days volatility and one spread”. This yields two equations and two unknowns (s

and σ), which is solved analytically. The two-day CS estimator of the spread is given by

St =
2(eαt − 1)

1 + eαt
, (4)

αt =

√
2βt −

√
βt

3− 2
√

2
−
√

γt

3− 2
√

2
, (5)

βt = (ht+1 − lt+1)
2 + (ht − lt)2, (6)

γt = (max{ht+1, ht} −min{lt+1, lt})2. (7)
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For a sample of T days, the Corwin and Schultz (2012) measures are obtained by averaging

the 2-day estimates:

CSM = max

{
1

T − 1

T−1∑
t=1

St, 0

}
, (8)

CSD =
1

T − 1

T−1∑
t=1

max{St, 0}, (9)

CSP =
1∑T−1

t=1 I{St≥0}

T−1∑
t=1

StI{St≥0}, (10)

where ISt≥0 is an indicator function that takes the value of one if St ≥ 0. The first measure,

CSM , is the censored version of CS and thus guaranteed to be positive definite. The second

measure, CSD, is constructed by censoring the 2-day spreads at zero before averaging. This

version is recommended by Corwin and Schultz for U.S. equities and is one of the most

widely used measures in the literature. Finally, the last measure, CSP , is obtained by only

averaging over the non-negative 2-day spreads. Karnaukh, Ranaldo, and Söderlind (2015)

use this measure for spot foreign exchange rates, because it is more closely correlated with

the true spread than CSD.

The CS measures are derived under the assumption of continuous trading, that is, the

overnight return between two consecutive trading days is assumed to be zero. When this is

not the case, such as in most equity markets, CS propose a simple adjustment that mitigates

the effect of non-zero overnight returns (Corwin and Schultz, 2012, p. 726). We employ this

correction in our empirical applications.

2.5 Abdi and Ranaldo (2017)

Abdi and Ranaldo (2017), henceforth AR, combine the ideas of Roll and CS. They define

the daily mid-range by ηt = (ht + lt)/2, the average of the daily high and low log prices,

and observe that the statistic

δt = 4(pt − ηt)(pt − ηt+1), (11)
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satisfies E(δt) = s2, Thus, using a sample of T days, they propose to estimate s by

ARM =

√√√√max

{
1

T − 1

T−1∑
t=1

δt, 0

}
, (12)

ARD =
1

T − 1

T−1∑
t=1

√
max{δt, 0}, (13)

ARP =
1∑T−1

t=1 I{δt≥0}

T−1∑
t=1

√
δtI{δt≥0}, (14)

where, similar to CS, AR employ censoring or truncation to achieve nonnegative estimates.

Unlike the CS measures, the AR measures are robust to the presence of overnight returns

and so no adjustment is required when applying these measures to non-24-hour markets.

3 Statistical properties and the role of volatility

Having described the low-frequency measures, we now document their statistical properties.

First, we show by simulation that the low-frequency measures are significantly upward

biased when the true spread is small. Second, we study the source of the bias and document

its dependence on the volatility of the efficient price. Finally, we study the implications of

this dependence for the dynamics of the low-frequency measures when both volatility and

spreads vary over time.

3.1 Bias and precision

For comparison with CS and AR, we adopt their “near-ideal” simulation design, except that

we consider smaller values of the effective spread, ranging from 5 to 300 basis points, as

these values are more consistent with the transaction costs observed in our data and sample

period. Specifically, we assume there are 390 transactions per day, the daily volatility

of the efficient price innovation equals 3%, and the sample size is either 21 trading days

(approximately one month) or 251 trading days (approximately one year). All simulations

are based on 10,000 replications.

Table 1 reports the simulation results. We find that all measures are significantly upward

biased when the spread is small. For example, when the true spread equals 10 bps, the bias
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ranges from 35 bps for the CSM measures to 236 bps for the ARP measure, or 250% and

2,260% of the true spread, respectively. But for some measures, the bias remains substantial,

even for moderate values of s. When the spread is large, the bias is reasonable, and this

is known from previous studies as well. The measures based on censoring and truncation

before averaging (the “D” and “P” measures) exhibit a much higher bias than measures

obtained by censoring after averaging (the “M” measures). Hasbrouck’s measures are also

highly biased when the spread is small or moderate, and the bias is highly dependent on

the prior.

In terms of precision measured by the root mean square error (RMSE), CSM generally

performs the best, but this comes at a cost: a large fraction of the estimates is equal to

zero. For example, for s = 10 bps, the measure equals zero 38% of the time. The ARM

produces a higher RMSE and many more zeros, even for moderate values of s. The “D” and

“P” measures perform better in terms of standard deviation, but the bias dominates and

produces inferior RMSE to those of the “M” measures. When the sample size increases from

T = 21 to T = 251, the bias and RMSE of the consistent estimators—the “M” estimators

and the Hasbrouck measures—improve significantly, as expected, while those of the “D”

and “P” measures do not.

3.2 Source of bias

What drives the bias when the true effective spread is small? Recall that to ensure non-

negativity, the Roll, CS, and AR measures are all based on some form of censoring or

truncation either before or after averaging. These operations induce a positive bias and

dependence on the volatility of the efficient price σ as we now demonstrate.

To develop some intuition, consider a simple case where xt is iid normal with mean µ,

µ > 0, and variance ω2. Of course, the summands (rtrt−1, St, δt) in the various measures

are neither normal nor iid, but the normal iid case provides informative predictions for the

actual behavior of the effective spread measures. It is well-known that in the case of iid

normal xt,

E

(
max

{
1

T

T∑
t=1

xt, 0

})
= Φ

(√
Tµ

ω

)
µ+ φ

(√
Tµ

ω

)
ω√
T
, (15)
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E

(
1

T

T∑
t=1

max{xt, 0}

)
= Φ

(µ
ω

)
µ+ φ

(µ
ω

)
ω, (16)

E

(
1∑T

t=1 I{xt≥0}

T∑
t=1

xtI{xt≥0}

)
=
[
Φ
(µ
ω

)]−1 [
Φ
(µ
ω

)
µ+ φ

(µ
ω

)
ω,
]
. (17)

First, these results show that all three forms of imposing non-negativity introduce a bias

that depends on both s and ω. Second, only censoring after averaging can deliver consistent

estimates of the effective spread, equation (15). Recall that an estimator θ̂T is consistent for

the true parameter θ0 when for T →∞, θ̂T
p−→ θ0. Censoring or truncation before averaging

produces a bias that does not vanish as the sample size increases, and hence measures

introduced in equations (16) and (17) are not consistent. Finally, truncation delivers a

higher bias and greater dependence on volatility than censoring. Henceforth, we refer to

“M” measures (CSM , ARM , and Roll measures) as “consistent” measures, and “D” and

“P” measures (CSD, CSP , ARD, and ARP ) as “inconsistent”.

Analogous analytical results for the four low-frequency measures we consider are not

available in closed form, so we approximate the expectations by simulation over a grid for

s and σ, where both parameters vary between 10 and 500 basis points. The simulation

design is otherwise identical to that in the previous subsection. The results are summarized

in Figures 1, 2, and 3. In each of these figures, the left panel plots the expectations as a

function of volatility for a given spread, while the right panel plots the expectations as a

function of the spread for a given level of volatility.

Starting with the Roll measure shown in the top panel of Figure 1, we find that when

the spread is large and/or the volatility is small, the Roll measure is fairly insensitive to

volatility. However, for small values of s, the dependence on volatility becomes apparent.

For example, when the spread equals 50 bps, the measure varies almost linearly with volatil-

ity even when volatility is as low as 1%. At the same time, at this level of volatility, the

sensitivity to changes in the spread is significantly less than one (right panel); increasing

volatility further makes this sensitivity even smaller.

Turning to the CS measures shown in Figure 2, censoring after averaging (CSM ) pro-

duces a positive bias that increases with σ, especially for small s, but this bias disappears

as the sample size increases (not shown). Censoring before averaging (CSD) delivers a
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more pronounced dependence on volatility, regardless of the level of the spread. Truncation

before censoring (CSP ) makes the dependence on volatility even stronger. Moreover, when

the spread is small, both measures are essentially a linear function of volatility, even for

low σ. Also, as shown in the right panel, the sensitivity to s declines as volatility increases.

Increasing the sample size does not resolve these issues (not shown).

Finally, the AR measures are shown in Figure 3. We notice two differences relative to

CS. First, the dependence on volatility is less pronounced for large values of s. This comes

at a cost, however, and that is a lower sensitivity to s when s is small and volatility is high.

Similar to CS, when the spread is small or when the volatility is high, the dependence of

the AR measures on volatility is essentially linear.

In the case of the Hasbrouck measures, non-negativity is achieved by choosing an ap-

propriate prior. It is difficult to make predictions about how exactly the choice of the prior

affects the bias and dependence on volatility, if any. But a simulation can shed some light

on this issue. In Figure 1, we plot the expected values of the Hasbrouck measures approx-

imated by simulation as we did for the other measures. We consider two different priors

for s, one where we set σ2s = 0.052 as in Hasbrouck’s original paper (middle panel), and

one where we consider a tighter prior by setting σ2s = 0.012 (bottom panel). In the former

case, we find a behavior that is qualitatively similar to that of the Roll measure, although

the dependence on volatility is somewhat stronger. In the latter case, the dependence on

volatility varies with the size of the spread; for small values of s, the dependence is positive,

while for large values of s it is negative. As volatility increases, the posterior increasingly

resembles the prior and, regardless of the true spread, the measure produces very similar

estimates. As a result, the sensitivity of the measure to changes in the spread becomes very

small (right panel).

3.3 Correlation with true spread and volatility

The key finding from the simulations so far is that when the effective spread is small, the

variation in the low-frequency measures can be driven by volatility. In practice, both spreads

and volatility vary over time and in the cross section, as predicted by microstructure theory,

and they tend to be contemporaneously correlated (see Foucault, Pagano, and Röell, 2013,
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for a textbook treatment).

In the final set of simulations, we therefore explore the implications of time-varying

and correlated spread and volatility for the dynamics of the effective spread measures.

Specifically, we study the correlation of the spread estimates with the true spreads and

volatility by calculating simple pairwise correlations. More importantly, though, we run

OLS regressions of the spread estimates on the true spread and volatility:

ŝt = α+ βsst + βσσt + ut. (18)

If the low-frequency measures (ŝt) truly capture the effective spread, these regressions would

exhibit a spread coefficient βs close to unity, a volatility coefficient βσ close to zero, and a

high R2. If, on the other hand, volatility plays an important role in the dynamics of these

measures, βσ will be different from zero, and the R2 in the bivariate regression in equation

(18) will be substantially higher than that in a univariate regression of ŝt on st alone.

Since we cannot calculate the population coefficients in equation (18) in closed form, we

approximate them by simulation. As before, we simulate samples of size T = 21 (one month)

or T = 252 (one year) days with n = 390 intraday returns each. All simulations are based

on 10,000 replications. We keep the spread and volatility fixed within each sample (month

or year). However, we allow the spread and volatility to vary randomly across samples

(months or years). Both the spread and volatility are assumed to be independently log-

normally distributed, either uncorrelated, or contemporaneously correlated with ρ = 0.5.2

We set the mean daily volatility of the efficient price equal to 2% and the volatility of

volatility equal to 2%. A 2% average daily volatility is approximately what we observe

for the S&P 1500 stocks during our sampling period. We consider three scenarios for the

effective spread. First, we consider an effective spread with a mean of 10bps and spread

volatility of 10 bps, i.e., the implied ratio of expected spread to expected daily volatility

is 5%, which is close to what we observe for the large- and mid-cap stocks in our sample.

Second, we consider an effective spread with a mean spread of 50 bps and spread volatility of

50bps, so that the signal-to-noise ratio equals 25%. This value is large for modern electronic

2We also run simulations with ρ = 0.75. These results are available in Appendix A.
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markets, but it is close to what the DJIA 30 stocks experienced in the previous century (see

Jones, 2002). Finally, we consider an effective spread of 3% with volatility of 3%, implying

a signal-to-noise ratio of 150%. We run this last simulation mainly to show that when the

signal-to-noise ratio is high, the consistent low-frequency measures perform as dictated by

statistical theory.

Table 2 reports the simulation results for the case of no correlation between the spread

and volatility. In the left part of Panel A, we show the results for the small, tranquil spread

and T = 21 observations (days) used to calculate the low-frequency measures. We find that

the correlation with the true spread is very small for all measures, while the correlation

with volatility is high, especially for the D and P measures, where the correlation exceeds

0.9. The slope coefficient in a univariate regression on the true spread is well below one

and the intercept is well above zero, consistent with the large bias documented in Table 1.

The bivariate regressions on the true spread and volatility show that it is almost exclusively

volatility that drives the dynamics of the low-frequency measures: the slope coefficient for

volatility is well above zero and the R2 increases from essentially zero to values that range

from 25% for the consistent, M, measures to over 90% for the P measures. In the right part

of Panel A, we repeat the simulation with T = 251 observations. Except for CSM , we find

that the performance does not really improve, and in some cases it actually deteriorates:

for the inconsistent D and P measures, the correlation with volatility is now near perfect.

Increasing the number of observations reduces the variance of these measures and the bias,

which is a function of volatility and does not diminish asymptotically, dominates.

Panel B of Table 2 reports the simulation results for the medium, moderately volatile

spread. There are clear improvements in terms of the correlations with the true spread

relative to Panel A, but all measures still exhibit significant correlation with volatility. This

is also evident in the bivariate regressions, where, with the exception of CSM , the volatility

coefficient is far from zero and the R2 is much higher than in the univariate regression on the

true spread alone. For example, the most widely used CSD measure exhibits an R2 = 0.17

in the univariate regression and an R2 = 0.89 in the bivariate regression when the number

of observations equals 21 days, suggesting that even with a fairly large signal-to-noise ratio

of 25%, the dynamics of the measures is mainly determined by volatility and not the true
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spread.

Finally, in Panel C we report the results for the high, volatile spread. We find that

with such a high noise ratio of 150%, the measures generally work as expected, exhibiting

a high correlation with the true spread and a slope coefficient close to unity in a univariate

regression on the true spread alone (except HT ). The consistent measures CSM and ARM

work particularly well, even when T = 21. The inconsistent measures, D and P, while much

less plagued by volatility than in Panels A and B, still exhibit a nontrivial dependence on

volatility as evidenced by a correlation between 0.10 and 0.36, respectively, when T = 21,

and this correlation barely changes as T increases to 251.

While the simulation results with uncorrelated spread and volatility clearly illustrate the

impact of volatility on the low-frequency measures, in practice, the spread and volatility

tend to be positively correlated. To be able to better interpret our empirical findings, we

therefore repeat the simulations setting the correlation between the spread and volatility

equal to 0.5 but leaving the simulation design otherwise unchanged. The results are reported

in Table 3. We first note how the contemporaneous correlation between the spread and

volatility masks the problem with dependence on volatility when one judges performance

by correlation with the true spread. Panel A shows that even if the true spread is very

small, the correlation between the low-frequency measures and the true spread tends to be

quite high. However, when one runs a univariate regression on the true spread, the issue

becomes clearly apparent and manifests itself in a slope coefficient that is much larger than

one. Moreover, when volatility is added to the regression, the R2 increases significantly. For

example, with T = 21, the CSD measure exhibits an increase in R2 from 0.26 to 0.88, while

the CSP ’s R2 increases from 0.27 to 0.94; the ARD and ARP measures exhibit a similar

behavior. Increasing T to 251 does not yield any improvement for either set of metrics. This

problem does not go away even when we increase signal-to-noise ratio to 25%, as shown

in Panel B. Including the volatility in the regression yields a small increase in R2 for the

inconsistent D and P measures only with a large signal-to-noise ratio of 150%, reported in

Panel C.

In summary, the simulation results confirm the fact that the inconsistent low-frequency

measures are contaminated by volatility, and it is primarily volatility that drives the dy-
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namics of these measures for parametrizations that are empirically relevant in electronic

markets. To end on a positive note, we find that the CSM measure, while being quite

noisy when the true spread is small or when the number of observations is small, does

deliver almost unbiased estimates for moderate (and larger) spreads and when the number

of observations is large. Unfortunately, the measure is almost never applied in practice,

as the authors themselves advise against it on the grounds that it exhibits low correlation

with the true spread. Our simulations show that while the D and P measures, which are

recommended by both CS and AR, are correlated with the true spread, they are correlated

with the true spread for the wrong reason—they load on volatility.

4 Estimating transaction costs in equity and foreign exchange

markets

4.1 U.S. equities

4.1.1 Data

Our U.S. equity sample consists of the S&P 1500 constituent stocks during the period

between October 2003 and December 2017. We focus on the post-decimalization period

and the S&P 1500 stocks for several reasons. First, the S&P 1500 index comprises over

90% of U.S. stock market capitalization, and thus our results apply to the vast majority of

economically significant U.S. stocks. Second, very small stocks do not necessarily trade often

enough (sometimes not even once a day), which necessitates imposing onerous conditions

when implementing the low-frequency methods. We do not claim that these stocks do not

matter. However, if we insist on incorporating them in our analysis, more robustness checks

and alternative treatments for issues related to infrequent trading need to be carefully

explored, which we believe is best left for a separate paper. Third, estimating realized

volatility, which is a key variable in our empirical analysis, is only possible for sufficiently

liquid assets.

The data on the historical S&P 1500 and other index membership come from COMPUS-

TAT. For each month in our sample, we select all stocks that were included in the S&P 1500

index between the 5th and 25th of the month and obtain daily high, low, close, bid, and
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ask prices for these stocks from CRSP, matching by stock CUSIP. We use the daily CRSP

price data to calculate the low-frequency measures at the stock-month and stock-year level.

Our high-frequency effective spread benchmarks and various realized volatility measures

are calculated from the Daily TAQ data accessed via Wharton Research Data Services

(http://wrds-web.wharton.upenn.edu/wrds/). We use the Holden and Jacobsen (2014) SAS

code, kindly shared by the authors on their web site, to first construct the national best bid

and offer (NBBO) data and then calculate daily dollar-volume-weighted percent effective

spreads for all stock in our sample. In addition to the filters employed by Holden and

Jacobsen (2014), we also remove transactions where the transaction price differs from the

prevailing NBBO quote by more than 10%—i.e. the implied effective spread is larger than

20%—before calculating the daily effective spreads. This helps remove obvious outliers,

but it does not materially affect our results, as the effective spreads of our stocks are two

orders of magnitude smaller on average. Effective spread estimates at the stock-month or

stock-year level are then obtained by simply averaging the daily estimates for a given stock

and month or year, respectively.

Novel in our paper is the use of volatility in explaining the behavior of the low-frequency

measures. We construct high-frequency-based proxies for the daily volatility of the efficient

price by calculating 5-minute realized volatilities from the NBBO mid-quotes. Liu, Patton,

and Sheppard (2015) and Bollerslev, Hood, Huss, and Pedersen (2018) show that the 5-

minute realized volatility tends to perform very well across different asset classes. To ensure

that our results are not plagued by market microstructure noise (see Bandi and Russell,

2006, for an in-depth treatment), we also consider the 30-minute realized volatility. Before

calculating the daily realized volatilities, we employ some additional data cleaning methods

in the spirit of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009) and Bollerslev,

Hood, Huss, and Pedersen (2018). Specifically, we remove (1) quotes where the bid or ask

price is missing or equal to zero, or the bid-ask spread is less than or equal to zero; (2)

quotes with bid-ask spreads larger than 50 times the median bid-ask spread for a given

stock and day; and (3) quotes where the absolute difference between the mid-quote and

the median daily mid-quote exceeds 10 times the average value of this difference on a given

day. These filters are designed to remove obvious outliers, such as spurious jumps of the
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bid and ask prices to $10,000, for example. To calculate monthly realized volatility, we sum

the daily realized volatilities within a given month and add the sum of squared overnight

returns, that is, returns between 4:00pm and 9:30am the following trading day.

Finally, we merge the stock-month and stock-year variables created from CRSP and

TAQ by the stock CUSIP. In order for a stock-month to be included in our final sample, the

CRSP and TAQ have to have data for the same number of trading days for a given stock

and month. Following Abdi and Ranaldo (2017), we also eliminate stock-months with stock

splits or unusally large distributions (> 20%). Finally, we drop May 2010 from our sample,

as a well-known flash crash occurred on the 6th of this month and was associated with

unusual price and liquidity dynamics in the U.S. equity markets (Kirilenko, Kyle, Samadi,

and Tuzun, 2017). This leaves us with 241,236 stock-months. In case of stock-years, a stock-

year is included in our sample, as long as the CRSP and TAQ contain data for a given stock

for at least 231 (11 months) trading days and the number of days with data differs by no

more than 21 (1 month) between CRSP and TAQ. We also eliminate stock-years with stock

splits and unusually large distributions (> 20%), and in case of 2010, eliminate May from

all stock-years. Thus, the results for 2010 are only based on 11 months of data. This leaves

us with 18,239 stock-years.

Table 4 reports daily summary statistics for our final sample. The daily average number

of trades in our sample period is 8,606 and the average daily trading volume equals $71

million. The average quoted spread equals 16.3 basis points, while the average effective

spread is 12.4 basis points. The average daily realized volatility stands at 2.17% and the

signal-to-noise ratio–the ratio of effective spread to realized volatility–equals a mere 6% on

average. The table also reports analogous statistics for the four sub-indices that comprise

the S&P 1500 index. The largest stocks (DJIA 30) trade with an effective spread of 4.3

basis points on average and daily realized volatility of 1.42%, and a signal-to-noise ratio of

3.4%. The S&P 500 index constituents have an effective spread of 6.1 basis points, daily

realized volatility of 1.83% and a signal-to-noise ratio of 3.7% on average. For the mid caps

(S&P 400), these figures stand at 9.1 basis points, 2.06%, and 5%, while for the small caps

(S&P 600), they are 20 basis points, 2.55%, and 8.5%, respectively. Thus, even the mid and

small caps trade with a fairly small effective spread and a signal-to-noise ratio well below
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10%.

4.1.2 Results

We show the empirical results for U.S. stocks in three stages. First, we present the results

for the whole sample, i.e., the S&P 1500 stocks. Since there is significant variation in the

effective spread and the signal-to-noise ratio in the cross section (Table 4), we then repeat

the exercise for the largest stocks, i.e., the DJIA 30 stocks, and the small caps, i.e., S&P

600 stocks.

Full-sample results: Monthly

Starting with the full sample, Panel A of Table 6 summarizes descriptive statistics for the

TAQ effective spread and the low-frequency measures pooled over all stock-months in the

sample. Clearly, all low-frequency measures exhibit a sizable upward bias relative to the

TAQ spread. While the true spread equal 12.4 bps on average, the low-frequency measures

average between 26.4 bps for CSM and 168 bps for HL. As expected, for the CS and

AR measures, the average bias increases when one censors or truncates before averaging

the daily estimates within a month; the mean CSD and ARD are 76.2 bps and 82.2 bps,

respectively, while the mean CSP and ARP are 123 bps and 157 bps, respectively. The

median and the RMSE exhibit a similar pattern.

In Panel B, we report the cross-sectional average of time-series correlations between the

low-frequency measures and the TAQ spread and realized volatility. We find that the con-

sistent measures exhibit low time-series correlation with the TAQ spread, ranging between

0.19 and 0.28, while the inconsistent measures exhibit roughly twice as high correlation with

the TAQ spread. At the same time, the inconsistent measures tend to be correlated with

realized volatility, and the correlation coefficient range from 0.62 to 0.74, roughly double the

correlation of the consistent measures with the realized volatility. In Panel C, we present

analogous results for the cross-sectional correlations averaged over time. These correlations

exhibit a similar pattern.

In Table 7 we report results of regressions of the low-frequency measures on the TAQ

spread and realized volatility. In Panel A, we run pooled OLS regressions and use the

Driscoll and Kraay (1998) standard errors, which are robust to heteroscedasticity, serial
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correlation, and cross-sectional dependence for inference. We find that our estimation results

are qualitatively consistent with our simulation results reported in Table 3. First, the

realized volatility is highly statistically significant for all measures; second, including RV

significantly reduces the estimated coefficient for the TAQ spread and increases the R2. The

increase in the R2 is particularly pronounced for the inconsistent measures, where it at a

minimum doubles the value of the R2. For example, for the CSD measure the R2 goes from

0.26 to 0.66, while for the ARD measure, it increases from 0.22 to 0.64.

In the next two panels, we examine the variation separately in the time-series and

cross-section. Starting with the time-series variation, in Panel B, we report the “within”

estimation, that is, pooled OLS on data that were de-meaned at the stock level, which is

equivalent to running OLS with stock fixed effects. We again use the Driscoll and Kraay

(1998) standard errors for inference. In Panel C, we run cross-sectional regressions for each

month in the sample and report the mean cross-sectional parameter estimates together

with the associated Newey and West (1987) Student’s t-statistics. The two sets of results

are qualitatively consistent with the pooled results in Panel A. One notable difference

between the time-series and cross-sectional estimations is that the increase in the R2 is

more pronounced for the former.

The results reported so far have been calculate using the 5-minute realized volatility.

To check for robustness to this sampling frequency, in Table 24 in Appendix B we rerun

our regression using the 30-minute realized volatility. Sampling at lower frequency should

alleviate any concerns about the effect of market microstructure noise on the volatility

estimates, see Bandi and Russell (2006). As is seen from the table, our results are virtually

unchanged by replacing the 5-minute RV by the 30-minute RV and the point estimates, as

well as the associated t-statistics, are remarkably close.

Full-sample results: Annual

We now turn to annual results, where all low-frequency measures are calculated using one

year’s worth of daily data. Table 8 report the annual descriptive statistics. Several differ-

ences relative to the monthly results are immediately apparent. First, the bias and RMSE

have significantly declined for the consistent measures: the mean HL declined from 168 to

64.2 bps, the mean CSM from 26.4 to 18.3 bps, and the ARM from 58.3 to 46.0 bps. In con-
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trast, the annual inconsistent measures exhibit almost the same bias as the monthly ones.

The correlation with the true spread also increased for the consistent measures, especially

the time-series correlations (Panel C). For example, the annual CSM measure exhibits an

average time-series correlation with the TAQ spread of 0.64 relative to the monthly 0.37.

Similar increases are observed for the other consistent measures as well, but not for the

inconsistent ones. These findings are perfectly in line with our simulation results, the

asymptotic theory, and show that only the consistent measures can deliver increasingly

precise estimates as the sample size increases.

In Table 9 we run the regressions of low-frequency measures on the TAQ spread and

realized volatility at the annual frequency. We again find a very different change relative

to the monthly results for the consistent and inconsistent measures. The former now ex-

hibit substantially smaller coefficients on realized volatility, and in some cases the realized

volatility is only marginally statistically significant, especially in the cross-sectional regres-

sions (Panel C); take, for example, the case of CSM and ARM , where the coefficient on RV

is essentially zero. In contrast, the inconsistent (“D” and “P”) measures exhibit no such

changes and, if anything, the R2 in the annual regressions with RV increase relative to the

monthly regressions. The dependence on volatility of the inconsistent measures cannot be

simply undone by increasing the sample size.

Results by size

Tables 10–17 report analogous monthly and annual results—descriptive statistics and re-

gression results—for very large stocks (DJIA 30) and small caps (S&P 600). Starting with

the monthly results, we find that the realized volatility plays a more important role for the

very large stocks: the low-frequency measures tend to be more correlated with RV for these

stocks, and adding RV to the regression on the TAQ spread increases the R2 more (see Ta-

bles 10 and 11). But even for the small stocks, the realized volatility is a significant factor.

All low-frequency measures exhibit a non-negligible correlation with realized volatility, and

the realized volatility is highly significant in both time-series and cross-sectional regressions

(see Tables 14 and 15). In Tables 25 and 26 reported in Appendix B we again check for

robustness of our results to the choice of the sampling frequency at which we calculate

realized volatility. The table shows that using the 30-minute RV in place of the 5-minute
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RV leaves our results intact.

Turning to the annual results reported in Tables 12 and 13 for the DJIA 30 stocks and

16 and 17 for the S&P 600 stocks, we find that the bias of the consistent measures improves

more for the small caps than for the very large caps. For example, the average CSM measure

drops from 36 bps to 27 bps, which is much closer to the TAQ spread of 20 bps, while the

same measure declines from 16 bps to 11 bps for the very large caps, which have a TAQ

spread of mere 4 bps on average. So for the very large caps, the bias is almost 156% of

the TAQ spread even at the annual frequency. The bias associated with the inconsistent

measures does not, of course, change as the sample size increases.

Second, the correlation of the consistent measures with the TAQ spreads increases more

for the small caps than for the large caps when moving to the annual frequency. Both of these

results are consistent with our simulation results and the intuition developed in equations

(15)-(17) that increasing the sample size reduces the bias and increases the precision of the

consistent measures more when the signal-to-noise ratio is high. However, the regression

results show that even for the small caps and the annual frequency (Table 17), all consistent

measures still exhibit statistically significant dependence on volatility both in the cross

section and time series. For the inconsistent measures, this dependence actually becomes

stronger at the annual frequency, as can be seen from the magnitude of the coefficients

on RV, their statistical significance, and the incremental R2 in the bivariate regressions.

This is not surprising; the variance of the measures is reduced in larger samples, but the

bias, which is a function of volatility, is not, and hence the measures now have a less noisy

relationship with volatility.

In summary, our empirical results for the very large and small caps are perfectly in

line with our simulation evidence. The consistent low-frequency measures perform better

for less liquid assets, i.e., assets with a higher ratio of transaction costs to volatility, and

this performance improves more when increasing the sample size. The inconsistent low-

frequency measures, on the other hand, exhibit no such improvement. Even for the small

caps and at the annual frequency, however, all measures suffer from the dependence on

volatility both in the cross section as well as in the time series.
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4.2 Foreign exchange rates

4.2.1 Data

Our foreign exchange sample consists of five major currency pairs for which we have intra-

day data: EUR/USD, EUR/CHF, EUR/JPY, USD/CHF, USD/JPY. The source of our

intraday data is EBS, one of the largest electronic interdealer platforms for trading spot

FX. Although other currency pairs are traded on this platform, it is well known that EBS

is the primary source of price discovery for the euro, Japanese yen, and Swiss franc, while

Reuters is the primary venue for other currencies (Hasbrouck and Levich, 2018). Thus, we

exclude these currencies from our analysis because the transaction costs estimates obtained

from the EBS data might not be representative of the true costs of trading these curren-

cies. The EBS data contain transactions time stamped to the millisecond and classified

as either buyer or seller initiated, and top-of-the-book quotes sampled at regular 100ms

intervals. Unlike for the U.S. stocks, we cannot therefore align quotes with trades exactly,

and use instead the most recent—rather than the prevailing—mid-quote when calculating

dollar-volume-weighted effective spreads, as in Karnaukh, Ranaldo, and Söderlind (2015).3

We calculate daily realized volatility from 5-minute mid-quotes; Chaboud, Chiquoine, Hjal-

marsson, and Loretan (2010) show that the 5-minute sampling frequency is sufficiently low

to avoid contamination by microstructure noise. Our sample period is from January 2008

to December 2015. We drop holidays, and in case of the exchange rates involving the Swiss

Franc, we also drop the months when the exchange rate floor was introduced and abandoned

by the Swiss National Bank, as these were months of unusual market developments.

Table 5 reports summary statistics for the foreign exchange data. The EUR/USD and

USD/JPY are the most frequently traded currency pairs, with around 39,000 and 21,000

trades per day on average, and $52 billion and $28 billion in average daily volume, respec-

3An additional source of measurement error stems from the fact that trading on EBS takes place in

three different locations—London, New York, and Tokyo—and the associated latencies may give rise to

inaccuracies in trade time stamps. Addressing this issue directly requires information on the geographical

location of trades, but such data are currently not available. As a result, the effective spread may be negative

for some trades. In Appendix C, we consider two alternative ways of constructing the dollar-volume-weighted

effective spreads for robustness and show that our results remain unchanged.
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tively. The other currency pairs are considerably less frequently traded. The average quoted

spread is very small for all currencies, as is the effective spread. The most liquid currency

pair is the EUR/USD with an average quoted spreads of 1.07 bps and an effective spread

of 0.50 bps; USD/JPY exhibits slightly higher transaction costs, 1.45 bps and 0.68 bps,

respectively; the remaining currency pairs trade with an average quoted spread between 2.6

and 2.8 bps and an average effective spread between 0.69 and 0.83 bps. The average daily

realized volatility ranges from 45 bps for EUR/CHF and 85 bps for EUR/JPY. These val-

ues are almost two orders of magnitude larger that the average effective spreads, producing

signal-to-noise ratios between 1 and 2%. In this sense, the spot foreign exchange rates are

even more liquid than the DJIA 30 stocks discussed in the previous section.

Following Karnaukh, Ranaldo, and Söderlind (2015), we obtain daily high, low, and

closing prices for the five exchange rates from Thompson Reuters. These prices are based

on quotes rather than transactions, and to the best of our knowledge, daily transaction

prices are not publicly available. This means that we can only calculate the Corwin and

Schultz (2012) effective spread measures from these data, since other measures explicitly

require daily closing transaction prices; the effective spread is otherwise not identified. We

calculate the Roll, Hasbrouck, and Abdi and Ranaldo measures from the daily high, low,

and closing prices extracted from our intraday EBS data. We acknowledge that this is

not feasible for researchers who do not have access to the proprietary EBS data, but it is

nonetheless instructive to study how these measures would perform if the daily transaction-

based data were publicly available.

4.2.2 Results

Table 18 summarizes our foreign exchange results. Similar to the analysis of the U.S. eq-

uities, we calculate statistics and run regressions for FX-month data pooled across the five

currency pairs in our sample. We do not perform the analysis at the annual frequency

because we only have five exchange rates and 8 years in our sample, i.e., only 40 exchange

rate-years, which is too small a sample for any meaningful statistical analysis. Starting with

the summary statistics reported in Panel A, we find that all low-frequency measures are

severely upward biased. The true effective spread is 0.68 bps on average, while the average
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Roll measure equals 25.9 bps, the Hasbrouck measures vary between 44.8 and 46.3 bps

depending on the prior, the Corwin and Schultz average measures range from 13.3 to 44.7

bps, and the Abdi and Ranaldo from 13.7 to 47.6 bps. The standard deviations of the low-

frequency measures are also two orders of magnitude higher than that of the true spread.

These results are in stark contrast to those of Karnaukh, Ranaldo, and Söderlind (2015),

who report a much smaller bias for their currencies and sample period (2007-2012). When

replicating their results, we find that they report the summary statistics in percent rather

than basis points, as claimed. For example, Karnaukh, Ranaldo, and Söderlind (2015) re-

port a mean CSP for EUR/USD of 0.476 basis points,4 while our replication shows that it

is actually 0.476%, or 47.6 basis points. Given that the effective spreads from EBS data is

reported to be 0.584 basis points on average in Karnaukh, Ranaldo, and Söderlind (2015),

the bias is actually very large, and very similar to what we obtain for EUR/USD during

our sample period (2008-2015).

Panel B of Table 18 reports regression results from regressing the low-frequency measures

on the true effective spread. We find that the intercept is statistically indistinguishable from

zero, but the slope coefficient is far from unity, as would be required of a well-performing

measure. The large slope coefficients reflect, of course, the large bias the low-frequency

measures suffer from. The coefficient of determination is generally not very large, reaching

a maximum of 0.32 for the CSD measure. In Panel C of Table 18, we add realized volatility

to the regression. Echoing the results for the DJIA 30 stocks, three main results emerge from

these regressions: (i) realized volatility is highly statistically significant in all regressions

except for CSM ; (ii) compared to the univariate regressions in Panel B, the R2 more than

doubles for all measures except for consistent M measures (those based on censoring after

averaging); and (iii) for the Hasbrouck measures and the “P” measures, adding realized

volatility renders the spread coefficient (βES) statistically insignificant.

In summary, volatility is an important driver of the Hasbrouck and the “D” and “P”

measures in the foreign exchange market, explaining why these measures exhibit a higher

4Page 3080, Table 2, “Corwin-Schultz high-low estimate/2 (LF), bps”. Since we focus on the full spread

in our paper, while Karnaukh, Ranaldo, and Söderlind (2015) report half-spread, multiplying their 0.238 by

two produces 0.476.
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correlation with the true spread documented in Panel A and in previous studies. Volatility

affects the “M” measures by a much smaller degree. As a result, these measures exhibit a

much smaller correlation with the true spread.

5 Implications for empirical asset pricing

Thus far, we have documented the statistical properties of the low-frequency measures. In

this section, we highlight the implications of these properties for empirical asset pricing. We

provide two case studies. In the first case, we investigate how the imprecision of the low-

frequency measures affects the estimates of betas and market price of risk in the liquidity-

adjusted CAPM of Acharya and Pedersen (2005). In the second case, we follow Ang,

Hodrick, Xing, and Zhang (2006) and add a liquidity factor to their unconditional factor

model with market and aggregate volatility risks. Our goal is to examine if and to what

extent the dependence of the low-frequency measures on volatility affects the estimation of

liquidity and volatility betas and the associated prices of risk if one employs low-frequency

measures to construct an aggregate liquidity factor.

5.1 Liquidity-adjusted CAPM

We assume that stock and market returns follow:

rit − sit = µi + βi(r
m
t − smt ) + εit, (19)

rmt − smt = µm + σmt ε
m
t , (20)

where rit and rmt are the gross stock and market returns, and sit and smt are the stock and

market transaction costs. Without loss of generality, we assume that the risk-free rate is

zero. We assume that stock idiosyncratic volatility is constant, but this assumption can

be easily relaxed and a factor structure assumed following Herskovic, Kelly, Lustig, and

Van Nieuwerburgh (2018). Acharya and Pedersen (2005) decompose the beta in equation
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(19) into four separate betas, βi = (β
(1)
i + β

(2)
i − β

(3)
i − β

(4)
i ), where

β
(1)
i =

Cov(rit, r
m
t )

Var(rmt − smt )
, β

(2)
i =

Cov(sit, s
m
t )

Var(rmt − smt )
, β

(3)
i =

Cov(rit, s
m
t )

Var(rmt − smt )
, β

(4)
i =

Cov(sit, r
i
t)

Var(rmt − smt )
.

(21)

Thus, the expected return is:

E(rit) = E(sit) + λm(β
(1)
i + β

(2)
i − β

(3)
i − β

(4)
i ). (22)

The asset-pricing model in equations (19) and (20) is written in terms of monthly re-

turns. However, to calculate the various low-frequency effective spread measures, we need

to simulate intraday returns. To do so, we continue with our simulation design of Section 3

and assume that the transaction costs and market volatility are constant within each month

and divide the month into nT = T × n periods each, where T is the number of days in the

month and n is the number of intraday periods as before. Consistent with equations (19)

and (20), we assume that gross returns at the intraday level follow:

ritj − sit/nT = βi(r
m
tj − smt /nT ) + (σi/

√
nT )εitj , (23)

rmtj − smt /nT = µm/nT + (σmt /
√
nT )εmtj , (24)

where j = 1, ..., nT and εitj and εmtj are independent standard normal random sequences.

Aggregating to the monthly frequency by summing up the intraday returns within the

month reproduces equations (19) and (20). The intraday efficient prices and transaction

prices are then generated as in the Roll (1984) model:

mi
t−j/nT

= m0 +

j∑
l=1

ritj , (25)

pit−j/nT
= mi

t−j/nT
+
sit
2
qit−j/nT

, (26)

where qit−j/nT
is an independent sequences of binary trade indicators. Once we generate the

intraday transaction prices for a given month, we then compute the high, low, and closing

prices for each day in the month, followed by the low-frequency spread measures and realized
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volatilities for each stock. Armed with the monthly time-series of effective spread estimates

and stock and market returns, we first estimate the time-series regression in equation (19)

separately for each stock. In the second step, we run a cross-sectional regression of the stock

net returns on the estimated betas to recover the market price of risk. We do this exercise

separately for each low-frequency measure. That is, we substitute sit by a low-frequency

measures and substitute smt by the cross-sectional average of the measure.

We calibrate the simulations as follows. In each replication, we generate 360 months (or

30 years) worth of intraday data for 26 stocks. As in the previous simulations, we assume

that each month has T = 21 trading days with n = 390 transactions each. We set the gross

expected return of the market (µm) equal to 5% per annum and let the stocks’ betas to be

equidistantly spaced between 0.5 and 1.5. The market transaction costs and volatility are

iid and jointly log-normally distributed with correlation of 0.5.5 The mean and volatility

of the market spread are set to 10 basis points each, and the mean and volatility of daily

market volatility are set to 1% each; the ratio of expected spread to expected daily volatility

is thus 10%. We posit that individual stocks’ transaction costs follow a factor model:

sit = βis
m
t u

i
t, i = 1, ..., 26, (27)

where uit is an independent log-normal innovation with unit mean and standard deviation

equal to 0.5. Since the average beta equals one, the cross sectional mean of the stocks’ spread

equals the mean of the market spread, i.e., 10 bps, but the high beta stocks have a higher

effective spread and the low beta stock have a lower effective spread. Finally, to calibrate

the idiosyncratic volatility, σi, we observe that conditional on σmt , smt , and sit, the variance

of stock returns in equation (19) is (σit)
2 = β2i (σmt )2 +(σi)2. We set (σi)2 = 0.25β2i E((σmt )2)

so that, on average, the idiosyncratic variance accounts for 20% of the total stock variation.

With this choice, the stock beta also governs the total stock volatility, with higher beta

stocks having higher total volatility. Moreover, the ratio of the expected stock spread to

the expected stock volatility is constant across stocks. We run 10,000 replications.

We report the simulation results in Table 19. To save space, we only report three sets of

5We also run simulations with ρ = 0.75 and these simulations are reported in Appendix A.
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estimated betas and the associated decompositions—small (0.5), medium (1.0), and large

(1.5). We report the true values of the four Acharya and Pedersen (2005) liquidity betas in

the first column. The second column reports the (infeasible) estimation results when we use

the true spread (s) to estimate the liquidity-adjusted CAPM. Clearly, using the true spread

yields estimates which are, on average, very close to the true values of the betas and the

market price of risk, λm. The remaining columns report the results for the low-frequency

measures. While, on average, the estimated β1 is very close to the true value, this is not the

case for the remaining betas. For β2, the bias is uniformly positive and very large, ranging

from 5 times to 54 times the actual value for CSM and ARP , respectively. For β3 and

β4, the HL measure yields a large positive bias, while the bias associated with the other

measures is either positive or negative depending on the form of censoring or truncation.

The market price of risk estimates, reported in Panel D, exhibit sizable negative biases. For

the consistent measures CSM and ARM , the bias is around -1.1% and -2.3%. The bias gets

worse when the censoring is done before averaging: -5.6% for CSD and -5.1% for ARD. Still,

moving from censoring to truncation before averaging yields even more biased estimates of

market price of risk. On average, the price of risk is estimated at -5% by CSP and -6.2% by

ARP . The HL measures produces a similarly biased price of risk estimates, about -4.6%.

In summary, these simple simulations show that using low-frequency liquidity measures to

estimate the liquidity-adjusted CAPM could easily lead to misleading inferences about both

the size and sign of the market price of risk and the liquidity betas.

5.2 Asset pricing with aggregate liquidity and volatility risks

As mentioned earlier, we use a variation of Ang, Hodrick, Xing, and Zhang (2006) model to

demonstrate the potentially spurious inference resulting from using low-frequency measures

of liquidity in settings similar to theirs. We assume that stock and market returns evolve

according to:

rit − µi = βmi (rmt − µm) + βli(lt − l̄) + βσi (σmt − σ̄m) + εit, (28)

rmt − µm = σmt ε
m
t , (29)
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where µi is stock i’s expected return, l̄ = E(lt) is the average liquidity, and σ̄m = E(σmt ) is

the average market volatility. In the absence of arbitrage, the expected return is given by

E(rit) = βmi λm + βliλl + βσi λσ, (30)

where λm, λl, and λσ are the market, liquidity, and volatility prices of risk, respectively.

Consistent with equations (28) and (32), we assume that at the intraday level, stock

and market returns follow:

ritj = µi/nT + βmi (rmtj − µm/nT ) + βli(lt − l̄)/nT + βσi (σmt − σ̄m)/nT + (σi/
√
nT )εitj , (31)

rmtj = µm/nT + (σmt /
√
nT )εmtj , (32)

j = 1, ..., nT , εitj and εmtj are independent standard normal random sequences. Aggregating

to the monthly frequency by summing up the intraday returns within the month reproduces

equations (28) and (32).

We set the liquidity factor in equation (32) according to lt = 10
√
Tsmt , that is, the

liquidity factor equals the common factor driving the stock effective spreads in equation

(27), adjusted by a factor of 10 ×
√
T in order to make the liquidity and volatility factors

of the same order of magnitude. Recall that σmt is the monthly stock volatility and the

expected daily volatility equals 10 times the average effective spread. smt and σmt are jointly

log-normal with the same parameters as in the previous subsection, sit follows the factor

model in equation (27), and σi is also set as in the previous subsection. The intraday

efficient prices and transaction prices evolve according to equations (25) and (26), with ritj

and rmtj given in by equations (31) and (32), respectively.

We consider five different market betas, ranging from 0.5 to 1.5, five different liquidity

betas, ranging from −2 to 2, and five different volatility betas, ranging from −2 to 2. Thus,

we generate data for 5 × 5 × 5 = 125 stocks, one for each combination of the three betas.

We consider three scenarios for the risk prices. In the first scenario all three risks are priced

with λm = 5%, λs = λσ = −1% per annum. In the second scenario, only the market and

volatility risk are priced, i.e. λm = 5%, λσ = −1%, and λs = 0. In the third scenario, only

the market and liquidity risks are prices, i.e. λm = 5%, λs = −1%, and λσ = 0.
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In each replication, we generate 360 months of data with 21 days in each month and 390

returns for each day for each of the 125 stocks. Once the data are generated, we calculate the

low-frequency measures for each stock and month. For each low-frequency measure, we then

run the usual two-stage asset pricing exercise, where we use the measure’s cross-sectional

average, multiplied by 10×
√
T , as the aggregate liquidity factor in equation (28). To proxy

for the aggregate volatility factor, we use either the monthly realized volatility based on

daily closing values of the market factor or the monthly range-based volatility estimates

based on the daily high and low values of the market factor (Parkinson, 1980). Thus, we

only use daily data to estimating the market volatility. In the first stage, we estimate the

time-series regression in equation (28) for each stock, while in the second stage, we estimate

the cross-sectional regression in equation (30) using the first-stage beta estimates in order

to estimate the prices of risk. We repeat this 10,000 times and report the average prices of

risk obtained in the simulation.

Table 20 summarizes the results. In Panel A, we use the realized volatility as a proxy for

aggregate volatility, while in Panel B, we use the range-based volatility. The first column

reports the true values of the price of risk parameter values. In the second column, we

show that using the true effective spread in the estimation yields prices of risk that are on

average very close to the true values, regardless of the volatility proxy used.

Turning to the results for the low-frequency measures, we find that using these measures

produces large biases in estimated prices of risk, which can lead to spurious inferences about

the sign and the magnitude of the risk prices. First, when only the volatility risk is priced,

i.e., the price of liquidity risk is zero, all measures produce a non-zero price of liquidity risk

on average, and the price of risk is typically large and negative. For example, the CSD and

ARD measures yield a price of liquidity risk of −2.22% and −6.86%, respectively, when daily

realized volatility is used, and 2.56% and −7.20% when the daily range is used. Second,

when only liquidity risk is priced, that is when the price of volatility risk is zero, most

measures produce significantly biased liquidity risk prices and often non-trivial volatility

risk prices on average. Also, the sign of the estimated liquidity risk premium varies across

the different measures. For example, the AR measures yield on average positive prices of

liquidity risk ranging from 0.81% to 5.93% even though the true value is −1%, while the
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CS measures produce uniformly negative prices of liquidity risk ranging from −4.18% to

−11.1%. Finally, when both volatility and liquidity risks are priced in the cross section,

all measures produce sizable negatively biased estimates of liquidity risk premia, while the

volatility prices of risks are on average quite close to the true value.

6 Conclusion

Many financial decisions crucially depend on accurate estimates of transaction costs. The

availability of long histories and the relative ease of handling daily data motivate researchers

and practitioners to employ low-frequency transaction cost measures. However, as we show

in this study, a number of well-known low-frequency measures are biased and inconsistent.

This bias is significant, positive, stems from the construction of these measures, is a function

of volatility, and hence it induces a positive correlation between the low-frequency measures

and volatility above and beyond what is implied by the correlation between volatility and

the true transaction costs. The relative size of this bias is particularly large for liquid assets

such as S&P 1500 stocks or heavily traded foreign currencies.

Through careful simulation, we document the properties and problems of several popular

low-frequency measures when they are used in analyzing highly liquid assets, where the size

of transaction costs relative to volatility is small. We then document the problems that

arise, including biased or outright spurious results, when one uses these measures in asset

pricing applications. Often, proponents of these measures point to their applicability for

historical data. However, at least two studies (Jones, 2002 and Bessembinder, 1994) report

results that point to trading costs that are much lower than those implied by low-frequency

measures for the largest, most liquid U.S. equities and exchange rates as early as 1920s and

early 1980s, respectively. We do not claim that low-frequency measures are not applicable

in general. They are useful for illiquid assets, where trading costs are relatively large in

comparison to volatility. Examples may include high-yield corporate debt or infrequently

traded equities.

Awareness of potential pitfalls of using the low-frequency measures of transaction costs

matters in practice. Similar to the estimation of mean of daily equity returns, recovering liq-

uidity measures—which are small, positive-valued quantities—from noisy transaction data
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is challenging. For highly liquid assets, using high-frequency transactions data is probably

the only reasonable way for estimation of accurate liquidity measures; see Chordia, Sarkar,

and Subrahmanyam (2005) and Mancini, Ranaldo, and Wrampelmeyer (2013). If one must

use a low-frequency measure, then as we show in this study, for less liquid assets the consis-

tent version of Corwin and Schultz (2012) performs better than other competing measures,

provided that one uses a fairly long window of data (at least one year) for constructing the

measure.
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Table 4: Daily summary statistics for the S&P 1500 data. The table reports averages over
stock-days in the sample. The quoted spread, effective spread, and realized volatility were
winsorized at the 99.9% level prior to calculating the means. The daily realized volatility
is based on 5-minute intraday mid-quote returns and close-open mid-quote returns. The
sample period is from October 2003 to December 2017.

DJIA30 S&P500 S&P400 S&P600 S&P1500
(very large) (large) (mid) (small) (all)

# Trades 51,070 16,691 5,555 2,132 8,606
Volume ($mn) 609.8 150.3 30.12 8.632 71.03
Quoted spread (bps) 2.920 5.617 11.01 29.17 16.35
Effective spread (bps) 4.292 6.069 9.065 19.98 12.36
Realized vol (bps) 142.3 183.5 206.2 254.6 217.1
Signal-to-noise 0.034 0.037 0.050 0.085 0.059

Table 5: Daily summary statistics for the foreign exchange rates. The table reports averages
over stock-days in the sample. The daily realized volatility is based on 5-minute mid-quotes.
The sample period is January 2008 to December 2015.

EUR/USD EUR/CHF EUR/JPY USD/JPY USD/CHF

# Trades 39,390 3,635 5,529 21,033 6,241
Volume ($mn) 51,837 4,668 6,584 28,118 7,547
Quoted spread (bps) 1.071 2.579 2.819 1.452 2.722
Effective spread (bps) 0.505 0.721 0.687 0.680 0.826
Realized vol (bps) 66.31 45.24 84.58 66.68 73.55
Signal-to-noise 0.008 0.023 0.009 0.011 0.012
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Table 6: Monthly descriptive statistics for S&P 1500 stocks. Panel A reports descriptive
statistics calculated across all stock-months (pooled). Panel B reports cross-sectional av-
erages, and the associated standard deviations in parentheses, of stock-specific time-series
standard deviation and correlation with the TAQ effective spread (ES) and 5-minute real-
ized volatility RV . Panel C reports the time-series averages, and the associated standard
devations in parentheses, of cross-sectional standard deviation and correlation with the TAQ
effective spread and realized volatility. The realized volatility is based on 5-minute mid-
quotes. All variables were winsorized at the 99.9% level prior to calculating the descriptive
statistics. The sample period is October 2003 to December 2017 and the sample size is
241,236 stock-months.

ES RV RM HL HT CSM CSD CSP ARM ARD ARP

A. Pooled
Mean 12.4 217 90.0 168 107 26.4 76.2 123 58.3 82.2 157
10pct 3.68 105 0.00 56.7 54.1 0.00 33.6 57.6 0.00 33.1 70.2
25pct 5.39 134 0.00 79.0 73.0 0.00 45.0 74.6 0.00 46.1 93.1
Med 8.69 182 35.5 117 101 15.4 63.1 102 34.4 66.6 129
75pct 14.9 257 138 181 135 38.8 90.9 144 89.4 98.4 186
90pct 24.6 364 245 289 166 67.9 131 207 152 146 269
RMSE 153 261 104 35.6 78.2 132 89.8 88.7 176

B. Cross-sectional averages of time-series moments
Std 5.69 105 121 198 40.1 30.7 38.1 58.2 71.5 46.2 80.3

(6.18) (55.1) (51.1) (139) (9.49) (14.3) (21.0) (33.2) (31.5) (24.8) (44.5)

ρ(ES, ·) 0.43 0.19 0.19 0.28 0.20 0.45 0.47 0.19 0.41 0.44
(0.28) (0.22) (0.27) (0.23) (0.23) (0.27) (0.27) (0.23) (0.26) (0.28)

ρ(RV, ·) 0.43 0.32 0.60 0.51 0.16 0.62 0.70 0.29 0.65 0.74
(0.28) (0.26) (0.20) (0.19) (0.26) (0.26) (0.25) (0.26) (0.23) (0.21)

C. Time-series averages of cross-sectional moments
Std 11.7 99.3 111 199 39.8 30.8 36.3 53.7 67.5 41.8 72.2

(3.28) (31.4) (46.3) (46.8) (4.60) (11.8) (14.9) (22.9) (28.1) (19.1) (32.4)

ρ(ES, ·) 0.48 0.20 0.16 0.30 0.37 0.54 0.50 0.29 0.47 0.46
(0.10) (0.08) (0.08) (0.10) (0.09) (0.07) (0.07) (0.10) (0.10) (0.09)

ρ(RV, ·) 0.48 0.30 0.55 0.52 0.24 0.67 0.74 0.33 0.68 0.76
(0.10) (0.08) (0.05) (0.13) (0.08) (0.07) (0.07) (0.08) (0.06) (0.06)
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Table 8: Annual descriptive statistics for S&P 1500 stocks. Panel A reports descriptive
statistics calculated across all stock-years (pooled). Panel B reports cross-sectional aver-
ages, and the associated standard deviations in parentheses, of stock-specific time-series
standard deviation and correlation with the TAQ effective spread (ES) and 5-minute real-
ized volatility RV . Panel C reports the time-series averages, and the associated standard
devations in parentheses, of cross-sectional standard deviation and correlation with the TAQ
effective spread and realized volatility. The realized volatility is based on 5-minute mid-
quotes. All variables were winsorized at the 99.9% level prior to calculating the descriptive
statistics. The sample period is October 2003 to December 2017 and the sample size is
18,239 stock-years.

ES RV RM HL HT CSM CSD CSP ARM ARD ARP

A. Pooled
Mean 12.1 231 71.8 64.2 60.0 18.3 75.9 122 46.0 82.2 157
10pct 3.83 122 0.00 29.2 28.8 0.00 40.6 66.2 0.00 43.9 84.7
25pct 5.51 154 0.00 37.6 37.0 4.45 49.9 80.9 0.00 54.2 104
Med 8.72 203 47.3 51.8 50.3 13.3 66.1 106 34.2 70.8 136
75pct 14.9 274 110 75.7 71.8 25.3 89.5 143 68.8 97.1 185
90pct 23.9 372 187 114 104 41.5 125 198 112 135 256
RMSE 107 65.2 57.8 16.7 71.8 123 62.1 79.5 163

B. Cross-sectional averages of time-series moments
Std 3.33 64.6 63.4 25.9 21.8 11.1 21.4 34.1 36.4 24.3 45.0

(4.41) (52.2) (43.6) (21.0) (16.5) (8.89) (17.2) (27.2) (27.1) (19.6) (36.2)

ρ(ES, ·) 0.39 0.16 0.34 0.33 0.27 0.46 0.44 0.20 0.42 0.42
(0.49) (0.48) (0.48) (0.48) (0.50) (0.47) (0.48) (0.48) (0.48) (0.48)

ρ(RV, ·) 0.39 0.30 0.56 0.54 0.21 0.74 0.77 0.23 0.75 0.77
(0.49) (0.52) (0.49) (0.49) (0.54) (0.43) (0.41) (0.53) (0.42) (0.41)

C. Time-series averages of cross-sectional moments
Std 10.5 84.6 73.1 29.5 25.5 17.4 27.7 42.7 47.5 29.9 55.4

(1.96) (22.8) (31.4) (14.4) (10.4) (6.24) (8.72) (13.9) (20.9) (11.2) (20.0)

ρ(ES, ·) 0.54 0.28 0.48 0.47 0.64 0.66 0.58 0.47 0.62 0.56
(0.08) (0.08) (0.08) (0.09) (0.06) (0.07) (0.07) (0.07) (0.10) (0.10)

ρ(RV, ·) 0.54 0.24 0.61 0.57 0.35 0.86 0.89 0.31 0.87 0.90
(0.08) (0.08) (0.09) (0.11) (0.08) (0.03) (0.04) (0.09) (0.03) (0.03)
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Table 10: Monthly descriptive statistics for DJIA 30 stocks. Panel A reports descriptive
statistics calculated across all stock-months (pooled). Panel B reports cross-sectional av-
erages, and the associated standard deviations in parentheses, of stock-specific time-series
standard deviation and correlation with the TAQ effective spread (ES) and 5-minute real-
ized volatility RV . Panel C reports the time-series averages, and the associated standard
devations in parentheses, of cross-sectional standard deviation and correlation with the TAQ
effective spread and realized volatility. The realized volatility is based on 5-minute intraday
mid-quotes. The sample period is October 2013 to December 2017 and the sample size is
4,791 stock-months.

ES RV RM HL HT CSM CSD CSP ARM ARD ARP

A. Pooled
Mean 4.30 142 56.9 104 81.0 15.8 49.3 80.8 37.4 54.8 105
10pct 1.91 80.6 0.00 41.3 40.1 0.00 25.4 43.7 0.00 25.1 52.7
25pct 2.40 94.5 0.00 55.0 52.6 0.00 32.0 53.1 0.00 33.2 67.2
Med 3.67 118 11.4 76.1 71.0 10.5 41.5 67.5 25.3 45.1 87.3
75pct 5.48 155 88.5 110 96.6 24.2 55.2 89.1 59.1 62.9 116
90pct 7.37 221 153 174 136 39.2 76.8 124 91.3 89.5 166
RMSE 104 148 87.7 22.4 54.6 92.7 59.1 63.7 124

B. Cross-sectional averages of time-series moments
Std 1.88 73.4 81.2 91.2 38.2 18.9 26.7 42.3 46.3 32.7 57.8

(0.97) (52.8) (32.1) (49.5) (9.89) (4.93) (14.3) (27.8) (13.8) (18.7) (37.4)

ρ(ES, ·) 0.40 0.14 0.26 0.26 0.14 0.36 0.38 0.14 0.35 0.37
(0.20) (0.21) (0.22) (0.19) (0.24) (0.26) (0.25) (0.24) (0.20) (0.24)

ρ(RV, ·) 0.40 0.38 0.65 0.59 0.16 0.70 0.80 0.26 0.73 0.83
(0.20) (0.34) (0.20) (0.18) (0.27) (0.23) (0.17) (0.33) (0.21) (0.15)

C. Time-series averages of cross-sectional moments
Std 1.57 45.1 60.6 72.7 29.7 15.2 16.2 25.1 36.8 20.9 36.8

(0.78) (39.3) (37.5) (63.0) (14.7) (7.78) (11.9) (21.4) (20.3) (15.8) (29.9)

ρ(ES, ·) 0.40 0.07 0.23 0.20 0.07 0.32 0.36 0.08 0.28 0.33
(0.20) (0.23) (0.23) (0.20) (0.22) (0.23) (0.21) (0.23) (0.22) (0.21)

ρ(RV, ·) 0.40 0.16 0.64 0.53 -0.01 0.51 0.65 0.16 0.59 0.71
(0.20) (0.28) (0.20) (0.22) (0.26) (0.22) (0.19) (0.28) (0.20) (0.16)
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Table 12: Annual descriptive statistics for DJIA 30 stocks. Panel A reports descriptive
statistics calculated across all stock-years (pooled). Panel B reports cross-sectional aver-
ages, and the associated standard deviations in parentheses, of stock-specific time-series
standard deviation and correlation with the TAQ effective spread (ES) and 5-minute real-
ized volatility RV . Panel C reports the time-series averages, and the associated standard
devations in parentheses, of cross-sectional standard deviation and correlation with the TAQ
effective spread and realized volatility. The realized volatility is based on 5-minute mid-
quotes. All variables were winsorized at the 99.9% level prior to calculating the descriptive
statistics. The sample period is October 2003 to December 2017 and the sample size is 388
stock-years.

ES RV RM HL HT CSM CSD CSP ARM ARD ARP

A. Pooled
Mean 4.32 157 45.0 43.2 41.5 11.0 49.8 81.5 32.0 55.7 107
10pct 1.97 94.3 0.00 20.6 20.5 0.00 31.9 51.2 0.00 34.5 65.7
25pct 2.43 110 0.00 26.3 25.6 3.91 36.1 59.0 0.00 40.0 76.5
Med 3.90 130 23.2 34.4 33.9 9.65 43.0 69.5 30.2 48.0 91.5
75pct 5.46 170 65.4 48.0 46.6 16.2 53.8 88.7 45.4 59.6 115
90pct 7.00 239 122 80.8 78.0 22.8 73.0 125 66.8 84.8 159
RMSE 74.5 48.0 44.5 10.9 50.4 87.1 42.7 58.1 117

B. Cross-sectional averages of time-series moments
Std 1.60 70.6 47.2 21.9 19.3 6.68 17.1 30.1 25.7 20.5 40.7

(1.59) (80.4) (27.9) (14.1) (11.0) (3.19) (13.1) (26.8) (16.7) (17.9) (40.4)

ρ(ES, ·) 0.40 0.11 0.31 0.31 0.33 0.47 0.43 0.22 0.42 0.40
(0.33) (0.31) (0.37) (0.38) (0.47) (0.33) (0.35) (0.41) (0.35) (0.36)

ρ(RV, ·) 0.40 0.47 0.74 0.73 0.18 0.84 0.85 0.22 0.85 0.85
(0.33) (0.43) (0.28) (0.28) (0.51) (0.31) (0.32) (0.51) (0.30) (0.32)

C. Time-series averages of cross-sectional moments
Std 1.66 49.6 42.0 16.2 14.6 6.34 10.9 20.1 25.6 14.5 29.7

(1.07) (50.7) (21.9) (9.82) (7.28) (2.86) (8.11) (17.3) (14.4) (11.6) (26.6)

ρ(ES, ·) 0.49 0.06 0.25 0.23 0.09 0.55 0.53 0.19 0.49 0.50
(0.18) (0.22) (0.22) (0.20) (0.19) (0.12) (0.15) (0.22) (0.16) (0.17)

ρ(RV, ·) 0.49 0.11 0.45 0.43 -0.15 0.79 0.84 0.07 0.80 0.85
(0.18) (0.31) (0.18) (0.18) (0.22) (0.09) (0.09) (0.22) (0.11) (0.09)
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Table 14: Monthly descriptive statistics for S&P 600 stocks. Panel A reports descriptive
statistics calculated across all stock-months (pooled). Panel B reports cross-sectional av-
erages, and the associated standard deviations in parentheses, of stock-specific time-series
standard deviation and correlation with the TAQ effective spread (ES) and 5-minute real-
ized volatility RV . Panel C reports the time-series averages, and the associated standard
devations in parentheses, of cross-sectional standard deviation and correlation with the TAQ
effective spread and realized volatility. The realized volatility is based on 5-minute intraday
mid-quotes. The sample period is October 2003 to December 2017 and the sample size is
95,923 stock-months.

ES RV RM HL HT CSM CSD CSP ARM ARD ARP

A. Pooled
Mean 20.1 255 108 197 119 35.5 91.3 143 73.7 96.9 182
10pct 8.22 135 0.00 69.0 64.4 0.00 42.9 72.0 0.00 40.6 86.3
25pct 10.9 167 0.00 95.1 85.1 0.00 56.8 92.2 0.00 56.3 113
Med 15.6 218 53.8 139 114 24.0 77.7 122 50.5 80.3 153
75pct 23.4 298 169 212 146 52.7 109 168 114 116 215
90pct 35.7 414 289 330 175 86.8 153 235 185 169 305
RMSE 173 298 108 42.8 86.8 146 105 97.5 195

B. Cross-sectional averages of time-series moments
Std 8.05 110 133 219 40.2 35.7 40.5 59.9 80.6 49.2 83.5

(8.12) (59.5) (57.8) (161) (10.6) (16.9) (23.3) (35.8) (36.8) (27.7) (48.7)

ρ(ES, ·) 0.39 0.17 0.16 0.25 0.20 0.42 0.44 0.19 0.38 0.40
(0.30) (0.24) (0.28) (0.25) (0.26) (0.30) (0.30) (0.26) (0.29) (0.30)

ρ(RV, ·) 0.39 0.28 0.57 0.45 0.15 0.56 0.65 0.28 0.60 0.69
(0.30) (0.28) (0.22) (0.21) (0.28) (0.28) (0.26) (0.28) (0.25) (0.23)

C. Time-series averages of cross-sectional moments
Std 14.9 108 128 226 40.4 37.2 40.3 58.1 79.0 46.9 79.0

(5.12) (33.0) (48.7) (61.9) (4.52) (13.9) (16.3) (24.2) (31.8) (21.0) (34.8)

ρ(ES, ·) 0.42 0.16 0.11 0.23 0.33 0.46 0.43 0.27 0.42 0.40
(0.14) (0.09) (0.10) (0.10) (0.10) (0.11) (0.11) (0.11) (0.12) (0.12)

ρ(RV, ·) 0.42 0.27 0.52 0.44 0.20 0.61 0.69 0.30 0.64 0.72
(0.14) (0.10) (0.07) (0.15) (0.10) (0.09) (0.09) (0.10) (0.08) (0.07)
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Table 16: Annual descriptive statistics for S&P 600 stocks. Panel A reports descriptive
statistics calculated across all stock-years (pooled). Panel B reports cross-sectional aver-
ages, and the associated standard deviations in parentheses, of stock-specific time-series
standard deviation and correlation with the TAQ effective spread (ES) and 5-minute real-
ized volatility RV . Panel C reports the time-series averages, and the associated standard
devations in parentheses, of cross-sectional standard deviation and correlation with the TAQ
effective spread and realized volatility. The realized volatility is based on 5-minute mid-
quotes. All variables were winsorized at the 99.9% level prior to calculating the descriptive
statistics. The sample period is October 2003 to December 2017 and the sample size is
7,122 stock-years.

ES RV RM HL HT CSM CSD CSP ARM ARD ARP

A. Pooled
Mean 19.7 267 88.8 75.3 69.7 26.9 90.9 142 63.5 96.7 182
10pct 8.81 159 0.00 36.1 35.5 0.81 53.5 85.1 0.00 55.5 106
25pct 11.4 192 0.00 46.2 45.0 10.6 64.1 102 0.00 66.8 128
Med 16.0 242 68.5 61.8 59.4 22.2 80.0 126 52.9 84.4 161
75pct 23.2 312 139 90.1 83.6 36.7 105 164 93.8 113 211
90pct 34.4 407 218 130 117 56.1 142 221 142 152 283
RMSE 121 69.5 60.5 20.7 79.5 135 75.5 86.8 179

B. Cross-sectional averages of time-series moments
Std 4.60 59.1 64.7 25.2 20.9 12.7 20.9 32.1 39.6 23.5 42.3

(5.91) (53.3) (48.6) (22.3) (17.4) (10.8) (19.4) (29.4) (31.8) (21.6) (38.4)

ρ(ES, ·) 0.31 0.15 0.30 0.29 0.30 0.39 0.36 0.23 0.35 0.33
(0.56) (0.53) (0.54) (0.54) (0.54) (0.54) (0.55) (0.53) (0.55) (0.56)

ρ(RV, ·) 0.31 0.24 0.46 0.44 0.22 0.67 0.70 0.23 0.67 0.70
(0.56) (0.56) (0.55) (0.55) (0.58) (0.50) (0.47) (0.57) (0.48) (0.46)

C. Time-series averages of cross-sectional moments
Std 12.8 84.1 83.7 32.2 27.6 20.7 28.9 43.5 55.3 31.6 56.5

(3.10) (23.3) (32.4) (14.5) (10.2) (7.59) (9.98) (15.1) (23.5) (12.5) (21.3)

ρ(ES, ·) 0.47 0.24 0.41 0.40 0.59 0.58 0.50 0.46 0.56 0.49
(0.14) (0.07) (0.08) (0.07) (0.04) (0.12) (0.12) (0.10) (0.15) (0.14)

ρ(RV, ·) 0.47 0.19 0.51 0.46 0.31 0.84 0.87 0.30 0.84 0.88
(0.14) (0.09) (0.11) (0.12) (0.08) (0.04) (0.04) (0.11) (0.04) (0.04)
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Table 18: Empirical results for foreign exchange rates. The table reports pooled descriptive
statistics for the monthly low-frequency measures and pooled least squares regressions of the
low-frequency measures on the true spread (ES) and 5-minute realized volatility (RV ) at the
monthly frequency. Driscoll-Kraay standard errors, which are robust to heteroskedasticity,
serial correlation, and cross-sectional dependence are reported in parentheses. The sample
period is January 2008 to December 2015 and the sample size is 480 exchange rate-months.

ES RV RM HL HT CSM CSD CSP ARM ARD ARP

A. Summary statistics
Mean 0.68 70.6 25.9 46.3 44.8 13.3 29.0 44.7 13.7 24.2 47.6
10pct 0.43 34.2 0.00 15.5 15.0 0.00 14.1 20.0 0.00 7.74 17.7
25pct 0.53 52.7 0.00 27.8 27.1 4.12 19.1 30.1 0.00 14.4 29.6
Med 0.64 68.1 6.61 40.6 39.6 12.5 26.8 41.8 1.19 22.4 44.4
75pct 0.81 83.6 44.6 56.4 54.6 18.2 36.3 55.5 23.3 31.0 60.3
90pct 1.10 123 95.2 97.7 88.5 34.2 53.6 80.3 49.6 48.3 93.0
Std 0.22 32.7 34.0 32.0 31.0 11.5 13.3 21.5 19.5 14.7 26.7
RMSE 42.3 55.7 53.8 17.0 31.2 48.9 23.4 27.7 53.9
ρ(ES, ·) 0.56 0.29 0.39 0.38 0.34 0.56 0.52 0.31 0.51 0.51
ρ(RV, ·) 0.56 0.37 0.71 0.65 0.16 0.80 0.89 0.31 0.82 0.91

B. Regression on ES
const -4.80 7.69 8.92 1.21 5.88 9.96 -4.61 1.05 5.85

(-0.74) (0.87) (1.11) (0.86) (1.59) (1.36) (-1.35) (0.22) (0.57)

βES 45.2 56.8 52.7 17.8 34.0 51.1 27.0 34.0 61.4
(4.50) (4.06) (4.16) (9.57) (6.02) (4.45) (4.91) (4.36) (3.64)

R2 0.09 0.15 0.14 0.12 0.32 0.27 0.09 0.26 0.26

C. Regression on ES and RV
const -9.43 -2.44 0.09 1.43 1.70 1.56 -6.37 -4.00 -4.96

(-1.89) (-0.92) (0.03) (1.02) (1.11) (0.84) (-2.09) (-2.90) (-2.61)

βES 19.1 -0.32 2.99 19.1 10.5 3.76 17.1 5.53 0.48
(2.06) (-0.06) (0.53) (7.71) (5.15) (1.31) (3.91) (2.37) (0.20)

βRV 0.32 0.69 0.60 -0.02 0.29 0.57 0.12 0.35 0.74
(5.23) (16.4) (12.0) (-0.66) (8.14) (13.7) (2.56) (13.0) (26.2)

R2 0.15 0.50 0.42 0.12 0.66 0.80 0.12 0.67 0.82
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Table 19: Simulation results for the liquidity-adjusted CAPM of Acharya and Pedersen
(2005). Panels A–C report the mean beta estimates obtained in the simulation using dif-
ferent measures of stock and market transaction costs. The column labeled “True” reports
the true betas, the column labeled “s” reports beta estimates when the true effective spread
is used in estimation, and the remaining columns show mean beta estimates when the low-
frequency measures are used for estimation. Panel D reports the mean annualized price of
market risk (λm). The simulations are based on 10,000 replications.

True s RM HL CSM CSD CSP ARM ARD ARP

A. Small β
β1 0.50 0.50 0.49 0.51 0.50 0.50 0.50 0.50 0.50 0.50
β2 × 104 1.19 1.29 57.0 53.4 6.37 19.8 50.6 17.7 18.2 64.8
β3 × 104 1.19 1.39 -3.38 52.8 -1.53 2.65 8.17 -1.72 2.81 10.3
β4 × 104 1.19 1.31 -2.95 32.0 -1.45 2.62 8.10 -1.58 2.90 10.2

B. Medium β
β1 1.00 1.02 1.01 1.03 1.02 1.02 1.01 1.02 1.02 1.01
β2 × 104 2.38 2.66 117.3 105.3 13.1 40.4 103.5 36.4 37.3 132.2
β3 × 104 2.38 2.91 -7.59 108.0 -3.26 5.25 16.58 -3.84 5.60 20.8
β4 × 104 2.38 2.90 -7.89 106.3 -3.01 5.24 16.67 -3.68 5.65 21.2

C. Large β
β1 1.50 1.50 1.48 1.52 1.50 1.50 1.49 1.49 1.50 1.49
β2 × 104 3.57 3.96 173.8 146.1 19.5 59.4 152.2 54.0 54.9 194.7
β3 × 104 3.57 4.23 -10.4 160.2 -4.65 8.09 25.0 -5.24 8.74 31.5
β4 × 104 3.57 4.56 -9.98 188.3 -4.14 8.01 24.3 -4.64 8.62 31.5

D. Price of risk
λm (% p.a.) 5.00 4.97 0.11 -4.58 3.91 -0.58 -5.01 2.69 -0.05 -6.21
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Table 20: Simulation results for the three-factor model with aggregate liquidity and volatil-
ity risks. The table reports the mean price of market risk (λm), aggregate liquidity risk
(λs), and aggregate volatility risk (λσ) obtained in the simulation. The prices of risk are
expressed in % per annum. The column labeled “True” reports the true prices of risk, the
column labeled “s” reports the estimated prices of risk when the true effective spread is
used in estimation, and the remaining columns report the mean estimated prices of risk
when the loq-frequency measures are used in estimation. Panel A report results based on
daily realized volatility as a proxy for the true volatility, while panel B reports results based
on daily range-based volatility. All results are based on 10,000 replications.

True s RM HT CSM CSD CSP ARM ARD ARP

A. Daily realized volatility
Liquidity and volatility risks priced
λm 5.00 5.02 5.01 5.00 5.01 5.01 5.01 5.01 5.01 5.01
λs -1.00 -0.99 3.59 1.23 -7.12 -7.85 -8.50 -3.93 -1.13 -4.24
λσ -1.00 -0.93 -1.00 -0.97 -0.62 -0.34 -0.34 -1.01 -1.06 -1.16
Volatility risk priced
λm 5.00 5.02 5.01 5.01 5.01 5.01 5.01 5.01 5.01 5.01
λs 0.00 0.02 -23.1 -3.54 2.54 -2.22 -4.60 -9.74 -6.86 -1.53
λσ -1.00 -0.96 -0.92 -0.85 -1.14 -1.03 -1.23 -0.85 -0.82 -1.09
Liquidity risk priced
λm 5.00 5.02 5.01 5.00 5.01 5.01 5.01 5.01 5.01 5.01
λs -1.00 -0.99 20.4 9.42 -11.1 -7.12 -4.18 0.81 5.29 1.36
λσ 0.00 0.10 -0.03 -0.02 0.65 1.01 1.11 -0.09 -0.18 -0.17

B. Daily realized range
Liquidity and volatility risks priced
λm 5.00 5.02 5.01 5.00 5.01 5.01 5.01 5.01 5.01 5.01
λs -1.00 -0.99 3.65 0.79 -8.50 -7.11 -8.29 -3.76 -0.73 -3.46
λσ -1.00 -0.91 -0.97 -0.92 -0.34 -0.85 -0.83 -0.97 -0.95 -0.95
Volatility risk priced
λm 5.00 5.02 5.01 5.01 5.01 5.01 5.01 5.01 5.01 5.01
λs 0.00 0.02 -23.0 -4.71 -4.60 2.56 -1.61 -9.74 -7.20 -0.13
λσ -1.00 -0.91 -0.90 -0.84 -1.23 -0.94 -0.89 -0.84 -0.91 -0.78
Liquidity risk priced
λm 5.00 5.02 5.01 5.00 5.01 5.01 5.01 5.01 5.01 5.01
λs -1.00 -0.99 20.4 9.18 -4.18 -11.1 -8.11 0.99 5.93 1.46
λσ 0.00 0.07 -0.04 0.01 1.11 0.16 0.17 -0.07 0.00 -0.07
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Figure 1: Expectations of the low-frequency measures. The figure shows E(RM ), E(HT ),
and E(HL) as a function of volatility (left panel) and true spread (right panel) when T = 21.
The expectations are approximated by simulation with 10,000 replications.
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Figure 2: Expectations of the low-frequency measures. The figure shows E(CSM ), E(CSD),
and E(CSP ) as a function of volatility (left panel) and spread (right panel) when T = 21.
The expectations are approximated by simulation with 10,000 replications.
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Figure 3: Expectations of the low-frequency measures. The figure shows E(ARM ), E(ARD),
and E(ARP ) as a function of volatility (left panel) and spread (right panel) when T = 21.The
expectations are approximated by simulation with 10,000 replications.
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A Simulation results with ρ = 0.75

In this section, we report simulations results with the correlation between the effective
spread and volatility set equal to 0.75 rather than 0.5 as in our baseline results reported in
Tables 3, 19, and 20. The results are reported in Tables 21, 22, and 23.

60



T
ab

le
21

:
C

o
rr

el
at

io
n

s
of

lo
w

-f
re

q
u

en
cy

m
ea

su
re

s
w

it
h

th
e

tr
u

e
sp

re
ad

(s
t)

an
d

v
ol

at
il

it
y

(σ
t)

an
d

re
g
re

ss
io

n
o
f

th
e

lo
w

-f
re

q
u

en
cy

m
ea

su
re

s
o
n

th
e

tr
u

e
sp

re
a
d

an
d

/o
r

vo
la

ti
li

ty
.

T
h

e
av

er
ag

e
vo

la
ti

li
ty

eq
u

al
s

2.
0%

an
d

vo
la

ti
li

ty
o
f

v
ol

a
ti

li
ty

eq
u

a
ls

2.
0
%

.
B

ot
h

vo
la

ti
li

ty
a
n

d
sp

re
a
d

a
re
ii
d

lo
gn

o
rm

al
ly

d
is

tr
ib

u
te

d
an

d
co

n
te

m
p

or
an

eo
u

sl
y

co
rr

el
at

ed
w

it
h
ρ

=
0.

7
5.

A
ll

si
m

u
la

ti
on

s
ar

e
b

as
ed

on
1
0
,0

00
re

p
li

ca
ti

on
s.

T
=

2
1

T
=

2
5
1

R
M

H
L

H
T

C
S
M

C
S
D

C
S
P

A
R
M

A
R
D

A
R
P

R
M

H
L

H
T

C
S
M

C
S
D

C
S
P

A
R
M

A
R
D

A
R
P

A
.

S
m

al
l,

tr
an

q
u
il

sp
re

ad
:

E
(s

)
=

0.
1,

S
td

(s
)

=
0.

1
C

or
r.

w
it

h
s t

0.
40

0.
68

0.
55

0.
42

0
.7

4
0
.7

5
0
.4

6
0
.7

2
0
.7

4
0
.4

3
0
.6

7
0
.6

2
0
.6

5
0
.7

7
0
.7

7
0
.4

4
0
.7

5
0
.7

6
C

or
r.

w
it

h
σ
t

0.
51

0.
89

0.
65

0.
52

0
.9

4
0
.9

7
0
.5

7
0
.9

2
0
.9

6
0
.6

0
0
.8

9
0
.7

7
0
.6

9
0
.9

9
1
.0

0
0
.5

5
0
.9

9
1
.0

0
R

eg
.

on
s t

α
0.

19
0.

45
0.

63
0.

06
0
.1

9
0
.3

2
0
.0

6
0
.1

7
0
.3

6
0
.0

5
0
.1

9
0
.3

0
0
.0

2
0
.1

9
0
.3

3
0
.0

4
0
.1

9
0
.3

8
β
s

5.
99

8.
67

2.
98

1.
93

6
.3

7
1
0
.8

3
.8

4
6
.2

6
1
2
.2

3
.6

6
4
.8

4
2
.7

3
1
.3

4
6
.3

4
1
0
.6

2
.0

1
5
.9

7
1
1
.8

R
2

0.
16

0.
46

0.
30

0.
18

0
.5

4
0
.5

7
0
.2

1
0
.5

2
0
.5

5
0
.1

8
0
.4

5
0
.3

9
0
.4

2
0
.6

0
0
.5

9
0
.1

9
0
.5

7
0
.5

7
R

eg
.

on
s t

,
σ
t

α
-0

.0
2

0.
18

0.
56

0.
00

0
.0

0
-0

.0
2

-0
.0

5
-0

.0
3

-0
.0

3
-0

.0
5

0
.0

4
0
.2

2
-0

.0
1

0
.0

0
-0

.0
1

-0
.0

2
-0

.0
1

0
.0

0
β
s

0.
30

0.
74

0.
79

0.
30

0
.5

1
0
.6

9
0
.5

9
0
.5

5
0
.7

4
-0

.3
8

0
.0

4
0
.4

1
0
.6

1
0
.4

1
0
.4

2
0
.2

1
0
.0

8
0
.1

0
β
σ

0.
39

0.
53

0.
15

0.
11

0
.3

9
0
.6

8
0
.2

2
0
.3

8
0
.7

7
0
.2

6
0
.3

1
0
.1

5
0
.0

5
0
.4

0
0
.6

8
0
.1

2
0
.3

9
0
.7

9
R

2
0.

26
0.

79
0.

44
0.

27
0
.8

9
0
.9

4
0
.3

2
0
.8

4
0
.9

2
0
.3

6
0
.7

9
0
.6

0
0
.5

1
0
.9

9
1
.0

0
0
.3

1
0
.9

9
0
.9

9

B
.

M
ed

iu
m

,
m

o
d

er
at

el
y

vo
la

ti
le

sp
re

ad
:

E
(s

)
=

0.
5
,

S
td

(s
)

=
0.

5
C

or
r.

w
it

h
s t

0.
45

0.
71

0.
57

0.
73

0
.8

4
0
.8

2
0
.5

6
0
.7

7
0
.7

6
0
.5

4
0
.7

5
0
.6

9
0
.9

5
0
.8

8
0
.8

3
0
.7

8
0
.8

2
0
.7

9
C

or
r.

w
it

h
σ
t

0.
52

0.
88

0.
64

0.
62

0
.9

3
0
.9

6
0
.5

4
0
.9

2
0
.9

6
0
.5

4
0
.8

7
0
.7

3
0
.7

5
0
.9

7
0
.9

9
0
.6

1
0
.9

9
0
.9

9
R

eg
.

on
s t

α
0.

12
0.

45
0.

65
0.

02
0
.1

8
0
.3

2
0
.0

5
0
.1

7
0
.3

7
0
.0

9
0
.1

7
0
.3

1
0
.0

0
0
.2

0
0
.3

6
-0

.0
1

0
.1

9
0
.4

0
β
s

1.
51

1.
85

0.
63

1.
05

1
.7

5
2
.5

8
1
.0

6
1
.3

6
2
.5

5
0
.9

7
1
.1

7
0
.6

6
1
.0

0
1
.7

2
2
.5

1
0
.9

7
1
.3

3
2
.4

9
R

2
0.

21
0.

51
0.

33
0.

53
0
.7

0
0
.6

6
0
.3

2
0
.5

9
0
.5

8
0
.3

0
0
.5

6
0
.4

8
0
.9

0
0
.7

7
0
.7

0
0
.6

0
0
.6

7
0
.6

3
R

eg
.

on
s t

,
σ
t

α
-0

.0
1

0.
19

0.
58

-0
.0

1
0
.0

0
0
.0

0
-0

.0
1

0
.0

0
-0

.0
1

0
.0

2
0
.0

4
0
.2

6
-0

.0
1

0
.0

0
0
.0

1
-0

.0
2

-0
.0

1
0
.0

0
β
s

0.
51

0.
33

0.
24

0.
88

0
.6

7
0
.6

7
0
.6

7
0
.3

1
0
.3

2
0
.5

8
0
.3

4
0
.3

2
0
.9

5
0
.6

5
0
.6

0
0
.9

2
0
.2

8
0
.3

1
β
σ

0.
32

0.
51

0.
13

0.
06

0
.3

7
0
.6

4
0
.1

3
0
.3

6
0
.7

5
0
.1

3
0
.2

7
0
.1

1
0
.0

2
0
.3

7
0
.6

6
0
.0

2
0
.3

6
0
.7

5
R

2
0.

28
0.

79
0.

43
0.

54
0
.9

1
0
.9

5
0
.3

5
0
.8

6
0
.9

3
0
.3

4
0
.7

8
0
.5

8
0
.9

1
0
.9

9
1
.0

0
0
.6

1
0
.9

8
0
.9

9

C
.

L
ar

ge
,

vo
la

ti
le

sp
re

ad
:

E
(s

)
=

3.
0,

S
td

(s
)

=
3.

0
C

or
r.

w
it

h
s t

0.
82

0.
90

0.
42

0.
98

0
.9

8
0
.9

7
0
.9

7
0
.9

8
0
.9

7
0
.9

8
0
.9

8
0
.7

7
1
.0

0
1
.0

0
0
.9

8
1
.0

0
0
.9

9
0
.9

8
C

or
r.

w
it

h
σ
t

0.
63

0.
68

0.
18

0.
73

0
.7

8
0
.8

5
0
.7

1
0
.6

8
0
.8

3
0
.7

4
0
.7

0
0
.3

9
0
.7

3
0
.7

8
0
.8

5
0
.7

3
0
.6

9
0
.8

4
R

eg
.

on
s t

α
-0

.0
6

0.
44

1.
27

0.
00

0
.0

9
0
.2

4
-0

.0
4

-0
.0

9
0
.1

6
0
.0

1
0
.0

2
0
.8

6
-0

.0
1

0
.0

8
0
.2

3
-0

.0
1

-0
.0

8
0
.1

7
β
s

0.
94

0.
76

0.
14

0.
98

0
.9

9
1
.0

4
1
.0

0
0
.9

1
1
.0

0
0
.9

8
0
.9

6
0
.5

5
0
.9

8
1
.0

0
1
.0

4
1
.0

0
0
.9

1
1
.0

0
R

2
0.

68
0.

81
0.

17
0.

96
0
.9

6
0
.9

3
0
.9

5
0
.9

5
0
.9

3
0
.9

5
0
.9

6
0
.5

9
1
.0

0
0
.9

9
0
.9

6
1
.0

0
0
.9

9
0
.9

6
R

eg
.

on
s t

,
σ
t

α
-0

.0
6

0.
42

1.
33

0.
00

0
.0

0
0
.0

1
-0

.0
3

-0
.0

3
-0

.0
3

0
.0

2
0
.0

9
1
.0

8
0
.0

0
-0

.0
1

-0
.0

1
-0

.0
1

-0
.0

1
-0

.0
3

β
s

0.
93

0.
74

0.
21

0.
97

0
.9

0
0
.8

1
1
.0

1
0
.9

7
0
.8

1
0
.9

9
1
.0

3
0
.7

9
0
.9

8
0
.9

1
0
.8

2
1
.0

0
0
.9

8
0
.8

1
β
σ

0.
01

0.
03

-0
.1

3
0.

01
0
.1

8
0
.4

7
-0

.0
3

-0
.1

2
0
.3

9
0
.0

0
-0

.1
4

-0
.4

6
-0

.0
1

0
.1

7
0
.4

7
0
.0

0
-0

.1
3

0
.3

8
R

2
0.

68
0.

81
0.

21
0.

96
0
.9

7
0
.9

7
0
.9

5
0
.9

6
0
.9

6
0
.9

5
0
.9

7
0
.6

7
1
.0

0
1
.0

0
0
.9

9
1
.0

0
0
.9

9
0
.9

9

61



Table 22: Simulation results for the liquidity-adjusted CAPM of Acharya and Pedersen
(2005). Panels A–C report the mean beta estimates obtained in the simulation using dif-
ferent measures of stock and market transaction costs. The column labeled “True” reports
the true betas, the column labeled “s” reports beta estimates when the true effective spread
is used in estimation, and the remaining columns show mean beta estimates when the low-
frequency measures are used for estimation. Panel D reports the mean annualized price of
market risk (λm). The simulations are based on 10,000 replications.

True s RM HL CSM CSD CSP ARM ARD ARP

A. Small β
β1 0.50 0.50 0.49 0.51 0.50 0.50 0.50 0.50 0.50 0.50
β2 × 104 1.19 1.26 57.4 53.6 6.61 20.6 52.2 17.8 18.4 65.3
β3 × 104 1.19 1.31 -2.06 53.5 -1.38 3.10 8.90 -1.24 3.15 11.1
β4 × 104 1.19 1.34 -2.53 32.9 -1.38 3.13 8.85 -1.47 3.04 11.2

B. Medium β
β1 1.00 1.02 1.01 1.03 1.02 1.02 1.01 1.02 1.02 1.02
β2 × 104 2.38 2.60 118.1 105.5 13.6 42.16 106.5 36.6 37.6 133.4
β3 × 104 2.38 2.75 -4.73 109.1 -2.89 6.19 17.98 -2.64 6.33 22.4
β4 × 104 2.38 2.91 -4.48 108.4 -2.58 6.70 18.9 -2.44 6.60 23.1

C. Large β
β1 1.50 1.50 1.48 1.52 1.50 1.50 1.49 1.49 1.50 1.49
β2 × 104 3.57 3.87 175.0 146.2 20.2 62.1 156.7 54.3 55.4 196.2
β3 × 104 3.57 4.17 -8.14 161.4 -4.50 9.25 27.0 -4.56 9.27 33.3
β4 × 104 3.57 3.68 -5.78 189.5 -4.28 9.34 26.9 -3.25 9.71 33.1

D. Price of risk
λm (% p.a.) 5.00 5.02 0.17 -4.53 4.02 -0.50 -4.93 2.77 0.00 -6.17
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Table 23: Simulation results for the three-factor model with aggregate liquidity and volatil-
ity risks. The table reports the mean price of market risk (λm), aggregate liquidity risk
(λs), and aggregate volatility risk (λσ) obtained in the simulation. The prices of risk are
expressed in % per annum. The column labeled “True” reports the true prices of risk, the
column labeled “s” reports the estimated prices of risk when the true effective spread is
used in estimation, and the remaining columns report the mean estimated prices of risk
when the loq-frequency measures are used in estimation. Panel A report results based on
daily realized volatility as a proxy for the true volatility, while panel B reports results based
on daily range-based volatility. All results are based on 10,000 replications.

True s RM HT CSM CSD CSP ARM ARD ARP

A. Daily realized volatility
Liquidity and volatility risks priced
λm 5.00 4.97 4.96 4.96 4.96 4.96 4.96 4.96 4.96 4.96
λs -1.00 -1.04 -6.57 -5.62 -4.18 -5.51 -7.28 -5.11 -3.13 -4.45
λσ -1.00 -1.00 -1.09 -1.06 -0.88 -0.80 -0.87 -1.07 -1.09 -1.18
Volatility risk priced
λm 5.00 4.97 4.96 4.96 4.96 4.96 4.96 4.96 4.96 4.96
λs 0.00 -0.03 -25.7 -11.3 4.59 -0.75 -3.38 -9.94 -7.41 -4.16
λσ -1.00 -1.08 -0.93 -0.89 -1.28 -1.29 -1.62 -0.85 -0.80 -0.92
Liquidity risk priced
λm 5.00 4.97 4.96 4.96 4.96 4.96 4.96 4.96 4.96 4.96
λs -1.00 -1.04 11.4 4.65 -9.80 -5.46 -3.89 0.40 3.60 2.33
λσ 0.00 0.07 -0.20 -0.18 0.43 0.58 0.72 -0.22 -0.29 -0.36

B. Daily realized range
Liquidity and volatility risks priced
λm 5.00 4.97 4.96 4.96 4.96 4.96 4.96 4.96 4.96 4.96
λs -1.00 -1.04 -5.34 -1.75 -7.28 -3.83 -5.47 -3.57 -2.11 -3.20
λσ -1.00 -1.01 -1.07 -1.04 -0.87 -1.00 -1.00 -1.06 -1.03 -0.97
Volatility risk priced
λm 5.00 4.97 4.96 4.96 4.96 4.96 4.96 4.96 4.96 4.96
λs 0.00 -0.03 -28.8 -15.5 -3.38 4.28 -4.46 -11.5 -9.99 -13.1
λσ -1.00 -0.98 -0.90 -1.00 -1.62 -0.93 -0.77 -0.85 -0.97 -0.96
Liquidity risk priced
λm 5.00 4.97 4.96 4.96 4.96 4.96 4.96 4.96 4.96 4.96
λs -1.00 -1.04 16.2 14.7 -3.89 -9.12 -2.69 4.39 7.50 11.5
λσ 0.00 -0.04 -0.21 -0.06 0.72 -0.05 -0.18 -0.22 -0.08 0.01
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B Equity results with 30-minute realized volatility

In this section, we re-run our monthly regressions of low-frequency measures on the TAQ
effective spreads and realized volatility, calculating RV from 30-minute intraday returns
rather than 5-minute returns used for our baseline results reported in Tables 7, 11, and
15. As can be clearly seen from the following tables, the results with 30-minute RV are
remarkably similar to those with 5-minute RV for all stocks in our sample (Table 24) as
well as for the very large caps (Table 25) and small caps (Table 26).
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C FX results with alternative high-frequency effective spread
proxies

As mentioned in Section 4.2.1, we do not observe continuous quotes for our foreign exchange
rates but only 100–millisecond snapshots. Thus, transaction prices cannot be directly com-
pared to prevailing mid-quotes but only to the most recently observable mid-quotes. Ad-
ditionally, the latencies associated with trading in three distant geographical locations—
London, New York, and Tokyo—can give rise to measurement error in trade time stamps.
As a result, the volume-weighted effective spread calculated for day t according to

ESt =
1∑
i vi,t

∑
i

vi,tqi,t(pi,t −mi,t)/mi,t (33)

can potentially over– or underestimate the true spread depending on how the mid-quote
moves between the last snaphot and the time of the transaction; in principle, qi,t(pi,t−mi,t)
can even turn negative. For robustness, we therefore consider two alternative ways of
calculating the effective spread from the EBS data, where we impose the restriction that
the effective spread cannot be negative for any transaction:

ÊSt =
1∑
i vi,t

∑
i

vi,t max{qi,t(pi,t −mi,t), 0}/mi,t, (34)

ẼSt =
1∑
i vi,t

∑
i

vi,t|pi,t −mi,t|/mi,t. (35)

Note that the latter definition is also used to calculate the TAQ effectives spreads for
U.S. equities. We then repeat the analysis with these spreads in place of ESt. In Table
27 we report some summary statistics for the alternative EBS spreads, and in Table 28 we
report the regression results analogous to those reported in Table 18.

Table 27: Descriptive statistics for alternative measures of effective spread for FX rates.
The mean, median, standard deviation, and percentiles are expressed in basis points. The
sample period is 2008–2015.

Mean 10pct 25pct Med 75pct 90pct Std ρ(·, RV ) ρ(·, ÊS) ρ(·, ẼS)

ES 0.68 0.43 0.53 0.64 0.81 1.10 0.22 0.56 0.97 0.91

ÊS 0.86 0.52 0.66 0.82 1.03 1.37 0.28 0.64 0.99

ẼS 1.04 0.63 0.79 0.98 1.24 1.63 0.34 0.67

68



Table 28: Empirical results for foreign exchange rates with alternative EBS effective spread
proxies. The table reports pooled least squares regressions of the low-frequency measures on
the EBS effective spread (ÊS or ẼS) and 5-minute realized volatility (RV ) at the monthly
frequency. Driscoll-Kraay standard errors, which are robust to heteroskedasticity, serial
correlation, and cross-sectional dependence are reported in parentheses. The sample period
is January 2008 to December 2015 and the sample size is 479 exchange rate-months.

RM HL HT CSM CSD CSP ARM ARD ARP

A.1. Regression on ÊS
const -4.95 1.30 4.18 1.31 3.13 4.33 -4.33 -1.62 -0.19

(-0.79) (0.16) (0.56) (0.92) (1.01) (0.67) (-1.35) (-0.39) (-0.02)

βES 36.0 53.1 47.4 14.0 30.2 47.0 21.0 30.1 55.7
(4.66 ) (4.94) (5.08) (8.51) (8.11) (5.82) (5.00) (5.50) (4.46)

R2 0.09 0.19 0.18 0.11 0.39 0.36 0.09 0.32 0.33

A.2. Regression on ÊS and RV
const -6.81 -2.52 0.70 1.50 1.58 1.12 -5.01 -3.57 -4.40

(-1.36) (-0.88) (0.21) (1.11) (1.07) (0.62) (-1.77) (-2.63) (-2.33)

βES 11.1 1.98 0.81 16.4 9.35 4.19 12.0 3.90 -0.75
(1.38) (0.34) (0.15) (8.15) (5.65) (1.69) (3.27) (2.08) (-0.41)

βRV 0.33 0.68 0.62 -0.03 0.27 0.57 0.12 0.35 0.75
(4.98) (12.9) (10.9) (-1.39) (7.73) (12.9) (2.37) (12.5) (26.7)

R2 0.14 0.44 0.43 0.12 0.66 0.80 0.11 0.67 0.82

B.1. Regression on ẼS
const -2.94 1.09 3.95 2.20 3.17 3.53 -2.92 -1.54 -0.74

(-0.49) (0.15) (0.59) (1.59) (1.22) (0.63) (-0.98) (-0.43) (-0.09)

βES 27.8 44.2 39.5 10.7 24.9 39.7 16.1 24.8 46.6
(4.54) (5.45) (5.63) (7.67) (9.68 (6.84) (4.77) (6.25) (4.98)

R2 0.08 0.20 0.19 0.10 0.41 0.40 0.08 0.34 0.36

B.2. Regression on ẼS and RV
const -4.49 -1.94 1.19 2.35 1.96 1.04 -3.50 -3.09 -4.07

(-0.94) (-0.68) (0.37) (1.82) (1.31) (0.58) (-1.31) (-2.25) (-2.15)

βES 5.53 0.67 -0.21 12.9 7.57 3.87 7.81 2.55 -1.29
(0.83) (0.13) (-0.05) (7.57) (5.66) (1.91) (2.54) (1.66) (-0.87)

βRV 0.35 0.68 0.62 -0.03 0.27 0.56 0.13 0.35 0.75
(5.07) (12.4) (10.6) (-1.46) (7.65) (12.7) (2.47) (12.4) (27.3)

R2 0.14 0.44 0.43 0.11 0.66 0.80 0.11 0.67 0.82
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