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1 Introduction

The recent decade of low nominal interest rates and anemic inflation poses new challenges for

monetary and fiscal policy. Current policy frameworks were predominantly designed at a time

when the lower bound on nominal interest rates was not a major concern for central banks, and

discretionary fiscal policy was not widely considered as an essential part of stabilization policies.1

This paper studies the implications of the lower bound on nominal interest rates for optimal

monetary and fiscal policy. The analysis is based on a New Keynesian model that can be solved in

closed form. The key difference to the existing literature on optimal policy with a lower bound is

that we consider an equilibrium where liquidity trap episodes—i.e. periods where the lower bound

constraint is binding—result from a decline in agents’ confidence rather than from a deterioration of

economic fundamentals. In this sunspot equilibrium, liquidity traps are rare but long-lasting events

characterized by subdued economic activity and deflation that give rise to a systematic inflation

shortfall in all states of the world.

We focus on two questions. First, is there a straightforward way to improve stabilization out-

comes and welfare, taking as given the occasional occurrence of such expectations-driven liquidity

traps? Second, is it possible to prevent the economy from falling into an expectations-driven liq-

uidity trap? Following the policy delegation literature (e.g. Rogoff, 1985; Walsh, 1995; Svensson,

1997), we address these questions by assuming that society designs the policy framework and a

discretionary policymaker sets the policy instruments in accordance with the assigned objective

function.

We first study monetary policy in the absence of fiscal policy. In this case, the policymaker has

only one instrument, the short-term nominal interest rate. The existing literature based on models

with fundamental-driven liquidity traps suggests that society can improve stabilization outcomes

and welfare by imposing a positive inflation target or by making inflation stabilization the primary

policy objective (Nakata and Schmidt, 2019a).2 The latter approach is usually referred to as

inflation conservatism and goes back to Rogoff (1985).3 These two approaches have in common that

they raise inflation away from the lower bound. In models with fundamental-driven liquidity traps,

higher inflation away from the lower bound mitigates the drop in output and inflation at the lower

bound. However, in our model with expectations-driven liquidity traps, we find that increasing

the inflation target or appointing an inflation-conservative central banker further reduces output

and inflation in the state where confidence is low and the lower bound is binding. As a result,

in the sunspot equilibrium, the welfare implications of these two policy delegation schemes are

ambiguous. Indeed, we find that the optimal inflation target can be negative or positive. Likewise,

1At the time of writing, the U.S. Federal Reserve and the Bank of Canada are officially reviewing their monetary
policy frameworks. Both central banks explicitly refer to the challenges for monetary policy associated with the lower
bound (Wilkins, 2018; Clarida, 2019).

2Other monetary policy delegation schemes that are known to be desirable in the context of fundamental-driven
liquidity traps are price level targeting, nominal GDP level targeting and interest rate gradualism. This paper focuses
on frameworks that facilitate closed-form solutions of the model.

3Inflation conservatism was originally proposed as a remedy to the classic inflation bias problem. Formally, an
inflation-conservative central banker puts less weight on output relative to inflation stabilization than society does.
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we find that the optimal weight on inflation relative to output stabilization in the policymaker’s

objective function can be smaller or larger than the one in society’s objective function.

Next, we turn to fiscal policy. Specifically, we allow the policymaker to use government spending

as an additional policy tool.4 As in models with fundamental-driven liquidity traps, the policymaker

raises government spending whenever the lower bound constraint becomes binding, and she keeps

government spending at an elevated level until confidence resumes and the lower bound constraint

becomes slack. However, unlike in models with fundamental-driven liquidity traps—where fiscal

policy improves allocations at and away from the lower bound—this fiscal policy intervention wors-

ens stabilization outcomes both at and away from the lower bound. Taking as given the occasional

occurrence of expectations-driven liquidity traps, it is therefore best for society to disincentivize

the use of government spending as a stabilization tool. To do so, society has to assign a sufficiently

high relative weight to government spending stabilization in the policymaker’s objective function.5

Thus, the answer to our first question—is there a straightforward way to improve welfare of an

economy that is subject to occasional expectations-driven liquidity traps?—is rather disappointing.

None of the reviewed policy delegation schemes—a higher inflation target, inflation conservatism,

and fiscal activism—unambiguously improves stabilization outcomes and welfare in our model.

However, the answer to our second question—is it possible to prevent the economy from falling into

an expectations-driven liquidity trap?—turns out to be more promising if government spending

is part of the policymaker’s toolkit. Specifically, we find that when society assigns a sufficiently

low relative weight on government spending stabilization to the policymaker’s objective function

the sunspot equilibrium ceases to exist.6 Conditional on the existence of the sunspot equilibrium,

a marginal reduction in the policymaker’s relative weight on government spending stabilization

increases the spending stimulus at the lower bound and deteriorates stabilization outcomes both at

and away from the lower bound. But when the relative weight is sufficiently small, the policymaker

is willing to adjust government spending sufficiently elastically to deviations of inflation and the

output gap from target that pessimistic expectations fail to be validated. In the remaining no-

sunspot equilibrium, the sunspot shock does not affect private sector decisions and government

spending stays constant. Nevertheless, we verify that the government spending expansion that

would be implemented by a policymaker of this type if a decline in inflation and the output gap

occurred and the lower bound became binding—maybe because of a fundamental shock—appears

plausible from a quantitative perspective.

Our paper is related to a small but growing literature on equilibrium multiplicity and the lower

bound on nominal interest rates. Benhabib et al. (2001) were the first to show that the lower

bound constraint gives rise to two steady state equilibria in a model where monetary policy is

governed by an interest-rate feedback rule. In one steady state the policy rate is strictly positive

4Like most of the related literature, we assume that the provision of public goods generates some household utility.
5In contrast, in models with fundamental-driven liquidity traps, society can further improve stabilization outcomes

and welfare by appointing a policymaker who is less concerned with government spending stabilization than society
as a whole. See Schmidt (2017).

6From an institutional perspective, this could be operationalized by the appointment of a decision-making fiscal
council. Alternatively, one could think of society electing a policymaker with a certain type of preferences.
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and inflation is at target, and in the other steady state the lower bound constraint is binding and

inflation is below target.7 Armenter (2018) and Nakata and Schmidt (2019a) show that the lower

bound constraint can give rise to multiple Markov-perfect equilibria under optimal discretionary

monetary policy. Moreover, Armenter (2018) shows that price-level targeting does not eliminate

the equilibrium multiplicity.

This equilibrium multiplicity naturally opens the door for sunspot equilibria. Mertens and Ravn

(2014) construct a sunspot equilibrium in a New Keynesian model with an interest-rate feedback

rule and assess the effects of an exogenous increase in government spending when confidence is

low and the lower bound is binding.8 They find that a positive government spending shock is

deflationary.9 Bilbiie (2018) considers several other exogenous policy interventions such as an

exogenous change in the policy rate path in an analytical model setup. Coyle and Nakata (2018)

numerically solve a fully nonlinear New Keynesian model with an interest-rate rule allowing for both,

fundamental-driven and expectations-driven liquidity traps, and find that the optimal inflation

target in the policy rule is lower than in the model with fundamental-driven liquidity traps only.

A few papers have assessed the plausibility of expectations-driven liquidity traps empirically

or used the concept for positive analysis of recent economic events. Aruoba et al. (2018) conduct

a model-based empirical assessment to shed light on the type of liquidity trap events experienced

by the U.S. economy and the Japanese economy, finding that Japan transitioned in the late 1990s

to an expectations-driven liquidity trap state and that the U.S. had been in a fundamental-driven

liquidity trap equilibrium.10 Schmitt-Grohé and Uribe (2017) show that a model with downward

nominal wage rigidities and a sunspot shock can mimic the economic dynamics of a recessionary

lower bound episode that is followed by a jobless recovery. Lansing (2017) develops a New Keynesian

model with a lower bound on nominal interest rates in which agents’ beliefs about the steady state

to which the economy converges in the long run depends on aggregate outcomes. This model with

endogenous regime switches is applied to the U.S. economy. Jarociński and Maćkowiak (2018) use

a sticky-price model with a sunspot shock to conduct counterfactual simulations of the euro area

economic downturn in 2008-2015.

Our paper also makes contact with some existing studies on how to avoid expectations-driven

liquidity traps and equilibrium multiplicity. Benhabib et al. (2002) and Woodford (2003) show how

non-Ricardian fiscal policies that entail an off-equilibrium violation of the transversality condition

can rule out perfect-foresight equilibria in which the economy converges to the steady state where

7Benhabib et al. (2001) also show that there usually exist an infinite number of perfect-foresight equilibria where
the economy can originate arbitrarily close to the first steady state and converge to the second steady state.

8See also Boneva et al. (2016).
9Wieland (2018) shows that if one relaxes the assumption of Mertens and Ravn (2014) that the government spend-

ing shock is perfectly correlated with the sunspot shock, a sufficiently short-lived increase in government spending
can be inflationary.

10Hirose (2018) estimates a DSGE model log-linearized around the deflationary steady state on Japanese data.
Cuba-Borda and Singh (2019) compare a permanent expectations-driven liquidity trap to a permanent fundamental-
driven liquidity trap in a model with government bonds in the utility and downward nominal wage rigidities. Their
empirical analysis suggests that the permanent expectations-driven liquidity trap equilibrium fits Japanese data better
than the permanent fundamental-driven liquidity trap equilibrium.
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the lower bound constraint is binding. Sugo and Ueda (2008) and Schmitt-Grohé and Uribe (2014)

consider alternative interest-rate feedback rules. Schmidt (2016) shows that it is possible to design

Ricardian government spending rules that insulate the economy from expectations-driven liquidity

traps. Tamanyu (2019) provides a similar analysis for the case of tax rules. Armenter (2018)

shows that augmenting the objective function of a discretionary central bank with an objective

for stabilizing the level of a long-run nominal interest rate can ensure the existence of a unique

Markov-perfect equilibrium.

Finally, there is a rich literature on optimal monetary and fiscal policy in models with fundamental-

driven liquidity traps. Studies on optimal monetary policy include Eggertsson and Woodford (2003),

Jung et al. (2005), Adam and Billi (2006, 2007), Nakov (2008) and Nakata and Schmidt (2019a,b).

Optimal fiscal policy is analyzed by e.g. Eggertsson and Woodford (2006), Eggertsson (2006),

Schmidt (2013, 2017), Nakata (2016, 2017), Bilbiie et al. (2018) and Bouakez et al. (2016), among

others.

The remainder of the paper is organized as follows. Section 2 presents the model, describing

the private sector behavioral constraints, monetary policy and the shock structure, and defines the

equilibria of interest. Section 3 presents results on equilibrium existence and stabilization outcomes.

Section 4 assesses the desirability of a positive inflation target and inflation conservatism in the

sunspot equilibrium. Section 5 extends the analysis to fiscal policy. Section 6 concludes.

2 Model

We use a standard infinite-horizon New Keynesian model formulated in discrete time. The economy

is inhabited by identical households who consume and work, goods-producing firms that act under

monopolistic competition and are subject to price rigidities, and a government. For now, we assume

that the one-period nominal interest rate is the only policy instrument. In Section 5, the model

is extended with government spending. More detailed descriptions of the model can be found in

Woodford (2003) and Gaĺı (2015). We work with a semi-loglinear version of the model that can be

solved in closed form and allows us to derive analytical results.

2.1 Private sector behavior and welfare

Aggregate private sector behavior is described by a Phillips curve and a consumption Euler equation

πt = κyt + βEtπt+1 (1)

yt = Etyt+1 − σ (it − Etπt+1 − rnt ) (2)

The private sector behavioral constraints have been (semi) log-linearized around the intended

zero-inflation steady state. πt is the inflation rate between periods t − 1 and t, yt denotes the

output gap, it is the level of the riskless nominal interest rate between periods t and t + 1, rnt is
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the exogenous natural real rate of interest, and Et is the rational expectations operator conditional

on information available in period t. The parameters are defined as follows: β ∈ (0, 1) is the

households’ subjective discount factor, σ > 0 is the intertemporal elasticity of substitution in

consumption, and κ represents the slope of the Phillips curve.11

Households’ welfare at time t is given by the expected discounted sum of current and future

utility flows. A second-order approximation to household preferences leads to

Vt = −1

2
Et

∞∑
j=0

βj
[
π2
t+j + λ̄y2

t+j

]
, (3)

where λ̄ = κ/θ.12

2.2 Central bank

At the beginning of time, society delegates monetary policy to a central bank. The central bank

does not have a commitment technology, that is, it acts under discretion. The monetary policy

objective is given by

V CB
t = −1

2
Et

∞∑
j=0

βj
[
(πt+j − π∗)2 + λy2

t+j

]
, (4)

where λ ≥ 0 and π∗ are policy parameters to be set by society when designing the central bank’s

objective function. When λ = λ̄ and π∗ = 0, the central bank’s objective function coincides with

society’s objective function (3).

The policy problem of a generic central bank is as follows. Each period t, it chooses the inflation

rate, the output gap, and the nominal interest rate to maximize its objective function (4) subject

to the behavioral constraints of the private sector (1)–(2), and the lower bound constraint it ≥ 0,

with the value and policy functions at time t+ 1 taken as given.

The first-order necessary conditions to this problem imply that interest rate policy is governed

by the following targeting rule

[κ(πt − π∗) + λyt] it = 0, (5)

where κ(πt − π∗) + λyt = 0 whenever it > 0 and κ(πt − π∗) + λyt < 0 when the lower bound

constraint is binding, it = 0. In words, each period the central bank aims to stabilize a weighted

sum of current period’s inflation rate (in deviation from target) and the output gap.

11κ is itself a function of several structural parameters of the economy: κ = (1−α)(1−αβ)
α(1+ηθ)

(σ−1 + η), where α ∈ (0, 1)
denotes the share of firms that cannot reoptimize their price in a given period, η > 0 is the inverse of the labor-supply
elasticity, and θ > 1 denotes the price elasticity of demand for differentiated goods.

12See Woodford (2003). We assume that the steady state distortions arising from monopolistic competition are
offset by a wage subsidy.
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2.3 Sunspot shock

For the benchmark setup, we assume that there is no uncertainty regarding the economy’s funda-

mentals. Specifically, rnt = rn = 1/β− 1 for all t. However, agents expectations may be affected by

a non-fundamental sunspot or ‘confidence’ shock ξt. The sunspot shock follows a two-state Markov

process, ξt ∈ (ξL, ξH). We refer to state ξL as the low-confidence state and to state ξH as the

high-confidence state. The transition probabilities are given by

Prob (ξt+1 = ξH |ξt = ξH) = pH (6)

Prob (ξt+1 = ξL|ξt = ξL) = pL (7)

In words, pH ∈ (0, 1] is the probability of being in the high-confidence state in period t+1 conditional

on being in the high-confidence state in period t, and can be interpreted as the persistence of high

confidence. Note that while we allow the high-confidence state to be an absorbing state we do not

restrict our analysis to this special case. pL ∈ (0, 1) is the probability of being in the low-confidence

state in period t + 1 when the economy is in the low-confidence state in period t, and can be

interpreted as the persistence of low confidence.13

Let xs, s ∈ {L,H} be the equilibrium value of some variable x in state ξs. Sunspots matter if

there is an equilibrium in which {πL, yL, iL, VL} 6= {πH , yH , iH , VH}. We are interested in a sunspot

equilibrium where the economy is subject to recurring liquidity trap episodes. We associate the

occurrence of these liquidity trap events with the low-confidence state.

Definition 1 The sunspot equilibrium with occasional liquidity traps is defined as a vector

{yH , πH , iH , yL, πL, iL} that solves the following system of linear equations

yH = [pHyH + (1− pH)yL] + σ [pHπH + (1− pH)πL − iH + rn] (8)

πH = κyH + β [pHπH + (1− pH)πL] (9)

0 = κ(πH − π∗) + λyH (10)

yL = [(1− pL)yH + pLyL] + σ [(1− pL)πH + pLπL − iL + rn] (11)

πL = κyL + β [(1− pL)πH + pLπL] (12)

iL = 0, (13)

13Mertens and Ravn (2014), Schmidt (2016), Aruoba et al. (2018) and Bilbiie (2018) also consider a sunspot shock
that follows a two-state Markov process. However, Mertens and Ravn (2014), Schmidt (2016) and Bilbiie (2018)
assume that the high-confidence state is an absorbing state, that is, pH = 1. Aruoba et al. (2018) allow for recurring
declines in confidence and assume that conditional on being in the high-confidence state agents attach a 1% probability
to the possibility of ending up in the low-confidence state in the next period. Formally, in the context of our setup
they impose pH = 0.99.
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and satisfies the following two inequality constraints

iH > 0 (14)

κ(πL − π∗) + λyL < 0. (15)

2.4 Alternative setup: Fundamental shock

Throughout the paper, we contrast results for the benchmark model—an economy that is subject

to a sunspot shock—with those for an economy that is subject to a fundamental shock instead of

a sunspot shock but is otherwise identical to the benchmark economy. In this alternative model,

the natural real rate is assumed to be stochastic.

To keep the model setup as close as possible to the one with the sunspot shock, rnt is assumed to

follow a two-state Markov process. In the high-fundamental state, the natural real rate is strictly

positive rnH > 0, and in the low-fundamental state it is strictly negative rnL < 0. The transition

probabilities for the natural real rate shock are given by

Prob
(
rnt+1 = rnH |rnt = rnH

)
= pfH (16)

Prob
(
rnt+1 = rnL|rnt = rnL

)
= pfL, (17)

and are distinguished from the transition probabilities of the sunspot shock via the superscript f .

The fundamental equilibrium in the model with the natural real rate shock is defined as follows.

Definition 2 The fundamental equilibrium with occasional liquidity traps is defined as a vector

{yH , πH , iH , yL, πL, iL} that solves

yH =
[
pfHyH + (1− pfH)yL

]
+ σ

[
pfHπH + (1− pfH)πL − iH + rnH

]
(18)

πH = κyH + β
[
pfHπH + (1− pfH)πL

]
(19)

yL =
[
(1− pfL)yH + pfLyL

]
+ σ

[
(1− pfL)πH + pfLπL − iL + rnL

]
(20)

πL = κyL + β
[
(1− pfL)πH + pfLπL

]
(21)

as well as (10) and (13), and satisfies inequality constraints (14) and (15).

This Markov-perfect equilibrium has been analyzed in detail in Nakata and Schmidt (2019a).14

To keep the exposition parsimonious, we will refer to this paper for the proofs related to the

fundamental equilibrium whenever applicable.15

14Nakata and Schmidt (2019a) analytically show that in this model with a two-state fundamental shock there exists
another Markov-perfect equilibrium in which the lower bound constraint binds in the low and the high-fundamental
state. Here, we do not consider this equilibrium.

15The notation used in Nakata and Schmidt (2019a) is slightly different from the one used here. They use pH to
denote the probability that the economy is in the low state in the next period conditional on being in the high state
today.
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3 Basic properties of the sunspot equilibrium

This section presents conditions for existence of the sunspot equilibrium as well as equilibrium

allocations and prices, and discusses how they compare to those of the fundamental equilibrium.

3.1 Equilibrium existence

The following proposition establishes the necessary and sufficient conditions for existence of the

sunspot equilibrium.

Proposition 1 The sunspot equilibrium exists if and only if

pL − (1− pH)− 1− pL + 1− pH
κσ

(1− βpL + β(1− pH)) > 0, (22)

and

π∗ > −κ
2 + λ(1− β)

κ2
rn. (23)

Proof: See Appendix A.

Three observations are in order. First, for the sunspot equilibrium to exist, the two confidence

states have to be sufficiently persistent. Second, prices have to be sufficiently flexible, i.e. κ has to

be sufficiently large. Third, the central bank’s inflation target must be higher than some strictly

negative lower bound. Note that conditional on the inflation target not being too low, equilibrium

existence does not depend on the policy parameters λ and π∗.

These conditions for existence of the sunspot equilibrium qualitatively differ from the conditions

for existence of the fundamental equilibrium. In particular, for the fundamental equilibrium to exist,

the low-fundamental state must not be too persistent (see Nakata and Schmidt, 2019a). Hence,

the fundamental equilibrium stipulates an upper bound on the average duration of liquidity traps

whereas the sunspot equilibrium stipulates a lower bound. When pH , p
f
H = 1, the upper bound

for the fundamental equilibrium to exist and the lower bound for the sunspot equilibrium to exist

coincide.16

3.2 Allocations and prices

The allocations and prices in the sunspot equilibrium can be solved for in closed form. For now,

we assume that the central bank has the same objective function as society as a whole. The signs

of inflation and the output gap in the two confidence states are then unambiguously determined.

Proposition 2 Suppose λ = λ̄ and π∗ = 0. In the sunspot equilibrium, πL < 0, yL < 0, πH ≤ 0,

yH ≥ 0. When pH < 1, then πH < 0, yH > 0.

16Appendix A provides a numerical illustration of the existence conditions for the sunspot equilibrium and for the
fundamental equilibrium.
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Proof: See Appendix A

When confidence is low, agents expect persistently low future income, and therefore increase

desired saving at the expense of lower desired consumption. Due to the presence of price rigidities,

prices do not fully adjust immediately and output falls. The central bank lowers the policy rate

to equate desired saving to zero, but if agents are sufficiently pessimistic, the lower bound on the

policy rate becomes binding. At the lower bound, to equate desired saving to zero, output has to

fall, validating agents’ pessimistic expectations. The lower bound is binding, and inflation and the

output gap both settle below target.

When confidence is high, the policy rate is strictly positive but if pH < 1 the risk of a future

decline in confidence creates a monetary policy trade-off between inflation and output gap stabi-

lization. Specifically, the possibility that confidence might fall in the future while the price set by a

firm reoptimizing today is still in place provides an incentive for forward-looking firms to set a lower

price than they would in the absence of any risk of a future drop in confidence. To counteract these

deflationary forces, the central bank allows for a positive output gap, that is, it sets the policy rate

in the high-confidence state such that the ex-ante real interest rate is below the constant natural

real rate. In equilibrium, the high-confidence output gap is thus positive and inflation is below

target.

The signs of output and inflation in the fundamental equilibrium are identical to those in the

sunspot equilibrium. Output and inflation are negative in the low-fundamental state, and output

(inflation) is positive (negative) in the high-fundamental state (see Nakata and Schmidt, 2019a).

However, in the fundamental equilibrium, it is the temporarily negative natural real rate of interest

in the low-fundamental state that leads to the decline in output and inflation in the low state.

3.3 Aggregate demand and aggregate supply schedules

In order to better understand equilibrium outcomes in the model with the sunspot shock and in the

model with the fundamental shock, and how they are affected by the policy framework, we recast

the models in terms of aggregate demand (AD) and aggregate supply (AS) curves. The AD curve

is the set of pairs of inflation rates and output gaps consistent with Euler equation (2) where the

policy rate is set in line with target criterion (5), and the AS curve is the set of pairs of inflation

rates and output gaps consistent with Phillips curve (1). Specifically, we focus on the AD and AS

schedules conditional on the economy being in the low state of the respective model. For the model

with the sunspot shock the two curves in the low-confidence state are given by

AD-sunspot: yL = min

[(
yH + σπH +

σ

1− pL
rn
)

+
σpL

1− pL
πL,

κ

λ
(π∗ − πL)

]
(24)

AS-sunspot: yL = −β(1− pL)

κ
πH +

1− βpL
κ

πL, (25)

where in each equation we distinguish between terms that are multiplied by πL—the slope coefficient—

and the other terms—the intercept. For the model with the fundamental shock, the two curves are
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given by

AD-fundamental: yL = min

[(
yH + σπH +

σ

1− pfL
rnL

)
+

σpfL

1− pfL
πL,

κ

λ
(π∗ − πL)

]
(26)

AS-fundamental: yL = −
β(1− pfL)

κ
πH +

1− βpfL
κ

πL. (27)

Figure 1 plots these AD-AS curves for the model with the sunspot shock (left panel) and for the

model with the fundamental shock (right panel), assuming that the high state in both models is

an absorbing state. One period corresponds to one quarter. We set pL = 0.9375 in the model with

the sunspot shock, implying an average duration of lower bound episodes of 4 years in the sunspot

equilibrium. In the model with the fundamental shock, we set pfL = 0.85, implying an average

duration of lower bound episodes of 1 1/2 years. The other parameter values are summarized in

Table 1. For πH , yH = 0, the intercept terms in the AS curves are zero, whereas the intercept terms

Table 1: Parameter values for numerical example

Parameter Value Economic interpretation

β 0.9975 Subjective discount factor
σ 0.5 Intertemporal elasticity of substitution in consumption
η 0.47 Inverse labor supply elasticity
θ 10 Price elasticity of demand
α 0.8106 Share of firms per period keeping prices unchanged
λ λ̄ Policy parameter: Relative weight on output term
π∗ 0 Policy parameter: Inflation target
rnH rn High-state natural real rate in model with fundamental shock
rnL -0.005 Low-state natural real rate in model with fundamental shock

Note: This parameterization implies rn = 0.0025, κ = 0.0194, λ̄ = 0.0019.

in the AD curves are positive (model with sunspot shock) and negative (model with fundamental

shock), respectively.

The low-state AD-AS curves in the two models have several common features. First, due to

the lower bound constraint, the AD curve has a kink. To the left of the kink, the lower bound

constraint is binding and to the right of the kink the lower bound constraint is slack. Second, the

AD curve is upward-sloping to the left of the kink—aggregate demand is increasing in inflation

when the lower bound is binding because an increase in inflation lowers the ex-ante real interest

rate—and downward-sloping to the right of the kink—aggregate demand is decreasing in inflation

when the lower bound constraint is slack because the central bank raises the policy rate more than

one-for-one with inflation. Third, the AS curve is monotonically upward-sloping—an increase in

demand leads to an increase in inflation—and goes through the origin.

In the model with the sunspot shock, the AD curve is steeper than the AS curve. This is a

necessary—and in case of π∗ = 0 sufficient—condition for existence of the sunspot equilibrium.17

17See the condition for existence of the sunspot equilibrium (22) with pH = 1.
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Figure 1: Aggregate demand and aggregate supply in the low state
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Note: In the left panel, S marks the sunspot equilibrium and NS the no-sunspot equilibrium. In the right panel, F

marks the fundamental equilibrium. Inflation is expressed in annualized terms.

Intuitively, since the low-confidence state is highly persistent, households’ desired consumption is

very sensitive to changes in low-state inflation, i.e. the AD curve is relatively steep. At the same

time, the high persistence of the low-confidence state makes firms’ price setting very sensitive to

changes in aggregate demand, i.e. the AS curve is relatively flat. Consistent with Proposition 2,

when confidence is low, output and inflation are strictly negative in the sunspot equilibrium as

represented by intersection point S. The panel also shows that besides the sunspot equilibrium,

there is a second equilibrium—represented by intersection point NS—where the lower bound con-

straint on the policy rate is not binding and low-state output and inflation are at target. In this

‘no-sunspot’ equilibrium, the sunspot shock does not affect agents’ behavior.

In the model with the fundamental shock, the AD curve is flatter than the AS curve, which

is a necessary condition for the fundamental equilibrium to exist and reflects the relatively lower

persistence of the low-fundamental state. In the fundamental equilibrium, marked by intersection

point F in the right panel, low-state output and inflation are negative, again in line with analytical

results.

4 Monetary policy frameworks

Having shown that the sunspot equilibrium is associated with rare but long-lasting spells at the

lower bound and chronic deflation, we now explore whether stabilization outcomes and welfare

can be improved by assigning an objective function to the policymaker that differs from society’s

objective function. This section focuses on two monetary policy frameworks that are known to

be desirable in models with fundamental-driven liquidity traps: a non-zero inflation target and

inflation conservatism. The subsequent section extends the analysis to fiscal policy.
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4.1 A non-zero inflation target

In the fundamental equilibrium, society’s welfare can be improved by assigning a strictly positive

inflation target to the central bank (Nakata and Schmidt, 2019a). This subsection explores the

desirability of a non-zero inflation target in the sunspot equilibrium. Throughout this subsection,

we assume λ = λ̄.

While the signs of allocations and prices are sensitive to the quantitative value of the central

bank’s inflation target, the effects of a change in the target on allocations and prices are unambigu-

ously determined.

Proposition 3 In the sunspot equilibrium, ∂πL
∂π∗ < 0, ∂yL

∂π∗ < 0, ∂πH
∂π∗ > 0, ∂yH

∂π∗ > 0.

Proof: See Appendix A.

In the sunspot equilibrium, a marginal increase in the inflation target lowers output and inflation

in the low-confidence state and raises output and inflation in the high-confidence state.18 Consider

first the high-confidence state. All else equal, if π∗ increases, the gap between the inflation target

and actual inflation widens, and hence the central bank becomes more willing to tolerate a positive

output gap to bring inflation again closer to its target. In equilibrium, an increase in π∗ therefore

raises the output gap and inflation in the high-confidence state.

To understand why low-state output and inflation are increasing in π∗, we make use of the

the AD-AS framework. The left panel of Figure 2 depicts how the low-confidence state AD and

AS curves (24)–(25) are shifted in response to an increase in the central bank’s inflation target,

assuming that the high state is an absorbing state. An increase in the inflation target shifts the

AD curve upwards, because, all else equal, agents increase their desired consumption given higher

expected inflation. At the same time, the AS curve shifts downwards, as firms’ desired price

increases in light of higher expected inflation for given current demand. Hence, at the inflation

rate consistent with the sunspot equilibrium in the baseline, marked by intersection point S, there

is now excess demand. In the model with the sunspot shock, excess demand is increasing in the

inflation rate as long as the lower bound is binding. To restore equilibrium, low-state inflation and

output thus have to decline. The new intersection point S′ lies to the south-west of the baseline

intersection point S.19

In the fundamental equilibrium, a marginal increase in the inflation target also raises high-state

inflation. The effects on low-state outcomes, however, differ from those in the sunspot equilibrium.

Higher inflation in the high-fundamental state lowers the conditional ex-ante real interest rate in

the low-fundamental state. This stimulates aggregate demand and leads to an increase in low-state

output and inflation (Nakata and Schmidt, 2019a). The right panel of Figure 2 depicts how in

18It can also be shown that ∂πH
∂π∗ < 1. Together with Proposition 2, this implies that for any positive inflation

target actual inflation in the high-confidence state is below target.
19An increase in the inflation target also affects the no-sunspot equilibrium. With a non-zero inflation target, the

central bank faces a trade-off between output stabilization and stabilization of inflation at target. In equilibrium,
when the inflation target is positive, high-state inflation is slightly below target and the output gap is slightly positive.
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Figure 2: The effect of increasing the central bank’s inflation target
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Note: Solid lines: π∗ = 0; dashed lines: π∗ = 1/400. In the left (right) panel, S (F ) marks the sunspot (fundamental)

equilibrium in the baseline and S′ (F ′) marks the sunspot (fundamental) equilibrium in the case of a higher π∗. NS

marks the no-sunspot equilibrium in the baseline, and NS′ marks the no-sunspot equilibrium in the case of a higher

π∗. Inflation is expressed in annualized terms.

the model with the fundamental shock the low-state AD and AS curves (26)–(27) are shifted in

response to an increase in the inflation target.

For the characterization of the welfare-maximizing inflation target in the model with the sunspot

shock, it is also useful to show that there exists an inflation target such that inflation in the high-

confidence state is stabilized at zero.

Lemma 1 There exists a π0 > 0 such that in the sunspot equilibrium πH = 0 if π∗ = π0.

Proof: See Appendix A.

One can then establish the following result concerning the welfare-maximizing inflation target.

Proposition 4 Suppose λ = λ̄ and pH < 1. Let π∗∗ denote the value of π∗ > −κ2+λ(1−β)
κ2 rn that

maximizes households’ unconditional welfare EVt where Vt is defined in equation (3). In the sunspot

equilibrium, π∗∗ < π0.

Proof: See Appendix A.

Together with Proposition 3 and Lemma 1, this proposition means that the optimal inflation

target can be negative or positive. However, this proposition also means that even if the optimal

inflation target is positive, it will be below the level needed to engineer strictly positive inflation

in the high-confidence state. The ambiguity concerning the sign of the optimal target can be

understood from the fact that an increase in π∗ has a negative effect on low-state inflation (moving

low-state inflation further into negative territory), and a positive effect on high-state inflation

(moving high-state inflation closer to zero as long as π∗ < π0).20 Only for the special case where the

20Appendix A provides a numerical example of how π∗ affects allocations and welfare in the sunspot equilibrium.
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Figure 3: Optimal inflation target in model with sunspot shock
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Note: In the right panel pH = pL. The optimal inflation target π∗∗ is expressed in annualized terms.

high-confidence state is an absorbing state, pH = 1, the optimal inflation target is unambiguously

negative.21

The left panel of Figure 3 shows how π∗∗ depends on pH and pL, the persistence of the high and

the low-confidence state, respectively.22 The figure distinguishes three cases: i. π∗∗ > 0 (light gray-

shaded area), ii. π∗∗ ≤ 0 and yH > 0 (gray-shaded area), and iii. π∗∗ < 0 and yH ≤ 0 (black-shaded

area). The white-shaded area represents pairs of pH and pL for which the sunspot equilibrium does

not exist. When the two confidence states are highly persistent, the optimal inflation target is

strictly positive. When the two states are less persistent, the optimal inflation target is negative.

Most pairs {pH , pL} that are consistent with equilibrium existence fall into this second category. If

the pair of persistence parameters just marginally satisfies the conditions for equilibrium existence,

the optimal inflation target is sufficiently negative to engineer a negative output gap in the high

state.

The right panel of Figure 3 plots the optimal inflation target (left vertical axis, solid black line)

and the welfare gain from assigning the optimal target to the central bank (right vertical axis,

dashed blue line) as a function of the persistence of the two confidence states, assuming pH = pL.

For sufficiently low values of pH and pL, the optimal inflation target is negative and is increasing

in the persistence parameters. When pH and pL are high enough, the optimal inflation target is

slightly positive. The welfare gain of assigning an optimized inflation target to the central bank

is most elevated when the persistence parameters take on the lowest possible values for which the

sunspot equilibrium exists.

Next, we assess the desirability of inflation conservatism.

21This follows directly from Propositions 2 and 3.
22The values for the other model parameters are reported in Table 1.
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4.2 Inflation conservatism

An inflation-conservative central banker is a policymaker who puts a higher relative weight on

inflation stabilization than society as a whole (λ < λ̄). In models with occasional fundamental-

driven liquidity trap episodes, the appointment of an inflation-conservative policymaker improves

welfare relative to the case where the policymaker has the same objective function as society as a

whole (Nakata and Schmidt, 2019a). Specifically, if the only source of uncertainty is a natural real

rate shock—as assumed for the model with the fundamental shock—then it is optimal to appoint

a strictly inflation-conservative policymaker, i.e. λ = 0.

Let us now turn to the model with the sunspot shock. We first establish how a change in

the central bank’s relative weight on output stabilization λ affects allocations and prices in the

sunspot equilibrium and then explore the welfare implications. To focus on the role of inflation

conservatism, we assume π∗ = 0 throughout this subsection.

Proposition 5 Suppose π∗ = 0 and pH < 1. In the sunspot equilibrium, ∂πL
∂λ > 0, ∂yL

∂λ > 0,
∂πH
∂λ < 0, ∂yH

∂λ < 0.

Proof: See Appendix A.

In the sunspot equilibrium, a marginal increase in the relative weight on output gap stabilization

raises output and inflation in the low-confidence state and lowers output and inflation in the high-

confidence state.23 Qualitatively, the effects are thus the same as those of a marginal reduction in

π∗ (see Proposition 3).

The next proposition focuses on the welfare implications of inflation conservatism.

Proposition 6 Suppose π∗ = 0 and pH < 1. Let λ∗ denote the value of λ ∈ [0,∞] that maxi-

mizes households’ unconditional welfare EVt where Vt is defined in equation (3). In the sunspot

equilibrium, λ∗ > 0.

Proof: See Appendix A.

In words, strict inflation conservatism—the welfare-maximizing configuration in the fundamen-

tal equilibrium—is not desirable in the sunspot equilibrium. In the Appendix, we show that the

optimal relative weight, λ∗, can be either smaller or bigger than households’ relative weight on

output gap stabilization λ̄ and provide the corresponding necessary and sufficient conditions. The

reason for this ambiguity with regard to the desirability of inflation conservatism is similar to why

the optimal inflation target can be negative or positive.

Before turning to fiscal policy, it is useful to point out that there is a close relationship between

inflation conservatism and a non-zero inflation target.

23If the high-confidence state was an absorbing state, pH = 1, a change in λ would not affect allocations, and,
hence, welfare.
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Proposition 7 Suppose pH < 1. For any λ̂ ≥ 0, there exists a π̂∗ such that the sunspot equilibrium

under optimal discretionary policy associated with the inflation conservatism regime satisfying (λ =

λ̂, π∗ = 0) is replicated by the inflation target regime satisfying (λ = λ̄, π∗ = π̂∗), where

π̂∗ ≡ β(1− pH)rn

βλ̂(1− pH)− (κ2 + λ̂(1− β))C

(
λ̄− λ̂

)
. (28)

Proof: See Appendix A.

The reverse is not true, as a sufficiently negative inflation target results in a strictly negative

high-state output gap, an allocation that is unattainable under inflation conservatism for any

λ ≥ 0.24 An interesting implication of equation (28) is that if the allocation under the optimal

inflation target is attainable under inflation conservatism, then the optimal inflation target π∗∗ is

positive if and only if the optimal relative output weight λ∗ is smaller than society’s weight λ̄.25

In summary, it is not straightforward to improve the sunspot equilibrium by means of a simple

modification of the central bank’s objective function such as imposing a non-zero inflation target or

a different relative weight on inflation stabilization than the one implied by households’ preferences.

5 Fiscal policy

This section extends the analysis to fiscal policy. To do so, we explicitly model government spending,

which can be used by the discretionary policymaker as an additional policy tool. We first show how

the introduction of fiscal policy affects equilibrium existence and allocations, and then turn to the

design of fiscal policy by asking how much relative weight should be put on government spending

stabilization in the policymaker’s objective function.

5.1 The model with fiscal policy

The aggregate private sector behavioral constraints in the model with government spending are

πt = κxt + βEtπt+1 (29)

xt = (1− Γ)gt + Et(xt+1 − (1− Γ)gt+1)− σ (it − Etπt+1 − rnt ) , (30)

where gt denotes government spending as a share of steady-state output, expressed in deviation

from the steady-state ratio, xt ≡ yt − Γgt, with Γ = σ−1

σ−1+η
, will be referred to as the modified

output gap, and, in a slight abuse of notation, σ now denotes the inverse of the elasticity of the

marginal utility of private consumption with respect to total output.

24Likewise, a sufficiently positive inflation target results in a strictly positive high-state inflation rate, an allocation
that is also unattainable under inflation conservatism for any λ ≥ 0.

25To see this, note that βλ̂(1− pH)− (κ2 + λ̂(1− β))C > 0 in the sunspot equilibrium.
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We assume that the provision of public goods provides utility to households and that util-

ity is separable in private and public consumption. A second-order approximation to household

preferences leads to26

Vt = −1

2
Et

∞∑
j=0

βj
(
π2
t+j + λ̄x2

t+j + λ̄gg
2
t+j

)
. (31)

The relative weight on government spending stabilization satisfies λ̄g = λ̄Γ
(
1− Γ + σ

ν

)
> 0, where

ν denotes the inverse of the elasticity of the marginal utility of public consumption with respect to

total output. As before, λ̄ = κ/θ.

At the beginning of time, society delegates monetary and fiscal policy to a discretionary poli-

cymaker. The objective function of the policymaker is given by

VMF
t = −1

2
Et

∞∑
j=0

βj
(
π2
t+j + λ̄x2

t+j + λgg
2
t+j

)
, (32)

where λg ≥ 0 is a policy parameter the value of which is chosen by society when designing the

policymaker’s objective function. When λg = λ̄g, the policymaker’s objective function coincides

with society’s objective function. The policymaker’s optimization problem and the first-order

conditions are relegated to Appendix B.

As before, we focus on a sunspot equilibrium where the lower bound is binding in the low-

confidence state and slack in the high-confidence state.

Definition 3 The sunspot equilibrium with fiscal policy and occasional liquidity traps is defined as

a vector {xH , πH , iH , gH , xL, πL, iL, gL} that solves the following system of linear equations

xH = pHxH + (1− pH) [xL + (1− Γ)(gH − gL)] + σ [pHπH + (1− pH)πL − iH + rn] (33)

πH = κxH + β [pHπH + (1− pH)πL] (34)

λggH = −(1− Γ)
(
κπH + λ̄xH

)
(35)

0 = κπH + λ̄xH (36)

xL = pLxL + (1− pL) [xH − (1− Γ)(gH − gL)] + σ [(1− pL)πH + pLπL − iL + rn] (37)

πL = κxL + β [(1− pL)πH + pLπL] (38)

λggL = −(1− Γ)
(
κπL + λ̄xL

)
(39)

iL = 0, (40)

26See Schmidt (2013) for details.
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and satisfies the following two inequality constraints

iH > 0 (41)

κπL + λ̄xL < 0. (42)

The sunspot equilibrium is compared to a fundamental equilibrium in a setup where the two-

state sunspot shock is replaced with a two-state natural real rate shock. As before, we consider

a Markov-perfect equilibrium where the lower bound constraint is slack in the high-fundamental

state and binding in the low-fundamental state.

Definition 4 The fundamental equilibrium with fiscal policy and occasional liquidity traps is defined

as a vector {xH , πH , iH , gH , xL, πL, iL, gL} that solves the following system of linear equations

xH = pfHxH + (1− pfH) [xL + (1− Γ)(gH − gL)] + σ
[
pfHπH + (1− pfH)πL − iH + rnH

]
(43)

πH = κxH + β
[
pfHπH + (1− pfH)πL

]
(44)

xL = pfLxL + (1− pfL) [xH − (1− Γ)(gH − gL)] + σ
[
(1− pfL)πH + pfLπL − iL + rnL

]
(45)

πL = κxL + β
[
(1− pfL)πH + pfLπL

]
(46)

as well as (35), (36), (39) and (40), and satisfies the inequality constraints (41) and (42).

5.2 Equilibrium existence and allocations

The following proposition establishes a necessary and sufficient condition for existence of the sunspot

equilibrium in the model with fiscal policy. The condition for existence of the fundamental equilib-

rium in the model with the natural real rate shock is provided in Appendix D.

Proposition 8 The sunspot equilibrium exists if and only if

λgΩ(pL, pH , κ, σ, β)− (1− Γ)2 1− pL + 1− pH
κσ

[
κ2 + λ̄(1− βpL + β(1− pH))

]
> 0, (47)

where Ω(pL, pH , κ, σ, β) ≡ pL − (1− pH)− 1−pL+1−pH
κσ (1− βpL + β(1− pH)) .

Proof: See Appendix C.

From Proposition 1, we know that the sunspot equilibrium in the model without fiscal policy and

a zero-inflation target exists if and only if Ω(·) > 0. In the model with fiscal policy, Ω(·) > 0 is a nec-

essary but not a sufficient condition for existence of the sunspot equilibrium. Importantly, the con-

dition for equilibrium existence depends on the policy parameter λg. Suppose Ω(·) > 0. Then, the

sunspot equilibrium exists if and only if λg >
(1−Γ)2

Ω(·)
1−pL+1−pH

κσ

[
κ2 + λ̄(1− βpL + β(1− pH))

]
> 0.

Next, we characterize allocations and prices in the sunspot equilibrium.
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Proposition 9 In the sunspot equilibrium, πL < 0, xL < 0, gL > 0, πH ≤ 0, xH ≥ 0 and gH = 0.

When pH < 1, then πH < 0, xH > 0.

Proof: See Appendix C.

The policymaker increases government spending when the lower bound on nominal interest

rates is binding, and keeps government spending at its steady state otherwise. The same holds true

for the fundamental equilibrium. See Appendix D.

5.3 Welfare implications of fiscal policy

In the model with fundamental-driven liquidity traps, society can improve its welfare by appointing

a “fiscally-activist” policymaker who puts less relative weight on government spending stabilization

than society as a whole (Schmidt, 2017). To assess the welfare implications of fiscal policy in the

sunspot equilibrium, we first establish how a marginal change in the policymaker’s relative weight

on government spending stabilization λg affects allocations and prices.

Proposition 10 In the sunspot equilibrium, ∂πL
∂λg

> 0, ∂xL
∂λg

> 0, ∂gL
∂λg

< 0, ∂πH
∂λg
≥ 0, ∂xH

∂λg
≤ 0. If

pH < 1, ∂πH
∂λg

> 0, ∂xH
∂λg

< 0.

Proof: See Appendix C.

That is, the higher the relative weight on government spending stabilization in the policymaker’s

objective function, the smaller the fiscal stimulus in the low-confidence state. At the same time,

an increase in λg raises the inflation rate and the modified output gap in the low-confidence state.

Finally, an increase in λg raises the inflation rate and lowers the modified output gap in the high-

confidence state. Thus, the higher λg the closer to target is the economy.

In the fundamental equilibrium, an increase in λg lowers government spending in the low state,

as in the sunspot equilibrium. However, unlike in the sunspot equilibrium, an increase in λg lowers

the inflation rate and the modified output gap in the low state. Finally, it lowers inflation and

raises the modified output gap in the high state. See Appendix D.

It is instructive to show how a change in λg affects the low-state AD and AS curves in the two

models. For both models, we assume that the high state is absorbing. The low-state AD and AS

curves in the model with the sunspot shock and fiscal policy are then given by

AD-sunspot: xL = min

[
1

λg + (1− Γ)2λ̄

(
σλg

1− pL
rn +

(
σpLλg
1− pL

− (1− Γ)2κ

)
πL

)
,−κ

λ̄
πL

]
AS-sunspot: xL =

1− βpL
κ

πL,
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Figure 4: The effect of reduction in λg on low-state aggregate demand and supply
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(b) Model with fundamental shock

Note: Solid lines: λg = λ̄g; dashed lines: λg = λ̄g/10. In the left panel, S marks the sunspot equilibrium in the

baseline, S′ marks the sunspot equilibrium in case of a lower λg and NS marks the no-sunspot equilibrium. In the

right panel, F marks the fundamental equilibrium in the baseline and F ′ marks the fundamental equilibrium in case

of a lower λg. Inflation is expressed in annualized terms.

where πH and xH have been set equal to zero. For the model with the fundamental shock and fiscal

policy, the low-state AD and AS curves are given by

AD-fundamental: xL = min

[
1

λg + (1− Γ)2λ̄

(
σλg

1− pfL
rnL +

(
σpfLλg

1− pfL
− (1− Γ)2κ

)
πL

)
,−κ

λ̄
πL

]

AS-fundamental: xL =
1− βpfL

κ
πL,

where again πH and xH have been set equal to zero.

Figure 4 depicts how the AD-AS curves are affected by a reduction in λg. The parameterization

follows Table 1, except that we now account for a non-zero steady-state government spending to

output ratio of 0.2. This ratio implies that the inverse of the elasticity of the marginal utility

of private consumption with respect to output σ becomes 0.4.27 The inverse of the elasticity of

the marginal utility of public consumption with respect to output ν is set to 0.1.28 This implies

λ̄g = 0.0082. As before, pL = 0.9375 and pfL = 0.85. The intersection point S in the left panel

marks the sunspot equilibrium in the model with the sunspot shock for the baseline calibration, and

the intersection point NS marks the no-sunspot equilibrium. The intersection point F in the right

panel, in turn, marks the fundamental equilibrium in the model with the natural real rate shock for

the baseline calibration. In both models, the AD curve becomes flatter to the left of the kink when

λg is lowered. Intuitively, when the policymaker adjusts government spending more aggressively to

27Assuming that the intertemporal elasticity of substitution in private consumption equals 0.5, as before, we have
σ = 0.5× 0.8 = 0.4.

28This corresponds to the case in which the marginal utility of consumption of the public good decreases at the
same rate as the marginal utility of consumption of the non-public good, i.e. ν = 0.5× 0.2 = 0.1.
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changes in inflation, aggregate demand, too, responds ceteris paribus more elastically to changes

in inflation. In the model with the sunspot shock, the AD curve is steeper than the AS curve, and

hence a flattening of the AD curve shifts the point at which the two curves intersect when the lower

bound is binding to the south-west. In contrast, in the model with the fundamental shock, the AD

curve is flatter than the AS curve, and hence a flattening of the AD curve shifts the point at which

the two curves intersect to the north-east.

Propositions 9 and 10 together have a straightforward implication for the optimal value of λg

in the sunspot equilibrium.

Proposition 11 Let λ∗g denote the value of λg that maximizes households’ unconditional welfare

EVt where Vt is defined in equation (31). In the sunspot equilibrium, λ∗g →∞.

It is easy to show that as λg → ∞, gL → 0. Intuitively, if it becomes infinitely costly for the

policymaker to adjust government spending, she will not use it as a stabilization tool. This turns

out to be the optimal configuration in the sunspot equilibrium. Put differently, introducing an ad-

ditional policy tool in the form of government spending reduces welfare in the sunspot equilibrium.

Conditional on the existence of the sunspot equilibrium, it is therefore optimal to make the use of

the tool so expensive for the policymaker that she will refrain from using it.29

5.4 Why is government spending raised in the low-confidence state?

If an expansionary fiscal policy in the low-confidence state moves the economy further away from

target in both confidence states, why does the policymaker not refrain from raising government

spending in the low-confidence state for any λg < ∞? To shed light on this question consider the

following thought experiment. Suppose, λg → ∞, i.e. there is no systematic use of government

spending for stabilization purposes in the low-confidence state. Consider some period T ≥ 0 where

the economy is in the low-confidence state and the lower bound is binding. For ease of exposition,

let pH = 1. The private sector behavioral constraints for period T can then be written as

xTL = (1− Γ)gTL − pL
(1− βpL)κ2 + (1− β)(1− βpL + β(1− pH))λ̄+ κσ

(
κ2 + λ̄(1− βpH)

)
κE

rn + σrn

πTL = κxTL − βpL
κ2 + λ̄(1− βpH)

E
rn,

where πTL , x
T
L, g

T
L are the inflation rate, the modified output gap and government spending in period

T . Now suppose that in period T there is an unexpected one-time increase in government spending.

The marginal effect of this policy on the modified output gap and the inflation rate in period T is

(∂xTL/∂g
T
L) = 1− Γ > 0 and (∂πTL/∂g

T
L) = κ(1− Γ) > 0. In words, the unexpected and temporary

government spending stimulus raises the modified output gap and inflation in the low-confidence

state.30

29Appendix C provides a numerical example of how λg affects allocations and welfare in the sunspot equilibrium.
30This echoes the result by Wieland (2018) that it is the persistence of the fiscal policy intervention at the lower

bound rather than the type of the liquidity trap that matters for the sign of government spending multipliers.
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Hence, if expectations do not change, an increase in government spending is expansionary. A

discretionary policymaker who raises government spending in the low-confidence state would like

the private sector to expect the fiscal expansion to be temporary. However, if the economy continues

to be in the low-confidence state in the next period, any discretionary policymaker with an objective

function satisfying λg <∞ will have an incentive to renege on her promise to undo the government

spending expansion. A policy announcement of a one-time fiscal stimulus is therefore not credible.

In equilibrium, agents anticipate that the discretionary policymaker will raise government spending

whenever the economy transitions from the high-confidence state to the low-confidence state and

that she will keep government spending at a higher level for as long as the economy remains in the

low-confidence state. Since the low-confidence state is highly persistent, expansionary government

spending at the lower bound is contractionary, as in Mertens and Ravn (2014).31

5.5 Avoiding the sunspot equilibrium

The results presented so far might appear disappointing from the perspective of policy design.

Clearly, the sunspot equilibrium cannot be improved by allowing the discretionary policymaker to

use government spending as an additional policy instrument. However, Proposition 8 implies that

society may be able to eliminate the sunspot equilibrium and avoid expectations-driven liquidity

traps altogether. To do so it has to make the relative weight on government spending stabilization

in the policymaker’s objective function sufficiently small.

Intuitively, when λg → 0, the policymaker is willing to do “whatever it takes”—in terms of

fiscal policy—to make sure that the weighted sum of inflation and the modified output gap are

stabilized. Since the lower bound is not binding when this target criterion is met, λg → 0 rules

out the sunspot equilibrium. In this case, the only stationary equilibrium in the model with the

sunspot shock is the no-sunspot equilibrium where the shock does not affect agents’ behavior. In

the no-sunspot equilibrium, all variables are at target in both confidence states. Figure 5 provides

a graphical illustration. For a sufficiently low λg the AD curve to the left of the kink becomes

flatter than the AS curve and there is only one intersection point left, which is the one associated

with the no-sunspot equilibrium.

From a practical perspective, an important question is whether a policymaker who puts a

sufficiently small relative weight on government spending stabilization to rule out the sunspot

equilibrium would be consistent with quantitatively plausible variations in government spending in

the face of actual fluctuations in output and inflation. To shed light on this question, we conduct

the following counterfactual experiment. We first calculate the annualized inflation rate and the

output gap in the low state of the sunspot equilibrium when the policymaker has the same objective

function as society (λg = λ̄g). Unlike for the numerical analysis based on the AD-AS curves, we

do not have to assume that the high-confidence state is absorbing, and set pH = 0.98. In this case,

31Appendix C provides a comparison of our setup where government spending is an endogenous variable set by an
optimizing policymaker to the case where government spending is an exogenous variable, as in Mertens and Ravn
(2014).
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Figure 5: Avoiding the sunspot equilibrium
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Note: λg = 0.00012 << λ̄g. NS marks the no-sunspot equilibrium. Inflation is expressed in annualized terms.

annualized inflation is −2.5% and the output gap is −1.6% in the low-confidence state. We then

ask by how much a policymaker with a λg low enough to rule out the sunspot equilibrium would

raise government spending taking as given the above outcomes for inflation and output.

Figure 6 plots the counterfactual government spending response as a function of λg. A pol-

icymaker with a sufficiently small relative weight on government spending stabilization to rule

out the sunspot equilibrium would raise government spending by at least 3% of total output, a

quantitatively non-negligible but plausible number.

6 Conclusion

Expectations-driven liquidity traps differ from fundamental-driven liquidity traps in terms of their

implications for the design of desirable monetary and fiscal stabilization policies. In particular,

policy design becomes more complicated when liquidity trap episodes are caused by changes in

agents’ confidence than when they are caused by changes in the economy’s fundamentals.

The occurrence of occasional fundamental-driven liquidity trap events makes it desirable for

society to assign a strictly positive inflation target—high enough to generate positive inflation in

the high state—or an inflation-conservative objective function to the central bank. No such clear-

cut policy recommendations can be derived in case of expectations-driven liquidity trap events.

The optimal inflation target may be negative or positive. Likewise, the optimal relative weight on

inflation in the central bank’s objective function may be smaller or larger than the weight that

society puts on inflation stabilization, depending on parameter values. However, strict inflation

conservatism or an inflation target high enough to generate positive inflation in the high state are
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Figure 6: Counterfactual government spending response for alternative λg
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Note: Counterfactual government spending is expressed as a share of steady state output in percentage point devi-

ations from the steady state government spending to output ratio. The dash-dotted vertical line indicates the case

where the policymaker has the same objective function as society as a whole, λg = λ̄g. For values of λg to the left of

the solid vertical line, the sunspot equilibrium does not exist.

never optimal in the sunspot equilibrium.

Turning to fiscal policy, the use of government spending as an additional stabilization tool—

welfare-improving in the case of fundamental-driven liquidity traps—is welfare-reducing in the case

of expectations-driven liquidity traps. Nevertheless, it may be desirable to assign an explicit role

to fiscal policy in an economy prone to the latter, for the appointment of a policymaker who puts

a sufficiently small relative weight on government spending stabilization eliminates the sunspot

equilibrium.

In this paper, we have focused on policy frameworks that allow for a closed-form solution.

There are other frameworks that have featured prominently in the ongoing policy debate, such as

price-level targeting and nominal-GDP targeting. The analysis of these frameworks in the model

with expectations-driven liquidity traps is an interesting avenue for future research.
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DEEP.

Clarida, R. H. (2019): “The Federal Reserve’s Review of Its Monetary Policy Strategy, Tools,

and Communication Practices,” 2019 U.S. Monetary Policy Forum, sponsored by the Initiative

on Global Markets at the University of Chicago Booth School of Business, New York, New York,

February 22, 2019.

Coyle, P. and T. Nakata (2018): “Optimal Inflation Target with Expectations-Driven Liquidity

Traps,” Manuscript.

Cuba-Borda, P. and S. R. Singh (2019): “Understanding Persistent Stagnation,” International

Finance Discussion Papers 1243, Board of Governors of the Federal Reserve System (U.S.).

Eggertsson, G. B. (2006): “The Deflation Bias and Committing to Being Irresponsible,” Journal

of Money, Credit and Banking, 38, 283–321.

26



Eggertsson, G. B. and M. Woodford (2003): “The Zero Bound on Interest Rates and Optimal

Monetary Policy,” Brookings Papers on Economic Activity, 34, 139–235.

——— (2006): “Optimal Monetary and Fiscal Policy in a Liquidity Trap,” in NBER International

Seminar on Macroeconomics 2004, National Bureau of Economic Research, Inc, NBER Chapters,

75–144.
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Appendix

A Sunspot equilibrium in the model without fiscal policy

A.1 Proof of Proposition 1

To proof Proposition 1 on the necessary and sufficient conditions for existence of the sunspot equi-

librium, it is useful to proceed in four steps. Each step is associated with an auxiliary proposition.

Let

A := −βλ(1− pH), (A.1)

B := κ2 + λ(1− βpH), (A.2)

C :=
(1− pL)

σκ
(1− βpL + β(1− pH))− pL, (A.3)

D := −(1− pL)

σκ
(1− βpL + β(1− pH))− (1− pL) = −1− C, (A.4)

and

E := AD −BC. (A.5)

Proposition A.1 There exists a vector {yH , πH , iH , yL, πL, iL} that solves the system of linear

equations (8)–(13).

Proof: Rearranging the system of equations (8)–(13) and eliminating yH and yL, we obtain two

unknowns for πH and πL in two equations

[
A B

C D

][
πL

πH

]
=

[
κ2π∗

rn

]
. (A.6)

For what follows, it is useful to show that E = 0 is generically inconsistent with existence of

the sunspot equilibrium. Since B > 0, we can always write πH = κ2/Bπ∗ −A/BπL. Plugging this

into CπL + DπH = rn and multiplying both sides by B, we get Dκ2π∗ − EπL = Brn. Since the

right-hand side of this equation is strictly positive, E = 0 is inconsistent with the existence of the

sunspot equilibrium for generic π∗.

Hence, we can invert the matrix on the left-hand-side of (A.6)

[
πL

πH

]
=

1

AD −BC

[
D −B
−C A

][
κ2π∗

rn

]
. (A.7)

Thus,

πH = −Cκ
2

E
π∗ +

A

E
rn (A.8)
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and

πL =
Dκ2

E
π∗ − B

E
rn. (A.9)

From the Phillips curves in both states, we obtain

yH =
κ (β(1− pH)− (1− β)C)

E
π∗ +

βκ(1− pH)

E
rn (A.10)

and

yL =
κ (βpL − 1− (1− β)C)

E
π∗ − (1− βpL)κ2 + (1− β)(1− βpL + β(1− pH))λ

κE
rn. (A.11)

Proposition A.2 Suppose equations (8)–(13) are satisfied. Then λyL+(κπL−π∗) < 0 if and only

if (i) E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn or (ii) E < 0 and π∗ < −κ2+λ(1−β)

κ2 rn.

Proof: Using (A.9) and (A.11), we have

λyL + κ(πL − π∗) = −κ
2 + λ (1− βpL + β(1− pH))

E
κ

(
π∗ +

κ2 + λ(1− β)

κ2
rn
)
. (A.12)

Notice that (κ2 + λ (1− βpL + β(1− pH)))κ > 0, and κ2+λ(1−β)
κ2 rn > 0. Thus, if E > 0 and

π∗ > −κ2+λ(1−β)
κ2 rn, then λyL + κ(πL − π∗) < 0. Similarly, if E < 0 and π∗ < −κ2+λ(1−β)

κ2 rn, then

λyL + κ(πL − π∗) < 0.

Proposition A.3 Suppose equations (8)–(13) are satisfied, E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn.

Then iH > 0 if and only if pL − (1− pH)− 1−pL+1−pH
κσ (1− βpL + β(1− pH)) > 0.

Proof: iH is given by

iH =
1− pH
σ

(yL − yH) + pHπH + (1− pH)πL + rn

=

(
pL − (1− pH)− 1−pL+1−pH

κσ (1− βpL + β(1− pH))
)
κ2

E

(
π∗ +

κ2 + λ(1− β)

κ2
rn
)
, (A.13)

where in the second row we made use of (A.8)–(A.11).

Proposition A.4 Suppose equations (8)–(13) are satisfied, E < 0 and π∗ < −κ2+λ(1−β)
κ2 rn. Then

iH < 0.
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Proof: First, substitute equations (A.1), (A.2), and (A.4) into equation (A.5) to obtain

E = βλ(1− pH)−
(
κ2 + λ(1− β)

)
C. (A.14)

Hence, E < 0 implies C > 0.

Corollary A.1 C < 0 implies E > 0.

Next, note that

pL−(1−pH)− 1− pL + 1− pH
κσ

(1− βpL + β(1− pH)) = −C−(1−pH)
1− βpL + β(1− pH) + κσ

κσ
.

Hence, C > 0 implies pL − (1− pH)− 1−pL+1−pH
κσ (1− βpL + β(1− pH)) < 0.

Corollary A.2 pL − (1− pH)− 1−pL+1−pH
κσ (1− βpL + β(1− pH)) > 0 implies C < 0.

From equation (A.13), it follows that pL− (1−pH)− 1−pL+1−pH
κσ (1− βpL + β(1− pH)) < 0, E < 0

and π∗ < −κ2+λ(1−β)
κ2 rn imply iH < 0.

We are now ready to proof Proposition 1. For notational convenience, define

Ω(pL, pH , κ, σ, β) ≡ pL − (1− pH)− 1− pL + 1− pH
κσ

(1− βpL + β(1− pH)) . (A.15)

Proof of “if” part: Suppose that Ω(·) > 0 and π∗ > −κ2+λ(1−β)
κ2 rn. According to Proposition A.1

there exists a vector {yH , πH , iH , yL, πL, iL} that solves equations (8)–(13). According to Corollary

A.2, Ω(·) > 0 implies C < 0. According to Corollary A.1, C < 0 implies E > 0. According

to Proposition A.2, E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn imply λyL + κ(πL − π∗) < 0. According to

Proposition A.3, given E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn, Ω(·) > 0 implies iH > 0.

Proof of “only if” part: Suppose that the vector {yH , πH , iH , yL, πL, iL} solves (8)–(13), and

satisfies λyL + κ(πL − π∗) < 0 and iH > 0. According to Proposition A.2, λyL + κ(πL − π∗) < 0

implies that either (i) E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn or (ii) E < 0 and π∗ < −κ2+λ(1−β)

κ2 rn. Ac-

cording to Proposition A.4, (ii) is inconsistent with iH > 0. Hence, E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn.

According to Proposition A.3, given E > 0 and π∗ > −κ2+λ(1−β)
κ2 rn, iH > 0 implies Ω(·) > 0.
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A.2 Proof of Proposition 2

The allocations and prices in the sunspot equilibrium are given by

πL = −(C + 1)κ2

E
π∗ − κ2 + λ(1− βpH)

E
rn

yL =
κ (βpL − 1− (1− β)C)

E
π∗ − (1− βpL)κ2 + (1− β)(1− βpL + β(1− pH))λ

κE
rn

πH = −Cκ
2

E
π∗ − βλ(1− pH)

E
rn

yH =
κ (β(1− pH)− (1− β)C)

E
π∗ +

βκ(1− pH)

E
rn

Assuming π∗ = 0 and λ > 0, it holds

πL = −κ
2 + λ(1− βpH)

E
rn < 0

yL = −(1− βpL)κ2 + (1− β)(1− βpL + β(1− pH))λ

κE
rn < 0

πH = −βλ(1− pH)

E
rn ≤ 0

yH =
βκ(1− pH)

E
rn ≥ 0

When pH < 1, πH < 0 and yH > 0.

A.3 Proof of Proposition 3

Keeping in mind that −1 < C < 0 in the sunspot equilibrium, it holds,

∂πL
∂π∗

= −C + 1

E
κ2 < 0 (A.16)

∂yL
∂π∗

= −β(1− pL) + (1− β)(C + 1)

E
κ < 0, (A.17)

and

∂πH
∂π∗

= −C
E
κ2 > 0 (A.18)

∂yH
∂π∗

=
β(1− pH)− (1− β)C

E
κ > 0. (A.19)

A.4 Proof of Lemma 1

If π0 exists, it holds −Cκ2

E π0 − βλ(1−pH)
E rn = 0. Solving for π0, one obtains

π0 = −βλ(1− pH)

Cκ2
rn, (A.20)
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where C < 0, and hence π0 > 0.

A.5 Proof of Proposition 4

Note first that

EV = − 1

1− β
1

2

[
1− pL

1− pL + 1− pH
(
π2
H + λ̄y2

H

)
+

1− pH
1− pL + 1− pH

(
π2
L + λ̄y2

L

)]
, (A.21)

where V is defined in equation (3).

Assuming λ = λ̄, the partial derivative of EV with respect to π∗ is

∂EV

∂π∗
=− 1

(1− β)(1− pL + 1− pH)E2

{[ (
κ2 + λ̄(1− β)2

) (
(1− pH)(C + 1)2 + (1− pL)C2

)
+ λ̄β(1− pH)(1− pL)(1− βpL + 1− βpH)

]
κ2π∗ +

[
λ̄
(
κ2 + λ̄(1− β)

)
(1− βpL + β(1− pH))

(β(1− pL) + (1− β)(C + 1)) +
(
κ2 + λ̄(1− β + β2(1− pL + 1− pH))

)
κ2(C + 1)

− (βκ)2λ̄(1− pL)
]
(1− pH)rn

}
.

Note that all terms in the square brackets which are multiplied by π∗ are positive. In the square

brackets which are multiplied by rn all terms are positive except for the last one, −(βκ)2λ̄(1−pL) <

0.

The first-order necessary condition for the welfare-maximizing inflation target is ∂EV
∂π∗ = 0.

Solving for π∗, one obtains

π
∗∗

= −
1− pH
κ2

λ̄
(
κ2 + λ̄(1− β)

)
(1− βpL + β(1− pH )) (β(1− pL) + (1− β)(C + 1)) +

(
κ2 + λ̄(1− β + β2(1− pL + 1− pH ))

)
κ2(C + 1)− (βκ)2λ̄(1− pL)(

κ2 + λ̄(1− β)2
) (

(1− pH )(C + 1)2 + (1− pL)C2
)

+ λ̄β(1− pH )(1− pL)(1− βpL + 1− βpH )
r
n

Note that π∗∗ > −κ2+λ̄(1−β)
κ2 rn whenever existence condition (22) is satisfied. Specifically,

π∗∗ > −κ2+λ̄(1−β)
κ2 rn if and only if

(
κ2 + λ̄(1− β)

) {
(κ2 + λ̄(1− β)2)C [(1− pL + 1− pH)C + 1− pH ]

}
>
[(
κ2 + λ̄(1− β)

)
λ̄β(1− β)(1− pH) + (βκ)2λ̄(1− pH)

]
[(1− pL + 1− pH)C + 1− pH ] ,

where (1− pL + 1− pH)C + 1− pH = −(1− pL)Ω(pL, pH , κ, σ, β) < 0. Hence, the left-hand side of

the inequality is positive and the right-hand side is negative, so that the inequality is satisfied.

Next, we show that π∗∗ < π0. This requires
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−
βλ̄

C
> −

λ̄
(
κ2 + λ̄(1− β)

)
(1− βpL + β(1− pH )) (β(1− pL) + (1− β)(C + 1)) +

(
κ2 + λ̄(1− β + β2(1− pL + 1− pH ))

)
κ2(C + 1)− (βκ)2λ̄(1− pL)(

κ2 + λ̄(1− β)2
) (

(1− pH )(C + 1)2 + (1− pL)C2
)

+ λ̄β(1− pH )(1− pL)(1− βpL + 1− βpH )
,

which can be rewritten as

βλ̄κ
2
(1− pL)(1− β)C

2
+ βλ̄

2
(1− β)

2
(1− pL)C

2
+ βλ̄

(
κ
2

+ λ̄(1− β)
2
)

(1− pH )(C + 1)
2

+ (βλ̄)
2
(1− pL)(1− pH )(1− βpL + 1− βpH )

> (βκ)
2
λ̄(1− pL)(1− pH )C + κ

2
(
κ
2

+ λ̄(1− βpH )
)
C +

[
κ
2
(1− βpL) + λ̄(1− β)(1− βpL + 1− βpH )

]
[β(1− pL) + (1− β)(C + 1)] λ̄C.

Note that all terms on the left-hand side of the inequality sign are strictly positive and all terms

on the right-hand side are strictly negative. This completes the proof.

A.6 Proof of Proposition 5

Suppose π∗ = 0 and pH < 1. It holds

∂πL
λ

=
βκ2(1− pH)(1− pL)

E2

κσ + (1− βpL + β(1− pH))

κσ
rn > 0

∂yL
∂λ

=
βκ(1− pH)(1− pL)

E2

κσ + (1− β)(1− βpL + β(1− pH))

κσ
rn > 0

∂πH
∂λ

=− βκ2(1− pH)

E2

[
Ω(pL, pH , κ, σ, β) + (1− pH)

κσ + (1− βpL + β(1− pH))

κσ

]
rn < 0

∂yH
∂λ

=− βκ(1− pH)

E2

[
(1− β)Ω(pL, pH , κ, σ, β) + (1− pH)

κσ + (1− β)(1− βpL + β(1− pH))

κσ

]
rn < 0

A.7 Proof of Proposition 6

Note first that

EV = − 1

1− β
1

2

[
1− pL

1− pL + 1− pH
(
π2
H + λ̄y2

H

)
+

1− pH
1− pL + 1− pH

(
π2
L + λ̄y2

L

)]
, (A.22)

where V is defined in equation (3).

Assuming π∗ = 0, the partial derivative of EV with respect to λ is
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∂EV

∂λ
=

β ((1− pH)rn)2

(1− β)(1− pL + 1− pH)E3

{[
βκ2(1− pL)C + κ2(1− βpH)(C + 1)

+ λ̄(1− β)(1− βpL + β(1− pH)) ((1− β)(C + 1) + β(1− pL))
]
λ

+ βκ2
[
(1− pL)(1− pH)βλ̄− (1− pL)(1− β)Cλ̄

]
+ κ4(C + 1)

+ λ̄(1− βpL)κ2 ((1− β)(C + 1) + β(1− pL))

}
.

Note that since (C + 1) > 0 and C < 0, all terms in curly brackets are positive except for

the very first one, βκ2(1 − pL)C < 0. Also note that since in the sunspot equilibrium E > 0, the

term in front of the curly brackets is positive for any λ ≥ 0. Since the only negative term in curly

brackets is multiplied by λ, ∂EV
∂λ |λ=0

> 0, and therefore λ∗ > 0.

Furthermore, if

κ2β(1−pL)C+κ2(1−βpH)(C+1)+λ̄(1−β) (1− βpL + β(1− pH)) ((C + 1)(1− β) + β(1− pL)) ≥ 0,

then ∂EV
∂λ > 0 for all λ ≥ 0. Hence, in this case no interior solution for λ∗ exists and λ∗ =∞.

If instead

κ2β(1−pL)C+κ2(1−βpH)(C+1)+λ̄(1−β) (1− βpL + β(1− pH)) ((C + 1)(1− β) + β(1− pL)) < 0,

then

λ∗ = −
βκ2

[
(1− pL)(1− pH)βλ̄− (1− pL)(1− β)Cλ̄

]
+ κ4(C + 1) + λ̄(1− βpL)κ2 ((1− β)(C + 1) + β(1− pL))

κ2β(1− pL)C + κ2(1− βpH)(C + 1) + λ̄(1− β) (1− βpL + β(1− pH)) ((C + 1)(1− β) + β(1− pL))

In this case, λ∗ > λ̄ if

(βκ)
2
(1−pL)λ̄ (C + 1− pH )︸ ︷︷ ︸

<0

+κ
2
(
κ
2

+ (1− βpH )λ̄
)

(C+1)+
(
κ
2
(1− βpL) + (1− β)λ̄(1− βpL + β(1− pH ))

)
(β(1− pL) + (1− β)(C + 1)) λ̄ > 0

A.8 Proof of Proposition 7

Let XS|λ=λ̄,π∗=π̂∗ denote the outcome of variable X ∈ {π, y} in state S ∈ {H,L} of the sunspot

equilibrium when λ = λ̄ and π∗ = π̂∗, and XS|λ=λ̂,π∗=0 when λ = λ̂ and π∗ = 0. We need to show

that XS|λ=λ̄,π∗=π̂∗ = XS|λ=λ̂,π∗=0 for all X × S and any λ̂ ≥ 0.
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High-state inflation:

πH|λ=λ̄,π∗=π̂∗ =− Cκ2

[βλ̄(1− pH)− (κ2 + λ̄(1− β))C]

β(1− pH)(λ̄− λ̂)

[βλ̂(1− pH)− (κ2 + λ̂(1− β))C]
rn

− βλ̄(1− pH)

βλ̄(1− pH)− (κ2 + λ̄(1− β))C
rn

=− βλ̂(1− pH)

βλ̂(1− pH)− (κ2 + λ̂(1− β))C
rn

=πH|λ=λ̂,π∗=0

High-state output:

yH|λ=λ̄,π∗=π̂∗ =
κ (β(1− pH)− (1− β)C)

[βλ̄(1− pH)− (κ2 + λ̄(1− β))C]

β(1− pH)(λ̄− λ̂)

[βλ̂(1− pH)− (κ2 + λ̂(1− β))C]
rn

+
βκ(1− pH)

βλ̄(1− pH)− (κ2 + λ̄(1− β))C
rn

=
βκ(1− pH)

βλ̂(1− pH)− (κ2 + λ̂(1− β))C
rn

=yH|λ=λ̂,π∗=0

Low-state inflation:

πL|λ=λ̄,π∗=π̂∗ =
Dκ2

[βλ̄(1− pH)− (κ2 + λ̄(1− β))C]

β(1− pH)(λ̄− λ̂)

[βλ̂(1− pH)− (κ2 + λ̂(1− β))C]
rn

− κ2 + λ̄(1− βpH)

βλ̄(1− pH)− (κ2 + λ̄(1− β))C
rn

=− κ2 + λ̂(1− βpH)

βλ̂(1− pH)− (κ2 + λ̂(1− β))C
rn

=πL|λ=λ̂,π∗=0

Low-state output:

yL|λ=λ̄,π∗=π̂∗ =
κ(βpL − 1− (1− β)C)

[βλ̄(1− pH)− (κ2 + λ̄(1− β))C]

β(1− pH)(λ̄− λ̂)

[βλ̂(1− pH)− (κ2 + λ̂(1− β))C]
rn

− κ2(1− βpL) + λ̄(1− β) (1− βpL + β(1− pH))

βλ̄(1− pH)− (κ2 + λ̄(1− β))C
rn

=− κ2(1− βpL) + λ̂(1− β) (1− βpL + β(1− pH))

βλ̂(1− pH)− (κ2 + λ̂(1− β))C
rn

=yL|λ=λ̂,π∗=0
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A.9 Numerical example

This subsection provides a numerical example of the sunspot equilibrium in the model without

fiscal policy. One period is assumed to correspond to one quarter, and the parameterisation follows

Table 1.

Figure A.1 plots the region of existence for the sunspot equilibrium in the (pH , pL) space (black

area), and the region of existence for the fundamental equilibrium in the (pfH , p
f
L) space (gray

area).32

Figure A.1: Existence regions for sunspot equilibrium and fundamental equilibrium
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Figure A.2 shows how allocations and welfare in the sunspot equilibrium depend on the central

bank’s inflation target π∗. We set pL = 0.9375 and pH = 0.98. In this particular example, the

optimal inflation target is negative.

B Policy problem in the model with fiscal policy

At the beginning of time, society delegates monetary and fiscal policy to a discretionary policy-

maker. The objective function of the policymaker is given by

VMF
t = −1

2
Et

∞∑
j=0

βj
(
π2
t+j + λ̄x2

t+j + λgg
2
t+j

)
, (B.1)

where for λg = λ̄g, the policymaker’s objective function coincides with society’s objective function.

32In case of the fundamental equilibrium, the condition for equilibrium existence depends on the value of the natural
real rate in the low-fundamental state, rnL. The region of existence is shrinking in the absolute value of rnL.
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Figure A.2: Allocations and welfare as a function of π∗

-1 -0.5 0 0.5 1

-4

-2

0

2
Output gap

High-confidence state

Low-confidence state

-1 -0.5 0 0.5 1

-4

-2

0

2
Annualized inflation

π
*

-1 -0.5 0 0.5 1
0

0.5

1
Annualized policy rate

π
*

-1 -0.5 0 0.5 1
-200

-100

0

100
Welfare gain/loss

Note: Dash-dotted vertical lines indicate the case where the central bank has the same objective function as society

as a whole, i.e. π∗ = 0. Solid vertical lines indicate the welfare-maximizing inflation target. The welfare gain/loss is

expressed relative to the welfare level achieved when the inflation target is zero (in percent).

The optimization problem of a generic policymaker acting under discretion is as follows. Each

period t, she chooses the inflation rate, the modified output gap, government spending, and the

nominal interest rate to maximize its objective function (B.1) subject to the behavioral constraints

of the private sector and the lower bound constraint, with the policy functions at time t+ 1 taken

as given. Since the model features no endogenous state variable, the central bank solves a sequence

of static optimization problems

max
πt,xt,gt,it

−1

2

(
π2
t + λ̄x2

t + λgg
2
t

)
(B.2)

subject to

πt = κxt + βEtπt+1 (B.3)

xt = Etxt+1 + (1− Γ)(gt − gt+1)− σ (it − Etπt+1 − rnt ) (B.4)

it ≥ 0 (B.5)
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The consolidated first order conditions are

(κπt + λ̄xt)it = 0 (B.6)

κπt + λ̄xt ≤ 0 (B.7)

it ≥ 0 (B.8)

λggt + (1− Γ)(κπt + λ̄xt) = 0 (B.9)

together with the private sector behavioral constraints.

C Sunspot equilibrium in the model with fiscal policy

C.1 Proof of Proposition 8

To proof Proposition 8 on the necessary and sufficient condition for existence of the sunspot equi-

librium, it is useful to proceed in three steps. Each step is associated with an auxiliary proposition.

Let

C̃ := λgC +
(
κ2 + λ̄(1− βpL)

) (1− Γ)2

κσ
(1− pL), (C.1)

D̃ := λgD − βλ̄
(1− Γ)2

κσ
(1− pL)2, (C.2)

and

Ẽ :=AD̃ −BC̃

=λgE −
(1− Γ)2(1− pL)

κσ

(
κ2 + λ̄(1− β)

) [
κ2 + λ̄(1− βpL + β(1− pH))

]
, (C.3)

where A,B,C,D and E are defined in (A.1)–(A.5).

Proposition C.1 There exists a vector {xH , πH , iH , gH , xL, πL, iL, gL} that solves the system of

linear equations (33)–(40).

Proof: Rearranging the system of equations (33)–(40) and eliminating xH , iH , gH , xL, iL and gL,

we obtain two unknowns for πH and πL in two equations

[
A B

C̃ D̃

][
πL

πH

]
=

[
0

λgr
n

]
. (C.4)

For what follows, it is useful to show that Ẽ = 0 is inconsistent with existence of the sunspot

equilibrium. Since B > 0, we can always write πH = −A/BπL. Plugging this into C̃πL + D̃πH =

λgr
n and multiplying both sides by B, we get −ẼπL = Bλgr

n. Since the right-hand side of this
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equation is strictly positive for λg > 0, Ẽ = 0 is inconsistent with the existence of the sunspot

equilibrium. Hence, we can invert the matrix on the left-hand-side of (C.4)

[
πL

πH

]
=

1

AD̃ −BC̃

[
D̃ −B
−C̃ A

][
0

λgr
n

]
. (C.5)

Thus,

πH =
A

Ẽ
λgr

n (C.6)

and

πL =
−B
Ẽ
λgr

n. (C.7)

From the Phillips curves in both states, we obtain

xH =
βκ(1− pH)

Ẽ
λgr

n (C.8)

and

xL = −(1− βpL)κ2 + (1− β)(1− βpL + β(1− pH))λ̄

κẼ
λgr

n. (C.9)

Using the target criterion for fiscal policy in the low-confidence state (39), we obtain

gL =
(1− Γ)

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpL + β(1− pH))

)
κẼ

rn. (C.10)

Using the consumption Euler equation in the high-confidence state (33), we obtain

iH =

[
1− 1− pH

Ẽ

(
λg

(
κ2 + λ̄+ (κ2 + λ̄(1− β))

1− βpL + β(1− pH)

κσ

)

+
(1− Γ)2

κσ
(κ2 + λ̄(1− β))

(
κ2 + λ̄(1− βpL + β(1− pH))

))]
rn. (C.11)

Finally, from equations (35) and (40), we have gH = 0, and iL = 0.

Proposition C.2 Suppose equations (33)–(40) are satisfied. Then λ̄xL + κπL < 0 if and only if

Ẽ > 0.

Proof: Using (C.7) and (C.9), we have

λ̄xL + κπL = −
(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpL + β(1− pH))

)
κẼ

λgr
n (C.12)
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Notice that λgr
n > 0 and

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpL + β(1− pH))

)
> 0. Thus, if λ̄xL+κπL <

0, then Ẽ > 0. Similarly, if Ẽ > 0, then λ̄xL + κπL < 0.

Proposition C.3 Suppose equations (33)–(40) are satisfied and Ẽ > 0. Then iH > 0 if and only if

λgΩ(pL, pH , κ, σ, β)− (1− Γ)2 1−pL+1−pH
κσ

[
κ2 + λ̄(1− βpL + β(1− pH))

]
> 0, where Ω(·) is defined

in (A.15).

Proof: First, notice that iH is given by

iH =
1− pH
σ

(xL − xH + (1− Γ)(gH − gL)) + pHπH + (1− pH)πL + rn

=

(
κ2 + λ̄(1− β)

)
rn

Ẽ

[
λgΩ(pL, pH , κ, σ, β)− (1− Γ)2 1− pL + 1− pL

κσ

(
κ2 + λ̄(1− βpL + β(1− pH))

)]
,

(C.13)

where in the second row we made use of (C.6)–(C.10). Notice also that
(κ2+λ̄(1−β))rn

Ẽ
> 0. Thus, if

λgΩ(pL, pH , κ, σ, β)−(1−Γ)2 1−pL+1−pH
κσ

[
κ2 + λ̄(1− βpL + β(1− pH))

]
> 0 then iH > 0. Similarly,

if iH > 0 then λgΩ(pL, pH , κ, σ, β)− (1− Γ)2 1−pL+1−pH
κσ

[
κ2 + λ̄(1− βpL + β(1− pH))

]
> 0.

We are now ready to proof Proposition 8. For notational convenience, define

Ω̃(pL, pH , κ, σ, β,Γ, λg) = λgΩ(pL, pH , κ, σ, β)−(1−Γ)2 1− pL + 1− pH
κσ

[
κ2 + λ̄(1− βpL + β(1− pH))

]
(C.14)

Proof of “if” part: Suppose that Ω̃(·) > 0. According to Proposition C.1 there exists a vector
{xH , πH , iH , gH , xL, πL, iL, gL} that solves equations (33)–(40). Notice that

(κ2 + λ̄(1− β))Ω̃(·) =Ẽ − (1− pH)

[
λg

(
κ2 + λ̄+ (κ2 + λ̄(1− β))

1− βpL + β(1− pH)

κσ

)

+
(1− Γ)2

κσ
(κ2 + λ(1− β))

(
κ2 + λ(1− βpL + β(1− pH))

) ]
.

Hence, Ω̃(·) > 0 implies Ẽ > 0. According to Proposition C.2, Ẽ > 0 implies λ̄xL + κπL < 0.

According to Proposition C.3, given Ẽ > 0, Ω̃(·) > 0 implies iH > 0.

Proof of “only if” part: Suppose that the vector {xH , πH , iH , gH , xL, πL, iL, gL} solves (33)–(40),

and satisfies λ̄xL + κπL < 0 and iH > 0. According to Proposition C.2, λ̄xL + κπL < 0 implies

Ẽ > 0. According to Proposition C.3, Ẽ > 0 and iH > 0 imply Ω̃(·) > 0.
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C.2 Proof of Proposition 9

In the sunspot equilibrium, allocations and prices are given by

πL =− κ2 + λ̄(1− βpH)

Ẽ
λgr

n < 0 (C.15)

xL =− (1− βpL)κ2 + (1− β)(1− βpL + β(1− pH))λ̄

κẼ
λgr

n < 0 (C.16)

gL =
(1− Γ)

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpL + β(1− pH))

)
κẼ

rn > 0 (C.17)

πH =− βλ̄(1− pH)

Ẽ
λgr

n ≤ 0 (C.18)

xH =
βκ(1− pH)

Ẽ
λgr

n ≥ 0 (C.19)

gH =0, (C.20)

where Ẽ > 0 is defined in equation (C.3). When pH < 0, πH < 0 and xH > 0.

C.3 Proof of Proposition 10

In the sunspot equilibrium, it holds

∂πL
∂λg

=
(κ2 + λ̄(1− βpH))(1− Γ)2(κσ)−1(1− pL)(κ2 + λ̄(1− β))

[
κ2 + λ̄(1− βpL + β(1− pH))

]
Ẽ2

rn > 0

∂xL
∂λg

=
[
κ2(1− βpL) + λ̄(1− β)(1− βpL + β(1− pH))

]
×

(1− Γ)2(κσ)−1(1− pL)(κ2 + λ̄(1− β))
[
κ2 + λ̄(1− βpL + β(1− pH))

]
κẼ2

rn > 0

∂gL
λg

= −
(1− Γ)

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpL + β(1− pH))

)
κẼ2

Ern < 0

and

∂πH
∂λg

=
βλ̄(1− pH)(1− Γ)2(κσ)−1(1− pL)(κ2 + λ̄(1− β))

[
κ2 + λ̄(1− βpL + β(1− pH))

]
Ẽ2

rn ≥ 0

∂xH
∂λg

= −
βκ(1− pH)(1− Γ)2(κσ)−1(1− pL)(κ2 + λ̄(1− β))

[
κ2 + λ̄(1− βpL + β(1− pH))

]
Ẽ2

rn ≤ 0.

When pH < 1, ∂πH
∂λg

> 0 and ∂xH
∂λg

< 0.
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C.4 Comparison with an exogenous increase in government spending

In our analysis of fiscal policy, government spending is an endogenous variable set by an optimizing

policymaker. A more common approach in the literature on fiscal policy in expectations-driven

liquidity traps is to treat the fiscal policy instrument as an exogenous variable (e.g. Mertens and

Ravn, 2014; Bilbiie, 2018). We therefore provide a brief comparison of these two approaches.

Suppose that government spending follows an exogenous process that is perfectly correlated

with the sunspot shock, as commonly assumed in the literature, i.e. gt = gL if ξt = ξL and gt = gH

if ξt = ξH , where gL > gH = 0. For this case, the definition of the sunspot equilibrium has to be

slightly modified.

Definition 5 The sunspot equilibrium in the model with the sunspot shock and exogenous fiscal

policy is given by a vector {xH , πH , iH , xL, πL, iL} that solves the system of linear equations (33),

(34), (36), (37), (38), (40), and satisfies the inequality constraints (41) and (42).

Assuming that the high-confidence state is absorbing (pH = 1), the low-confidence-state AD

and AS curves in the model with exogenous fiscal policy are given by

AD-sunspot g-ex: xL = min

[(
σ

1− pL
rn + (1− Γ)gL

)
+

σpL
1− pL

πL,−
κ

λ̄
πL

]
(C.21)

AS-sunspot g-ex: xL =
1− βpL

κ
πL (C.22)

Figure C.1 compares the effects of a reduction in λg—which in equilibrium results in an increase

in gL—on the AD-AS curves in the model with endogenous fiscal policy to those of an increase

in gL in the model with exogenous fiscal policy. For the baseline, it is assumed that λg = ∞ in

the model with endogenous fiscal policy and gL = 0 in the model with exogenous fiscal policy.

Hence, in the baseline, the low-state AD curve is the same whether fiscal policy is endogenous or

exogenous. The sunspot equilibrium in the baseline is represented by the intersection of the AD

curve (red solid line) with the AS curve (blue solid line), marked by point S. When considering an

increase in low-state government spending in the model with exogenous fiscal policy, we calibrate

the stimulus to be of the same size as the equilibrium increase in government spending that occurs

in the model with endogenous fiscal policy in response to the reduction in λg.

In the model with endogenous fiscal policy a change in λg affects the slope of the AD curve

to the left of the kink. A reduction in λg makes the AD curve flatter (red dashed line). In the

model with exogenous fiscal policy, a change in low-state government spending instead affects the

intercept term in the AD curve and results in a level shift to the left of the kink. An increase in

low-state government spending shifts the AD curve upwards (green dashed line). While the sunspot

equilibria in the two models are observationally equivalent by construction (see point S′), the two

AD curves are not observationally equivalent. Since an exogenous increase in low-state government

spending does not affect the slope of the AD curve, a policy intervention of this type is in general

unsuited to eliminate the sunspot equilibrium.
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Figure C.1: Low-confidence state AD-AS curves: Endogenous vs exogenous fiscal policy
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terms.

C.5 Numerical example

This subsection provides a numerical example of how allocations and welfare depend on the relative

weight that the policymaker’s objective function puts on government spending stabilization λg. The

parameterisation follows Table 1 except that we account for a non-zero steady-state government

spending to output ratio of 0.2, which implies that the inverse of the elasticity of the marginal

utility of private consumption with respect to output σ becomes 0.4. The inverse of the elasticity

of the marginal utility of public consumption with respect to output ν is set to 0.1, as in Section

5. This implies λ̄g = 0.0082. In addition, pL = 0.9375 and pH = 0.98.

D Fundamental equilibrium in the model with fiscal policy

D.1 Existence of the fundamental equilibrium

Proposition 12 The fundamental equilibrium in the model with government consumption and a

two-state natural real rate shock exists if and only if

Ẽf <(1− pfH)
rnL
rnH

[
λg

(
κ2 + λ̄+ (κ2 + λ̄(1− β))

1− βpfL + β(1− pfH)

κσ

)

+
(1− Γ)2

κσ
(κ2 + λ̄(1− β))

(
κ2 + λ̄(1− βpfL + β(1− pfH))

)]
(D.1)
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Figure C.2: Allocations and welfare as a function of λg
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where Ẽf ≡ λgEf −
(1−Γ)2(1−pfL)

κσ

(
κ2 + λ̄(1− β)

) [
κ2 + λ̄(1− βpfL + β(1− pfH))

]
.

To proof Proposition 12, we proceed again in three steps. Each step is associated with an

auxiliary proposition.

Proposition D.1 There exists a vector {xH , πH , iH , gH , xL, πL, iL, gL} that solves the system of

linear equations (35), (36), (39), (40), and (43)–(46).

Proof: Let

Af := −βλ̄(1− pfH), (D.2)

Bf := κ2 + λ̄(1− βpfH), (D.3)

Cf :=
(1− pfL)

σκ
(1− βpfL + β(1− pfH))− pfL, (D.4)

Df := −
(1− pfL)

σκ
(1− βpfL + β(1− pfH))− (1− pfL) = −1− Cf , (D.5)

and

Ef := AfDf −BfCf . (D.6)
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Rearranging the system of equations and eliminating xH , iH , gH , xL, iL and gL, we obtain two

unknowns for πH and πL in two equations

[
Af Bf

C̃f D̃f

][
πL

πH

]
=

[
0

λgr
n
L

]
, (D.7)

where

C̃f := λgC
f +

(
κ2 + λ̄(1− βpfL)

) (1− Γ)2

κσ
(1− pfL), (D.8)

D̃f := λgD
f − βλ̄(1− Γ)2

κσ
(1− pfL)2. (D.9)

Define Ẽf := Af D̃f −Bf C̃f . For what follows, it is useful to show that Ẽf = 0 is inconsistent

with existence of the fundamental equilibrium. Since B > 0, we can always write πH = −Af/BfπL.

Plugging this into C̃fπL + D̃fπH = λgr
n
L and multiplying both sides by Bf , we get −ẼfπL =

Bfλgr
n
L. Since the right-hand side of this equation is strictly negative for λg > 0, Ẽf = 0 is

inconsistent with the existence of the fundamental equilibrium. Hence, we can invert the matrix

on the left-hand-side of (D.7)

[
πL

πH

]
=

1

Af D̃f −Bf C̃f

[
D̃f −Bf

−C̃f Af

][
0

λgr
n
L

]
. (D.10)

Thus,

πH =
Af

Ẽf
λgr

n
L (D.11)

and

πL =
−Bf

Ẽf
λgr

n
L. (D.12)

From the Phillips curves in both states, we obtain

xH =
βκ(1− pfH)

Ẽf
λgr

n
L (D.13)

and

xL = −
(1− βpfL)κ2 + (1− β)(1− βpfL + β(1− pfH))λ̄

κẼf
λgr

n
L. (D.14)

Using the target criterion for fiscal policy in the low-confidence state (39), we obtain

gL =
(1− Γ)

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpfL + β(1− pfH))

)
κẼf

rnL. (D.15)
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Using the consumption Euler equation in the high-confidence state (43), we obtain

iH =rnH −
1− pfH
Ẽf

(
λg

(
κ2 + λ̄+ (κ2 + λ̄(1− β))

1− βpfL + β(1− pfH)

κσ

)

+
(1− Γ)2

κσ
(κ2 + λ̄(1− β))

(
κ2 + λ̄(1− βpfL + β(1− pfH))

))
rnL. (D.16)

Finally, from equations (35) and (40), we have gH = 0, and iL = 0.

Proposition D.2 Suppose equations (35), (36), (39), (40), and (43)–(46) are satisfied. Then

λ̄xL + κπL < 0 if and only if Ẽf < 0.

Proof: Using (D.12) and (D.14), we have

λ̄xL + κπL = −

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpfL + β(1− pfH))

)
κẼf

λgr
n
L (D.17)

Notice that λgr
n
L < 0 and

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpfL + β(1− pfH))

)
> 0. Thus, if λ̄xL +

κπL < 0, then Ẽf < 0. Similarly, if Ẽf < 0, then λ̄xL + κπL < 0.

Proposition D.3 Suppose equations (35), (36), (39), (40), and (43)–(46) are satisfied and Ẽf <

0. Then iH > 0 if and only if Ẽf < Ẽ
f
,

where Ẽ
f ≡ (1−pfH)

rnL
rnH

[
λg

(
κ2 + λ̄+ (κ2 + λ̄(1− β))

1−βpfL+β(1−pfH)

κσ

)
+ (1−Γ)2

κσ (κ2+λ̄(1−β))
(
κ2 + λ̄(1− βpfL + β(1− pfH))

)]
.

Proof: First, notice that iH is given by

iH =
1− pfH
σ

(xL − xH + (1− Γ)(gH − gL)) + pfHπH + (1− pfH)πL + rnH

=rnH −
1− pfH
Ẽf

[
λg

(
κ2 + λ̄+ (κ2 + λ̄(1− β))

1− βpfL + β(1− pfH)

κσ

)

+
(1− Γ)2

κσ
(κ2 + λ̄(1− β))

(
κ2 + λ̄(1− βpfL + β(1− pfH))

)]
rnL, (D.18)

The term in square brackets is strictly positive, rnH > 0, rnL < 0 and Ẽf < 0. Thus, if Ẽf < Ẽ
f

then iH > 0. Similarly, if iH > 0 then Ẽf < Ẽ
f
.
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We are now ready to proof Proposition 12.

Proof of “if” part: Suppose that Ẽf < Ẽ
f
. According to Proposition D.1 there exists a vector

{xH , πH , iH , gH , xL, πL, iL, gL} that solves equations (35), (36), (39), (40), and (43)–(46). Notice

that Ẽ
f
< 0. Hence, Ẽf < Ẽ

f
implies Ẽf < 0. According to Proposition D.2, Ẽf < 0 implies

λ̄xL + κπL < 0. According to Proposition D.3, given Ẽf < 0, Ẽf < Ẽ
f

implies iH > 0.

Proof of “only if” part: Suppose that the vector {xH , πH , iH , gH , xL, πL, iL, gL} solves (35),

(36), (39), (40), (43)–(46), and satisfies λ̄xL + κπL < 0 and iH > 0. According to Proposition D.2,

λ̄xL +κπL < 0 implies Ẽf < 0. According to Proposition D.3, Ẽf < 0 and iH > 0 imply Ẽf < Ẽ
f
.

D.2 Allocations and prices

In the fundamental equilibrium, allocations and prices are given by:

πL =−
κ2 + λ̄(1− βpfH)

Ẽf
λgr

n
L < 0 (D.19)

xL =−
(1− βpfL)κ2 + (1− β)(1− βpfL + β(1− pfH))λ̄

κẼf
λgr

n
L < 0 (D.20)

gL =
(1− Γ)

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpfL + β(1− pfH))

)
κẼf

rnL > 0 (D.21)

πH =−
βλ̄(1− pfH)

Ẽf
λgr

n
L ≤ 0 (D.22)

xH =
βκ(1− pfH)

Ẽf
λgr

n
L ≥ 0 (D.23)

gH =0. (D.24)

When pfH < 1, πH < 0 and xH > 0.

D.3 Effects of a marginal change in λg

The partial derivatives of the policy functions with respect to λg are

48



∂πL
∂λg

=
(κ2 + λ̄(1− βpfH))(1− Γ)2(κσ)−1(1− pfL)(κ2 + λ̄(1− β))

[
κ2 + λ̄(1− βpfL + β(1− pfH))

]
(Ẽf )2

rnL < 0

∂xL
∂λg

=
[
κ2(1− βpfL) + λ̄(1− β)(1− βpfL + β(1− pfH))

]
×

(1− Γ)2(κσ)−1(1− pfL)(κ2 + λ̄(1− β))
[
κ2 + λ̄(1− βpfL + β(1− pfH))

]
κ(Ẽf )2

rnL < 0

∂gL
λg

= −
(1− Γ)

(
κ2 + λ̄(1− β)

) (
κ2 + λ̄(1− βpfL + β(1− pfH))

)
κ(Ẽf )2

EfrnL,

and

∂πH
∂λg

=
βλ̄(1− pfH)(1− Γ)2(κσ)−1(1− pfL)(κ2 + λ̄(1− β))

[
κ2 + λ̄(1− βpfL + β(1− pfH))

]
(Ẽf )2

rnL ≤ 0

∂xH
∂λg

= −
βκ(1− pfH)(1− Γ)2(κσ)−1(1− pL)(κ2 + λ̄(1− β))

[
κ2 + λ̄(1− βpfL + β(1− pfH))

]
(Ẽf )2

rnL ≥ 0.

When pfH < 1, ∂πH
∂λg

< 0 and ∂xH
∂λg

> 0.
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